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The irreducible representations of the Dirac algebra for a particle constrained to move on SD

are generalized to a system on a manifold diffeomorphic to SD. It is shown that there exists
a one-one correspondence between irreducible representations of two Dirac algebras given
respectively on SD and on the manifold diffeomorphic to it. Among diffeomorphic mappings
connecting SD to the manifold the area-preserving one plays a crucial role to derive out
our main result. It is observed that the representation space of the Dirac algebra is kept
unchanged through area-preserving mappings.

1 Dirac algebra

Let us consider a system constrained to move on a D-dimensional manifold embedded in the
(D + 1)-Euclidean space RD+1 whose coordinates will be denoted as x1, x2, . . . , xD+1. The
Hamiltonian in RD+1 is assumed to be

H =
1
2

D+1∑
α=1

p2
α + V (x) (1.1)

and the D-dimensional smooth manifold on which the system is constrained will be written as

f(x) = 0 (1.2)

with f(x) ∈ C∞. We further assume the manifold to be diffeomorphic to SD.
Equation (1.2) is the so called primary constraint. According to the prescription by Dirac [1]

the consistency of (1.2) under the time development leads us to the secondary constraint that
can be written as

{f,α(x), pα} = 0, (1.3)

where and in what follows f,α(x) ≡ ∂αf(x), f,αβ(x) ≡ ∂α∂βf(x), {A,B} ≡ AB + BA and
repeated two Greek indices in a single term indicate a summation of such terms in which the
pair of those indices run over 1 to D + 1. The fundamental Dirac brackets [1] for canonical
variables in classical mechanics are seen to be converted to

[xα, xβ ] = 0, (1.4)

[xα, pβ ] = iΛαβ(x), (1.5)

[pα, pβ] = − i

2

{
1

R2(x)
(f,α(x)f,βγ(x)− f,β(x)f,αγ(x)) , pγ

}
, (1.6)
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where

R2(x) ≡ f,α(x)f,α(x) (1.7)

and

Λαβ(x) ≡ δαβ − f,α(x)f,β(x)
R2(x)

. (1.8)

With direct calculations one easily finds that Eqs. (1.4)∼(1.6) are compatible with the con-
straints (1.2) and (1.3). The inner product of two wave functions χ(x) and ϕ(x) is given by

〈χ|ϕ〉 =
∫

dD+1xδ(f(x))χ∗(x)ϕ(x). (1.9)

We call the algebra described by (1.2)∼(1.6) the Dirac algebra on f(x) = 0.

2 Relation between two Dirac algebras

In order to examine the Dirac algebra on f(x) = 0 we introduce another manifold in RD+1

which is also diffeomorphic to SD. We denote it as

g(x) = 0. (2.1)

Then we have the following Dirac algebra just corresponding to (1.3)∼(1.8):
{g,α(x), pα} = 0, (2.2)

[xα, xβ ] = 0, (2.3)

[xα, pβ ] = iΛ′
αβ(x), (2.4)

[pα, pβ] = − i

2

{
1

R′2(x)
(g,α(x)g,βγ(x)− g,β(x)g,αγ(x)) , pγ

}
, (2.5)

where

R′2(x) = g,α(x)g,α(x) and Λ′
αβ(x) = δαβ − g,α(x)g,β(x)

R′2(x)
. (2.6)

Since the manifold (1.2) is connected with (2.1) through a diffeomorphic mapping

x′
α = x′

α(x) (or equivalently xα = xα(x′)), (2.7)

we may write the relation between them as

g(x′) = f(x). (2.8)

For the sake of simplicity by applying a scale transformation we will set up the following
normalization condition for the volume of the manifold∫

dD+1xδ(f(x)) =
∫

dD+1xδ(g(x)) (2.9)

without loss of generality1.
1Applying the scale transformation xα → ρxα, pα → (1/ρ)pα with ρ > 0 and introducing ḡ(x) ≡ g(ρx) we find

that (2.1)∼(2.5) remain unchanged under the replacement g(x)→ ḡ(x), and we have∫
dD+1xδ(g(x)) = ρD+1

∫
dD+1δ(ḡ(x)).
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Now assuming that there exist operators xα and pα (α = 1, 2, . . . , D + 1) that satisfy the
Dirac algebra on f(x) = 0 we introduce a transformation such that


x′

α = x′
α(x),

p′α =
1
2

{
(Λ′(x′)[∂x/∂x′])αβ , pβ

}
,

(2.10)

where Λ′(x′) and [∂x/∂x′] stand for (D+1)× (D+1)-matrices whose (α, β)-elements are given
by Λ′

