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Matrix Realizations of Four-Dimensional Lie

Algebras and Corresponding Invariant Spaces
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Pedagogical Institute, Ostrogradsky Street 2, Poltava, Ukraine

We have performed classification of nonequivalent realizations of solvable four-dimensional
Lie algebras. Furthermore, the finite-dimensional invariant spaces are obtained which can be
utilized for construction of exactly solvable matrix models of one-dimensional Schrödinger
equation.

This paper is devoted to the application of realizations of four-dimensional Lie algebras for
the construction of exactly solvable matrix models of one-dimensional Schrödinger equation.

The paper is organized as follows. In first section we perform the construction of realizations
of solvable four-dimensional Lie algebras. Then from the realizations we pick out those for which
we can construct a model. In second section we describe the procedure of obtaining the invariant
spaces admitted by realizations of Lie algebras, which was found in first part of this paper, and
present the invariant spaces.

1 Realizations of four-dimensional Lie algebras

We will construct nonequivalent realizations of four-dimensional real Lie algebras in class of
matrix differential operators

Q = ξ(x)∂x + η(x), (1)

where ξ(x) is smooth real function, η(x) is a complex matrix. Here and below ∂x = d
dx .

Note that the classification of realizations of three-dimensional Lie algebras was done by
R. Zhdanov in [1].

Abstract Lie algebras of dimension n ≤ 5 have been classified by G.M. Mubarakzyanov in [2].
There are twelve algebras L4,j which are not direct sums of algebras of lower dimensions. Let
us consider the algebra L4,6 with non-zero commutation relations

L4,6 : [Q1, Q4] = aQ1, [Q2, Q4] = bQ2 −Q3, [Q3, Q4] = Q2 + bQ3, (a �= 0, b ≥ 0).

From [3] we know that any one of the operators Qi (i = 1, . . . 4) may be equal to ∂x or η(x). Let
Q1 = ∂x and other of operators have the form (1):

Qi = ξi(x)∂x + ηi(x), i = 2, 3, 4.

As [Q1, Q2] = [Q1, Q3] = 0, [Q1, Q4] = aQ1 then ξi = αi, ηi = Ai, i = 2, 3, α4 = ax, η4 = A4,
where αi ∈ R,Ai are arbitrary constant matrices r× r. Substituting Q1 = ∂x, Q2 = α2∂x +A2,
Q3 = α3∂x+A3, Q4 = ax∂x+A4 into the commutation relations we obtain (a− b)2 = −1. That
is why if Q1 = ∂x then there exist no realizations of algebra L4,6 in class of operators (1).

Let Q1 = η(x) and other operators have the form (1). Then all ξi(x) can not be equal to zero
simultaneously.
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If ξ2(x) �= 0, then the operator Q2 may be reduced to the operator Q2 = ∂x. In this case
from commutation relations it follows that Q3 = α3∂x+A3, Q4 = (b−α3)x∂x−A3x+A4, where
α3 ∈ R, Ai are arbitrary constant matrices. The check of the relation [Q3, Q4] = Q2 + bQ3 gives
α2

3 = −1. Hence, in this case algebra L4,6 has no realizations in the class of operators (1) too.
If ξ2(x) = 0, then or ξ3(x) �= 0 or ξ3(x) = 0 and ξ4(x) �= 0. The checking of commutation

relations shows that in this case algebra the L4,6 has no realizations in the class of operators (1).
If ξ2(x) = ξ3(x) = 0 and ξ4(x) �= 0, then operator Q4 may be reduced to the operator Q4 = ∂x

and the checking of commutation relations for the algebra L4,6 shows that Q1 = A exp(−ax),
Q2 = exp(−bx)(B cosx+C sinx), Q3 = exp(−bx)(C cosx−B sinx), where A, B, C are arbitrary
non-zero r × r matrices which satisfy the commutation relations

[A,B] = [A,C] = [B,C] = 0.

Below we give the list of nonequivalent realizations of the four-dimensional Lie algebras L4,j .

