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We consider a system of nonlinear partial differential equations admitting the operator
Zakharov–Shabat representation. By means of nonlocal reductions approach explicit so-
lutions of the equations under consideration are found.

In the last 30 years a great progress in the investigation of nonlinear partial differential
equations of mathematical and theoretical physics was achieved due to application of different
approaches mainly based on modern functional and algebraic-geometric methods [1–3]. It gave
possibility to study different properties of solutions important for applications in physics, me-
chanics and other fields of knowledge and to construct exact formulae for solutions of many
systems of nonlinear differential equations having numerous applications.

In the present communication we consider an approach connected with studying of a system
of nonlinear partial differential equations possessing so-called operator Zakharov–Shabat repre-
sentation which is based on reduction principle. The formula for exact solutions of a system of
nonlinear partial differential equations describing resonance interaction of M waves is given.

1. Let Φ be a function of variables x, y, t ∈ R1 satisfying to a system of linear partial
differential equations

α
∂Φ
∂y

= L1Φ, β
∂Φ
∂t

= L2Φ, α, β ∈ R1, (1)

where differential operators

L1 =
p∑

i=0

ui
∂i

∂xi
, ui = ui(x, y, t), i = 0, p, (2)

L2 =
q∑
0

vj
∂j

∂xj
, vj = vj(x, y, t), j = 0, q, (3)

are defined in the corresponding functional space.
A system (1)–(3) is compatible if the following Frobenius (operator) condition

β
∂L1

∂t
− α

∂L2

∂y
+ [L1, L2] = 0 (4)
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takes place, where in the operator equation [L1, L2] = L1L2−L2L1 is a commutator of differential
operators L1 and L2.

The operator relation (4) is called the Zakharov–Shabat representation or the generalized
Lax representation [1, 2].

In general the equality (4) is fulfilled if the potentials (coefficients of operators L1 and L2)

ui = ui(x, y, t), i = 0, p, vj = vj(x, y, t), j = 0, q, (5)

satisfy a system of partial differential equations usually written in the form

Kl[u,v] = 0, l = 0, p + q, (6)

where u = {u1, u2, . . . , up} , v = {v1, v2, . . . , vq}.
The equations (4) and (6) are equivalent in the certain sense [1, 2].
The given compatible linear system (1)–(3) has an important significance and practical ap-

plications when the coefficients of the operators (2), (3) satisfy to some additional conditions,
which are called reductions.

One of the important problem of the modern theoretical and mathematical physics and, in
particular, the theory of nonlinear dynamical system [2, 3], is the problem of classification and
description of the reductions under which the system (1)–(3) is compatible.

There is an important type of restrictions under which the system of differential equations
(1)–(3) is compatible. This restrictions are called nonlocal reductions [4, 5].

Definition. A system of equations of general form

F [u,v; Φ;x, y, t] = 0 (7)

is called a nonlocal reduction for the system (1)–(3) if the equations (7) and (1)–(3) are com-
patible.

If nontrivial functions

ui = Fi[Φ;x, y, t], i = 0, p, vj = Gj [Φ;x, y, t], j = 0, q, (8)

satisfy the equations (7), then after substitution of functions (8) into system (1)–(3) we obtain
a system of nonlinear partial differential equations of the following form

α
∂Φ
∂y

=
p∑

i=0

Fi[Φ;x, y, t]
∂iΦ
∂xi

, (9)

β
∂Φ
∂t

=
q∑

j=0

Gj [Φ;x, y, t]
∂jΦ
∂xj

. (10)

The system (9), (10) is compatible due to the conditions (4). In other words, the functions (8)
satisfy the system of partial differential equations (6).

Thus, the problem of solving the system of nonlinear differential equations (7) equivalent to
the operator equation (4) in (2+ 1)-dimensions is reduced to the corresponding problem for the
system (9), (10) in (1 + 1)-dimensions.

2. Nonlocal reductions in linear hyperbolic systems. Explicit solutions to a sys-
tem of nonlinear differential equations describing resonance interaction of M waves.
Let us consider a hyperbolic system of linear partial differential equations of first order

∂Φ
∂y

= A
∂Φ
∂x

+ PΦ, (11)
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∂Φ
∂t

= B
∂Φ
∂x

+ QΦ, (12)

∂Φ∗

∂y
= A

∂Φ∗

∂x
− P̄ T Φ∗, (13)

∂Φ∗

∂y
= B

∂Φ∗

∂x
− Q̄T Φ∗, (14)

where A = diag (a1, a2, . . . , an) and B = diag (b1, b2, . . . , bn) are diagonal (n × n)-matrices,
elements of which are real numbers satisfying to the conditions ai 
= aj , bi 
= bj when i 
= j,
i, j = 1, n.

