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We study the representations of generalisation of the Cuntz algebra On. The algebra

On,{αk}n
k=1

is a C∗-algebra generated by isometries s1, . . . , sn such that
n∑

k=1

αksks
∗
k = e,

where 0 < αk < 1, k = 1, . . . , n. The fact that some algebra is ∗-wild implies that the
problem of unitary description of all representations of the algebra is very complicated. We
show that the algebra O4,{αk=1/2}4

k=1
is ∗-wild and establish the criterion of ∗-wildness of

the algebra O3,{αk}3
k=1

.

This paper is concerned with the complexity problem of unitary description of representations
for C∗-algebras generated by isometries connected with some relation on an infinite-dimensional
Hilbert space. These algebras were suggested by Yurĭı Samoilenko.

The fact that some algebra is ∗-wild implies that the problem of unitary description of all
representations is very complicated.

On C∗-algebra On, {αk}n
k=1

As in [1, 2], we consider a C∗-algebra Pn = P(α1, . . . , αn) generated by orthoprojectors p1, . . .,
pn such that

n∑
k=1

αkpk = e, (1)

where e is the identity of the algebra and 0 < αk < 1, k = 1, . . ., n . Let us note that the
condition 0 < αk < 1, k = 1, . . . , n is not a restriction. It was shown in [6] that it is always
possible to reduce the values of the coefficients α1, . . . , αn by a linear change of the variables
p1, . . . , pn to this form.

For the same set αk we deal with the C∗-algebra On,{αk}n
k=1

generated by isometries s1, s2, . . .,
sn such that

n∑
k=1

αksks
∗
k = e. (2)

For αk = 1, k = 1, . . . , n it is the Cuntz algebra On. The Cuntz algebra On is nuclear, simple
and non type I (see [3]).

In this paper we prove that the algebra O4,{αk=1/2}4
k=1

is ∗-wild and establish the criterion of
∗-wildness of the algebra O3,{αk}3

k=1
. In [4] we considered O3,{αk}3

k=1
when α1 + α2 + α3 = 2.
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In [5, 6] all irreducible representations of the algebras P3 = P(α1, α2, α3) and P4 = P(α1, α2,
α3, α4) were described. The algebra P3 has one-dimensional and two-dimensional irreducible
representations. All irreducible representations of the algebras P4 are finite-dimensional Jaco-
bian matrices. In case α1 + α2 + α3 + α4 = 2 all irreducible representations of the algebra P4

are one-dimensional and two-dimensional. It means that the algebras P3 and P4 are tame.
For n ≥ 5 and α1 = α2 = α3 = α; α4 = α5 = β, α+ β = 1, the problem of description of the

collection of orthoprojectors {Pk}5
k=1 such that

α
3∑

k=1

Pk + β
5∑

i=4

Pi = I, (3)

is ∗-wild (see [7]).

On majorization of C∗-algebras

Let us give definitions of majorization of C∗-algebras and ∗-wildness following to [1, 8].
The problem of description of pairs of self-adjoint (or unitary) operators up to unitary equiva-

lence (representations of the ∗-algebra S2 (or U2) generated by a pair of free self-adjoint (or uni-
tary) generators) was choosen as the standard ∗-wild problem in the theory of ∗-representations
in [7].

The problem of unitary classification of representation of pairs of self-adjoint operators con-
tains as a subproblem the problem of unitary classification of representation of any ∗-algebra
with a countable number of generators (see [1]).

A problem containing the standard ∗-wild problem is called ∗-wild.
A number of ∗-wild algebras have been studied in recent years ([1, 7, 9]).
Let A be a C∗-algebra. We will denote by RepA the category of representations of A. The

objects of this category are the representations A to L(H) (the algebra of linear bounded op-
erators in a Hilbert space H), the morphisms are intertwining operators. Let N be a nuclear
C∗-subalgebra of L(H0). Let π : A → L(H) be a representation of A. It induces the represen-
tation

π̃ = π ⊗ id:A ⊗ N 	→ L(H ⊗H0)

of the algebra A ⊗ N.