L1
4,1 : Q1 = A, Q2 = B, Q3 = ∂x, Q4 = Bx+ C,

[A,B] = [A,C] = 0, [B,C] = A.

L2
4,1 : Q1 = A, Q2 = −Ax+B, Q3 = 1

2Ax
2 −Bx+ C, Q4 = ∂x,

[A,B] = [B,C] = [A,C] = 0.

L1
4,2 : Q1 = ∂x, Q2 = ∂x +A, Q3 = β∂x +B, Q4 = x∂x + C,

[A,B] = 0, [A,C] = A, [B,C] = A+B.

L2
4,2 : Q1 = A, Q2 = B, Q3 = ∂x, Q4 = x∂x +Bx+ C,

[A,B] = 0, [B,C] = B, [A,C] = aA.

L1
4,3 : Q1 = ∂x, Q2 = A, Q3 = B, Q4 = x∂x + C,

[A,B] = [A,C] = 0, [B,C] = A.

L2
4,3 : Q1 = A, Q2 = B, Q3 = ∂x, Q4 = Bx+ C,

[A,B] = [B,C] = 0, [A,C] = A.

L3
4,3 : Q1 = Ae−x, Q2 = B, Q3 = −Bx+ C, Q4 = ∂x,

[A,B] = [B,C] = [A,C] = 0.

L1
4,4 : Q1 = A, Q2 = B, Q3 = ∂x, Q4 = x∂x +Bx+ C,

[A,B] = 0, [A,C] = A, [B,C] = A+B.

L2
4,4 : Q1 = Ae−x, Q2 = e−x(Ax+B), Q3 = e−x

(
1
2Ax

2 −Bx+ C)
, Q4 = ∂x,

[A,B] = [A,C] = [B,C] = 0.

L1
4,5 : Q1 = ∂x, Q2 = α∂x +A, Q3 = β∂x +B, Q4 = x∂x + C,

[A,B] = 0, [A,C] = A, [B,C] = B.

L2
4,5 : Q1 = A, Q2 = ∂x + εB, Q3 = ∂x + (1− ε)B, Q4 = (εb+ (1− ε)a)x∂x + C,

[A,B] = 0, [A,C] = A, [B,C] = (εa+ (1− ε)b)B.
L3

4,5 : Q1 = Ae−x, Q2 = e−ax(α∂x +B), Q3 = e−bx(β∂x + C), Q4 = ∂x,

[A,B] = −αA, [A,C] = −βB, [B,C] = αbC − βaB, a = b.

L4,6 : Q1 = Ae−ax, Q2 = e−bx(B cosx+ C sinx), Q3 = e−bx(C cosx−B sinx),
Q4 = ∂x, [A,B] = [A,C] = [B,C] = 0.
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L1
4,7 : Q1 = A, Q2 = −Ax+B, Q3 = ∂x, Q4 = x∂x − 1

2Ax
2 +Bx+ C,

[A,B] = 0, [A,C] = 2A, [B,C] = B.

L2
4,7 : Q1 = Ae−2x, Q2 = Be−x, Q3 = e−x(Bx− C), Q4 = ∂x,

[A,B] = [A,C] = 0, [B,C] = −A.
L1

4,8 : Q1 = A, Q2 = ε∂x + (ε− 1)(Ax−B), Q3 = (1− ε)∂x + ε(Ax+B),

Q4 = (2ε− 1)x∂x + C, [A,B] = [A,C] = 0, [B,C] = (1− 2ε)B.

L2
4,8 : Q1 = A, Q2 = e−x(α∂x +B), Q3 = ex(β∂x + C), Q4 = ∂x,

[A,B] = [A,C] = 0, [B,C] = −βB − αC +A, αβ = 0.

L1
4,9 : Q1 = A, Q2 = ∂x − ε(Ax+B), Q3 = ∂x + (1− ε)(Ax+B), Q4 = x∂x + C,

[A,B] = 0, [A,C] = 2A, [B,C] = (1− 2ε)B.

