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On Hyperelliptic Solutions of Spectral Problem

for the Two-Dimensional Schrödinger Equation

A.M. KOROSTIL

Institute of Magnetism of NASU, 36b Vernadskii Str., 03142 Kyiv, Ukraine

On the basis of the special Abelian 2-differentials of the second kind corresponding to hyper-
eliptic curves of the g genus addition formulae for hyperelliptic functions determined on the
Jacobi manifold is considered. In the case of hyperelliptic curves of the second genus these
formulae yield both relations for hypereliptic ℘-functions which can be rewritten as inte-
grable nonlinear differential equations and 2-dimensional differential relations which are the
generalization of the one-dimensional two-gap Schrödinger equation with potentials which
have the form of the linear combinations of hyperelliptic ℘-functions with shift arguments.

Introduction

The hyperelliptic Abel functions expressed as derivatives from the hyperelliptic sigma function σ
(which is proportional to the n-dimensional Riemann theta function) are an n-dimensional gen-
eralization of the elliptic one-dimensional Weierstrass functions [1, 2, 3]. First and second
derivatives of these hypereliptic functions are hyperelliptic ζ- and ℘-functions dependent on
vector arguments u which is the Abel map of corresponding hypereliptic curve V to the Jacobi

manifold Jac(V ), where V =
{
(y, x) ∈ C2 : y2 −

2g∑
i=0

λix
i = 0

}
means the hyperelliptic curve.

An algebraic curve V is characterized by canonical differential 1-forms including holomorphic,
meromorhic differentials of second and third kinds and the special differential 2-form of second
kind. The fundamental relation between the differential 2- and 1-forms which is established
with a help of the Riemann vanishing theorem for the theta functions leads to the fundamental
Baker relations between hyperelliptic σ- and ℘-functions. This permits to construct special
multi-dimensional linear differential equations with known (see [4, 5]) solutions. Also, the Baker
relation leads to the relation connecting derivatives of ℘-functions part of which can be rewritten
in the form of known integrable equations (see [5]).

1 Relations between differential 1- and 2-forms

The hyperelliptic curve V with cuts connecting branching points realizes the hyperelliptic Rie-
mann curve which is characterized by the canonical system of differential 1-forms holomorphic
and meromorphic on the Reimann surface. Holomorphic differentials dui = xi−1dx/y, i = 1, g
on the Riemann curve with the canonical basis of cycles a1, ag and b1, bg determine g×g-matrices
of a- and b-periods

2ω =
(∮

ak

ul

)
, 2ω′ =

(∮
bk

dul

)
.

The relations

dv = (2ω)−1du,
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and

τ =
∮

bk

dvl = ω−1ω′

determine the normalized g-dimensional vector v and the τ -matrix of the Riemann surface Γ,
respectively. These vector and matrix determine the the Riemann theta function

θ[ε
′

ε′′ ](z̃|τ ) =
∑

n∈Zg

exp
{
ıπ

(
n +

1
2
ε′, τn +

1
2
ε

)
+ 2ıπ

(
z̃ +

1
2
ε′′,n +

1
2
ε′
)}

,

z̃ =
∫ xk

x0

dv −
g∑

k=1

∫ xk

x0

dv + K, Kj =
1 + τjj

2
−

∑
i�=j

∫
ai

(
dvi(x)

∫ x

x0

dvj

)
,

at x ∈ Γ where Γ is the Riemann surface corresponding to the hyperelliptic curve V . Here
ε′(′′) =

(
ε′1(′′), . . . , ε′g(′′)), ε′i

(′′) ∈ (0, 1). The vanishing property of this theta function in g
points of the Riemann surface which constitutes the essence of the Riemann vanishing theorem
(see [6]) is used for calculating principal relations between proposed by Klein [1] above mentioned
hyperelliptic Abel functions.

The meromorphic differentials of second kind of the form

drj =
2g+1−j∑

k=j

(k + 1− j)λk+1+j
xkdx
4y

, j = 1, g (1)

determine η-matrices of a and b-periods

2η =
(
−

∮
ak

drl

)
, 2η′ =

(
−

∮
bk

drl

)
.

