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Some difficulties of the construction of quantum group gauge field theory on the classical and
quantum spacetime are clarified. The classical geometric interpretation of the ghost field is
generalized to case of the quantum group gauge field theory.

1 Introduction

The notation of a generalized Lie group as a noncommutative and noncocommutative Hopf
algebra was done by Drinfeld [1], Jimbo [2], Woronowicz [3]. The first step in the construction
of noncommutative dynamics was undertaken by I.G. Biedenharn [4] and McFarlane [5] in their
study of the quantum noncommutative harmonic oscillator. From this period attempts were
undertaken to construct deformed dynamical theories [6, 7, 8, 9], in particular, the deformed
gauge theory named the quantum group gauge field theory with the quantum group playing the
role of the gauge group. The conceptual problems concerning of the definition of the gauge field
theory where the quantum group is considered as object of the gauge symmetry, i.e. the quantum
group gauge field theory are not settled. Such theories investigated by Bernard [10], Aref’eva and
Volovich [11], Hietarinta [12], Isaev and Popowicz [13], Bernard [10], Watamura [15], Brzezinski,
Majid [16, 17], Hajac [18], Sudbery [19]. The deformed gauge field theory is interesting from
various points of view. The enlargement of the rigid frameworks of the gauge theory would
help to solve the fundamental theoretical problems of the spontaneos symmetry breaking and
the quark confinement. In particular, in the quantized deformed gravity theory the spacetime
becomes noncommutative and could possible provide the regularization mechanism. In the
quantized gauge theory the deformation could be interpreted as a kind of the symmetry breaking,
which does not reduce the symmetry but deforms it. This mechanism could give the masses to
some vector bosons without the necessity to consider Higgs fields. There are two approaches in
the construction of q-deformed dynamical field theory. The spacetime in one of them is assumed
to be the usual manifold and it deforms only the structure of the dynamical variables. In the
second approach the spacetime becomes the quantum (noncommutative) manifold.

2 The quantum group gauge field theory on the classical spaces

2.1. The classical gauge field theory. Let T a, a = 1, 2, . . . , N be generators of the Lie
algebra of some compact Lie group G satisfying the relations

[Ta, Tb] = fabcT c, (1)
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where fabc are structure constants of this algebra. The basic objects of nonabelian gauge theory
are the gauge fields – the Yang–Mills potentials. These are the set of vector fields Aa

µ(x),
a = 1, 2, . . . , N , µ = 0, 1, 2, 3. The matrix gauge potentials

Aµ(x) = T aAa
µ(x) (2)

define the matrix strength tensor

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], (3)

or in component form

Fµν = T aF a
µν , Fµν = ∂µA

a
ν − ∂a

νAµ + fabcAb
µA

c
ν . (4)

The Lagrangian density of the theory

L = −1/4F a
µνF

aµν (5)

is invariant under the gauge transformation

Aµ → g(x)−1Aµg(x) + g(x)−1∂µg(x), (6)

where g(x) = exp{εa(x)T a}, and εa(x) are real functions. The transformation (6) can be written
in the infinitesimal form as

δAa
µ = fabcεb(x)Ac

µ(x) − ∂µε
a(x), δF a(x) = fabcεbF c(x). (7)

In the following we shall review the several approaches in the construction of the q-deformed
gauge field theory.

2.2. The construction based on the differential extension of the quantum group
Gq [13, 11]. The main efforts in this approach were directed to keep the classical form of the
gauge transformation for the gauge potentials. The problem is in the following. Let A be an
element of some extension of the quantum group Gq. What differential calculus on this group
should be considered and from what extension of this group should be taken the potential A to
guarantee that the gauge transformed element A′ also belongs to that extension. In some cases
this problem were solved [13, 11].

2.3. The construction based on the bicovariant differential calculus on the quantum
group [14]. There are many methods to deform a Lie algebra. The one of them is the method
of the bicovariant differential calculus on the quantum groups.

