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This paper is a surwey of results on asymptotic expansions of solutions of linear systems
εdx

dt = A(t)x, when the roots of matrix A(t) are multiple. The results, obtained by the
author, as well as by other mathematicians, are briefly reviewed, and some open problems
are listed.

1 A short historical review

The paper presents the results on investigation of linear differential systems with coefficients
depending on “slow” time τ = εt (ε > 0 is a small parameter). Fundamental results on in-
vestigation of such systems were obtained by S.F. Feshchenko, S.G. Krein, Yu.L. Daletskii,
I.Z. Shtokalo, I.M. Rapoport. The works of these authors appeared under direct influence of
asymptotic methods developed by N.M. Krylov, N.N. Bogoliubov, Yu.A. Mitropolskii.

The sources of construction of asymptotic decompositions for solutions of systems of dif-
ferential equations containing a parameter, can be found in the papers by Liouville, Birkhoff,
Schlesinger, Tamarkin.

In particular, Liouville considered the issue of decomposition of arbitrary functions on fun-
damental functions of the equation

d2y

dx2
+ (λq(x)− r(x))y = 0. (1.1)

The fundamental functions obtained by Liouville for the equation (1.1) in the case of large
values of the parameter λ, possess the property of orthogonality. For this reason the form of
decomposition of a given function with respect to fundamental functions of the equation (1.1)
can be determined directly. It is necessary only to show that 1) the constructed series converges;
2) it represents the given function. Liouville showed the convergence of the series by means of
asymptotic formulae for fundamental functions that he obtained. The proof of the statement 2
was obtained by means of certain Sturm’s results.

After the papers of Sturm and Liouville the theory of asymptotic representation of functions
begun to develop quickly.

However, all these studies were concerned with self-conjugate differential equations. These
limitations were removed in the investigations by Schlesinger, Birkhoff, Tamarkin.

Birkhoff considered construction of an asymptotic solution for the differential equation

dny

dxn
+ ρan−1(x, ρ)

dn−1y

dxn−1
+ · · ·+ ρna0(x, ρ)y = 0, (1.2)

where ai(x, ρ), (i = 0, 1, . . . , n−1) are analytical functions with respect to the complex parame-
ter ρ on infifnity and have derivatives of all orders by real variable x ∈ [a; b]. Unlike Schlesinger
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who proved the asymptotic property of solutions only on some fixed ray arg ρ = α for large |ρ|,
Birkhoff proves the same properties for the area θ < arg ρ < ψ.

Tamarkin generalized Birkhoff’s results for systems of linear differential equations

dyi

dx
=

n∑
k=1

aik(x, ρ)yk, i = 1, . . . , n, (1.3)

where aik(x, ρ) are single-value functions of complex parameter ρ, analytical near the point
ρ = ∞ but having singularities with ρ = ∞ (a pole of the order r ≥ 1). The asymptotic
expressions for solutions of the system (1.3), derived by Birkhoff, contain as particular cases
similar formulae, established by other methods by Schlesinger for systems of the form (1.3) and
by Birkhoff for a differential equation of the order n (the latter considered the case r = 1).

In 1936 the paper by Trzitzinsky appeared where he gave a complete exposure of the issue of
asymptotic representation for solutions of systems of ordinary differential equations with gener-
alization of the Schlesinger–Birkhoff–Tamarkin theory for the case of linear integral-differential
equations.

During the period of 1940–1945 a series of V.S. Pugachiov’s papers appeared in which, unlike
the previous researchers, the author presented the asymptotic representation for solutions in
more general form.

We can also speak about papers by G.L. Turritin and M. Hukuchara as papers on asymptotic
issues, where the asymptotic decomposition of a system of linear differential equations, with
coefficients depending on a parameter, into lower-order systems.

At the end of a short historical review of classical papers on asymptotic representation for
solutions of linear differential equations, we shall note that these methods were comprehensively
and fruitfully developed in the following. The extensive lists of references related to these
investigations are given in the books [1, 2].

As we have mentioned above, under the influence of asymptotic methods of Krylov–Bogoliu-
bov–Mitropolskii the investigations on linear differential equations containing a small parameter
in a singular way, started to develop extensively.

