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The procedure of reducing of canonical field degrees of freedom for a system of charged
particles plus electromagnetic field in the constraint Hamiltonian formalism is developed
up to the first order in the coupling constant expansion. The canonical realization of the
Poincaré algebra in the terms of physical variables is found. The relation between covariant
and physical particle variables in the Hamiltonian description is studied.

1 Introduction

Usually, an interaction within a system of N charged particles is described by means of the
electromagnetic field with its own degrees of freedom represented by the 4-potential Aµ(x), x ∈
M4, over the Minkowski space-time1 [1, 2, 3].

Such a system of particles plus electromagnetic field is completely determined by the following
action

S = −
∫ N∑

a=1

ma

√
uµ

a(τ)uaµ(τ)dτ

−
∫ N∑

a=1

eau
µ
a(τ)Aµ[xa(τ)]dτ − 1

16π

∫
Fµν(x)Fµν(x)d4x.

(1.1)

Here Fµν(x, τ) = ∂µAν(x, τ) − ∂νAµ(x, τ) is the field strength; ma, ea are the mass and the
charge of particle a, respectively, uµ

a(τ) = dxµ
a(τ)/dτ , and τ �→ xµ

a(τ) gives parametric equation
of the particle world line in the Minkowski space-time.

But often it is desirable to exclude the field degrees of freedom and formulate the description
of the system only in the terms of particle variables. The elimination of the field variables can
be performed exactly in the action (1.1). This leads to the time-symmetric Wheeler–Feynman
electrodynamics [4, 5] with the Fokker action. Nonlocality of the Fokker-type actions result in
serious difficulties in transition to the Hamiltonian description [6]. The same problems occur
when Fokker-type action is replaced by the single-time Lagrangian depending on the infinity
order derivatives of the particle coordinates [7, 8]. Although this problem can be solved within
the corresponding approximation schemes [6, 9]. Here we shall consider an alternative way to

1The Minkowski space-time M4 is endowed with a metric ‖ηµν‖ = diag(1,−1,−1,−1). The Greek indices
µ, ν, . . . run from 0 to 3; the Latin indices from the middle of alphabet, i, j, k, . . . run from 1 to 3 and both types
of indices are subject of the summation convention. The Latin indices from the beginning of alphabet, a, b, label
the particles and run from 1 to N . The sum over such indices is indicated explicitly.
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overcome these difficulties. The main idea consists in the elimination of field degrees of freedom
after transition to the Hamiltonian description of the particles plus field theory.

Then, we must solve the field Hamiltonian equations of motion and make the canonical
transformation to the free field variables. After that the canonical free field variables will be
eliminated by means of canonical constraint method. This procedure gives us the canonical
realization of the Poincaré algebra in the terms of particle variables.

However, the field equations of motion are nonlinear, so we will find the solutions of these
equations and other relations in the first order in the coupling constant expansion. Therefore,
the Lienard–Wiechert potentials will be the expected solutions of the field equations.

The present paper is organized as follows. In Section 2, there is a canonical realization of the
Poincaré algebra for the system of N point charged particles plus electromagnetic field (field
theory).

In Section 3, we find solutions of the field equations of motion of first order in the coupling
constant expansion, make canonical transformation to the free field variables and eliminate them
with help of constraints. We obtain a canonical realization of the Poincaré generators depending
on the particle coordinates and momenta. It is shown that the new generators form an algebra.
There is a study of relations between new canonical coordinates and positions of particles of the
reduced system.

The conclusions in Section 4 contain some final remarks and the outline of future research.

2 Field theory Poincaré generators

Action (1.1) for the system of field and particles is manifestly Poincaré-invariant. Its invariance
leads to the conservation of the symmetric energy-momentum tensor [1, 3]

θµν(z) =
N∑

a=1

ma

∫
uµ

a(τ)uν
a(τ)√

u2
a(τ)

δ4(xa(τ)− z)dτ

+
1
4π

(
−Fµλ(z)F ν

λ(z) +
1
4
Fλσ(z)F λσ(z)ηµν

)
.

(2.1)

For transition to the Hamiltonian description we use 3 + 1 splitting of the Minkowski space-
time corresponding to the instant form of dynamics [10, 11]. In geometric approach the instant
form of dynamics is determined by foliation of the Minkowski space-time by the hyperplanes
x0 = τ , τ ∈ R.

