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The connection between transcendents of Painlevé and evolution equations is discussed. The
calculus PP-procedure is proposed.

The Painlevé singularity analysis is one of the systematic and powerful method to identify the
integrability conditions of nonlinear partial differential equations (NPDEs). In recent years, this
method has been applied to a very large number of NPDEs and systematically established the
complete integrability properties like Lax pair, Bäcklund, Darboux and Miura transformations,
bilinear transformation, soliton solutions and so on.
In the last decade of the nineteenth century some mathematicians focused their attention on

the classification of ordinary differential equations (ODEs) on the basis of the type of singularity
their of solutions.
It is essential to distinguish between two types of singularities. Fixed singularities determined

by the coefficients of the equation and its location do not therefore depend on initial conditions.
Movable singularities are such whose location on the complex plane does indeed depend on the
initial conditions.
The beginning of the study of singularities in the complex plane for differential equations was

always attributed to Cauchy, whose idea was to consider local solutions on the complex plane
and to use methods of analytical continuation to obtain general solutions. For this procedure
to work a complete knowledge of singularities of the equation and its location in the complex
plane is required.
Some French mathematicians (Painlevé, Gambier, Garnier and Chazy), following the ideas

of Fuchs, Kovalevskaya, Picard and other, completely classified first order equations and studied
second order differential equations. In this case, Paul Painlevé [1] found 50 types of second order
equations whose only movable singularities were ordinary poles. This special analytical property
now carries his name and in what follow will be referred to as the Painlevé Property (PP). Of
these 50 types of equations 44 can be integrated in terms of known functions (Riccati equations,
elliptic functions, linear equations) and the other six in spite of having meromorphic solutions
do not have algebraic integrals that would allow to reduce the equation to quadratures. Today
these are known as Painlevé Transcendents:
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P1, P2, P3, P4 being simple meromorphic functions; P5 has fixed transcendent critical points
z = 0, z =∞; P6 has fixed transcendent critical points z = 0, z = 1, z =∞.
The main contribution of Paul Painlevé lies in that he established the basis for a theory

that would allow one a priory, by singularity analysis, to decide on integrability of the partial
differential equations (PDEs) without previously solving them. Singularity analysis turns out
to be a test of integrability for an equation.
An ordinary differential equation (ODE) is said to possess the Painlevé property if all of its

movable singularities are poles. The relation between integrability and the absence of movable
critical points was made more explicit through the work [2] in which it was established such
ARS (Ablowitz, Ramani, Segur) conjecture: every ODE obtained by similarity reduction of
a partial differential equation (PDE) solvable with the inverse scattering method posses the
Painlevé property. For the equations that do not have symmetries the ARS conjucture is quite
useless as it is not possible to obtain similarity reductions from usual group-theory procedures.
The definition of the PP for PDEs was proposed in [3]. According to these authors, we say

that a PDE has the PP if its solutions are singlevalued in a neighbourhood of the manifold
of movable singularities. When this manifold depends on the initial conditions it is called a
movable singularity manifold.
It is known that the singularities of a function f(z1, z2, . . . , zn) of n > 1 complex variables

cannot be isolated; rather they occur along analytic manifolds of (complex)-dimension n − 1
determined by equation of the form

χ(z1, z2, . . . , zn) = 0, (1)

being an analytical function of its variables in a neighbourhood of the singularity manifold
defined by (1).
To test for the presence of PP one assumes that a solution u(z1, z2, . . . , zn) of a PDE can be

expanded around the singularity manifold (1) as following Laurent series of the form

u = χ−α
∞∑

k=0

ukχ
k, (2)

where the coefficients uk(z1, z2, . . . , zn) are analytical in a neighbourhood of χ = 0.
It is possible in any to truncate the expansion series at a certain term in order to obtain partic-

ular solutions of the equation. If the expansion is truncated at the constant term, expression (2)
reduces to:

u = u0ϕ
−α + u1ϕ

1−α + · · ·+ uα. (3)

Substitution of (3) in the corresponding PDE leads to an overdetermined system of equations
for ϕ, uj and their derivatives. The truncation of the Painlevé series is the basis of a method
called as Singular Manifold Method (SMM). One then substitutes the above expansion (2) in
the PDE to determine the value of α and the recurrence relations among the uk’s. If all the
allowed values of α turn out to be integers and the set of recurrence relations consistently allows
for the arbitrariness of initial conditions, then the given PDE is said to posses the PP and is
conjectured to integrable.
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An algorithmic procedure has recently been put forward for determining similarity reductions
for PDEs. The essence of the procedure is to study the Lie symmetries.
It has been found that Painlevé Transcendents often appear in similarity reductions of the

evolution equations with solitons.
The soliton is an object describing solitary wave solutions interacting among themselves