αβ(x′) and ∂xβ/∂x
′
α, respectively. Similarly the matrices Λ(x) and [∂x

′/∂x] are defined by
(Λ(x))αβ = Λαβ(x) and [∂x′/∂x]αβ = ∂x′

β/∂xα. The equations (2.10) provide us with a variable
transformation (x, p) → (x′, p′) in the operator form. It must be written in the representation
space of xα and pα. Then there holds the following:

Theorem. Given xα and pα that satisfy the Dirac algebra on f(x) = 0 then the operators x′
α

and p′α defined by (2.10) satisfy the Dirac algebra on g(x) = 0 for an arbitrary diffeomorphic
mapping described with (2.7) and (2.8).

Before entering a proof of the Theorem we remark the followings:

1. Let A, B and C be operators. If [[C,A], B] = 0, then

{A, {B,C}} = {{A,B}, C, }. (2.11)

Thus if further [A,B] = 0, we have

1
2
{A, {B,C}} = {AB,C}. (2.12)

Proof: omitted.

2. There holds true the identity

Λ(x)[∂x′/∂x]Λ′(x′) = Λ(x)[∂x′/∂x]. (2.13)

Proof: Inserting Λ′
γβ(x′), which is defined by (2.6), into the left hand side (l.h.s.) of the above

we find

(α, β)-element of l.h.s. = (Λ(x)[∂x′/∂x])αβ − 1
R′2(x′)

Λαρ(x)
∂x′

γ

∂xρ
g,γ(x′)g,β(x′)

= (Λ(x)[∂x′/∂x])αβ − 1
R′2(x′)

Λαρ(x)f,ρ(x)g,β(x′) = (Λ(x)[∂x′/∂x])αβ ,

where use has been made of (2.8) together with Λαρ(x)f,ρ(x) = 0. (q.e.d.)

3. We can uniquely solve the second equation of (2.10) with respect pα to obtain

pα =
1
2
{(Λ(x)[∂x′/∂x])αβ , p

′
β}. (2.14)

Proof: Taking symmetrized products of (Λ(x)[∂x′/∂x])γα/2 with the both sides of the second
equation of (2.10) and making a sum over α we obtain with help of (2.11) and (2.13)

1
2
{(Λ(x)[∂x′/∂x])γα, p

′
α} =

1
4

{
(Λ(x)[∂x′/∂x])γα, {(Λ′(x′)[∂x/∂x′])αβ , pβ}

}

=
1
2
{(Λ(x)[∂x′/∂x]Λ′(x′)[∂x′/∂x])γβ, pβ}

=
1
2
{(Λ(x)[∂x′/∂x][∂x/∂x′])γβ, pβ} = 1

2
{Λγβ(x), pβ}
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which reduces to

pγ − 1
2

{
f,γ(x)f,β(x)

R2(x)
, pβ

}
= pγ − 1

4

{
f,γ(x)
R2(x)

, {f,β(x), pβ}
}
= pγ ,

where we have used (1.8) together with (2.12) and (1.3). Thus we have proved (2.14).

With these preparations we will give a proof of the Theorem. To this end we first examine
the constraint (2.2) starting with the Dirac algebra on f(x) = 0. Taking the anti-symmetrized
products of g,α(x′) with the both sides of the second equation of (2.10) we find

{g,α(x′), p′α} =
1
2

{
g,α(x′), {(Λ′(x′)[∂x/∂x′])αβ , pβ}

}

=
{
g,α(x′)Λ′

αγ(x′)[∂x/∂x′]γβ , pβ

}
= 0,

where use has been made of (2.12) and the identity g,α(x′)Λ′
αγ(x′) = 0. Thus the constraint

(2.4) has been derived
Next to derive (2.6) we make a commutator of x′

α with p′β . Then from (2.10) we obtain

[x′
α, p

′
β ] =

1
2

[
x′

α, {(Λ′(x′)[∂x/∂x′])βγ , pγ}
]

= (Λ′(x′)[∂x/∂x′])βγ [x′
α, pγ ] = i(Λ′(x′)[∂x/∂x′])βγ [∂x′/∂x]ραΛργ(x)