Definition 2.1. A bicovariant bimodule over Hopf algebra A is a triplet (Γ,∆L,∆R) bimodule Γ
over A and of linear mappings

∆L : Γ → A⊗ Γ, ∆R : Γ → Γ ⊗A
such that diagrams

1.
Γ ∆L−→ A⊗ Γ

∆L ↓ ↓ 1 ⊗ ∆L

A⊗ Γ ∆⊗1−→ A⊗A⊗ Γ
,

Γ ∆L−→ A⊗ Γ
↘ ↓ ε⊗ id

k ⊗ Γ

2.
Γ ∆R−→ Γ ⊗A

∆R ↓ ↓ 1 ⊗ ∆R

Γ ⊗A id⊗∆−→ Γ ⊗A⊗A
,

Γ ∆R−→ Γ ⊗A
↘ ↓ id⊗ ε

Γ ⊗ k
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3.
Γ ∆R−→ Γ ⊗A

∆L ↓ ↓ ∆L ⊗ id

A⊗ Γ id⊗∆R−→ A⊗ Γ ⊗A

commute and

4. ∆L(aωb) = ∆L(a)∆ω∆L(b), ∆R(aωb) = ∆R(a)∆ω∆R(b).

Definition 2.2. A first order differential calculus over Hopf algebra A is a pair (Γ, d), where Γ
is bimodule over A, and the liner mapping d : A → Γ such that d(ab) = dab + adb and Γ =
{adb : a, b ∈ A}.
Definition 2.3. A first order differential calculus is called bicovariant differential calculus
on the quantum group if (Γ,∆L,∆R) is a bicovariant bimodule and ∆L(da) = (id ⊗ d)∆(a),
∆R(da) = (d⊗ id)∆(a).

Definition 2.4. A first order differential calculus is called universal if Γ = ker m, m : A⊗A →
A is multiplication map in algebra A, and d = 1 ⊗ a− a⊗ 1.

It easy to see that d : A → Γ is linear map satisfying the Leibnitz rule, Γ has the bimodule

structure c
(∑

k

ak ⊗ bk

)
=

∑
k

cak ⊗ bk,
(∑

k

ak ⊗ bk

)
c =

∑
k

ak ⊗ bkc and every element of Γ has

the form
∑
k

akdbk.

Definition 2.5. A Z2-graded complex differential algebra (Ω, d) is Z2-graded complex algebra
Ω = Ω+ + Ω−,equipped with the graded derivation d which is odd and of square zero dΩ+,− ⊂
Ω−,+, d2 = 0.

Every first order differential calculus (Γ, d) generate Z2-graded complex differential algebra
(Ω(A), d). A complex differential algebra generated by universal calculus is called a differential
envelop of A and is denoted as (ΩA, d). The space dual to the left-invariant subspace Γinv can
be introduced as a linear subspace of A′ whose basis elements χi ∈ A′ are defined by

da = χi ∗ aωi for all a ∈ A. (8)

The analogue of the ordinary permutation operator is a bimodule automorphism Λ in Γ ⊗ Γ
defined by

Λ
(
ωi ⊗ ηj

)
= ηj ⊗ ωi, (9)

i.e. Λ(aτ) = aΛ(τ), Λ(τb) = Λ(τ)b, where a ∈ A, τ ∈ Γ⊗Γ. With the help of braiding operator Λ
the exterior product of the elements ρ, ρ′ ∈ Γ is given

ρ
∧
ρ′ = ρ⊗ ρ′ − Λ(ρ⊗ ρ′), (10)

ωi
∧
ωj = ωi ⊗ ωj − Λij

kl

(
ωk ⊗ ωl

)
. (11)

The exterior product of two left invariant forms satisfies the relation

ωi
∧
ωj =

1
q2 + q−2

[
Λij

kl +
(
Λ−1

)ij

kl

]
ωk

∧
ωl. (12)
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There exists an adjoint representation M i
j of the quantum group defined by the right action on

the left invariant ωi

∆R

(
ωi

)
= ωi ⊗M i

j , M i
j ∈ A. (13)

The bicovariant calculus on a Gq is characterized by the functionals χi and f i
j on A satisfying

χiχj − Λkl
ijχkχl = Ck

ijχk, (14)

Λnm
ij f i

pf
i
q = fn

i f
m
j Λij

pq, (15)

Ci
mnf

m
j f

n
k = Λpq

jkχpf
i
q + Cl

jkf
i
p, (16)

χn
kf

n
l = Λij

klf
n
i χj , (17)

where Λij
kl = f i

l (M j
k), Ci

jk = χk(M i
j). In adjoint representation these conditions have the form

Cn
riC

s
nj −Rkl

ijC
n
rkC

s
nl = Ck

ijC
s
rk, (18)

