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Use of Quantum Algebras in Quantum Gravity
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After brief survey of appearance of quantum algebras in diverse contexts of quantum gravity,
we demonstrate that the particular deformed algebras, which arise within the approach of
J. Nelson and T. Regge to (2 + 1) anti-de Sitter quantum gravity (for space surface of
genus g) and which should generate algebras of independent quantum observables, are in
fact isomorphic to nonstandard q-deformed analogues U ′

q(son) (introduced in 1991) of Lie
algebras of the orthogonal groups SO(n), n being related to g as n = 2g + 2.

1 Introduction

Quantum or q-deformed algebras may appear in quantum (or q-versions of) gravity in various
situations. Let us mention some of them.

• Case of n spacetime dimensions (n ≥ 2), straightforward approach to construct q-gravity
(this is accomplished, e.g., in [1]). Basic steps are:

– Start with some version of quantum/q-deformed algebra isoq(n) (in [1] it is projected
out from the standard quantum algebras Uq(Br), Uq(Dr) of Drinfeld and Jimbo [2]). In the
particular Poincare algebra isoq(3, 1) exploited by Castellani, only those commutation relations
which involve momenta do depend on the parameter q, while the Lorentz subalgebra remains
non-deformed;

– Develop necessary bicovariant differential calculus;
– A q-gravity is constructed by “gauging” the q-analogue of Poincaré algebra. The resulting

Lagrangian turns out to be a generalization [1] (see also [3]) of the usual Einstein or Einstein–
Cartan one.

It is worth to emphasize that in this approach the obtained results, including physical impli-
cations, unambiguously depend on the specific features of chosen the q-algebra.

• Two-dimensional quantum Liouville gravity [4], within particular framework of quantiza-
tion, leads to the appearance [5] of quantum algebras such as Uq(sl(2,C)).

• Case of 3-dimensional (Euclidean) gravity. The simpl approach developed by Ponzano
and Regge [6] employs irreducible representations of the algebra su(2) labelled by spins j and
assigned to edges of tetrahedra in triangulation, the main ingredient being 6j-symbols of su(2).
Within natural generalization of this approach by Turaev and Viro [7], see also [8], the underlying
symmetry of the action (which can be related to Chern–Simons theory) is that of the quantum
algebra suq(2), and basic objects are q − 6j symbols. Due to this, physical quantities become
expressible through topological (knot or link) invariants. The parameter q takes into account the
cosmological constant and, on the other hand, is connected with the (quantized) Chern–Simons
coupling constant k as q = exp 2iπ

k+2 .
• (2 + 1)-dimensional gravity with or without cosmological constant Λ is known to possess

important peculiar features [9, 10]. Within the approach to quantization developed by J. Nelson
and T. Regge, specific deformed algebras arise [11, 12] for the situation with Λ < 0, and just
this fact will be of our main concern here.
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2 Nonstandard q-deformed algebras U ′
q(son), their advantages

As defined in [13], the nonstandard q-deformation U ′
q(son) of the Lie algebra son is given as

a complex associative algebra with n− 1 generating elements I21, I32, . . ., In,n−1 obeying the
defining relations (denote q + q−1 ≡ [2]q)

I2
j,j−1Ij−1,j−2 + Ij−1,j−2I

2
j,j−1 − [2]q Ij,j−1Ij−1,j−2Ij,j−1 = −Ij−1,j−2,

I2
j−1,j−2Ij,j−1 + Ij,j−1I

2
j−1,j−2 − [2]q Ij−1,j−2Ij,j−1Ij−1,j−2 = −Ij,j−1,

[Ii,i−1, Ij,j−1] = 0 if | i− j |> 1.

(1)

At q → 1, [2]q → 2 (non-deformed or classical limit), these go over into the defining relations of
the so(n) Lie algebras.

Among the advantages of these nonstandard q-deformed algebras with regards to the Drinfeld–
Jimbo quantum deformations, the following should be pointed out.

(i) Existence of the canonical chain of embedded subalgebras (from now on, we omit the
prime in the symbol)

Uq(son) ⊃ Uq(son−1) ⊃ · · · ⊃ Uq(so4) ⊃ Uq(so3)

in the case of Uq(son) and, due to this, implementability of the q-analogue of Gelfand–Tsetlin
formalism enabling one to construct finite dimensional representations [13, 14].

(ii) Existence, for all the real forms known in the nondeformed case q = 1, of their respective
q-analogues – the “compact” Uq(son) and the “noncompact” Uq(sop,s) (with p + s = n) real
forms. Moreover, each such form exists along with the corresponding chain of embeddings. For
instance, in the n-dimensional q-Lorentz case we have

Uq(son−1,1) ⊃ Uq(son−1) ⊃ Uq(son−2) ⊃ · · · ⊃ Uq(so3).

This fact enables one to develop the construction and analysis of infinite-dimensional represen-
tations of Uq(son−1,1), see [13, 15].

