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C∗-Algebras Associated with Quadratic
Dynamical System

Stanislav V. POPOVYCH and Tatyana Yu. MAISTRENKO

Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Street, Kyiv, Ukraine

In this paper we consider enveloping C∗-algebras of ∗-algebras given by generators and
defining relations of the following form A = C〈X,X∗| XX∗ = f(X∗X)〉, where f is a
Hermitian mapping. Some properties of these algebras associated with simple dynamical
systems (f,R) are studied. As an example quadratic dynamical systems are considered.

1 Introduction

It is well known that there is close connection between the representation theory of C∗-algebras
and structure of dynamical systems (f(), X). In the case when f is one-to-one mapping, the
C∗-algebra associated with the transformation group had been studied by many authors, for
example by Glimm, Effros and Hahn. The general theory of cross-products of C∗-algebras was
elaborated by Doplicher, Kastler and Robinson.
In recent papers (see [8] and references given there in) a special class of ∗-algebras given

by generators and relations was considered and some of the results from the theory of cross-
product C∗-algebras were transferred into non-bijective settings, which may be important in
studying of multi-dimensional non-linear deformation (see [11, 10, 3]), such as Witten’s first
deformation of su(2), Quesne and Beckers non-linear deformation of su(2) etc. Examples were
studied in connection with different quantum deformations of algebras, such as Quantum Unit
Disc (Klimek and Lesnievski), one-dimensional q-CCR and their non linear transformation, ets
see [7, 8].
Thus, for example, for one-parameter Quantum Unit Disc there corresponds the dynamical

system: f(λ) = (q+µ)λ−µ
µλ+1−µ , where µ is a parameter of deformation, for two-parameter Quantum

Unit Disc there corresponds f(λ) = (q+µ)λ+1−q−µ
µλ+1−µ , for Witten’s first deformation of su(2) there

corresponds two-dimensional quadratic map f(x, y) = (p−1(1 + p−1x), g(gy− x+ (p− p−1)x2)),
where g = ±1 depending on the chosen real form and p is a parameter of deformation.
In the present paper we will deal with a one-dimensional polynomial map f : R → R and

consider ∗-algebra Af = C〈X,X∗| XX∗ = f(X∗X)〉. Under condition of simplicity of the
dynamical system (f,R) we prove that the enveloping C∗-algebra is GCR (type I) C∗-algebra
and investigate some other properties. We also discuss the question what relation between
dynamical systems (f1,R) and (f2,R) corresponds to the isomorphism of enveloping C∗-algebras
of ∗-algebras Af1 and Af2 .
In the last section we consider an example: Unharmonical Quantum Oscillator, i.e. the two-

parametric family of ∗-algebras Aa,b = C〈X,X∗| XX∗ = 1+ aX∗X − b(X∗X)2〉, where a and b
are real parameters with b > 0. Some partitioning of parametric domain into parts depending
on isomorphism class of C∗-enveloping algebra are given.
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2 Simple dynamical systems

For the convenience of the reader we repeat the relevant material from [12, 8] without proofs,
thus making our exposition self-contained. By the dynamical system we mean a continuous map
f : R → R or f : I → I, where I ⊂ R is a closed bounded interval. By the orbit of dynamical
system (f,R) we mean a sequence δ = (xk)k∈P , where P is one of the sets Z, N, such that
f(xk) = xk+1. But sometimes we will consider orbit as the set {xk| k ∈ P}. The set of all orbits
will be denoted by Orb(f). For x ∈ R denote by O+(x) the forward orbit, i.e. (fk(x))k≥0. For
every orbit δ ∈ Orb(f) define ω(δ) be the set of accumulation points of forward half-orbit and
α(δ) be the set of accumulation points of backward half-orbit.
By the positive orbit of (f(),R) we mean a sequence ω = (xk)k∈Z such that f(xk) = xk+1 and

xk > 0 for all integer k. Unilateral positive orbit is a sequence ω = (xk)k∈N (Fock-orbit) such
that x1 = 0 and f(xk) = xk+1, xk > 0 for k > 1 or ω = (x−k)k∈N (anti-Fock-orbit) such that
x−1 = 0 and f(xk) = xk+1, xk > 0 for k < −1. Define Orb+(f) be the set of all positive orbits
which are either periodic (cycles) or contain no cycles. Note that ω(δ) = ∅ for any anti-Fock
orbit δ and α(δ1) = ∅ for the Fock orbit δ1.
Cycle β = {β1, . . . , βm} is called attractive if there is a neighborhood U of β such that

f(U) ⊆ U and ∩i>0f
i(U) = β.

