On Generalization of the Cuntz Algebras

Helen PAVLENKO[†] and Alexandra PIRYATINSKA[‡]

- † Department of Functional Analysis, Institute of Mathematics of the National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka Str., Kyiv, Ukraine E-mail: helen@imath.kiev.ua
- ‡ Institute of Economics, Management and Business Laws, 30-32 Lagernaya Str., Kyiv, Ukraine E-mail: piryatin@ecolaws.freenet.kiev.ua

We study the representations of generalisation of the Cuntz algebra O_n . The algebra $O_{n,\{\alpha_k\}_{k=1}^n}$ is a C^* -algebra generated by isometries s_1, \ldots, s_n such that $\sum_{k=1}^n \alpha_k s_k s_k^* = e$, where $0 < \alpha_k < 1, k = 1, \ldots, n$. The fact that some algebra is *-wild implies that the problem of unitary description of all representations of the algebra is very complicated. We show that the algebra $O_{4,\{\alpha_k=1/2\}_{k=1}^4}$ is *-wild and establish the criterion of *-wildness of the algebra $O_{3,\{\alpha_k\}_{k=1}^3}$.

This paper is concerned with the complexity problem of unitary description of representations for C^* -algebras generated by isometries connected with some relation on an infinite-dimensional Hilbert space. These algebras were suggested by Yuriĭ Samoilenko.

The fact that some algebra is *-wild implies that the problem of unitary description of all representations is very complicated.

On C^{*}-algebra $O_n, \{\alpha_k\}_{k=1}^n$

As in [1, 2], we consider a C^{*}-algebra $\mathfrak{P}_n = \mathfrak{P}(\alpha_1, \ldots, \alpha_n)$ generated by orthoprojectors p_1, \ldots, p_n such that

$$\sum_{k=1}^{n} \alpha_k p_k = e,\tag{1}$$

where e is the identity of the algebra and $0 < \alpha_k < 1$, k = 1, ..., n. Let us note that the condition $0 < \alpha_k < 1$, k = 1, ..., n is not a restriction. It was shown in [6] that it is always possible to reduce the values of the coefficients $\alpha_1, ..., \alpha_n$ by a linear change of the variables $p_1, ..., p_n$ to this form.

For the same set α_k we deal with the C^* -algebra $O_{n,\{\alpha_k\}_{k=1}^n}$ generated by isometries s_1, s_2, \ldots, s_n such that

$$\sum_{k=1}^{n} \alpha_k s_k s_k^* = e.$$
⁽²⁾

For $\alpha_k = 1, k = 1, \ldots, n$ it is the Cuntz algebra O_n . The Cuntz algebra O_n is nuclear, simple and non type I (see [3]).

In this paper we prove that the algebra $O_{4,\{\alpha_k=1/2\}_{k=1}^4}$ is *-wild and establish the criterion of *-wildness of the algebra $O_{3,\{\alpha_k\}_{k=1}^3}$. In [4] we considered $O_{3,\{\alpha_k\}_{k=1}^3}$ when $\alpha_1 + \alpha_2 + \alpha_3 = 2$.

In [5, 6] all irreducible representations of the algebras $\mathfrak{P}_3 = \mathfrak{P}(\alpha_1, \alpha_2, \alpha_3)$ and $\mathfrak{P}_4 = \mathfrak{P}(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ were described. The algebra \mathfrak{P}_3 has one-dimensional and two-dimensional irreducible representations. All irreducible representations of the algebras \mathfrak{P}_4 are finite-dimensional Jacobian matrices. In case $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 2$ all irreducible representations of the algebra \mathfrak{P}_3 and \mathfrak{P}_4 are tame.

For $n \ge 5$ and $\alpha_1 = \alpha_2 = \alpha_3 = \alpha$; $\alpha_4 = \alpha_5 = \beta$, $\alpha + \beta = 1$, the problem of description of the collection of orthoprojectors $\{P_k\}_{k=1}^5$ such that

$$\alpha \sum_{k=1}^{3} P_k + \beta \sum_{i=4}^{5} P_i = I,$$
(3)

is \ast -wild (see [7]).

On majorization of C^* -algebras

Let us give definitions of majorization of C^* -algebras and *-wildness following to [1, 8].