Here Φ = Φ(x, y, t) and Φ∗ = Φ∗(x, y, t) are (n×m)-matrix functions, elements of which are
second-degree integrable with respect to variable x, i.e.,

+∞∫
s

|Φkm(x, y, t)|2 dx < +∞,

+∞∫
s

|Φ∗
km(x, y, t)|2 dx < +∞, (15)

where k = 1, n, j = 1,m and s is an arbitrary (fixed) real number.
The property (15) of the matrices Φ = Φ(x, y, t) and Φ∗ = Φ∗(x, y, t) described above we will

denote in the following way

Φ = Φ(x, y, t), Φ∗ = Φ∗(x, y, t) ∈ MatN×nN (R3;Lx
2(s,+∞)). (16)

The matrix potentials P = P (x, y, t) and Q = Q(x, y, t) belong to the space Matn×m(R3;
Lx

2(s,+∞)), i.e., they are (n ×m)-matrix functions, elements of which are second-degree inte-
grable with respect to variable x. In addition, we suppose that the diagonal elements of matrices
P and Q are equal to zero, i.e.,

Pii(x, y, t) ≡ 0, Qii(x, y, t) ≡ 0, i = 1, n. (17)

The compatibility condition (4) for the system (11), (12) as well as for the conjugate system
(13), (14), implies the following relation

[A,Q] = [B,P ], (18)

Pt −Qy + AQx −BPx + [P,Q] = 0. (19)

It is easy to verify that the matrix-functions

P = [V,A], Q = [V,B] (20)

satisfy the condition (18) for some arbitrary (n× n)-matrix-function V = V (x, y, t).
Thus the corresponding system of partial differential equations of the form (6) can be written

as follows

[Vt, A] − [Vy, B] + AVxB −BVxA + [[V,A], [V,B]] = 0. (21)

In the case when V is an Hermitian matrix, the equation (21) is one of fundamental nonlinear
models of theoretical physics since it describes a resonance interaction of M waves, where M =
n(n−1)/2 waves [1–3]. The equation (21) is a basic system of differential equations of nonlinear
optics [6] when n = 3.
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The equality (21) is considered as a system of nonlinear partial differential equations, solutions
of which should be found.

To find the exact formula for the solutions of equation (21) let us consider now the unper-
turbed system of the form (11), (12) (or with zero potential P and Q) of the following form

∂ϕ

∂y
= A

∂ϕ

∂x
,

∂ϕ

∂t
= B

∂ϕ

∂x
. (22)

where the matrix function ϕ = ϕ(x, y, t) ∈ Matn×m(R3, Lx
2(s,+∞)).

The following theorem is valid.

Theorem 1. Let C is (n × n)-matrix with constant and real elements such that C̄T = C and
detC 
= 0.

Then under the mapping

ϕ → Φ = ϕΩ−1, (23)

where (m×m)-matrix

Ω = C +

+∞∫
x

ϕ̄T (x, y, t)ϕ(x, y, t) dx (24)

has in some domain σ = {(y, t) ∈ R2} nonzero determinant, the system of differential equations
(23) is transformed into the following system

∂Φ
∂y

= A
∂Φ
∂x

+
[
ΦΩ̃−1Φ̄T , A

]
Φ, (25)

∂Φ
∂t

= B
∂Φ
∂x

+
[
ΦΩ̃−1Φ̄T , B

]
Φ, (26)

where (m×m)-matrix Ω̃ = Ω̃(x, y, t) is represented by the formula

Ω̃ = C−1 −
+∞∫
x

Φ̄T (x, y, t)Φ(x, y, t) dx. (27)

Theorem 1 is proved by the direct calculation and by using the following lemma.

Lemma 1. The matrix Ω̃ is inverse to the matrix Ω, i.e.,

ΩΩ̃ = Ω̃Ω = E, (28)

where E is identity (m×m)-matrix.

To prove the lemma 1 it is sufficient to note that det Ω̃ 
= 0 if (y, t) ∈ σ and x is enough large
and to consider the derivative of matrix Ω̃ with respect to variable x ∈ R1, i.e.,

∂

∂x
Ω̃ = Φ̄T (x, y, t)Φ(x, y, t). (29)

Taking into consideration formula (23) and compairing the value (29) with relations

∂

∂x
Ω̃−1 = −Ω−1ΩxΩ−1 = Ω−1ϕ̄TϕΩ−1 = Φ̄T Φ, (30)

it is easy to conclude the Lemma 1.
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From the argument mentioned above we deduce the following theorem.

Theorem 2. The identity

ΦΩ̃−1Φ̄T ≡ ϕΩ−1ϕ̄T (31)

is true.

The system (25), (26) is compatible since the system (22) has the same property. It is a
simple implication from compatibility conditions (18) and (19).

By comparison of equations (11), (12) and (22) it is easy to conclude that the constraints

P = [V,A], Q = [V,B], (32)

where

V = ΦΩ̃−1Φ̄T = Φ


C−1 −

+∞∫
x

Φ̄T Φ dx




−1

Φ̄T (33)

are admissible nonlocal reductions for the system of linear partial differential equations (11),
(12).

Thus, it allows us to state the following result.

Theorem 3. The solution of partial differential equations (21) are represented with the following
formula

V = Φ


C−1 −

+∞∫
x

Φ̄T Φ dx




−1

Φ̄T ≡ ϕ


C +

+∞∫
x

ϕ̄Tϕdx




−1

ϕ̄T

or in component form

Vij = ϕi


C +

+∞∫
x

ϕ̄T
k ⊗ ϕk dx




−1

ϕ̄T
j ,

where ϕi = ϕi(x + aiy + bit) is i-tuple of matrix function ϕ(x, y, t).
Matrix function ϕ(x, y, t) is a solution of unperturbed systems (22) and has elements of the

following form ϕkm = fkm(x + aky + bkt), where fkm(τ), k = 1, n, m = 1,m, are arbitrary
continuos differentiable functions of variable τ ∈ R1.
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