L2
4,9 : Q1 = Ae−(1+b)x, Q2 = e−x(εα∂x +B), Q3 = e−bx((1− ε)β∂x + C),

Q4 = ∂x, [A,B] = −ε(1 + b)Aα, [A,C] = (ε− 1)(1 + b)βA,
[B,C] = A+ εαbC + (ε− 1)βB.

L4,10 : Q1 = A, Q2 = B cosx+ C sinx, Q3 = C cosx−B sinx, Q4 = ∂x,

[A,B] = [A,C] = 0, [B,C] = A.

L4,11 : Q1 = Ae−2ax, Q2 = e−ax(B cosx+ C sinx), Q3 = e−ax(C cosx−B sinx),
Q4 = ∂x, [A,B] = [A,C] = 0, [B,C] = A.

L1
4,12 : Q1 = Ae−x, Q2 = Be−x, Q3 = ∂x, Q4 = C,

[A,B] = 0, [A,C] = −B, [B,C] = A.

L2
4,12 : Q1 = A cosx+B sinx, Q2 = B cosx−A sinx, Q3 = α∂x + C, Q4 = ∂x,

[A,B] = 0, [A,C] = A+ αB, [B,C] = B − αA.

Here A, B, C are arbitrary constant r × r matrices, α, β are arbitrary constants, ε = 0, 1.
In what follows we shall consider only 2× 2 matrices. It is known [4], that any matrix may

be reduced to one of the forms
(
λ1 0
0 λ2

)
or

(
λ 1
0 λ

)
. After corresponding procedure we

conclude that realizations of algebras L1
4,1, L

1
4,2, L

1
4,3, L

1
4,4, L

1
4,7, L

2
4,7, L

1
4,9, L4,10, L4,11, L1

4,12

has no models. Thus we will seek models for realizations of Lie algebras L2
4,1, L

2
4,2, L

2
4,3, L

3
4,3,

L2
4.4, L

1
4,5, L

2
4,5, L

3
4,5, L4,6, L1

4,8, L
2
4,8, L

2
4,9, L

2
4,12.

2 Invariant spaces admitted by four-dimensional Lie algebras

The second step in construction of matrix models is description of invariant spaces for each of
obtained realizations of four-dimensional Lie algebras. This step we will show for an example of
realization of the Lie algebra L4,6.

It is known [3], that invariant space corresponding to the operator Q4 = ∂x have such form:

Π = Π1 ⊕Π2 =
∑

j

exp(λjx)P [mj ]�e1 +
∑

j

exp(λjx)R[nj ]�e2,

where P [mj ], R[nj ] are mj , nj-th degree polynomials in x.
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Acting on Π by the operator Q1 = A exp(−ax) we get

Q1Π = A exp(−ax)
∑

j

exp(λjx)P [mj ]�e1 +A exp(−ax)
∑

j

exp(λjx)R[nj ]�e2

=
∑

j

exp((λj − a)x)P [mj ]λ�e1 +
∑

j

exp((λj − a)x)R[nj ](λ�e2 + �e1)

=
∑

j

exp((λj − a)x)
(
λP [mj ] +R[nj ]

)
�e1 +

∑
j

exp((λj − a)x)R[nj ]λ�e2.

Let λ �= 0. Fix the minimum λ1. Then λ1−a < λ1. But this inequality is impossible. Hence,
a polynomial near exp(λ1 − a) must be R1 = 0, and respectively P 1 = 0. Thus all polynomials
are zero, and invariant space is empty. This case is not interesting for us, that is why we do not
consider the case λ = 0. So, the result of the action Q1 on Π has such form:

Q1Π =
∑

j

exp((λj − a)x)R[nj ]�e1.

The invariant space will have the form:

Π1 =
∑

k

(
exp((λk − a)x)P [mk]�e1 + exp(λkx)R[nk]�e2

)
, nk ≤ mk.