(iii) Existence of embedding Uq(so3) ⊂ Uq(sl3) generalizable [16] to the embedding of higher
q-algebras such that Uq(son) ⊂ Uq(sln), – the fact which enables construction of the proper
quantum analogue [16] of symmetric coset space SL(n)/SO(n).

(iv) If one attempts to get a q-analogue of the Capelli identity known to hold for the dual pair
sl2 ↔ son, nothing but this nonstandard q-algebra Uq(son) inevitably arises [17]. As a result, the
relation Casimir{Uq(sl2)} = Casimir{Uq(son)} is valid [17, 18] within particular representation.

(v) Natural appearance, as will be discussed in Sec.4, of these q-algebras within the Nelson–
Regge approach to 2 + 1 quantum gravity.

As a drawback let us mention the fact that Hopf algebra structure is not known for Uq(son),
although for the situation (iii) the nonstandard q-algebra Uq(son) was shown to be a coideal [16]
in the Hopf algebra Uq(sln).

Recall that it was (i), (ii) which motivated introducing in [13] this class of q-algebras.

3 Bilinear formulation of Uq(son)

Along with the definition in terms of trilinear relations (1) above, a ‘bilinear’ formulation of
Uq(son) can as well be provided. To this end, one introduces the generators (set k > l + 1,
1 ≤ k, l ≤ n)

I±k,l ≡ [Il+1,l, I
±
k,l+1]q±1 ≡ q±1/2Il+1,lI

±
k,l+1 − q∓1/2I±k,l+1Il+1,l
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together with Ik+1,k ≡ I+
k+1,k ≡ I−k+1,k. Then (1) imply

[I+
lm, I+

kl]q = I+
km, [I+

kl, I
+
km]q = I+

lm, [I+
km, I+

lm]q = I+
kl if k > l > m,

[I+
kl, I

+
mp] = 0 if k > l > m > p or if k > m > p > l;

[I+
kl, I

+
mp] = (q − q−1)(I+

lpI
+
km − I+

kpI
+
ml) if k > m > l > p.

(2)

Analogous set of relations exists which involves I−kl along with q → q−1 (denote this “dual” set
by (2′)). In the ‘classical’ limit q → 1 , both (2) and (2′) reduce to those of son.

To illustrate, we give the examples of n = 3, isomorphic to Fairlie–Odesskii algebra [19], and
n = 4 (recall that the q-commutator is defined as [X,Y ]q ≡ q1/2XY − q−1/2Y X):

Uq(so4) :




Uq(so3) : [I21, I32]q = I+
31, [I32, I

+
31]q = I21, [I+

31, I21]q = I32. (3)

[I32, I43]q = I+
42, [I+

31, I43]q = I+
41, [I21, I

+
42]q = I+

41,

[I43, I
+
42]q = I32, [I43, I

+
41]q = I+

31, [I+
42, I

+
41]q = I21,

[I+
42, I32]q = I43, [I+

41, I
+
31]q = I43, [I+

41, I21]q = I+
42,

(4)

[I43, I21] = 0, [I32, I
+
41] = 0, [I+

42, I
+
31] = (q − q−1)(I21I43 − I32I

+
41). (5)

The first relation in (3) is viewed as definition for the third generator I+
31; with this, the algebra is

given in terms of q-commutators. Dual copy of Uq(so3) involves the generator I−31 = [I21, I32]q−1

which enters the relations same as (3), but with q → q−1. Similar remarks concern the generators
I+
42, I

+
41, as well as (dual copy of) the whole algebra Uq(so4).

4 The deformed algebras A(n) of Nelson and Regge

For (2 + 1)-dimensional gravity with cosmological constant Λ < 0, the Lagrangian involves spin
connection ωab and dreibein ea, a, b = 0, 1, 2, combined in the SO(2, 2)-valued (anti-de Sitter)
spin connection ωAB of the form

ωAB =

(
ωab

1
αea

− 1
αeb 0

)
,

and is given in the Chern–Simons (CS) form [10]

α

8

(
dωAB − 2

3
ωA

F ∧ ωFB

)
∧ ωCDεABCD.

Here A,B = 0, 1, 2, 3, the metric is ηAB = (−1, 1, 1,−1), and the CS coupling constant is
connected with Λ, so that Λ = − 1

3α2 . The action is invariant under SO(2, 2), leads to Poisson
brackets and field equations. Their solutions (infinitesimal connections) describe space-time
which is locally anti-de Sitter.

To describe global features of space-time, of principal importance are the integrated connec-
tions which provide a mapping S : π1(Σ) → G of the homotopy group for a surface Σ into
the group G = SL+(2, R) ⊗ SL−(2, R) (spinorial covering of SO(2, 2)) and thoroughly studied
in [11]. To generate the algebra of observables, one takes the traces

c±(a) = c±(a−1) =
1
2
tr[S±(a)], a ∈ π1, S± ∈ SL±(2, R).