S.F. Feshchenko obtained the first results in this direction in 1948–1949. For the equation

d2y

dt2
+ ερ(τ, ε)

dy

dt
+ q(τ, ε)y = εf(τ, ε) · eiθ(t,ε), (1.4)

where ρ(τ, ε), q(τ, ε), f(τ, ε) are slowly changing functions, allowing decomposition by degress of
the small parameter ε. The case when the function ν(τ)

(
ν(τ) = dθ(t,ε)

dt

)
with certain τ from the

area of its variation coincides with one of the simple roots of the characteristic equation, con-
structed for the equation (1.4) was considered, that is very important from mathematical physics
applications perspective, and also from the theoretical side. This case was named “resonance”
by the author.

The theorems proved by S.F. Feshchenko allow to construct an asymptotic solution for the
equation (1.4) in the “resonance” and “non-resonance” (when ν(τ) for any τ does not coincide
with any root of the characteristic equation) cases.

The similar theorems were obtained by S.F. Feshchenko for the system of linear differential
equations of the form (1.4).

Then S.F. Feshchenko obtained very important results on asymptotic decomposition of sys-
tems of linear differential equations of the form

dx

dt
= A(τ, ε)x, (1.5)
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where x is an n-dimensional vector, A(τ, ε) is real square matrix of the order n allowing the
representation

A(τ, ε) =
∞∑

s=0

εsAs(τ). (1.6)

In particular he proved the following theorems.

Theorem 1.1. Let us assume that the roots of the characteristic equation

det ‖A0(τ)− λ · E‖ = 0 (1.7)

(E is a unit matrix) can be splitted into two groups λ1(τ), . . . , λr(τ) and λr+1(τ), . . . , λn(τ)
so that no root from the first group for all τ ∈ [0;L] is equal to roots from the second group.
Then, if A(τ, ε) on the interval [0, L] has derivatives on τ of all orders, the system of differential
equations (1.5) has a formal solution of the form

x = U1(τ, ε)ξ1 + U2(τ, ε)ξ2, (1.8)

where U1(τ, ε), U2(τ, ε) are rectangular matrices of the size correspondingly (n× r), (n× n− r)
and ξ1 is an r-dimensional vector, ξ2 is a n − r-dimensional vector, determined by systems of
differential equations

dξ1

dt
= W1(τ, ε)ξ1,

dξ2

dt
= W2(τ, ε)ξ2 (1.9)

of the order correspondingly r and n− r.

Theorem 1.2. If A(τ, ε) satisfies the conditions of the theorem 1.1 and eigenvalues of the
matrices

∆i(τ) =
1
2
(Wi(τ) +W ∗

i (τ)) , i = 1, 2,

where W1(τ), W2(τ) are diagonal cells of the matrix T−1(τ)A0(τ)T (τ) (T (τ) is a matrix of trans-
formation, T−1(τ) is the inverse of T (τ)), W ∗

1 (τ), W ∗
2 (τ) are matrices conjugate respectively

to the matrices W1(τ), W2(τ) and are non-positive, then for any L > 0 and 0 < ε ≤ ε0 it is
possible to find such constant c > 0 not depending on ε, that if only x |t=0= xm |t=0 (xm is an
m-approximation), then

‖x− xm‖ ≤ εmc. (1.10)

Using of Theorems 1.1, 1.2 it is possible to asymptotically lower the order of the system (1.5).
In particular, if all roots of the equation (1.7) are distinct at the interval [0, L], then these
theorems allow to obtain an asymptotic solution for the system (1.5).

However, by means of theorems on asymptotic decomposition it is possible mainly only to
lower the order of the initial system. In the case of multiple roots of the characteristic equation
it is impossible to get a solution of the initial system differential equations by means of these
theorems. Though this case is frequently encountered both in investigation of theoretical issues
and in solution of practical problems. Even in investigation of one of the simplest equations –
the Sturm–Liouville equation – we encounter a multiple root. These roots are also encountered
in investigation of systems of differential equations with a small parameter at certain derivatives
in the problems of optimal control. Let us note that the case of multiple roots, especially
when multiple elementary divisors correspond to multiple roots, is rather complicated. It is
the consequence of the fact that the initial system of differential equations in general does not
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have solutions allowing decomposition by integer degrees of the parameter ε. Such solutions,
unlike the case of simple roots, are represented by formal series by different fractional orders of
this parameter, and these orders depend not only on multiplicity of a root of the characteristic
equation, but also on corresponding elementary divisors and on some relations among coefficients
of the system under consideration.