We act on Π1 by the operator Q2 = exp(−bx)(B cosx+ C sinx):

Q2Π1 =
∑

k

exp((λk − b− i)x)R[nk]((b2 + ic2)�e1 + (b1 + ic1)�e2)

+
∑

k

exp((λk − (a+ b)− i)x)P [mk](b1 + ic1)�e1.

Again we fix minimum λ1. Then degrees λk − b − i < λ1, λk − (a + b) − i < λk. That is why
R1 = P 1 = 0 or b1 + ic1 = 0. In the first case the invariant space is empty. Thus we take the
case for which b1 + ic1 = 0. Hence, the invariant space admitted by the operators Q1, Q2, Q4

should have such form:

Π2 =
∑

k

(
exp((λk − a)x)P [mk]�e1 + exp((λk − b− i)x)S[rk]�e1 + exp(λkx)R[nk]�e2

)
,

mk, rk ≥ nk.

Finally, we act on the space Π2 by operator Q3 = exp(−bx)(C cosx−B sinx):

Q3Π2 =
∑

k

(
exp((λk − b+ i)x)R[nk]((b2 − ic2)�e1 + (b1 − ic1)�e2)

+ exp((λk − a− b+ i)x)P [mk](b1 − ic1)�e1 + exp((λk − 2b)x)S[rk](b1 − ic1)�e1
)
.

After similar actions we obtain that b1 − ic1 = 0. This equality is possible when b1 = c1 = 0.
Hence invariant space admitted by the Lie algebra L4,6 has the following form:

Π =
∑

k

(
exp((λk − a)x)P [mk]�e1 + exp((λk − b− i)x)S[rk]�e1

+ exp((λk − b+ i)x)T [qk]�e1 + exp(λkx)R[nk]�e2

)
, qk,mk, rk ≥ nk.
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Moreover, matrices A, B, C are of the following form:

A =
(

0 1
0 0

)
, B =

(
0 b2
0 0

)
, C =

(
0 c2
0 0

)
.

Below we adduce invariant spaces for rest of four-dimensional Lie algebras.

L2
4,1 : Π =

∑
k

exp(λkx)P [mk]�e1 +
∑

k

exp(λkx)R[nk]�e2, mk ≥ nk + 2,

A = σ0, B = b2σ0, C = c1E + c2σ0.

L3
4,3 : Π =

∑
k

exp((λk − 1)x)S[rk]�e1 +
∑

k

exp(λkx)R[nk]�e1 +
∑

k

exp(λkx)R[nk]�e2,

rk ≥ nk + 1, A = σ0, B = b2σ0, C = c1E + c2σ0.

L2
4,4 : Π =

∑
k

exp((λk − 1)x)S[rk]�e1 +
∑

k

exp(λkx)R[nk]�e1 +
∑

k

exp(λkx)R[nk]�e2,

rk ≥ nk + 2, A = σ0, B = b2σ0, C = c2σ0.

L3
4,5 : Π =

K1∑
k=0

exp
((

−c1
β
+ k

)
x

)
dk�e1 +

K2∑
k=0

exp
((

−c1
β
+ 1 + k

)
x

)
d∗k�e2,

K1 ≥ K2 + 2, dk, d
∗
k = const, A = λE + σ0, B = aσ0,

C =
c1
β
E +

c2
β
σ0 − aσ+, a = ±1.

L4,6 : Π =
∑

k

exp((λk − a)x)P [mk]�e1 +
∑

k

exp((λk − b− i)x)S[rk]�e1

+
∑

k

exp((λk − b+ i)x)T [qk]�e1 +
∑

k

exp(λkx)R[nk]�e2,

qk,mk, rk ≥ nk, A = σ0, B = b2σ0, C = c2σ0.

L2
4,8 : 1. Π =

K1∑
k=0

exp
((

−c1
β

− k
)
x

)
dk�e1 +

K2∑
k=0

exp
((

−c1
β

− k
)
x

)
d∗k�e2,

K1 > K2, dk, d
∗
k = const, A = σ0, B =

1
β
σ0, C =

c1
β
E.