Definition 1. We say that a C∗-algebra B majorizes a C∗-algebra A (and denote it by B 
 A),
if there exist a nuclear C∗-algebra N and a unital ∗-homomorphism ψ:B 	→ A⊗N such that the
functor F : RepA 	→ RepB defined by the following rule:

F (π) = π̃ ◦ ψ for any π ∈ RepA, (4)

F (A) = A⊗ I for any operator A intertwining π1 and π2, (5)

is full.

Denote by π(A)′ a commutant of π(A).

Remark 1. In order to verify whether F is full it is enough to check for any representation
π ∈ Rep (A) in L(H) that the condition A ∈ F (π)(B)′ implies A = A⊗I ∈ π(A) and A ∈ π(A)′.

Remark 2. To prove that functor F is full it is enough to show that the ∗-homomorphism ψ is
a surjection (see [1]).

The proofs of these remarks see in [1].
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Let F2 denote the free group on two generators u, v. Denote by C∗(F2) an enveloping
C∗-algebra of F2.

Definition 2. A C∗-algebra is called ∗-wild if A 
 C∗(F2).

Let us repeat that the fact that some algebra is ∗-wild implies that the problem of unitary
description of all representations is very complicated.

On representations of the algebra O4,{αk=1/2}4
k=1

The C∗-algebra P4 = P(1/2, 1/2, 1/2, 1/2) has such irreducible representations (see [5]):
1) one-dimensional representation is

P1 = P2 = I, P3 = P4 = 0;

2) two-dimensional representation is

P1 =
(

cos2 φ cosφ sinφ
cosφ sinφ sin2 φ

)
, P2 =

(
sin2 φ − cosφ sinφ

− cosφ sinφ cos2 φ

)
,

P3 =
(

0 0
0 1

)
, P4 =

(
1 0
0 0

)
,

here 0 < φ < π/2.
Let us consider the corresponding C∗-algebra O4,{αk=1/2}4

k=1
.

Theorem 1. The C∗-algebra O4,{αk=1/2}4
k=1

is ∗-wild.

We will prove three lemmas for the proof of this theorem. In accordance by the definition of
∗-wildness to prove ∗-wildness of the algebra O4,{αk=1/2}4

k=1
, we give a ∗-homomorphism

ψ : O4,{αk=1/2}4
k=1

→ M2(C∗(F2))⊗ N.

Here N is a nuclear C∗-algebra, N ⊂ L(H0). As N we take the Cuntz algebra

O2 = C〈T1, T2, T
∗
1 , T

∗
2 | T ∗

1 T1 = T ∗
2 T2 = I0, T1T

∗
1 + T2T

∗
2 = I0〉.

We take the operators T1, T2 acting in a separable Hilbert space H0 such that

T1 : ej → e2j−1, T2 : ej → e2j , (6)

where {ej}∞j=1 is an orthonormal basis of H0.
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We set

ψ(s1) = S1 =




(cosφ)u 0 0 0 0 0 . . .
(sinφ)e 0 0 0 0 0 . . .

0 (cosφ)v 0 0 0 0 . . .
0 (sinφ)e 0 0 0 0 . . .
0 0 (cosφ)u 0 0 0 . . .
0 0 (sinφ)e 0 0 0 . . .
0 0 0 (cosφ)v 0 0 . . .
0 0 0 (sinφ)e 0 0 . . .
...

. . . . . . . . .




,

ψ(s2) = S2 =




(sinφ)u 0 0 0 0 0 . . .
−(cosφ)e 0 0 0 0 0 . . .

0 (sinφ)v 0 0 0 0 . . .
0 −(cosφ)e 0 0 0 0 . . .
0 0 (sinφ)u 0 0 0 . . .
0 0 −(cosφ)e 0 0 0 . . .
0 0 0 (sinφ)v 0 0 . . .
0 0 0 −(cosφ)e 0 0 . . .
...

. . . . . . . . .




,

ψ(s3) = S3 =




0 0 0 0 0 0 . . .
e 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 e 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 e 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 e 0 0 . . .
...

. . . . . . . . .




,

ψ(s4) = S4 =




e 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 e 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 e 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 e 0 0 . . .
0 0 0 0 0 0 . . .
...

. . . . . . . . .




,

(7)

here 0 < φ < π/2.

Lemma 1. The map ψ defined by (7) is a ∗-homomorphism from O4,{αk=1/2}4
k=1

to M2(C∗(F2))
⊗O2.