The case of multiple roots of the characteristic equation was comprehensively studied by
M.I. Shkil. These results are partially presented in the following paragraphs.

2 Asymptotic decomposition in the case of multiple roots
of the characteristic equation

Let us consider the system of the form (1.5). We assume that the characteristic equation (1.7) has
at least one root λ = λ0(τ) of the constant multiplicity k, (2 ≤ k < n), with the corresponding
elementary divisor of the same multiplicity.

Theorem 2.1. If A(τ, ε) has at the interval [0;L] derivatives by τ of all orders and the matrix

C(τ) = T−1(τ)
(
dT (τ)
dτ

−A1(τ) · T (τ)
)

, (2.1)

where T (τ) is the matrix transforming A0(τ) to the Jordan form, and T−1(τ) is inverse of T (τ),
such that for every τ ∈ [0;L] its element

ck1 
= 0, (2.2)

then the system of differential equations (1.5) has a formal solution of the form

x = u(τ, µ) exp




t∫
0

λ(τ, µ)dt


 , (2.3)

where an n-dimensional vector u(τ, µ) and a scalar function λ(τ, µ) allow decompositions

u(τ, µ) =
∞∑

S=0

µsus(τ), λ(τ, µ) = λ0(τ) +
∞∑

S=1

µsλs(τ), (2.4)

where

µ = ε1/k. (2.5)

Let us note that if ck1(τ) ≡ 0 but at the same time ck−1,1(τ) + ck2(τ) 
= 0, then the initial
system has a formal solution of the form (2.3), where u(τ, µ), λ(τ, µ) can be represented by
formal series by degrees of the parameter µ = ε

1
k−1 .

Let us adduce a more general result.
Let the following conditions be fulfilled:
1) the matrix A(τ, ε) has derivatives by τ of all orders at the interval [0, L];
2) the characteristic equation (1.7) has one root of constant multiplicity k;
3) there are r ≥ 1 elementary divisors, corresponding to the root λ0(τ), of the form

(λ− λ0(τ))k1 , . . . , (λ− λ0(τ))kr ;

4) one of the following conditions is satisfied:

a) k1 = k2 = · · · = kr = k, b) k1 > k2 > · · · > kr.
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Then for the case a) the following theorem is true:

Theorem 2.2. If the conditions 1)–4) are fulfilled, then for the vector

x = u(τ, µ) exp




t∫
0

λ(τ, µ)dt


 , (2.6)

where an n-dimensional vector u(τ, µ) and a scalar function λ(τ, µ) can be represented by formal
series of the form

u(τ, µ) =
∞∑

S=0

µsus(τ), λ(τ, µ) =
∞∑

S=0

µsλs(τ), (2.7)

where µ = ε
1
k , to be a formal vector solution of the system (1.5), it is necessary and sufficient

that the function (λ1(τ))k for every τ ∈ [0;L] be a root of the equation

det

∥∥∥∥∥∥∥∥∥

ρ+ ck1(τ) ck k+1(τ) · · · ck lr−1+1(τ)
c2 k1(τ) ρ+ c2k k+1(τ) · · · c2k lr−1+1(τ)

...
... · · · ...

cn1(τ) cn k+1(τ) · · · ρ+ cn lr−1+1(τ)

∥∥∥∥∥∥∥∥∥
= 0, (2.8)

where ck1(τ), . . . , cn lr−1+1(τ), lr−1 = (r − 1)k are elements of the matrix (2.1).

Let us note that the proof of the sufficient condition of this theorem simultaneously gives a
method for construction of coefficients of the formal series (2.7).

The similar theorem is true for the case b). It was proved also that for the both cases for-
mal solutions are asymptotic decompositions by the parameter ε of the true solutions of the
system (1.5).

3 Turning points

The theorems, adduced in the Section 1.2, hold true under the condition that the roots of
the characteristic equation and the corresponding elementary divisors preserve the constant
multiplicity for all τ ∈ [0;L]. If these conditions are violated (turning points appear, see [4]),
then the construction of asymptotic solutions for solutions of the systems under study is rather
difficult. Some results for the cases with turning points were obtained only for one second-
order differential equation [3], and for systems of two second-order differential equations [4].
Investigation of this case by different authors was carried out with the use of Airy functions or
by reduction of the differential equations under study to certain model equations. One of these
equations is e.g. the Airy equation. More details can be found in the book [4].