The problem of description of pairs of self-adjoint (or unitary) operators up to unitary equivalence (representations of the *-algebra \mathfrak{S}_2 (or \mathfrak{U}_2) generated by a pair of free self-adjoint (or unitary) generators) was choosen as the standard *-wild problem in the theory of *-representations in [7].

The problem of unitary classification of representation of pairs of self-adjoint operators contains as a subproblem the problem of unitary classification of representation of any *-algebra with a countable number of generators (see [1]).

A problem containing the standard *-wild problem is called *-wild.

A number of \ast -wild algebras have been studied in recent years ([1, 7, 9]).

Let \mathfrak{A} be a C^* -algebra. We will denote by Rep \mathfrak{A} the category of representations of \mathfrak{A} . The objects of this category are the representations \mathfrak{A} to L(H) (the algebra of linear bounded operators in a Hilbert space H), the morphisms are intertwining operators. Let \mathfrak{N} be a nuclear C^* -subalgebra of $L(H_0)$. Let $\pi : \mathfrak{A} \to L(H)$ be a representation of \mathfrak{A} . It induces the representation

 $\tilde{\pi} = \pi \otimes id: \mathfrak{A} \otimes \mathfrak{N} \mapsto L(H \otimes H_0)$

of the algebra $\mathfrak{A} \otimes \mathfrak{N}$.

Definition 1. We say that a C^* -algebra \mathfrak{B} majorizes a C^* -algebra \mathfrak{A} (and denote it by $\mathfrak{B} \succ \mathfrak{A}$), if there exist a nuclear C^* -algebra \mathfrak{N} and a unital *-homomorphism $\psi: \mathfrak{B} \mapsto \mathfrak{A} \otimes \mathfrak{N}$ such that the functor $F: \operatorname{Rep} \mathfrak{A} \mapsto \operatorname{Rep} \mathfrak{B}$ defined by the following rule:

$$F(\pi) = \tilde{\pi} \circ \psi \quad \text{for any } \pi \in \operatorname{Rep} \mathfrak{A},\tag{4}$$

$$F(A) = A \otimes I \quad \text{for any operator } A \text{ intertwining } \pi_1 \text{ and } \pi_2, \tag{5}$$

is full.

Denote by $\pi(\mathfrak{A})'$ a commutant of $\pi(\mathfrak{A})$.

Remark 1. In order to verify whether F is full it is enough to check for any representation $\pi \in \text{Rep}(\mathfrak{A})$ in L(H) that the condition $\mathcal{A} \in F(\pi)(\mathfrak{B})'$ implies $\mathcal{A} = A \otimes I \in \pi(\mathfrak{A})$ and $A \in \pi(\mathfrak{A})'$.

Remark 2. To prove that functor F is full it is enough to show that the *-homomorphism ψ is a surjection (see [1]).

The proofs of these remarks see in [1].

Let F_2 denote the free group on two generators u, v. Denote by $C^*(F_2)$ an enveloping C^* -algebra of F_2 .

Definition 2. A C^{*}-algebra is called *-wild if $\mathfrak{A} \succ C^*(F_2)$.

Let us repeat that the fact that some algebra is *-wild implies that the problem of unitary description of all representations is very complicated.

On representations of the algebra $O_{4,\{\alpha_k=1/2\}_{k=1}^4}$

The C^{*}-algebra $\mathfrak{P}_4 = \mathfrak{P}(1/2, 1/2, 1/2, 1/2)$ has such irreducible representations (see [5]):

1) one-dimensional representation is

$$P_1 = P_2 = I, \qquad P_3 = P_4 = 0;$$

2) two-dimensional representation is

$$P_{1} = \begin{pmatrix} \cos^{2}\phi & \cos\phi\sin\phi\\ \cos\phi\sin\phi & \sin^{2}\phi \end{pmatrix}, \qquad P_{2} = \begin{pmatrix} \sin^{2}\phi & -\cos\phi\sin\phi\\ -\cos\phi\sin\phi & \cos^{2}\phi \end{pmatrix},$$
$$P_{3} = \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}, \qquad P_{4} = \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix},$$

here $0 < \phi < \pi/2$.