Use of Quantum Algebras in Quantum Gravity 307

For g = 1 (torus) surface Σ, the algebra of (independent) quantum observables was derived [11],
which turned out to be isomorphic to the cyclically symmetric Fairlie–Odesskii algebra [19]. This
latter algebra, however, is known to coincide [15] with the special n = 3 case of Uq(son). So,
natural question arises whether for surfaces of higher genera g ≥ 2, the nonstandard q-algebras
Uq(son) also play a role.

Below, the positive answer to this question is given.
For the topology of spacetime Σ×R (fixed-time formulation; Σ is genus-g surface), the homo-

topy group π1(Σ) is most efficiently described in terms of 2g + 2 = n generators t1, t2, . . . , t2g+2

introduced in [12] and such that

t1t3 · · · t2g+1 = 1, t2t4, ..., t2g+2 = 1, and
2g+2∏
i=1

ti = 1.

Classical gauge invariant trace elements (n(n− 1)/2 in total) defined as

αij =
1
2
Tr(S(titi+1 · · · tj−1)), S ∈ SL(2, R), (6)

generate concrete algebra with Poisson brackets, explicitly found in [12]. At the quantum level,
to the algebra with generators (6) there corresponds quantum commutator algebra A(n) specific
for 2+1 quantum gravity with negative Λ. For each quadruple of indices {j, l, k,m}, j, l, k,m =
1, . . . , n, obeying (see [12]) ‘anticlockwise ordering’

j
↙ ↖

l m
↘ ↗

k

(7)

the quantum algebra A(n) reads [12]:

[amk, ajl] = [amj , akl] = 0,

[ajk, akl] =
(
1− 1

K

)
(ajl − aklajk),

[ajk, akm] =
(

1
K

− 1
)
(ajm − ajkakm),

[ajk, alm] =
(
K − 1

K

)
(ajlakm − aklajm).

(8)

Here the parameter K of deformation involves both α and Planck’s constant, namely

K =
4α − ih

4α + ih
, α2 = − 1

3Λ
, Λ < 0. (9)

Note that in (6) only one copy of the two SL±(2, R) is indicated. In conjunction with this,
besides the deformed algebra A(n) derived with, say, SL+(2, R) taken in (6) and given by (8),
another identical copy of A(n) (with the only replacement K → K−1) can also be obtained
starting from SL−(2, R) taken in place of SL(2, R) in (6). This another copy is independent
from the original one: their generators mutually commute.
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5 Isomorphism of the algebras A(n) and Uq(son)

To establish isomorphism between the algebra A(n) from (8) and the nonstandard q-deformed
algebra Uq(son) one has to make the following two steps.

Redefine:
{
K1/2(K − 1)−1

}
aik −→ Aik,

Identify: Aik −→ Iik, K −→ q.

Then, the Nelson–Regge algebra A(n) is seen to translate exactly into the nonstandard q-
deformed algebra U ′

q(son) described above, see (2). We conclude that these two deformed
algebras are isomorphic to each other (of course, for K �= 1). Recall that n is linked to the
genus g as n = 2g + 2, while K = (4α − ih)/(4α + ih) with α2 = − 1

Λ .
Let us remark that it is the bilinear presentation (2) of the q-algebra Uq(son) which makes

possible establishing of this isomorphism. It should be stressed also that the algebra A(n) plays
the role of “intermediate” one: starting with it and reducing it appropriately, the algebra of
quantum observables (gauge invariant global characteristics) is to be finally constructed. The
role of Casimir operators in this process, as seen in [12], is of great importance. In this respect let
us mention that the quadratic and higher Casimir elements of the q-algebra Uq(son), for q being
not a root of 1, are known in explicit form [18, 20] along with eigenvalues of their corresponding
(representation) operators [20].

As shown in detail in [11], the deformed algebra for the case of genus g = 1 surfaces (tori)
reduces to the desired algebra of three independent quantum observables which coincides with
A(3), the latter being isomorphic to the Fairlie–Odesskii algebra Uq(so3). The case of g = 2 is
significantly more involved: here one has to derive, starting with the 15-generator algebra A(6),
the necessary algebra of 6 (independent) quantum observables. J. Nelson and T. Regge have
succeeded [21] in constructing such an algebra. Their construction however is highly nonunique
and, what is more essential, is not seen to be extendable to general situation of g ≥ 3.

6 Outlook

Our goal in this note was to attract attention to the isomorphism of the deformed algebras A(n)
from [12] and the nonstandard q-deformed algebras U ′

q(son) introduced in [13]). The hope is
that, taking into account a significant amount of the already existing results concerning diverse
aspects of U ′

q(son) (the obtained various classes of irreducible representations, knowledge of
Casimir operators and their eigenvalues depending on representations, etc.) we may expect for
a further progress concerning construction of the desired algebras of quantum observables for
space surfaces of genera g > 2.
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