The author of the present paper was the first to attempt constructing of formal decomposi-
tions in elementary functions for solutions of the systems of differential equations (1.5) [5].

Theorem 3.1. Let the following conditions be fulfilled for the system of differential equa-
tions (1.5):

1. The matrix A(τ, ε) admits a decomposition

A(τ, ε) =
∞∑

s=0

εsAs(τ).

2. The matrices As(τ) (s = 0, 1, . . .) are infinitely differentiable at the interval [0, L].
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3. There exists such integer number k ≥ 1 that the roots of the equation

det ‖A0(τ) + εA1(τ) + · · ·+ εkAk(τ)− λE‖ = 0 (3.1)

are simple for all τ ∈ [0;L].
Then there exists a formal vector that is a solution of the system (1.5) such as

x(τ, ε) = U(τ, ε) exp


1

ε

τ∫
0

Λ(σ, ε)dσ


 · a, (3.2)

where U(τ, ε) is (n× n)-matrix which allows a formal decomposition

U(τ, ε) =
∞∑

S=0

εsUs(τ, ε), (3.3)

Λ(τ, ε) is a diagonal matrix, constructed of the roots of the equation (1.7), a is a constant n-
dimensional vector.

Let us note that unlike formal decompositions, adduced in the paragraph 1.2, coefficients in
the decomposition (3.3) depend on ε, what presents considerable difficulties for investigation of
asymptotic properties of these decompositions. Some results in this direction were obtained in
the papers of the author and his students [6, 7].

4 Simplification of formal decompositions. Problems

The proof of existence of formal solution for the system (1.5) can be simplified considerably
by means of consideration of another algebraic equation, related to the system (1.5). However
in this case new and rather difficult problems appear, related to substantiation of asymptotic
properties of formal solutions, obtained by means of this method. We will illustrate the above
statements by consideration of the simplified system of the form

dx

dt
= A(τ)x, (4.1)

where n×n-matrix A(τ) is differentiable sufficient number of times at the interval [0, L] (τ = εt,
ε > 0 is a small parameter).

We shall assume that the characteristic equation

det ‖A(τ)− λE‖ = 0 (4.2)

at the interval [0, L] has only one identically multiple root λ = λ0(τ) of the multiplicity n, with
corresponding elementary divisor of the same multiplicity.

Then by means of the substitution

x = V (τ)y, (4.3)

where V (τ) is a matrix, reducing the matrix A(τ) to the Jordan form, the system (4.1) can be
reduced to the form

dy

dt
= B(τ, ε)y, (4.4)

where

B(τ, ε) = W (τ)− εV −1(τ)V ′(τ), (4.5)
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W (τ) is a Jordan cell, corresponding to the root λ0(τ), V −1(τ) is the inverse of V (τ), V ′(τ) is
a derivative of V (τ).

Let us construct an equation

det ‖B(τ, ε)− ρE‖ = 0. (4.6)

We will assume that the roots ρ1(τ, ε), . . . , ρn(τ, ε) of equation (4.6) are simple for ∀ x ∈ [0;L]
and ∀ ε ∈ (0; ε0], or that

ρi(τ, ε) 
= ρj(τ, ε), i 
= j, ∀ i, j = 1, n. (4.7)

Then making the following substitution in the system (4.4)

y = Um(τ, ε, ε)z, Um(τ, ε, ε) =
m∑

S=0

εsUs(τ, ε), (4.8)

(m ≥ 1 is a natural number) and defining the matrices Us(τ, ε) (s = 0,m) by means of the
method [2], we arrive at the system of differential equations of the form

Um(τ, ε, ε)
dz

dt
= Um(τ, ε, ε)

(
Λm(τ, ε, ε) + εm+1Cm(τ, ε)

)
z, (4.9)

where a diagonal matrix

Λm(τ, ε, ε) =
m∑

S=0

εsΛs(τ, ε), (4.10)

and an n× n-matrix Cm(τ, ε) are determined by means of the formulae from [2].
Let for all τ ∈ [0;L] and for a sufficiently small ε ∈ (0; ε0] the following conditions are fulfilled:
1. The matrix Um(τ, ε, ε) is non-singular. Then the system (4.9) can be written in the form

dz

dt
=

(
Λm(τ, ε, ε) + εm+1Cm(τ, ε)

)
z, (4.11)