In this case the Lagrangian of the system is

L = −
N∑

a=1

ma

√
1− u2

a(τ)dτ −
N∑

a=1

ea

(
ui

a(τ)Ai[xa(τ), τ ] +A0[xa(τ), τ ]
)

− 1
16π

∫
Fµν(x, τ)Fµν(x, τ)d3xdτ,

where xa = (xi
a), ua = (ui

a), A(x, τ) = (Ai(x, τ)).
The canonical momenta are given by

pai(τ) = − ∂L

∂ui
a

=
mauai(τ)√
1− u2

a(τ)
+ eaAi[xa(τ), τ ],

Ei(x, τ) =
δL

δȦi(x, τ)
=

1
4π

F i0(x, τ), E0(x, τ) =
δL

δȦ0(x, τ)
= 0.
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The canonical and Dirac Hamiltonians are

H =
N∑

a=1

[√
m2

a + [pa − eaA(xa)]
2 + eaA0(xa)

]
+

∫ (
1

16π
FijFij + 2πEiEi −A0∂iE

i

)
d3x,

HD = H +
∫
λE0d3x,

where λ is the Dirac multiplier.
The basic Poisson brackets are

{xi
a(τ), pbj(τ)} = −δabδ

i
j , {Aµ(x, τ), Eν(y, τ)} = ηµνδ3(x − y). (2.2)

The constraint E0(x, τ) ≈ 0 (≈means “weak equality” in the sense of Dirac) reflects the gauge
invariance of S; its time constancy produces the only secondary constraint, ∂iE

i(x, τ)−ρ(x, τ) ≈
0, where ρ(x, τ) =

N∑
a=1

eaδ
3(x−xa(τ)). The two constraints E0(x, τ) ≈ 0, ∂iE

i(x, τ)−ρ(x, τ) ≈ 0

are first class with vanishing Poisson brackets. Therefore, the corresponding conjugate variables

A0(x, τ),
∫

∆−1(x − y)∂iAi(y, τ)d3y, (∆−1(x) = −1/(4π|x|)) are arbitrary functions.

Conservation of the energy-momentum tensor (2.1) leads to ten conserved Poincaré genera-
tors:

Pµ =
∫
θµ0(x, τ)d3x, Mµν =

∫ (
xµθν0(x, τ)− xνθµ0(x, τ)

)
d3x.

They can be rewritten in terms of canonical variables as

P 0 =
N∑

a=1

√
m2

a + [pa − eaA(xa)]
2 +

∫ (
1

16π
FijFij + 2πEiEi

)
d3x,

P k =
N∑

a=1

[
pk

a − eaA
k(xa)

]
+

∫
ElF lkd3x,

Mk0 =
N∑

a=1

xk
a

√
m2

a + [pa − eaA(xa)]
2 +

∫ (
1

16π
FijFij + 2πEiEi

)
xkd3x− τP k,

M ik =
N∑

a=1

(xi
ap

k
a − xk

ap
i
a) +

∫ (
xkEl∂iAl − xiEl∂kAl

)
d3x+

∫ (
AiEk −AkEi

)
d3x,

where pa = (pi
a). They satisfy the commutation relations of the Poincaré algebra,

{Pµ, P ν} = 0, {Pµ,Mνλ} = ηµνP λ − ηµλP ν ,

{Mµν ,Mλσ} = −ηµλMνσ + ηνλMµσ − ηνσMµλ + ηµσMνλ,

in terms of the Poisson brackets (2.2).
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3 Reduction of field degrees of freedom

The equations of motion in first order in the coupling constant expansion are

ẋi
a =

pi
a√

m2
a + p2

a

+
eaΠ

ij
a√

m2
a + p2

a

Aj(xa), ṗai = ∂aiAj(xa)
eap

j
a√

m2
a + p2

a

+ ea∂aiA0(xa),

Ȧi = −4πEi + ∂iA0, Ėi = −ji − ∆
4π

Ai − 1
4π

∂i
(
∂jA

j
)
, (3.1)

Ė0 = ∂iE
i − ρ ≈ 0, Ȧ0 = λ,

where Πij
a ≡ δij − pi

ap
j
a/(m2

a + p2
a), j

i =
N∑

a=1

(
eap

i
a/

√
m2

a + p2
a

)
δ3(x− xa(τ)) is current density,

and λ is an arbitrary function of the evolution parameter τ . They are generated by the Dirac
Hamiltonian

HD =
N∑

a=1

[√
m2

a + p2
a +

eapai√
m2

a + p2
a

Ai(xa) + eaA0(xa)

]

+
∫ (

1
16π

FijFij + 2πEiEi −A0∂iE
i

)
d3x+

∫
λE0d3x.

From Eqs.(3.1) one gets

Äk −∆Ak − ∂k

(
Ȧ0 − ∂lAl

)
= 4πjk.