Point x ∈ R is called non-wandering if for every its neighborhood U there exists a positive
integer m such that fm(U) ∩ U �= ∅.
Since we will consider only bounded from above functions f and positive orbits we can always

consider our dynamical system on closed interval [0, sup f ].
In this paper we will deal with a simple dynamical system which possesses one of the equiv-

alent properties listed in the following theorem:

Theorem 1 ([12], 3.14]). Let (f(), I) be dynamical system with f ∈ C(I), (I ⊂ R is closed
bounded interval). The following conditions are equivalent:

1) for every x ∈ I ω(x) = ω(O+(x)) is cycle;
2) Per(f) is closed;
3) every non-wandering point is periodic.

f is called partially monotone, if I decomposes into a finite union of sub intervals, on which
f is monotone.
Let us mention the following statement from [8].

Theorem 2. Let (f, I) be a dynamical system with partially monotone and continuous f . Then
the following conditions are equivalent:

1) Per(f) is closed;
2) for some positive integer m the relation Fix(f2m+1

) = Fix(f2m
) holds;

3) any quasi-invariant ergodic measure is concentrated on a single element of the trajectory
decomposition.

The class of dynamical systems which satisfies equivalent conditions 1–3 of Theorem 2 is
denoted by F2m . Let us note that when Per(f) is closed Theorem ([12], 3.12) implies that the
length of every cycle is a power of 2 and there no homoclinical orbits (i.e. orbit δ such that
α(δ) = ω(δ) is a cycle).
We will need the following lemma:

Lemma 1. Let (f,R) be simple dynamical system with bounded f and the set of periodic points
which are not the points of attractive cycles, i.e. the set [0, sup f ]∩Per(f)\ ∪β-attractive cycle β be
finite then for every orbit δ ∈ Orb+(f) the α-boundary α(δ) is cycle which is not attractive.
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Proof. 1. Let us show that every α-boundary point is non-wandering: if x ∈ α(δ) then
for arbitrary ε > 0 and positive integer n there is y ∈ Bε(x) and integer l ≥ n such that
f l(y) ∈ Bε(x). Indeed, if δ = (xk)k∈Z then there is subsequence x−nk

→ x. For a given ε > 0
we can find an integer k0 such that x−nk

∈ Bε(x) for all k ≥ k0. Take k1 > k0 such that
nk1 ≥ nk0 + n and put y = x−nk1

∈ Bε(x) and l = nk1 − nk0 ≥ n. Then f l(y) = x−nk0
∈ Bε(x).

2. Since for a simple dynamical system every non-wandering point is periodic we obtain that
α(f) = ∪δ∈Orb+(f)α(δ) is contained in Per(f) ∩ [0, sup f ].
3. Let β be an attractive cycle and assume that β ⊆ α(δ), then α(δ) = β. Indeed, let

β1 ∈ α(δ) be another cycle, then there is ε > 0 such that β1∩Bε(β) = ∅. Since β is an attractive
cycle there is η > 0 and η < ε such that for arbitrary y ∈ Bη(β) we have O+(y) ⊆ Bε(β). Let
δ = (xk)k∈Z. Since β1 ∈ α(δ) there is a positive integer k0 such that x−k0 ∈ Bε1(β1), where
ε1 > 0 chosen such that Bε1(β1)∩Bε(β) = ∅. But β ∈ α(δ) so there is a positive integer k1 > k0

with the property x−k1 ∈ Bη(β) then O+(x−k1) ⊆ Bε(β) and, obviously, x−k0 ∈ O+(x−k1). This
is a contradiction. Thus we have proved that α(δ) = β. But this implies that α(δ) = ω(δ) = β.
So δ is a homoclinical orbit and so (f,R) is not simple. Which is a contradiction. Thus α(δ)
has no attractive cycles.