2. Re(ρj(τ, ε, ε))j=1,n ≤ 0,

Cm(τ, ε) = O
(
ε−α

)
(ε → 0), (4.12)

where 0 ≤ α < m, then the system (4.11) can be integrated by means of the method of sequential
approximations (conditions 2 ensure the applicability of this method). Whence for the vector z
we obtain an asymptotic formula by the parameter ε (ε → 0):

z = exp


1

ε

τ∫
0

m∑
s=0

εsΛs(σ, ε)dσ


 a+O

(
εm−α

)
, (4.13)

where a is a constant n-dimensional vector.
3. The matrix Um(τ, ε, ε) is limited by the norm. Then using (4.3), (4.8), (4.13) we obtain

an asymptotic formula for the vector x.
Finally we note that the formula (4.13) was obtained in assumption of conditions 1–2, where

coefficients of the system (4.1) do not appear explicitly. The following question a rises:
What should be the requirements for the matrix A(τ) for the conditions 1–3 to be fulfilled?

The answer for this question presents the problems mentioned at the beginning of the Section 4.
The solution of these problems requires further research.
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Example. Let us consider a scalar equation

d2x

dt2
+ εp(τ)x = 0, (4.14)

where p(τ) 
= 0 at the interval [0;L] and has continuous derivatives up to the second order.
The equation (4.14) can be represented in the form of the system (4.4) where y = (y1, y2)(

y1 = x, y2 = dx
dt

)
is a two-dimensional vector, B(τ, ε) is a square matrix of the form

B(τ, ε) =
∥∥∥∥ 0 1

−εp(τ) 0

∥∥∥∥ . (4.15)

Then according to the assumption the equation has simple roots

ρ1(τ, ε) =
√

−εp(τ), ρ2(τ, ε) = −
√
−εp(τ). (4.16)

We apply the transformation (4.8) to the system (4.4) with the matrix (4.15), putting m = 1.
Then we obtain a system of the form (4.9) where the matrices U1(τ, ε, ε), Λ1(τ, ε, ε) are:

U1(τ, ε, ε) =

∥∥∥∥∥∥∥∥∥

1 +
εp′(τ)

8p(τ)
√−εp(τ)

1− εp′(τ)
8p(τ)

√−εp(τ)

√−εp(τ)− εp′(τ)
8p(τ)

−εp′(τ)
8p(τ)

∥∥∥∥∥∥∥∥∥
,

Λ1(τ, ε, ε) = diag
(√

−εp(τ) +
εp′(τ)
4p(τ)

, −
√
−εp(τ) +

εp′(τ)
4p(τ)

)
,

U−1
1 (τ, ε, ε) =

1
a(τ, ε)

∥∥∥∥∥∥∥∥∥∥

−εp′(τ)
8p(τ)

εp′(τ)
8p(τ)

√−εp(τ)
− 1

εp′(τ)
8p(τ)

−
√
−εp(τ) 1 +

εp′(τ)
8p(τ)

√−εp(τ)

∥∥∥∥∥∥∥∥∥∥
,

a(τ, ε) =
εp′(τ)
8p(τ)

−
√
−εp(τ)− ε2(p′(τ))2

32p2(τ)
√−εp(τ)

.

(4.17)

The matrix C1(τ, ε) is determined by means of the formula

C1(τ, ε) = −U−1
1 (τ, ε, ε)(U1(τ, ε)Λ1(τ, ε) + U ′

1(τ, ε)), (4.18)

where

U1(τ, ε) =
p′(τ)

8p(τ)
√−εp(τ)

∥∥∥∥∥
1 −1

−√−εp(τ) −√−εp(τ)

∥∥∥∥∥ ,

Λ1(τ, ε) = diag
(

p′(τ)
4p(τ)

,
p′(τ)
4p(τ)

)
.

(4.19)

The direct computation of the elements of the matrix C1(τ, ε) (we will omit it, as it is very
cumbersome) shows that they have the order O

(
ε−

1
2

)
in the neighbourhood of the point ε = 0

for all τ ∈ [0;L]. So, having required the fulfilment of the condition

ReΛ1(τ, ε, ε) ≤ 0 (4.20)
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(this condition will be satisfied when the function p(τ) > 0 for ∀ τ ∈ [0;L]), we get the following
asymptotic formula for the vector z:

z = exp


1

ε

τ∫
0

Λ1(σ, ε, ε)dσ


 a+O

(
ε

1
2

)
, (4.21)
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