The latter together with ω-matrices enter in definition of the above mentioned basis hyperelliptic
Abel function

σ(u) = C(τ ) exp
{
uT κu

}
θ[ε]

(
(2ω)−1u − Ka|τ

)
. (2)

Here κ = (2ω)−1η, Ka is the vector of Riemann constants with the base point a and C(τ ) is
the constant which is determined by the parameters of the hyperelliptic curve V (see [5]).

Principal relations between the hyperelliptic σ-functions (refsithet) and ζ and ℘-functions
are provided with help of the fundamental 2-differential

dω(z1, z2) =
2y1y2 + F (x1, x2)

4(x1 − x2)2
dx1

y1

dx2

y2
, (3)

where

F (x1, x2) = 2λ2g+2x
g+1
1 xg+1

2 +
g∑

i=0

xi
1x

i
2(2λ2i + λ2i+1(x1 + x2)). (4)

Taking into account (4) we can rewrite (3) in the form

dω(x1, x2) =
∂

∂x2

(
y1 + y2

2y1(x1 − x2)

)
dx1dx2 + duT (x1)dr(x2) (5)

of the Abelian 2-differential with the pole of the second order.
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Applying the Abel map (defined by the equalityÂ(· · ·) =
g∑

k=1

∫ xk

x0k
dx(· · ·)) to the fundamental

2-differential (3) with respect to the variable x2, integrating over the variable x1 taking into
account (5) and the Riemann vanishing theorem [6] we can obtain an expression in the form of
rations of logarithm of the Riemann theta functions [2] (also see [5]). Then, a substitution the
theta-representation of σ functions (2) leads to the fundamental relation

∫ x

µ

g∑
i=1

∫ xi

µi

2yyi + F (x, xi)
4(x− xi)2

dx
y

dxi

yi

= ln




σ

(∫ x
a0

du −
g∑

i=1

∫ xi

ai
du

)

σ

(∫ x
a0

du −
g∑

i=1

∫ µi

ai
du

)

 − ln




σ

(∫ µ
a0

du −
g∑

i=1

∫ xi

ai
du

)

σ

(∫ µ
a0

du −
g∑

i=1

∫ µi

ai
du

)

 ,

(6)

where the F -function is defined above.
By definition, ζ and ℘ hyperelliptic functions are determined via σ functions by differential

relations

ζi(u) =
∂

∂ui

lnσ(u), ℘ij(u) = − ∂2

∂uj∂uj

lnσ(u), i, j = 1, g,

where the vector u belongs to the Jacobian Jac(V ) of the hyperelliptic curve. A differentiation
of (6) with respect to variables uj leads to relation for ζ and ℘ hyperelliptic functions corre-
sponding to hyperelliptic curves with the arbitrary genus g.

Differentiating ∂2/∂xi∂xj the relation (6) yields the equality

P (x;u) = 0, P (x;u) =
g−1∑
j=0

℘g,j+1x
j (7)

which gives the solution of the inverse Jacobi problem consisting in calculating points xi, i = 1, g
of the Riemann surface via the values of the vector u.

Differentiating both sides (6) with respect to ∂/∂xi from both sides of (6) we can come to
the relations

−ζj

(∫ x0

a
du + u

)
=

∫ x0

a
drj +

g∑
k=1

∫ xk

ak

drj − 1
2

g∑
k=0

yk


Dj(R′(z))

R′(z)

∣∣∣∣∣
z=xk


 , (8)

where R(z) =
g∏
0
(z − zj) and R′(z) = (∂/∂z)R(z) and

−ζj(u) =
g∑

k=1

∫ xk

ak

drj − 1
2
℘gg,j+1(u). (9)

The relations (8) and (9) are the basis for obtaining principal relations between hyperelliptic
functions.
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2 Basis relations for hyperelliptic functions

A differentiation of the relations (8) and (9) with the respect to uj leads to the fundamental
Baker addition formula ([3], see [5])

σ(u + v)σ(u − v)
σ2(u)σ2(v)

= M(u,v), (10)

where M(u,v) is a polynomial in ℘-functions. Here M -function is determined by differential
equation [5]{(

∂2

∂u2
g

− ∂2

∂v2
g

)
lnMk−1(u,v) + 2M1(u,v)

}
M2

k−1(u,v)− 4Mk(u,v)Mk−1(u,v) = 0. (11)

This equation is a recursive relation for Mk-functions where the subscript k means the genus of
the corresponding hyperelliptic curve V .