Proof. It is easy to check that S1, S2, S3, S4 satisfy the relations of the C∗-algebraO4,{αk=1/2}4
k=1

.
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One can see that the map ψ has the form:

S1 =
(

(cosφ)u 0
(sinφ)e 0

)
⊗ T1 +

(
0 (cosφ)v
0 (sinφ)e

)
⊗ T2,

S2 =
(

(sinφ)u 0
−(cosφ)e 0

)
⊗ T1 +

(
0 (sinφ)v
0 −(cosφ)e

)
⊗ T2,

S3 =
(

0 0
e 0

)
⊗ T1 +

(
0 0
0 e

)
⊗ T2, S4 =

(
e 0
0 0

)
⊗ T1 +

(
0 e
0 0

)
⊗ T2,

(8)

here T1, T2 are the same as in (6).
Let us note that M2(C∗(F2)) ⊗ O2 � (C∗(F2)) ⊗ O2 because O2 � M2(O2) [10]. Therefore

the ∗-homomorphism ψ is the needed homomorphism for the proof of ∗-wildness of the algebra.
Let π be a representation of C∗(F2) in a Hilbert space Ĥ. Then the map ψ induces the

representation F (π) of O4,{αk=1/2}4
k=1

in a Hilbert space H.

Lemma 2. If π ∈ RepC∗(F2) in L(Ĥ) and A ∈ (Fψ(π)(O4{αk=1/2}4
k=1

))′ then A = A ⊗ I and
A ∈ π(C∗(F2))′ (here I is the identity in L(H)).

The proof follows by direct computation.

Lemma 3. The ∗-homomorphism ψ : O4,{αk=1/2}4
k=1

→ M2(C∗(F2))⊗O2 is a surjection.

Proof. In the algebra M2(C∗(F2))⊗O2 we choose the following generators:

a11 =
(

e 0
0 0

)
⊗ I0, a12 =

(
0 e
0 0

)
⊗ I0,

a21 =
(

0 0
e 0

)
⊗ I0, a22 =

(
0 0
0 e

)
⊗ I0,

b =
(

u 0
0 v

)
⊗ I0, c1 =

(
e 0
0 e

)
⊗ T1, c2 =

(
e 0
0 e

)
⊗ T2.

(9)

It is easy to see that the linear combinations of the generators a11, a12, a21, a22, b, c1, c2 give
everywhere dense set of M2(C∗(F2))⊗O2. The closure by norm gives our C∗-algebra. To prove
that ψ is a surjection we point out the elements of the algebra O4,{αk=1/2}4

k=1
which give the

generators of M2(C∗(F2))⊗O2:

S4S
∗
4 = a11, S4S

∗
3 = a12, a21 = a∗12, S3S

∗
3 = a22,

S∗
4(S1 + S2) = b, S2

4S
∗
4 + S3S4S

∗
3 = c1, S2

3S
∗
3 + S4S3S

∗
4 = c2.

The proof of Theorem 1 follows from Remark 1 and Lemmas 1, 2. Another proof follows from
Remark 2 and Lemmas 1, 3.

The criterion of ∗-wildness of the algebra O3,{αk}3
k=1

For the algebras P3 = P(α1, α2, α3) all irreducible representations were described in [5]. The
irreducible representations of these algebras exist only in the cases:

1) α1 + α2 + α3 = 1, 0 < αk < 1, k = 1, 2, 3, P1 = P3 = P3 = I;
2) αi ∈ R\{1}, αj +αk = 1,0 < αj < 1, 0 < αk < 1, here i, j, k are pairwise different integers

from the set {1, 2, 3}, Pj = Pk = I; Pi = I if αi = 0 and Pi = 0 otherwise;
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3) α1 + α2 + α3 = 2, 0 < αk < 1, k = 1, 2, 3, P1, P2, P3 are two-dimensional matrices:

P1 =
(

1 0
0 0

)
,

P2 =
(

cos2 φ cosφ sinφ
cosφ sinφ sin2 φ

)
, P3 =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
,

(10)

here

cosφ =

√
(1− α2)(α2 + α3 − 1)

α2(2− α2 − α3)
, sinφ =

√
1− α3

α2(2− α2 − α3)
,

cos θ =

√
(1− α3)(α2 + α3 − 1)

α3(2− α2 − α3)
, sin θ = −

√
1− α2

α3(2− α2 − α3)
.