2. Π =
K1∑
k=0

exp
((

−b1
α
+ k

)
x

)
dk�e1 +

K2∑
k=0

exp
((

−b1
α
+ k

)
x

)
d∗k�e2,

K1 > K2, dk, d
∗
k = const, A = σ0, B =

b1
α
E, C =

1
α
σ0.

L2
4,9 : 1. ε = 0, Π =

K1∑
k=0

exp
((

−c1
β
+ k

)
x

)
dk�e1 +

K2∑
k=0

exp
((

−c1
β
+ 2 + k

)
x

)
d∗k�e2,

K1 ≥ K2, dk, d
∗
k = const, A = σ0, B =

1
b
σ0, C = c1E + c2σ0 − 2σ+.

2. ε = 1, Π =
K1∑
k=0

exp
((

−b1
α
+ k

)
x

)
dk�e1 +

K2∑
k=0

exp
((

−b1
α
+ 1 + b+ k

)
x

)
d∗k�e2,

K1 ≥ K2, dk, d
∗
k = const, A = σ0, B =

b1
α
E +

b2
α
σ0 − (1 + b)σ+, C =

1
α
σ0.
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L2
4,12 : 1. Π =

∑
k

exp(λkx)P [mk]�e1 +
∑

k

exp((λk − i)x)S[rk]�e1

+
∑

k

exp((λk + i)x)W [sk]�e1 +
∑

k

exp(λkx)R[nk]�e2

+
∑

k

exp((λk − i)x)T [qk]�e2 +
∑

k

exp((λk + i)x)V [tk]�e2,

nk, tk, qk ≤ mk, rk, sk, A = λE, B = αλE, C = c1E + (c2 − c1)σ+.

2. Π =
∑

k

exp(λkx)P [mk]�e1 +
∑

k

exp((λk − i)x)S[rk]�e1

+
∑

k

exp((λk + i)x)W [sk]�e1 +
∑

k

exp(λkx)R[nk]�e2

+
∑

k

exp((λk − i)x)T [qk]�e2 +
∑

k

exp((λk + i)x)V [tk]�e2,

nk, tk, qk ≤ mk, rk, sk, A = λE, B = αλE, C = νE + σ0.

3. Π =
∑

k

exp(λkx)P [mk]�e1 +
∑

k

exp((λk − i)x)S[rk]�e1

+
∑

k

exp((λk + i)x)W [sk]�e1 +
∑

k

exp(λkx)R[nk]�e2,

qk,mk, rk ≥ nk, A = σ0, B = b2σ0, C = c1E + c2σ0 + σ+.

Here P [mk], R[nk], S[rk], W [sk], T [qk], V [tk] are mk, nk, rk, sk, qk, tk-th degree polynomials in x

correspondingly, σ0 =
(

0 1
0 0

)
, σ+ =

(
0 0
0 1

)
, E =

(
1 0
0 1

)
, λ, α, β, ν, b1, b2, c1, c2 are

arbitrary constants, α, β �= 0.

3 Conclusions

The above realizations of Lie algebras and the corresponding invariant spaces will be used for
construction of exactly solvable 2 × 2 matrix Schrödinger models in future works. What is
more, Hermitian models present special interest since they describe physical models with real
eigenvalues of Hamiltonians.

The author would like to thank R.Z. Zhdanov for formulation of the problem and S.V. Spichak
and V.I. Lahno for discussion of some issues of this work.

References
[1] Zhdanov R.Z., Quasi-exactly solvable matrix models, Phys. Lett. B, 1997, V.405, 253–256.

[2] Mubarakzyanov T.M., On solvable Lie algebras, Izvestiya VUZov (Matematika), 1963, N 1, 114–123 (in
Russian).

[3] Zhdanov R.Z., On algebraic classification of quasi-exactly solvable matrix models, J. Phys. A: Math. Gen.,
1997, V.30, 8761–8770.

[4] Gantmakher F.R., Theory of Matrices, New York, Chelsea, 1959.


