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E-mail: Jules.Beckers@ulg.ac.be

The sl(2, R)-Lie algebra is the one of the simplest Lie algebras dealing with particularly
important concepts in quantum physics, i.e. the angular momentum theory. Taken as an
example, we then study some of its specific polynomial deformations leading to quadratic and
cubic nonlinearities appearing inside symmetry algebras of recent interest in conformal field
theory and quantum optics. The determination of their finite-dimensional representations
in terms of differential operators is then discussed and their interest in connection with
multi-boson Hamiltonians is pointed out.

1 Introduction

Already introduced in the proceedings of the second conference [1], the role of the linear sim-
ple sl(2, R)-Lie algebra is very well understood by physicists and mathematicians due mainly
to its interest in connection with the famous angular momentum theory [2, 3] when quantum
aspects of physics are considered. There, I have reported on some new results already published
elsewhere [4–7] obtained in the characterization of irreducible representations of finite dimen-
sions but for the so-called “nonlinear” sl(2, R)-algebras with a particular emphasis on the Higgs
algebra [8, 9] which is frequently mentioned as a cubic deformation of sl(2, R).

Here I also want to insist on another approach of such finite-dimensional irreducible represen-
tations characterizing these “nonlinear” sl(2, R)-algebras by coming on already published [10]
and not yet published [11] results dealing more particularly with differential realizations of the
generators. These polynomial deformations of sl(2, R), in prolongation of well known results
obtained in the linear context by Turbiner [12, 13] or (and) Ushveridze [12, 14] in particular, will
be of special interest for the study of multi-boson Hamiltonians introduced in quantum optical
models [15], for example. In fact, these nonlinear structures can play the role of “spectrum
generating algebras” for such Hamiltonian descriptions and their irreducible representations can
give us a lot of nice and meaningful contexts.

In Section 2, we recall a few interesting relations and information on well known results
but go relatively quickly to Section 3 for characterizing the differential forms of special interest
for the generators of the structures we are visiting. In Section 4, the connection with optical
models is proposed and the discussion of the multi-boson Hamiltonians is considered: it finally
leads to conclusions on constructive developments associated with the Higgs algebra. Some
considerations on supersymmetric properties are also pointed out by taking care of Witten’s
proposal [16] of supersymmetric quantum mechanics when two supercharges enter the game.
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2 A brief survey of the “nonlinear” context

Our ”nonlinear” sl(2, R)-algebras [4] are characterized by the typical commutation relation

[J+, J−] = f(J3) =
N∑

p=0

βp(2J3)2p+1 (1)

instead of the following one

[J+, J−] = 2J3 (2)

referring to the linear context, each of these relations being evidently supplemented by the usual
commutators

[J3, J±] = ±J±. (3)

In the latest context, the raising (J+), lowering (J−) and diagonal (J3) operators act on vectors
belonging to the well known orthogonal basis {| j,m〉} [2, 3] in the following way

J± | j,m〉 =
√
(j ∓m)(j ±m+ 1) | j,m± 1〉, (4)

J3 | j,m〉 = m | j,m〉, (5)

where j refers to the Casimir eigenvalues

C | j,m〉 ≡
(
1
2
(J+J− + J−J+) + J2

3

)
| j,m〉 = j(j + 1) | j,m〉 (6)

and takes the values j = 0, 1
2 , 1,

3
2 , 2, . . . while m, in eq.(5), runs from −j to j giving the dimen-

sions (2j + 1) to the irreducible representations of the linear sl(2, R)-context.
If the relation (1) is substituted to eq.(2), we then get [4, 5] the irreducible representations

characterized by the following relations

J+ | j,m〉 =
√

g(m) | j,m+ c〉, (7)

J− | j,m〉 =
√

g(m− c) | j,m− c〉, (8)

J3 | j,m〉 =
(m

c
+ γ

)
| j,m〉, (9)

where c is a nonnegative and nonvanishing integer, γ is a real scalar parameter while the function
g is γ- and c-dependent [4, 5].

A “nonlinear” typical context is the one corresponding to the (cubic) Higgs algebra [8] given
in (1) by N = 1, p = 0, 1, β0 = 1 and β1 = 8β, β being a real continuous parameter so that we
have

f(J3) = 2J3 + 8βJ3
3 . (10)

All its finite-dimensional irreducible representations can be obtained by exploiting the corre-
sponding actions (7), (8) and (9). In that way, we recover old well known results [8, 9, 17] but
also find new ones in these angular momentum basis developments [4–7].
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3 On polynomial deformations and differential realizations

If we search for finite-dimensional representations, the operators J+, J− and J3 have to act,
for example, on the (n + 1)-dimensional vector spaces P (n) ≡ {1, x, x2, . . . , xn} when differen-
tial realizations are prescribed. Such a point of view has already been adopted in the linear
context [12–14] since the late eighties. More recently Fradkin [18] has proposed a nice way for
discussing such purposes and we have extended his method to the nonlinear context [10].

By coming back on the example of the Higgs algebra characterized by the structure rela-
tions (1) and (3) but with the expression (10), we can realize the generators in the following
way:

J+ = xNF (D), J− = G(D)
dN

dxN
, J0 =

1
N

(D + α), N = 1, 2, 3, . . . , (11)

where α is a constant and

D ≡ x
d

dx

is the dilatation operator which, due to the Heisenberg commutation relation[
d

dx
, x

]
= 1

satisfies
[
D,xN

]
= NxN ,

[
dN

dxN
, D

]
= N

dN

dxN
.

Let us introduce also the Fradkin notations [18]

dN

dxN
xN =

N∏
k=1

(D + k) =
(D +N)!