4. Let us prove that α(δ) is a single cycle for every orbit δ. We already know that α(δ) ⊂
[0, sup f ]∩Per(f)\∪β-attractive cycle β. Since the last one is a finite set there is ε > 0 such that for
arbitrary distinct cycles β1, β2 ∈ α(δ) we have Bε(β1) ∩Bε(β2) = ∅ and f(Bε(β1)) ∩Bε(β2) = ∅
(the last is a possible since f(β1) = β1 and so f(β1) ∩ β2 = ∅). There is a positive integer n
such that x−k ∈ Bε(α(δ)) for every k > n. Thus for every cycle β ∈ α(δ) there is positive ε1 < ε
such that f(y) ∈ Bε1(β1) for every y ∈ Bε1(β), where β1 �= β (in the opposite case would be
α(δ) = β). This contradicts f(Bε(β)) ∩Bε(β1) = ∅.

3 Representation theory of ∗-algebras associated
with F2m dynamical systems

The following theorem is due to Samoilenko and Ostrovskii [8].

Theorem 3. Let f be partially monotone continuous map and (f,R) be F2m dynamical system.
Let A = C〈X,X∗| XX∗ = f(X∗X)〉 be corresponding ∗-algebra.

1. To every positive non-cyclic orbit ω(xk)k∈Z there corresponds an irreducible representation
πω in Hilbert space l2(Z) given by the formulae: Uek = ek−1, Cek =

√
xkek for k ∈ Z and

X = UC is a polar decomposition.

2. To positive Fock-orbit ω = (xk)k∈N there corresponds an irreducible representation πω in
Hilbert space l2(N) given by the formulae: Ue0 = 0, Uek = ek−1, Cek =

√
xkek for k > 1 and

X = UC.

3. To positive anti-Fock-orbit ω = (x−k)k∈N there corresponds an irreducible representation
πω in Hilbert space l2(N) given by the formulae: Uek = ek−1, Cek =

√
xkek for k > 1 and

X = UC.

4. To cyclic positive orbit ω = (xk)k∈N of length m there corresponds a family of m-
dimensional irreducible representation πω,φ in Hilbert space l2({1, . . . ,m}) given by the formulae:
Ue0 = eiφem−1, Uek = ek−1, Cek =

√
xkek for k = 1, . . . ,m; 0 ≤ φ ≤ 2π and X = UC.

This is a complete list of unequivalent irreducible representation of a given ∗-algebra.
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4 Enveloping C∗-algebra

Let f be a bounded from above Hermitian polynomial (hence f is always partially monotone
and continuous). Let Af = C〈X,X∗| XX∗ = f(X∗X)〉 be ∗-algebra given by generators and
relations which has at least one representation. Let C = sup f . Then for any representation π
of ∗-algebra Af we have ‖X‖ ≤

√
C. Thus there is an enveloping C∗-algebra, which we denote

by Ef . Let us note that by Theorem 3.3 [12] for f ∈ C1(I, I) simplicity of a dynamical system
is equivalent to (f, I) ∈ F2m for some integer m.

Theorem 4. Let a dynamical system (f,R) be simple and δ ∈ Orb+(f).
1. If δ is non-cyclic bilateral orbit than C∗(πδ) = Z ×δ C(δ) is a cross-product of C∗-algebra,

where δ = δ ∪ ω(δ) ∪ α(δ).
The set of irreducible representation Irr(C∗(πδ)) is πδ, πω(δ),φ, πα(δ),φ, where 0 ≤ φ ≤ 2π.
2. Assume that 0 is not a periodic point. If δ is a Fock-orbit then C∗(πδ) ∼=Mm(T (C(T))) is

a matrix algebra of dimension m =| ω(δ) | over C∗-algebra T (C(T)) of the Toeplitz operators.
The same is true for anti-Fock orbit with m =| α(δ) |.

Proof. Let π ∈ Irr(C∗(πδ)) then σ(π(C2)) ⊆ σ(πδ(C2)) = δ ∪ ω(δ) ∪ α(δ). Since every
irreducible representation of C∗(πδ) is also an irreducible representation of ∗-algebra A there
is orbit δ′ such that π = πδ′ . Then we will have δ′ ⊆ δ ∪ ω(δ) ∪ α(δ). Since no cycle can be
properly contained in an orbit δ′ we conclude that δ′ = δ or δ′ = ω(δ) or δ′ = α(δ). So π must
be one of the representations listed in the theorem. Let us prove that all of them are actually
representations of the algebra C∗(πδ). Let A = diag(. . . , x−1, x0, x1, . . .) be diagonal operator
in Hilbert space l2(Z) with orthonormal basis {ek}, where δ = (. . . , x1, x0, x1, . . .). Let U be
a bilateral shift operator Uek = ek−1. The equality UAU∗ = f(A) implies UAU∗ ∈ C∗(A).
Since B = U∗AU is a diagonal operator Bek = xk+1ek and the mapping xk → xk+1 is mutually
continuous on the closure of δ(which is σ(A)) B ∈ C∗(A). Thus the mapping ρ(D) = UDU∗ is
a automorphism of C∗(A). Let us prove that C∗(π(δ)) is a cross-product C∗-algebra. Consider