without any change in shape except for a small change in its phase. The solitary waves were
studied and were described in hydrodynamics problems by Scott Rassel (1844), Boussinesq
(1872), Korteveg-de-Vries (1895), M.A. Lavrentjev (1945), Friedrichs (1954). But the concept
of “soliton” emerged for the first time in 1965 with Zabusky and Kruskal [4] and the Korteveg-
de-Vries (KDV) equation reappeared between 1955 and 1960 in the context of plasma physics.
The Hirota’s bilinear method [5] is known as a powerful procedure for generating multisoliton

solutions for PDEs. It is essentially consists in bilinearizing the differential equation by an
transformation reminiscent of the Painlevé truncated expansion. The WTC (Weiss, Tabor,
Carnevale) method also provides an iterative procedure for generating solitons from the Lax pair
and from the corresponding auto-Bäcklund transformation,where the corresponding singularity
manifold ϕ is determined in each step and after n-steps the solution can be expressed in terms
of the product ϕ1, ϕ2, . . . , ϕn from which it is then possible to construct the Hirota τ -function
associated with the solution with n solitons.
The Inverse Scattering Method (ISM) was developed initially allowing one to solve many

integrable evolution equations with soliton solutions,in particular, the KdV equation:

6ut = 3uux − 1
2
uxxx, (4)

and its different modifications:

6vt = 3v2vx − 1
2
vxxx, (5)

ut + upux + uxxx = 0; (6)

the sine-Gordon equation:

uxt = sinu; (7)

the Kline–Gordon equation:

uxt = f ′(u), f(u) = − cosu; (8)

the Schrödinger equation:

iut = u2
x − 4iu2ux + 8|u|4u; (9)

the Boussinesq equation:

utt = uxx + 6
(
u2

)
xx

− uxxx; (10)

and the Born–Infeld equation:(
1− u2

t

)
uxx + 2uxuxt −

(
1 + u2

x

)
utt = 0. (11)

In recent years Miura transformation

f(z) = w′(z) + w2(z), w(z) ≡ P2 (12)

widely was applied to find the automodel solutions of evolution equations of the type (4)–(11).
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There is a known connection between first Painlevé transcendent P1 and the automodel
solution of KdV equation of such type

ut + uxxx − 6uxu = 0, u(x, t) ≡ u, (13)

which is received by following relation:

u(x, t) = 2[w(z)− t], z = x − 6t2, w(z) ≡ P1. (14)

The substitution

u(x, t) ≡ w(z), z = x − t (15)

relates P1 with automodel solution of Boussinesq equation (10). Second Painlevé transcendent P2

relates with modifications of KdV equation (6) and

vt + vxxx − 6vxv2 = 0; v ≡ v(x, t). (16)

In fact, if we make such transformation

u(x, t) = [3(t − t0)]−2/3f(z), z = [3(t − t0)]−1/3(x − x0) (17)

and then carry out some mathematical procedure of differential calculus using Miura transfor-
mation (12) we obtain automodel solution (17) for equation (13) where w(z) being P2. KdV
evolution equation of type (16) has the automodel solution

v(x, t) = [3(t − t0)]−1/3w(z), z = [3(t − t0)]−1/3(x − x0), w(z) ≡ P2. (18)

Other evolution equations also have relation with Painlevé transcendents, particularly, the sine–
Gordon equation (7) relates with P3, the Schrödinger equation (9) relates with P4, the KdV
equation of type (5) relates with P5 and the Born–Infeld equation (11) relates with P6.
We apply two types of expansions, described in [6], to construct the Painlevé transcendents

at explicit form.
In brief, the calculus of Painlevé Property Procedure comes to the following:

1. The initial Cauchy problem for Painlevé equations P1 − P6 solves, by exact initial con-
ditions, in a holomorphic neighbourhood with help of truncated expansions to consider
local solutions on the complex plane and use the method of analytical continuation for
obtaining general solution. Unknown coefficients an of the power series can be obtained
from recurrence relations [7].

2. In order to find a location of unknown poles of m-th order (to the point, Painlevé tran-
scendents have the poles of the different orders for every number (1, 2, . . . , 6) we apply the
algorithm of isolation of pole, proposed by the author [8].

3. On the one hand, the meromorphic integrals of [P1 − P6] can be represented by super-
position of finite polynomial Pν(z) and some general summarized geometrical progression
Rν(z) in a neighbourhood of singularities for Painlevé transcendents. Corresponding corre-
lations for the coefficients of the regular power series, m-orders of poles and value q = 1/R,
defining location of poles, were found.

4. On the other hand, meromorphic integrals of [P1 − P6] can be expanded around poles
in form of Laurent series in a neighbourhood of the found poles and then both type of
expansions (regular, described in 1, and irregular, described in 3) stick together.

5. Transition across the pole realizes with help of procedure of the analytical continuations,
which also is used in the case of realization of procedure for isolation of poles.
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6. All algebraic operations with the power series and Laurent series and obtaining of recur-
rence relations were made according to the Method of generalized power series, proposed
by Prof. P.F. Fil’chakov for solving of wide classes of linear and nonlinear problems and
described in his book [9]. This method is based on Euler’s method with using of Cauchy’s
formula for multiplying of power series.

We hope that there will be further study in this direction.
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