D!
, xN dN

dxN
=

N−1∏
k=0

(D − k) =
D!

(D −N)!
(12)

and notice that the relations (1), (10) and (11) imply the constraint

F (D −N)G(D −N)
D!

(D −N)!
− F (D)G(D)

(D +N)!
D!

=
2
N
(D + α) +

8β
N3

(D + α)3.

With the simplifying choice G(D) = 1, we get in the cubic context

F (D) = −f
D!

(D +N)!
(D + λ1)(D + λ2)(D + λ3)(D + λ4),

where f = 2βN−4 and where the four λ’s have to satisfy the system

λ1 + λ2 + λ3 + λ4 = 4α+ 2N,

λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 = N2 + 6αN + 6α2 +
N2

2β
,

λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 = 2αN2 + 6α2N + 4α3 +
αN2

β
+

N3

2β
.

Nonsingular realizations (look at the definitions (12)) only appear when N = 1, 2, 3, 4 and finite-
dimensional representations are obtained only for the N = 1- and 2-cases. These results are
in perfect agreement with those obtained in previous developments [5, 6] but in the angular
momentum basis rather than, here, in the P (n)-basis. In particular, when N = 2 and α = −n

2
we recover specific families already quoted elsewhere [5–7].
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4 Differential realizations and quantum optical Hamiltonians

Lie algebras being strongly related to (kinematical as well as dynamical) symmetries as ev-
erybody knows, it is interesting to learn about new symmetries from “nonlinear” Lie algebras
dealing with physical models. This is the aim of this section by visiting more particularly quan-
tum optical models subtended by typical multi-photon Hamiltonians already put in evidence
for describing some scattering processes. We refer more particularly to Karassiov–Klimov pro-
posals [15] which, in 2-dimensional flat spaces, considered the superposition of two harmonic
oscillators. By taking care of ω1 = ω2 = ω at the level of their angular frequencies and of a real
coupling constant g, the corresponding Hamiltonian can be written on the form with integers
m and n (0 ≤ m ≤ n):

H = ω
(
a†1a1 + a†2a2

)
+ g

(
a†1

)n
am

2 +
(
a†2

)m
an

1 , (13)

where the characteristics of the two harmonic oscillators are immediately fixed through the
commutation relations

[aj , a
†
k] = δjkI, [aj , ak] = [a†j , a

†
k] = 0, j, k = 1, 2.

An interesting result due to Debergh [5] is that the Higgs algebra can play the role of the
“spectrum generating algebra” for the quantum optical model subtended by the Hamiltonian (13)
iff m = n = 2, the raising and lowering operators being second powers of the linear ones and
the diagonal J3 being half of the linear one. In such a context, the deformation parameter is
fixed by

β = − 2
2j2 + 2j − 1

, j = 0,
1
2
, 1, . . .

and the specific actions of the generators J+, J− and J3 become, in correspondence with
eqs. (7)–(9) when the angular momentum basis is considered:

J+ | j,m〉 = ((j −m)(j +m+ 1)(j −m− 1)(j +m+ 2))
1
2 | j,m+ 2〉,

J− | j,m〉 = ((j +m)(j +m− 1)(j −m+ 1)(j −m+ 2))
1
2 | j,m− 2〉,

J3 | j,m〉 = m

2
| j,m〉.

For the whole set of j-values, we thus have the (c = 2 and γ = 0)-family of representations
pointed out by Debergh [5] and simply related to meaningful physical models. Let us also men-
tion that another interesting result, once again due to Debergh [6], is the twofold degeneracy of all
the energy eigenvalues of the Hamiltonian (13) inside a Schrödinger-type (stationary) equation
with the above characteristics of the Higgs algebra seen as the spectrum generating algebra of
a quantum optical model. These degeneracies have moreover been interpreted as a property of
supersymmetry in quantum mechanics [16] as it can be shown [6] through the construction of
(two) supercharges generating with the Hamiltonian the graded Lie algebra sqm(2).

In order to show such an interesting supersymmetric property, we have also considered [11] the
differential realizations of the generators J± and J3 and their introduction in the Hamiltonian
operator. So, coming back to the (n + 1)-dimensional vector spaces P (n) of polynomials of
degree at most n in the variable x, the Hamiltonian with arbitrary N is found on the form

H(N)
n = ωn+ g

(
dN

dxN
+ xN (D − n)(D − n+ 1) . . . (D − n+N − 1)

)
.
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In our previous N = 2-context this gives

H(2)
n = ωn+ g

((
1 + x4

) d2

dx2
+ 2(1− n)x3 d

dx
+ n(n− 1)x2

)
.

It is easy to see that these Hamiltonians preserve the spaces P (n) and act invariantly on
the subspaces ε(n) ≡ {ea(x)} and O(n) ≡ {oa(x)} of even (ea) and odd (oa) polynomials of
P (n) = ε(n)⊕O(n).

It is remarkable that we get the following properties

H(2)
n ea(x) = Eaea(x) and H(2)

n oa(x) = Eaoa(x)

with positive eigenvalues Ea = λ2
a pointing out immediately the double degeneracies. The

existence of two supercharges Q and Q̄ becomes evident if we require

Qea = 0, Qoa = λaea and Q̄ea = λaoa, Q̄oa = 0.

Specific realizations of such supercharges have been proposed elsewhere [11] as well as some
contexts for different even values of N . Supersymmetry is always present in these applications so
that we have some hope that, as in nuclear physics [19] or in atomic physics [20], supersymmetry
can also reveal its presence in some models of quantum optics.
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