the linear subspace Lt = {
n∑

−m
Aiu

iet|Ai ∈ C∗(A); m,n ≥ 0}. Then Lt is dense in H and

Lt is isomorphic to a dense subspace in L2(Z,C) via isomorphism
∑

Aiu
iet → f(), where

f(i) = (Aiet+i, et+i). Direct computations show that A(
∑

αiei) =
∑

αiφt(U−iAU∗−i), where
φt(D) = (Det, et) for all D ∈ C∗(A) is a one-dimensional representation of C∗(A). Thus πδ is a
regular representation, λφ, associated with the representation φt. Since φ = ⊕t∈Zφt is a faithful
representation of C∗(A) we conclude that λφ is faithful on the cross-product Z×ρC

∗(A) (see [9],
Theorems 7.7.5 and 7.7.7). Since all representations λφt are isomorphic to πδ we conclude that
C∗(πδ) is Z×ρ C

∗(A).
Consider the case of unilateral orbits. Since point 0 is not periodic and the dynamical system

is simple we conclude that for every orbit δ there is η > 0 such that δ ⊆ [η, sup f ], i.e. δ
is separeted from zero. Let δ = (xk)k∈N be the Fock orbit. Then πδ(X) is a weighted shift
operator with all weights separated from zero. If X = UC is polar decomposition of X then
U,C ∈ C∗(X) and the algebra of compact operators K ⊆ C∗(X) (see [1], Lemma 2.1). We know
that ω(δ) = (yk)k∈N is periodic orbit and xk − yk → 0. By Theorem 3 C = diag(

√
xk). Let us

put C1 = diag(
√
yk) then since C − C1 ∈ K and K ⊆ C∗(U,C) and K ⊆ C∗(U,C1) we conclude

that C∗(U,C) = C∗(U,C1) as operator algebras. If m =| ω(δ) | then C∗(U,C1) = C∗(UC1) is an
algebra generated by m-periodic weighted shift. It is known that C∗-algebra generated by all m-
periodic weighted shifts in a given separable Hilbert space is isomorphic to T (C(T)) (the Toeplitz
operators) and there is m-periodic shift which generate this algebra. But if D = diag(dk) and
D1 = diag(d1

k) are diagonal operators with m-periodic coefficients and m is least possible, then
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C∗(U,D) = C∗(U,D1) (since the map g : dk → d1
k is continuous on σ(D) and by functional

calculus f(D) = D1 and obviously, f(UDU∗) = Uf(D)U∗). From these facts follows that
C∗(X) = T (C(T)). For anti-Fock orbits arguments are the same.
Define support of the dynamical system (f,R) to be the union X =

⋃
δ∈Orb+(f) δ and the

finite support Xfin to be union of positive cycles.

Theorem 5. If a dynamical system (f(),R) is simple then the C∗-algebra Ef is GCR (type I
C∗-algebra), and the finite spectrum is homeomorphic to Xfin/ ∼, where ∼ is an orbit equivalence
relation.

Proof. First let us show that the finite-dimensional spectrum Irr(Ef ) � (Xfin/ ) × S1 (Xfin

is finite and so compact set). Indeed, it is obvious that f : Xfin → Xfin is one-to-one map.
Thus we can apply the results from [5]. If δ ∈ Orb+(f) is a bilateral non-periodic orbit then by
previous theorem, the set of irreducible representation Irr(C∗(πδ)) is πδ, πω(δ),φ, πα(δ),φ, where
0 ≤ φ ≤ 2π. Since we know the topology on finite dimensional representations we conclude that
Irr(C∗(πδ)) is T0 space. Hence C∗(πδ) is GCR-C∗-algebra. It is known that T (C(T)) is also a
GCR algebra. Cyclic orbits generate finite-dimensional and so GCR algberas. Hence Ef is GCR
C∗-algebra.
The question of isomorphism of enveloping C∗-algebras may turn to be very difficult. Even

in one-to-one case there are only fragmentary results in this direction, for example it is known
that for minimal dynamical systems on Cantor sets the isomorphism of cross-product C∗-
algebras equivalent to orbit-equivalence of corresponding dynamical systems (with condition
on K0-groups) see [4], Theorem 4. However, in particular “discrete” case we have the following:

Theorem 6. If dynamical systems (f1,R) and (f2,R) are simple and for every non-cyclic orbit
δ ∈ Orb+(fk) there exists a point x ∈ δ isolated in the support space of a dynamical system
(fk,R), then Ef1

∼= Ef2 if and only if there is a one-to-one map φ : Orb+(f1)/ ∼→ Orb+(f2)/ ∼,
such that |φ(δ)| = |δ| and φ(ω(δ)) = ω(φ(δ)), φ(α(δ)) = α(φ(δ)). Moreover in this case the
topology on Irr(Efk

) is given by its base consisting of closed sets {πδ, πω(δ),φ, πα(δ),φ|φ ∈ S1},
where δ ∈ Orb+(fk)\Cyc(f) and {πβ,φ|φ ∈ M}, where β is a positive cycle and M is a closed
subset in S1. Thus Ef1

∼= Ef2 if and only if their dual spaces are homeomorphic.

Proof. Let ψ : E(f1) → E(f2) be an isomorphism. Then ψ induces a homeomorphism of
spectra spaces ψ∗ : ˆE(f2) → ˆE(f1), i.e the spaces of irreducible representation with Jacobson’s
topology. We know that ˆE(f1) can be identified with Orb+(f1)/. With this identification we
have one-to-one map ψ∗ : Orb+(f2)→ Orb(f1). Let δ ∈ Orb+(f2). Since ψ∗ is homeomorphism
ψ∗(πδ) = ψ∗(π). As we know that πδ = {πω(δ),φ, πα(δ),φ} we have proved necessity of conditions
of the theorem.
Let ω1 be a non-attractive cycle or an empty set and ω2 be non-repellent cycles or empty sets.

Denote Ωω2
ω1
(f1) = {δ ∈ Orb+(f1)|α(δ) = ω1, ω(δ) = ω2}. Then Orb+(f1) is the disjoint union

of these sets. For all δ ∈ Ωω2
ω1
(f1) we will realize the corresponding representation πδ in the same

Hilbert space Hω2
ω1
. Consider an atomic representation of E(f1) which is realized in Hilbert space

H = ⊗ω1,ω2(H
ω2
ω1
)⊗n(ω1,ω2), where n(ω1, ω2) = |Ωω2

ω1
(f1)|. Then E(f1) is isomorphic to the algebra

generated by the diagonal operator C = diag(Cω1,ω2), where Cω1,ω2 = diag(Cδ|δ ∈ Ωω1,ω2) and
Cδ = πδ((XX∗)1/2) and block-diagonal with respect to direct sum decomposition of H operator
U = diag(I ⊗ Uω1,ω2). Discreteness of the dynamical system implies that all block-diagonal
with respect to an expanded direct sum decomposition H = ⊕ω1,ω2 ⊕n(ω1,ω2) H

ω2
ω1
compact

operators belong to E(f1). We will denote this subalgebra of compact operators by K1. Modulo
this compact operators C is Cnormal = diag(I ⊗ Aω1,ω2), where Aω1,ω2ek = x1

k if k < 0 and
Aω1,ω2ek = x2

k if k > 0 and ω1 = (x1
−k)k∈N and ω2 = (x2

k)k∈N regarded as periodic orbit.
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Moreover, it is obvious that C∗(Cnormal, U,K1) = C∗(C,U). If there is φ which satisfies all
conditions of the theorem then we can consider E(f1) and E(f2) in the same Hilbert space and
using functional calculus obtain φ∗(Cnormal(f1)) = Cnormal(f2) (where φ∗ is continuous map
Per(f1)+ → Per(f2)+ which is lifting of φ). and so E(f1) = E(f2) as operator algebras. This
completes the proof.