= iΛ′
αβ(x′)− i

R2(x)
(Λ′(x′)[∂x/∂x′])βγf,γ(x)f,ρ(x)[∂x′/∂x]ρα

= iΛ′
αβ(x′)− i

R2(x)
Λ′

βγ(x′)g,γ(x′)f,ρ(x)[∂x′/∂x]ρα = iΛ′
αβ(x′),

which proves (2.4).
Finally we will derive (2.5). To avoid complications we will proceed in the following way: As

seen from (1.5) and (1.6) the commutator [p′α, p′β] is linear in pγ ’s, thereby applying (2.14) we
can write it as

[p′α, p
′
β] =

i

2

{
c[αβ]
γ (x′), p′γ

}
(2.15)

with undetermined functions of x′, which have been denoted as c
[αβ]
γ (x′). Taking the commuta-

tors of x′
γ with the both sides of (2.15) we obtain from the left hand side

[x′
γ , [p

′
α, p

′
β]] = [[x′

γ , p
′
α], p

′
β] + [p′α, [x

′
γ , p

′
β ]]

= −i

[
g,γ(x′)g,α(x′)

R′2(x′)
, p′β

]
+ i

[
g,γ(x′)g,β(x′)

R′2(x′)
, p′α

]

by virtue of (2.6), while from the right hand side
{
c[αβ]
ρ (x′), [x′

γ , p
′
ρ]

}
= −Λ′

γρ(x′)c[αβ]
ρ (x′) = −c[αβ]

γ (x′) +
1

R′2(x′)
g,γ(x′)g,ρ(x′)c[αβ]

ρ (x′).

Since the right hand sides of the above two equations are the same we find

c[αβ]
γ (x′) =

1
R′2(x′)

g,γ(x′)g,ρ(x′)c[αβ]
ρ (x′) + i

[
g,γ(x′)g,α(x′)

R′2(x′)
, p′β

]
− i

[
g,γ(x′)g,β(x′)

R′2(x′)
, p′α

]
.
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Then inserting this relation into the right hand side of (2.15) we find

[p′α, p
′
β] =

i

2

{
1

R′2(x′)
c[αβ]
ρ (x′)g,ρ(x′)g,γ(x′), p′γ

}

− 1
2

({[
1

R′2(x′)
g,α(x′)g,γ(x′), p′β

]
, p′γ

}
− (α ↔ β)

)
,

where the first term of the right hand side is found to vanish owing to (2.12) and (2.2). On the
other hand, with the aid of (2.4) we have by direct calculation[

1
R′2(x′)

g,α(x′)g,γ(x′), p′β

]
= iΛ′

ρβ(x′)
∂

∂x′
ρ

(
1

R′2(x′)
g,α(x′)g,γ(x′)

)

=
i

R′2(x′)

(
g,αβ(x′)g,γ(x′)− g,α(x′)g,β(x′)g,ρ(x′)g,γ(x′)

∂

∂x′
ρ

(
1

R′2(x′)

)

−g,α(x′)g,β(x′)g,ρ(x′)g,γρ(x′)
R′2(x′)

)
+

i

R′2(x′)
g,α(x′)g,βγ(x′)

− i

R′4(x′)
(
2g,βρ(x′)g,α(x′)g,ρ(x′) + g,αρ(x′)g,ρ(x′)g,β(x′)

)
g,γ(x′),

which immediately leads to[
1

R′2(x′)
g,α(x′)g,γ(x′), p′β

]
− (α ↔ β) =

i

R′2(x′)
(
g,α(x′)g,βγ(x′)− g,β(x′)g,αγ(x′)

)

− i

R′4(x′)
(
g,α(x′)g,βρ(x′)g,ρ(x′)− g,β(x′)g,αρ(x′)g,ρ(x′)

)
g,γ(x′).

Then taking the anti-commutators of p′γ with the both sides of the above equation we find the
contribution from the second term of the right hand side turns zero due to (2.12) and (2.2), and
finally obtain

[p′α, p
′
β] = − i

2

{
1

R′2(x′)
(
g,α(x′)g,βγ(x′)− g,β(x′)g,αγ(x′)

)
, p′γ

}
,

thereby proving (2.5). Thus we have completed the proof of the Theorem.