Let us consider the corresponding C^* -algebra $O_{4,\{\alpha_k=1/2\}_{k=1}^4}$.

Theorem 1. The C^{*}-algebra $O_{4,\{\alpha_k=1/2\}_{k=1}^4}$ is *-wild.

We will prove three lemmas for the proof of this theorem. In accordance by the definition of *-wildness to prove *-wildness of the algebra $O_{4,\{\alpha_k=1/2\}_{k=1}^4}$, we give a *-homomorphism

 $\psi: O_{4,\{\alpha_k=1/2\}_{k=1}^4} \to M_2(C^*(F_2)) \otimes \mathfrak{N}.$

Here \mathfrak{N} is a nuclear C^* -algebra, $\mathfrak{N} \subset L(H_0)$. As \mathfrak{N} we take the Cuntz algebra

$$O_2 = \mathbb{C}\langle T_1, T_2, T_1^*, T_2^* \mid T_1^*T_1 = T_2^*T_2 = I_0, \ T_1T_1^* + T_2T_2^* = I_0 \rangle$$

We take the operators T_1 , T_2 acting in a separable Hilbert space H_0 such that

$$T_1: e_j \to e_{2j-1}, \qquad T_2: e_j \to e_{2j}, \tag{6}$$

where $\{e_j\}_{j=1}^{\infty}$ is an orthonormal basis of H_0 .

We set

$$\begin{split} \psi(s_1) &= S_1 = \begin{pmatrix} (\cos \phi)u & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ (\sin \phi)e & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & (\sin \phi)e & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & (\sin \phi)e & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & (\sin \phi)e & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & (\sin \phi)e & 0 & 0 & \cdots \\ \vdots & & \ddots & & \ddots & \ddots & \ddots \end{pmatrix}, \\ \\ \psi(s_2) &= S_2 &= \begin{pmatrix} (\sin \phi)u & 0 & 0 & 0 & 0 & (\cos \phi)v & 0 & 0 & \cdots \\ -(\cos \phi)e & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & (\sin \phi)v & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & (\sin \phi)u & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & -(\cos \phi)e & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & (\sin \phi)v & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & (\sin \phi)v & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & (\sin \phi)v & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & (\sin \phi)v & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & (\sin \phi)v & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & (\sin \phi)v & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & (\sin \phi)v & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & (\sin \phi)v & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix} \end{pmatrix}$$

here $0 < \phi < \pi/2$.

Lemma 1. The map ψ defined by (7) is a *-homomorphism from $O_{4,\{\alpha_k=1/2\}_{k=1}^4}$ to $M_2(C^*(F_2)) \otimes O_2$.

Proof. It is easy to check that S_1, S_2, S_3, S_4 satisfy the relations of the C^* -algebra $O_{4,\{\alpha_k=1/2\}_{k=1}^4}$.

One can see that the map ψ has the form:

$$S_{1} = \begin{pmatrix} (\cos \phi)u & 0\\ (\sin \phi)e & 0 \end{pmatrix} \otimes T_{1} + \begin{pmatrix} 0 & (\cos \phi)v\\ 0 & (\sin \phi)e \end{pmatrix} \otimes T_{2},$$

$$S_{2} = \begin{pmatrix} (\sin \phi)u & 0\\ -(\cos \phi)e & 0 \end{pmatrix} \otimes T_{1} + \begin{pmatrix} 0 & (\sin \phi)v\\ 0 & -(\cos \phi)e \end{pmatrix} \otimes T_{2},$$

$$S_{3} = \begin{pmatrix} 0 & 0\\ e & 0 \end{pmatrix} \otimes T_{1} + \begin{pmatrix} 0 & 0\\ 0 & e \end{pmatrix} \otimes T_{2},$$

$$S_{4} = \begin{pmatrix} e & 0\\ 0 & 0 \end{pmatrix} \otimes T_{1} + \begin{pmatrix} 0 & e\\ 0 & 0 \end{pmatrix} \otimes T_{2},$$
(8)

here T_1 , T_2 are the same as in (6).

Let us note that $M_2(C^*(F_2)) \otimes O_2 \simeq (C^*(F_2)) \otimes O_2$ because $O_2 \simeq M_2(O_2)$ [10]. Therefore the *-homomorphism ψ is the needed homomorphism for the proof of *-wildness of the algebra.