5 Quadratic dynamical system

In this section we consider an example of one-dimensional quadratic dynamical system. Let
fa,b(x) = 1+ ax− bx2 with {a, b} ∈ R and b > 0 to provide boundedness. Since when a < 0 dy-
namical system is one-to-one on R+ (and so all irreducible representations are one-dimensional)
we assume that a > 0. This dynamical system is conjugated to fµ(x) = µx(1 − x), where
µ = 1 +

√
a2 − 2a+ 1 + 4b. The values of parameter µ when bifurcations of cycles of one para-

metric family {fµ} occur are given in [12]. However a conjugacy relation does not preserve
positiveness, i.e. Orb+(fa,b) may not map into Orb+(fµ).
If (a, b) belong to domain D = {(a, b)| b < 1

2 −
a2

4 +
a
2 +

√
1+2a
2 } bounded by curve G (see

Fig. 1) then for every x ∈ [0; sup fa,b] O+(x) ⊂ [0; sup fa,b]. Thus for such (a, b) algebra Aa,b

has Fock representation and as it easily can be shown has no anti-Fock representations. In the
complement of D algebra Aa,b has anti-Fock representations.

a

b

C

Γ4

Γ2

Γ2∞

Figure 1.

Proposition 1. If (a, b) belong to domain P1 = {(a, b)| b < 1 − (a−1)2

4 } bounded by curve Γ2

(see picture) then Ea,b has one dimensional and Fock irreducible representations only. Moreover
Ea,b � T (C(T)).
Proof. For (a, b) ∈ P1 dynamical system has two fix point β+ > 0, β− < 0 but has no other
cycles.
Let us show that Orb+(f) = {β+, δ1}, where δ1 is the Fock orbit. If δ ∈ Orb+(f) and

δ �= β+, δ �= δ1 then α(δ) is a cycle which cannot be the attractive point β+ (see Lemma 1).
Hence α(δ) = β− < 0 which is contradiction.
Since P1 ⊂ D then δ1 is positive orbit. And Theorem 4 implies that Ea,b � T (C(T)).

Proposition 2. Let P2 = {(a, b)| 1− (a−1)2

4 < b < −a2

4 +
a
2 +

5
4} bounded by curves Γ2 and Γ4.

Domain P2 is divided into three domains P 1
2 , P

2
2 , P

3
2 : P 1

2 = P2 ∩D; P 2
2 = {(a, b) ∈ P2 \D| b <

a+ 1}; P 3
2 = {(a, b) ∈ P2 \D| b > a+ 1}.
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Then for (a, b) ∈ P 1
2 C∗-algebra Ea,b has the family of one-, two-dimensional and the Fock

irreducible representations, but has no anti-Fock representation. For (a, b) ∈ P 2
2 C∗-algebra Ea,b

has one-, two-dimensional and anti-Fock irreducible representations, but has no Fock represen-
tation. For (a, b) ∈ P 3

2 C∗-algebra Ea,b has the family of one-dimensional representations and
anti-Fock irreducible representations, but has no two-dimensional and Fock representations.

For (a, b) from domain bounded by curves Γ4 and Γ8 the dynamical system has 4-cycle,
2-cycle, two fix points and no other cycles.
The curve Γ2∞ ≈ 1.651225 − (a−1)2

4 separates the domain, where the dynamical system is
simple from the one (including Γ2∞), where the dynamical system is not simple.
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[7] Klimyk A. and Schmüdgen K., Quantum Groups and Their Representations, Berlin, Heidelberg, New York,
Springer, 1997.

[8] Ostrovskyi V. and Samoilenko Yu., Introduction to the Theory of Representations of Finitely-Presented
∗-Algebras. I. Representations by Bounded Operators, Amsterdam, The Gordon and Breach Publ., 1999.

[9] Pedersen G.K., C∗-Algebras and Their Automorphism Groups, London Math. Soc. Monographs, Vol.14,
London, Academic Press, 1979.

[10] Popovych S., Representation of real forms of Witten’s first deformation, in Proc. of the Second International
Conference “Symmetry in Nonlinear Mathematical Physics”, 1997, V.2, 393–396.

[11] Samoilenko Yu.S., Turowska L.B. and Popovych S., Representations of a cubic deformation of su(2) and
parasupersymmetric commutation relations, in Proc. of the Second International Conference “Symmetry in
Nonlinear Mathematical Physics”, 1997, V.2, 372–383.

[12] Sharkovskii A.N., Maistrenko Yu.L. and Romanenko J.Yu., Deference Equations and Their Aplications,
Kyiv, Naukova dumka, 1986 (in Russian).