It is noted that among diffeomorphic mappings satisfying (2.9) there always exist [2] those
which obey the condition

dD+1xδ(f(x)) = dD+1x′δ(g(x′)). (2.16)

We call them area-preserving mappings. Eq.(2.6) is of course equivalent to δ(f(x)) = det[∂x′/∂x]
×δ(f(x)). After normalizing the constraints in a form of (2.9) we will apply this type of mapping2

under which the transformation of the wave function ϕ(x) is given by

ϕ′(x′) = ϕ(x). (2.17)

Then we are led to the invariance of the inner product of wave functions under the area-preserving
mapping, i.e.,∫

dD+1xδ(f(x))χ′∗(x)ϕ′(x) =
∫

dD+1xδ(g(x))χ∗(x)ϕ(x). (2.18)

2Physically the existence of the are-preserving mapping under the condition (2.9) could be understood by
considering an incompressible fluid which uniformly covers the manifold.
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Since, as was mentioned already, the transformation (2.10) has the inverse, the two descriptions
based on the respective Dirac algebras on f(x) = 0 and g(x) = 0 are seen to be equivalent. Thus,
if conversely starting with the canonical variables xα and pα that satisfy the Dirac algebra on
g(x) = 0 we will then obtain those on f(x) = 0 by applying the inverse transformation of (2.10).
It can be written as


x′

α = x′
α(x),

p′α =
1
2

{
(Λ(x′)[∂x/∂x′])αβ , pβ

}
,

(2.19)

where the first line stands for an area-preserving mapping from the manifold of g(x) = 0 to that
of f(x) = 0 so that it satisfies f(x′) = g(x) together with (2.9). It is noted that as seen from the
process of deriving (2.14) the transformation (2.19) is uniquely given by (2.10). Furthermore it
is also remarkable that owing to (2.18) the irreducible representation space of (xα, pα) is found
to be the same as that of (x′

α, p
′
α), that is, in this case the irreducible representation space of

the Dirac algebra is kept unchanged under a smooth deformation of the manifold.
Based on this fact we will determine, in the next section, all possible irreducible representa-

tions of the Dirac algebra on f(x) = 0. To this end we will use SD for the manifold g(x) = 0
in (2.19), since the irreducible representations of the Dirac algebra on SD have been known
completely [3].

3 Irreducible representations and remarks

The operators pβ in the irreducible representation space of the Dirac algebra on SD are given
by [3]


p1 = −1

2
{x2, L12} − αx2,

p2 =
1
2
{x1, L12}+ αx1

for D = 1 (3.1)

with 0 ≤ α < 1, and

pβ =
1
2
{xρ, Lρβ} for D ≥ 2, (3.2)

where, in x-diagonal representation, Lαβ (α, β = 1, 2, . . . , D + 1) are defined by

Lαβ ≡ 1
i

(
xα

∂

∂xβ
− xβ

∂

∂xα

)
. (3.3)

In (3.1) and (3.2) we have assumed the radius of SD to be 1 for simplicity.
For D = 1 the irreducible representations are uniquely specified by α, while for each of

D ≥ 2 we have one and only one irreducible representation. Furthermore it is known [3] that
the irreducible representations of the Dirac algebra on SD are exhausted by the above. Thus
inserting pβ in (3.1) and (3.2) into the right hand side of (2.19) we can completely determine all
possible irreducible representations of the Dirac algebra on f(x) = 0. They are expressed as

p′β =
1
2
{(Λ(x′)[∂x′/∂x])βγxρ, Lργ} − α(Λ(x′)[∂x′/∂x])βγxρεργ for D = 1 (3.4)

and

p′β =
1
2
{(Λ(x′)[∂x′/∂x])βγxρ, Lργ} for D ≥ 2. (3.5)
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It is to be noted that for D = 1 there exist an infinite number of inequivalent irreducible
representations corresponding to values of the parameter α, while in the case of D ≥ 2 the
irreducible representation is uniquely given except for unitary equivalent representations.

Finally in concluding the present note we make a few remarks. It has been shown [3] that
each of pβ ’s in (3.1) and (3.2) is a self-adjoint operator. Hence it is obvious that the operators
p′β given by (3.4) and (3.5) are all symmetric (hermitian) as easily seen from (2.18) and (2.19).
Perhaps, however, they will be self-adjoint as well, although the proof has not yet been known.
Moreover from the arguments made in this note it could be expected that if there exists a
representation space of the Dirac algebra on a given manifold it is uniquely determined only by
the topology of the manifold.

A detailed study on these problems would highly be desired.
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