Λnm
ij Λik

rpΛjs
kq = Λnk

ri Λms
kj Λij

pq, (19)

Ci
mnΛm

i Λi
jC

s
lk = Λnm

jk Λil
rqC

s
lp + Cm

jkΛis
rm, (20)

Cm
rkΛns

ml = Λij
klΛ

nm
ri Cs

mj . (21)

In this case the Lie algebra (1) of the gauge group of the classical gauge theory, taking into
account of (14), is replaced by the quantum Lie algebra

TaTb − Λcd
abTcTd = Cc

abTc. (22)

As in the classical case (2) the gauge field is defined by the same formula Aµ = Aa
µTa, but now

the gauge potentials are noncommutative and satisfy the commutation relations

Aa
[µA

b
ν] = − 1

q2 + q−2

(
Λ + Λ−1

)ab

cd
Ac

[µA
d
ν]. (23)

The field strength can be represented in the form

F a
µν = ∂[µA

a
ν] + P kl

A mnC
a
klA

m
[µA

n
ν], (24)

where Cn
kl = Cn

kl − Λij
klC

n
ij . The deformed gauge transformations are assumed to have the form

δA = −dε−Aε+ εA, ε = εaTa. (25)

The gauge parameters ε are q-numbers and are assumed to have the following commutation
relations

εaAa = Λab
mnε

n. (26)

Then F is transformed as δF = εF − Fε and the deformed Lagrangian density L = F a
µνF

b
µνgab

is invariant under transformations (25) if

Λnb
rsC

a
mngab + Cb

rsgmb = 0. (27)
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2.4. The construction based on the quantum deformation of the BRST algebra
[6, 15, 9]. One of the alternative formulations of the gauge field theory is the BRST method.
In this approach the BRST transformation s is defined and parameter ε(x) is replaced by the
ghost field C(x). If we restrict ourselves by the pure Yang–Mills field theory, then BRST
transformations are reduced to the form

sAa
µ = ∂Ca + fa

bcA
b
µC

C , sCa = −1
2
fa

bcC
bCc. (28)

The gauge field strength F a is transformed covariantly sF a = fa
bcF

bCc. As was noted in [17]
if we use the gauge symmetry of the Hopf algebra then it is necessary to formulate all theory
in the algebraic frameworks. The gauge transformations should be represented in the abstract
language. As we saw at (26) it is not known to what algebra belongs the set of the parameters.
The idea of [6] is as follows: replace local gauge parameters of the theory by the ghost fields
which now placed at same level as the gauge and matter fields. The formulation of all theory is
algebraic.

3 The quantum group gauge field theory on the quantum spaces

3.1. The geometrical meaning of the gauge field potentials [21]. Let P and M be
smooth manifolds, a Lie group G smooth acting on P and the differentiable principal fiber
bundle P (M,G) over M with the group G. A global (local) cross-section of a principal fiber
bundle is a map σ from the base space (neighbourhood Uα) to the bundle space P such that
π(σ(x)) = x, ∀x ∈ M (πσα(x) = x, ∀x ∈ Uα) Let ωα be a 1-form in Uα. It can be written in
terms of its components (Lie-algebra valued functions) Aµ

α(x)

ω =
∑

µ

Aµ
α(x)dxµ. (29)

Suppose we transform σα into σ′α by the action of some g ∈ G. If σ′α(x) = σα(x)g(x), then
ω′

α = σ′∗αω = A′µdxµ, where

A′
µ = g−1Aµg + g−1∂µg. (30)

This reproduces the gauge transformation formula for gauge potentials (6). The connection form
ω describes at the same time both the Yang–Mills potential and ghost fields. It is split into two
components of the gauge field φ which is horisontal and the ghost field χ which is normal to the
section σ. From the Cartan–Maurer theorem the equations follow:

sχ+ 1/2[χ, χ] = 0, sφ+Bχ = 0, (31)

which are the same as BRST transformation (28).

3.2. The construction based on the quantum group generalization of the fiber bundle
[17, 18]. The quantum group gauge field theory is constructed also in the framework of the fiber
bundle with the quantum structure group [17]. The Cartan–Maurer equation obtained by the
universal bicovariant differential calculus on quantum group is the same as BRST transformation
ghost fields of the quantum group gauge field theory. But for general quantum fiber bundle this
problem is open.
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