(11)

Theorem 2. The C∗-algebra O3,{α1,α2,α3} is ∗-wild if one of the following conditions holds:
1) α1 + α2 + α3 = 1, 0 < αk < 1, k = 1, 2, 3;
2) αi = 0, αj + αk = 1, 0 < αj < 1, 0 < αk < 1, here i, j, k are pairwise different integers

from the set {1, 2, 3};
3) αj +αk = 1, αi = αj or αi = αk, 0 < αl < 1, l = 1, 2, 3; here i, j, k are pairwise different

integers from the set {1, 2, 3}.
Proof. One-dimensional representations of the algebra P3 exist only when conditions 1, 2, 3
hold. In the first case we set the ∗-homomorphism ψ : O3,{αk}3

k=1
→ C∗(F2) by the following

way: ψ(s1) = e, ψ(s2) = u, ψ(s3) = v and ψ(sj) = u, ψ(sk) = v, ψ(si) = e in the second case
(here u, v are the generators of C∗(F2). It is easy to see that the map ψ is a surjection.

In the third case we restrict ourselves the case αi = αj . We give a ∗-homomorphism ψ :
O3,{αk}3

k=1
→ M2(C∗(F2))⊗O2 in such a way:

ψ(si) = Si =
(

e 0
0 0

)
⊗ T1 +

(
0 e
0 0

)
⊗ T2,

ψ(sj) = Sj =
(

0 0
e 0

)
⊗ T1 +

(
0 0
0 e

)
⊗ T2, ψ(sk) = Sk =

(
u 0
0 v

)
⊗ I0,

(12)

here T1, T2 are the same as in (6). It is easy to check that the functor F induced by the ∗-ho-
momorphism ψ is full. Therefore the algebra O3,{α1,α2,α3} majorizes C∗(F2) and is ∗-wild.
Theorem 3. If α1 + α2 + α3 = 2, 0 < αk < 1, k = 1, 2, 3, then the C∗-algebra O3,{α1,α2,α3} is
∗-wild.
Proof. We set the ∗-homomorphism ψ : O3,{αk}3

k=1
→ M2(C∗(F2))⊗O2 in such a way:

ψ(s1) = S1 =
(

e 0
0 0

)
⊗ T1 +

(
0 e
0 0

)
⊗ T2,

ψ(s2) = S2 =
(

(cosφ)u 0
(sinφ)e 0

)
⊗ T1 +

(
0 (cosφ)v
0 (sinφ)e

)
⊗ T2,

ψ(s3) = S3 =
(

(cos θ)u 0
(sin θ)e 0

)
⊗ T1 +

(
0 (cos θ)v
0 (sin θ)e

)
⊗ T2,

(13)

here T1, T2 are the same as in (6), cosφ, sinφ, cos θ, sin θ are such as in (11).
It is easy to verify that the functor F generated by the ∗-homomorphism ψ is full.
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Remark 3. One can see that these theorems together give also the needed conditions of ∗-wild-
ness of O3,{αk}3

k=1
since either there are no representations of the corresponding algebra P3 for

other αk, k = 1, 2, 3 (see [5]) or there are no representations of the algebra O3,{αk}3
k=1

(in the
case αi �= 0, if αi �= αj and αi �= αk, here i, j, k are pairwise different integers from the set
{1, 2, 3}).

The criterion of ∗-wildness of the C∗-algebra O3,{αk}3
k=1

follows from Theorems 2, 3 and
Remark 3.

Theorem 4. The algebra O3,{αk}3
k=1

is ∗-wild if and only if α1, α2, α3 satisfy one of the following
conditions:

1) α1 + α2 + α3 = 1, 0 < αk < 1, k = 1, 2, 3;

2) αi = 0, αj + αk = 1, 0 < αj < 1, 0 < αk < 1, here i, j, k are pairwise different integers
from the set {1, 2, 3};

3) αj + αk = 1, αi = αj or αi = αk, 0 < αl < 1, l = 1, 2, 3, here i, j, k are pairwise different
integers from the set {1, 2, 3};

4) α1 + α2 + α3 = 2, 0 < αk < 1, k = 1, 2, 3.
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