Let π be a representation of $C^*(F_2)$ in a Hilbert space \hat{H} . Then the map ψ induces the representation $F(\pi)$ of $O_{4,\{\alpha_k=1/2\}_{k=1}^4}$ in a Hilbert space H.

Lemma 2. If $\pi \in \operatorname{Rep} C^*(F_2)$ in $L(\hat{H})$ and $\mathcal{A} \in (F_{\psi}(\pi)(O_{4\{\alpha_k=1/2\}_{k=1}^4}))'$ then $\mathcal{A} = A \otimes I$ and $A \in \pi(C^*(F_2))'$ (here I is the identity in L(H)).

The proof follows by direct computation.

Lemma 3. The *-homomorphism $\psi: O_{4,\{\alpha_k=1/2\}_{k=1}^4} \to M_2(C^*(F_2)) \otimes O_2$ is a surjection.

Proof. In the algebra $M_2(C^*(F_2)) \otimes O_2$ we choose the following generators:

$$a_{11} = \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix} \otimes I_0, \qquad a_{12} = \begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix} \otimes I_0,$$
$$a_{21} = \begin{pmatrix} 0 & 0 \\ e & 0 \end{pmatrix} \otimes I_0, \qquad a_{22} = \begin{pmatrix} 0 & 0 \\ 0 & e \end{pmatrix} \otimes I_0,$$
$$b = \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} \otimes I_0, \qquad c_1 = \begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix} \otimes T_1, \qquad c_2 = \begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix} \otimes T_2.$$
(9)

It is easy to see that the linear combinations of the generators a_{11} , a_{12} , a_{21} , a_{22} , b, c_1 , c_2 give everywhere dense set of $M_2(C^*(F_2)) \otimes O_2$. The closure by norm gives our C^* -algebra. To prove that ψ is a surjection we point out the elements of the algebra $O_{4,\{\alpha_k=1/2\}_{k=1}^4}$ which give the generators of $M_2(C^*(F_2)) \otimes O_2$:

$$S_4 S_4^* = a_{11}, \qquad S_4 S_3^* = a_{12}, \qquad a_{21} = a_{12}^*, \qquad S_3 S_3^* = a_{22},$$

$$S_4^* (S_1 + S_2) = b, \qquad S_4^2 S_4^* + S_3 S_4 S_3^* = c_1, \qquad S_3^2 S_3^* + S_4 S_3 S_4^* = c_2.$$

The proof of Theorem 1 follows from Remark 1 and Lemmas 1, 2. Another proof follows from Remark 2 and Lemmas 1, 3.

The criterion of *-wildness of the algebra $O_{3,\{\alpha_k\}_{k=1}^3}$

For the algebras $\mathfrak{P}_3 = \mathfrak{P}(\alpha_1, \alpha_2, \alpha_3)$ all irreducible representations were described in [5]. The irreducible representations of these algebras exist only in the cases:

- 1) $\alpha_1 + \alpha_2 + \alpha_3 = 1, 0 < \alpha_k < 1, k = 1, 2, 3, P_1 = P_3 = P_3 = I;$
- 2) $\alpha_i \in R \setminus \{1\}, \alpha_j + \alpha_k = 1, 0 < \alpha_j < 1, 0 < \alpha_k < 1$, here i, j, k are pairwise different integers from the set $\{1, 2, 3\}, P_j = P_k = I; P_i = I$ if $\alpha_i = 0$ and $P_i = 0$ otherwise;