If we require that Ȧ0−∂lAl = 0 (the Lorentz gauge), then by using the constraint ∂iE
i−ρ ≈ 0

we obtain wave equations for the potentials

Äk −∆Ak = 4πjk, Ä0 −∆A0 = 4πρ. (3.2)

The general solutions of the inhomogeneous Eqs.(3.2) can be presented in the form

Aµ = Arad
µ +A1

µ,

where Arad
µ is the general solution of the corresponding homogeneous equation and

A1
k(x, τ) = 4π

N∑
a=1

∫
D(τ − τ ′|x − xa(τ ′))

eapak(τ ′)√
m2

a + p2
a(τ ′)

dτ ′,

A1
0(x, τ) = 4π

N∑
a=1

ea

∫
D(τ − τ ′|x − xa(τ ′))dτ ′,

(3.3)

with the real Green function D which satisfies the equation (∂2
τ −∆)D(τ |x) = δ(τ)δ3(x).

In a given approximation, the expressions (3.3) do not depend on the concrete choice of the
Green function (retarded or advanced) and after integration and using free-particle equations
we obtain

A1
k(x, τ) =

N∑
a=1

eauak√
[ua(x − xa(τ))]2 + (1− u2

a)(x − xa(τ))2
,
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A1
0(x, τ) =

N∑
a=1

ea√
[ua(x − xa(τ))]2 + (1− u2

a)(x − xa(τ))2
, (3.4)

where uk
a = pk

a/
√
m2

a + p2
a is the free-particle velocity.

Let us perform the canonical transformation to the new field variables:

φµ(x, τ) = Aµ(x, τ)−A1
µ(x, τ), χ

k(x, τ) = Ek(x, τ)− Ek
1 (x, τ), (3.5)

where Ek
1 (x, τ) is

Ek
1 (x, τ) = − 1

4π

(
Ȧk

1(x, τ)− ∂kA1
0(x, τ)

)

= − 1
4π

N∑
a=1

ea(1− u2
a)(x

k − xk
a(τ))√

[ua(x − xa(τ))]2 + (1− u2
a)(x − xa(τ))2

.

This transformation changes the particle variables: (xi
a, pai) �→ (qi

a, kai), where

xi
a = qi

a +
∫ [(

φk +
1
2
A1

k

)
∂Ek

1

∂kai
−

(
χk +

1
2
Ek

1

)
∂A1

k

∂kai
− E0 ∂A

1
0

∂kai

]
d3x, (3.6)

pai = kai −
∫ [(

φk +
1
2
A1

k

)
∂Ek

1

∂qi
a

−
(
χk +

1
2
Ek

1

)
∂A1

k

∂qi
a

− E0∂A
1
0

∂qi
a

]
d3x.

In the considered approximation the equalities (3.5) may be put into the form

Aµ = φµ +A1
µ(qa,ka) = φµ +A1

µ(xa,pa),

Ek = χk + Ek
1 (qa,ka) = χk + Ek

1 (xa,pa).

Let us note some useful transformation properties of A1
k, E

k
1 , A

1
0

{Al
1(x, τ), x

ipk − xkpi −mik} = δilAk
1(x, τ)− δklAi

1(x, τ),

{Al
1(x, τ), x

kp0 −mk0} = δklA1
0(x, τ),

{El
1(x, τ), x

ipk − xkpi −mik} = δilEk
1 (x, τ)− δklEi

1(x, τ),

{El
1(x, τ), x

kp0 −mk0} =
1
4π

(
∂lAk

1(x, τ)− ∂kAl
1(x, τ)

)
,

{A1
0(x, τ), x

ipk − xkpi −mik} = 0,

{A1
0(x, τ), x

kp0 −mk0} = Ak
1(x, τ),

here p0 =
N∑

a=1

√
m2

a + k2
a, p

i =
N∑

a=1
ki

a, m
k0 =

N∑
a=1

qk
a

√
m2

a + k2
a, m

ik =
N∑

a=1
(qi

ak
k
a − qk

ak
i
a).