In the case g = 2 under consideration it can be shown that

M(u,v) = ℘22(u)℘12(v)− ℘12(u)℘22(v) + ℘11(v)− ℘11(u). (12)

On the basis of the Baker addition formula and the recursive relation (11) we can obtain the
system of possible relations between derivatives of ℘-functions with respect to variables ui,
i = 1, g.

Taking logarithm of both sides of the equality (10) and with help of differentiating ith respect
to uj and vj we can obtain well known addition formulae for the hyperelliptic ζ-functions of the
form

ζj(u + v)− ζ(u)− ζj(v) =
1
2

1
M(u,v)

(
∂

∂uj

+
∂

∂uj

)
M(u,v) (13)

and

ζj(u + v) + ζj(u − v) = ζ(u) + ζj(v) +
1
2

1
M(u,v)

(
∂

∂uj

+
∂

∂uj

)
M(u,v), (14)

ζj(u + v)− ζj(u − v) = 2ζ(v) +
1

M(u,v)
∂

∂uj

M(u,v). (15)

Then, expanding the functions

Ω+ = lnσ(u + v) + lnσ(u − v), Ω− = lnσ(u + v)− lnσ(u − v)

into power series in the small value v and taking into account the relations (14) and (15) we
can obtain all possible differential relations between ℘-functions. In the case of the genus g = 2
such power expansion leads to relations

℘2222 = 6℘2
22 +

1
2
λ3 + λ4℘22 + 4℘12,

℘1111 = 6℘2
11 − 3λ0℘22 + λ1℘12 + λ2℘11 − 1

2
λ0λ4 +

1
8
λ1λ3,

℘2221 = 6℘22℘12 + λ4℘12 − 2℘11,

℘2111 = 6℘12℘11 + λ2℘12 − 1
2
λ1℘22 − λ0,

℘2211 = 2℘22℘11 + 4℘2
12 +

1
2
λ3℘12.
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Here the first equation can be rewritten as the two-gap KdV equation with respect to ℘22 and
the last equation can be rewritten as sine-Gordon equation with respect to ln℘12. Analogously
we can obtain another differential relations between ℘ functions (see [5]).

The relation (13) can be rewritten as a differential equation

∂

∂uj

Φ(u) = ΛΦ(u), Λ =
1
2

1
M(u,v)

(
∂

∂uj

+
∂

∂uj

)
M(u,v) (16)

with respect to the Bloch function

Φ(u0,u; (y, x)) =
σ(α − u)
σ(α)σ(u)

exp
(
−1
2
yu0 + ζT (α)u

)
,

for which the hyperelliptic curve V (y, x) is the spectral variety. Here ζT (α) = (ζ1(α), . . . , ζg(α))
and (y, x) ∈ V , u and α =

∫ x
a du ∈ Jac(V ). Using the equation (refDE) we can construct

the system of linear differential equations of the second order both for the Φ-function and for
linear combinations of their derivatives. This system yields the solution of the spectral problem
for linear differential equations of the second order which can considerate as generalization of
Schrödinger equation.

In the case of the genus g = 2 this system of differential equations with respect to Φ-function
has the form [5]

(
∂2

2 − 2℘22

)
Φ =

1
4
(4x+ λ4)Φ,(

∂2∂1 − ℘22∂
2
2 +

1
2
℘222∂2 + ℘2

22 − 2℘12

)
Φ =

1
4

(
4x2 + λ4x+ λ3

)
Φ,

(
∂2

1 − 2℘12∂
2
2 + ℘122∂2 + 2℘22℘12

)
Φ =

1
4

(
4x3 + λ4x

2 + λ3x+ λ2

)
Φ,

where λi denotes coefficients of the hyperelliptic curve V . Analogously spectral problem is sol-
ved for the function in the form of linear combinations of different derivatives of Φ-function
with different shifts of argument u. In doing so, corresponding linear differential equations have
a similar form and after reduction from the hyperelliptic to elliptic curve V turn to be the
one-dimension Schrödinger equations with the Treibich–Verdier potentials [7].
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