3) $\alpha_1 + \alpha_2 + \alpha_3 = 2, 0 < \alpha_k < 1, k = 1, 2, 3, P_1, P_2, P_3$ are two-dimensional matrices:

$$P_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

$$P_{2} = \begin{pmatrix} \cos^{2}\phi & \cos\phi\sin\phi \\ \cos\phi\sin\phi & \sin^{2}\phi \end{pmatrix}, \qquad P_{3} = \begin{pmatrix} \cos^{2}\theta & \cos\theta\sin\theta \\ \cos\theta\sin\theta & \sin^{2}\theta \end{pmatrix},$$
(10)

here

$$\cos\phi = \sqrt{\frac{(1-\alpha_2)(\alpha_2+\alpha_3-1)}{\alpha_2(2-\alpha_2-\alpha_3)}}, \qquad \sin\phi = \sqrt{\frac{1-\alpha_3}{\alpha_2(2-\alpha_2-\alpha_3)}}, \tag{11}$$
$$\cos\theta = \sqrt{\frac{(1-\alpha_3)(\alpha_2+\alpha_3-1)}{\alpha_3(2-\alpha_2-\alpha_3)}}, \qquad \sin\theta = -\sqrt{\frac{1-\alpha_2}{\alpha_3(2-\alpha_2-\alpha_3)}}.$$

Theorem 2. The C^{*}-algebra $O_{3,\{\alpha_1,\alpha_2,\alpha_3\}}$ is *-wild if one of the following conditions holds:

- 1) $\alpha_1 + \alpha_2 + \alpha_3 = 1, \ 0 < \alpha_k < 1, \ k = 1, 2, 3;$
- 2) $\alpha_i = 0$, $\alpha_j + \alpha_k = 1$, $0 < \alpha_j < 1$, $0 < \alpha_k < 1$, here *i*, *j*, *k* are pairwise different integers from the set {1,2,3};
- 3) $\alpha_j + \alpha_k = 1$, $\alpha_i = \alpha_j$ or $\alpha_i = \alpha_k$, $0 < \alpha_l < 1$, l = 1, 2, 3; here *i*, *j*, *k* are pairwise different integers from the set $\{1, 2, 3\}$.

Proof. One-dimensional representations of the algebra \mathfrak{P}_3 exist only when conditions 1, 2, 3 hold. In the first case we set the *-homomorphism $\psi : O_{3,\{\alpha_k\}_{k=1}^3} \to C^*(F_2)$ by the following way: $\psi(s_1) = e, \ \psi(s_2) = u, \ \psi(s_3) = v$ and $\psi(s_j) = u, \ \psi(s_k) = v, \ \psi(s_i) = e$ in the second case (here u, v are the generators of $C^*(F_2)$). It is easy to see that the map ψ is a surjection.

In the third case we restrict ourselves the case $\alpha_i = \alpha_j$. We give a *-homomorphism ψ : $O_{3,\{\alpha_k\}_{k=1}^3} \to M_2(C^*(F_2)) \otimes O_2$ in such a way:

$$\psi(s_i) = S_i = \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix} \otimes T_1 + \begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix} \otimes T_2,$$

$$\psi(s_j) = S_j = \begin{pmatrix} 0 & 0 \\ e & 0 \end{pmatrix} \otimes T_1 + \begin{pmatrix} 0 & 0 \\ 0 & e \end{pmatrix} \otimes T_2, \qquad \psi(s_k) = S_k = \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} \otimes I_0,$$
(12)

here T_1 , T_2 are the same as in (6). It is easy to check that the functor F induced by the *-homomorphism ψ is full. Therefore the algebra $O_{3,\{\alpha_1,\alpha_2,\alpha_3\}}$ majorizes $C^*(F_2)$ and is *-wild.

Theorem 3. If $\alpha_1 + \alpha_2 + \alpha_3 = 2$, $0 < \alpha_k < 1$, k = 1, 2, 3, then the C^{*}-algebra $O_{3,\{\alpha_1,\alpha_2,\alpha_3\}}$ is *-wild.

Proof. We set the *-homomorphism $\psi: O_{3,\{\alpha_k\}_{k=1}^3} \to M_2(C^*(F_2)) \otimes O_2$ in such a way:

$$\psi(s_1) = S_1 = \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix} \otimes T_1 + \begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix} \otimes T_2,$$

$$\psi(s_2) = S_2 = \begin{pmatrix} (\cos \phi)u & 0 \\ (\sin \phi)e & 0 \end{pmatrix} \otimes T_1 + \begin{pmatrix} 0 & (\cos \phi)v \\ 0 & (\sin \phi)e \end{pmatrix} \otimes T_2,$$

$$\psi(s_3) = S_3 = \begin{pmatrix} (\cos \theta)u & 0 \\ (\sin \theta)e & 0 \end{pmatrix} \otimes T_1 + \begin{pmatrix} 0 & (\cos \theta)v \\ 0 & (\sin \theta)e \end{pmatrix} \otimes T_2,$$

(13)

here T_1, T_2 are the same as in (6), $\cos \phi$, $\sin \phi$, $\cos \theta$, $\sin \theta$ are such as in (11).