The conserved quantities after the canonical transformation may be rewritten as

P 0 =
N∑

a=1

√
m2

a + k2
a +

1
2

N∑
a=1

[
eak

i
a√

m2
a + ka

A1
i (qa) +A0(qa)

]

+
∫ [

1
16π

ΦijΦij + 2πχiχi

]
d3x,

P i =
N∑

a=1

ki
a +

∫
χkΦkid3x,
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Mk0 =
N∑

a=1

qk
a

√
m2

a + k2
a +

1
2

N∑
a=1

qk
a

[
eak

i
a√

m2
a + ka

A1
i (qa) +A0(qa)

]

+
∫ [

1
16π

ΦijΦij + 2πχiχi

]
xkd3x− τP k,

M ik =
N∑

a=1

(qi
ak

k
a − qk

ak
i
a) +

∫ (
xkχl∂iφl − xiχl∂kφl

)
d3x+

∫ (
φiχk − φkχi

)
d3x,

here Φij = ∂iφj − ∂jφi.
We reduce field degrees of freedom using the following set of constraints

(Ψα) = (φk, χ
k, φ0, E

0) ≈ 0. (3.7)

The constraints depending on gauge Ak, A0 potentials already contain gauge-fixing constraints.
Indeed, the equations of motion lead to the conclusion that A0 is an arbitrary function. However,
the additional constraint Ȧ0−∂lAl ≈ 0 together with the pure secondary constraint ∂iE

i−ρ ≈ 0
defines A0 as a function of particle variables (see Eq.(3.4)). In this case, ∂lAl can be found from
the additional constraint in the terms of the coordinates and the momenta of particles too.
Using Hodge decomposition for Ak

Ak(x, τ) = A⊥
k (x, τ) + ∂k

∫
∆−1(x − y)∂lAl(y, τ)d3y

≈ A⊥
k (x, τ) + ∂k

∫
∆−1(x − y)∂lA

1
l (y, τ)d

3y,

we see that the constraint Ak −A1
k ≈ 0 or φk ≈ 0 analogously determines ∂lAl as Ȧ0 −∂lAl ≈ 0.

This means that the gauge-fixing constraints and the constraints Eqs.(3.7) does not need to be
separated.

The constraints Eqs.(3.7) are second class, so we can eliminate them by means of use of the
Dirac brackets:

{F,G}D = {F,G} −
∫
{F,Ψα(x, τ)}C−1

αβ (x − y){Ψβ(y, τ), G} d3xd3y

=
N∑

a=1

(
∂F

∂qi
a

∂G

∂ki
a

− ∂G

∂qi
a

∂F

∂ki
a

)
,

where ‖C−1
αβ (x − y)‖ is the inverse matrix to ‖{Ψα(x, τ),Ψβ(y, τ)}‖.

Thus we obtain the Poincaré generators of the reduced system

P 0 =
N∑

a=1

√
m2

a + k2
a +

1
2

N∑
a=1

[
eak

i
a√

m2
a + ka

A1
i (qa) +A0(qa)

]
, P i =

N∑
a=1

ki
a,

Mk0 =
N∑

a=1

qk
a

√
m2

a + k2
a +

1
2

N∑
a=1

qk
a

[
eak

i
a√

m2
a + ka

A1
i (qa) +A0(qa)

]
− τP k,

M ik =
N∑

a=1

(qi
ak

k
a − qk

ak
i
a),

which act on the particle phase space T ∗
R

3N . They satisfy the commutation relations of the
Poincaré algebra in a given approximation.
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According to the Eq.(3.6) the covariant particle positions xi
a are connected with the canonical

variables as

xi
a = qi

a +
1
2

∫ [
A1

k

∂Ek
1

∂kai
− Ek

1

∂A1
k

∂kai

]
d3x. (3.8)

These relations cannot be complemented to the canonical transformation to the reduced phase
space T ∗

R
3N in full accordance with the famous no-interaction theorem [12]. It can be verified

directly that in a given approximation the expression (3.8) satisfies the world line condition

{xi
a,M

k0}D = {xi
a, P

0}xk
a − τδik.

The Poisson brackets between particle positions are

{xi
a, x

j
b}D =

∫ (
∂A1

k

∂kbj

∂Ek
1

∂kai
− ∂Ek

1

∂kbj

∂A1
k

∂kai

)
d3x �≡ 0.

4 Conclusions

In this paper a method of reduction the field degrees of freedom by means of canonical constraints
has been developed for a system of N charged particles plus electromagnetic field. In the first
order in the coupling constant expansion it is shown that the properties of the Poincaré algebra
are preserved after field reduction.

We found the solutions of the inhomogeneous field equations of motion as the sum of the
Lienard–Wiechert potentials and the free fields. By means of the canonical transformation to
the free field variables we got new form for the Poincaré generators. It is turned out that
the Poincaré generators may be presented as the sum of free field and particle terms. In our
approximation we eliminate the radiation phenomenon connected with the free electromagnetic
fields. The commutation and transformation properties of particle positions are studied.

The obtained description may be used for the statistical description of the system of charged
particles interacting without field. The elaborated procedure of reduction can be realized for
the gravity in near future.
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