It is easy to verify that the functor F generated by the *-homomorphism ψ is full.

Remark 3. One can see that these theorems together give also the needed conditions of *-wildness of $O_{3,\{\alpha_k\}_{k=1}^3}$ since either there are no representations of the corresponding algebra \mathfrak{P}_3 for other α_k , k = 1, 2, 3 (see [5]) or there are no representations of the algebra $O_{3,\{\alpha_k\}_{k=1}^3}$ (in the case $\alpha_i \neq 0$, if $\alpha_i \neq \alpha_j$ and $\alpha_i \neq \alpha_k$, here i, j, k are pairwise different integers from the set $\{1, 2, 3\}$).

The criterion of *-wildness of the C*-algebra $O_{3,\{\alpha_k\}_{k=1}^3}$ follows from Theorems 2, 3 and Remark 3.

Theorem 4. The algebra $O_{3,\{\alpha_k\}_{k=1}^3}$ is *-wild if and only if $\alpha_1, \alpha_2, \alpha_3$ satisfy one of the following conditions:

- 1) $\alpha_1 + \alpha_2 + \alpha_3 = 1, \ 0 < \alpha_k < 1, \ k = 1, 2, 3;$
- 2) $\alpha_i = 0$, $\alpha_j + \alpha_k = 1$, $0 < \alpha_j < 1$, $0 < \alpha_k < 1$, here *i*, *j*, *k* are pairwise different integers from the set {1,2,3};
- 3) $\alpha_j + \alpha_k = 1$, $\alpha_i = \alpha_j$ or $\alpha_i = \alpha_k$, $0 < \alpha_l < 1$, l = 1, 2, 3, here *i*, *j*, *k* are pairwise different integers from the set $\{1, 2, 3\}$;
- 4) $\alpha_1 + \alpha_2 + \alpha_3 = 2, \ 0 < \alpha_k < 1, \ k = 1, 2, 3.$

References

- Ostrovskyi V.L. and Samoilenko Yu.S., Introduction to the theory of representations of finitely presented *-algebras, *Rev. Math. and Math. Phys.*, 1999 (to appear).
- [2] Bespalov Yu.N., Collections of orthoprojections satisfying relations, Ukr. Mat. Zhurn., 1992, V.44, N 3, 309–317 (in Russian).
- [3] Cuntz J., Simple C*-algebras generated by isometries, Commun. Math. Phys., 1977, V.57, 173–185.
- [4] Pavlenko H. and Piryatinska A., On representations of Cuntz type algebras, Methods Funct. Anal. Topol., 1999, V.5, N 3, 35–39.
- [5] Galinsky D.V. and Muratov M.A., On representations of algebras generated by sets of three and four orthoprojections, in Spectral and evolutionary problems, Simferopol, Tavria, 1998, 15–22.
- [6] Galinsky D.V. and Kruglyak S.A., On representations of *-algebras generated by linearly related orthoprojectors, Visnyk Kyiv University, Ser. Phys.-Math. Sciences, 1999, Iss.2, 24–31 (in Ukrainian).
- [7] Kruglyak S.A. and Samoilenko Yu.S., On unitary equivalence of the family non self-adjoint operators, *Func. Anal. and Prilog.*, 1981, V.14, 52–61 (in Russian).
- [8] Kruglyak S.A., Piryatinska A.Yu. and Samoilenko Yu.S., On unitary classification of non self-adjoint operators (to appear).
- [9] Kruglyak S.A. and Piryatinskaya A.Yu., On "wild" *-algebras and the unitary classification of weakly centered operators, Prepr. ser. of Mittag-Leffler Inst., N 11, 1995/96.
- [10] Choi M.D., A simple C*-algebra generated by two finite-order unitaries, Canad J. Math., 1979, V.31, 867– 880.