
Proceedings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part 1, 249–254.

On Some New Classes

of Separable Fokker–Planck Equations

Alexander ZHALIJ

Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str., Kyiv, Ukraine
E-mail: zhaliy@imath.kiev.ua

We communicate some recent results on variable separation in the (1+3)-dimensional Fokker–
Planck equations with a constant diagonal diffusion matrix.

The principal object of the study is a problem of separation of variables in the Fokker–Planck
equation (FPE) with a constant diagonal diffusion matrix

ut +∆u+ (Ba(�x)u)xa
= 0, (1)

where �B(�x) = (B1(�x), B2(�x), B3(�x)) is the drift velocity vector. Here u = u(t, �x) and Bi(�x),
i = 1, 2, 3 are smooth real-valued functions. Hereafter, summation over the repeated Latin
indices from 1 to 3 is understood.

FPE (1) is a basic equation in the theory of continuous Markov processes. Therefore, it is
widely used in different fields of physics, chemistry and biology [1], where stochastic methods
are utilized.

We solve the problem of variable separation in FPE (1) into second-order ordinary differ-
ential equations in a sense that we obtain possible forms of the drift coefficients B1(�x), B2(�x),
B3(�x) providing separability of (1). Furthermore, we construct inequivalent coordinate systems
enabling to separate variables in the corresponding FPEs.

Our analysis is based on the direct approach to variable separation in linear PDEs suggested
in [3, 4]. It has been successfully applied to solving variable separation problem the Schrödinger
equations [3, 4, 5] with variable coefficients.

For an alternative (symmetry) approach to separation of variables in FPE, see [2].
We say that FPE (1) is separable in a coordinate system t, ωa = ωa(t, �x), a = 1, 2, 3 if the

separation Ansatz

u(t, �x) = ϕ0(t)
3∏

a=1

ϕa

(
ωa(t, �x), �λ

)
(2)

reduces PDE (1) to four ordinary differential equations for the functions ϕµ, (µ = 0, 1, 2, 3)

ϕ′0 = U0

(
t, ϕ0; �λ

)
, ϕ′′a = Ua

(
ωa, ϕa, ϕ

′
a; �λ

)
. (3)

Here U0, . . . , U3 are some smooth functions of the indicated variables, �λ = (λ1, λ2, λ3) ∈ Λ =
{an open domain in R3} are separation constants (spectral parameters, eigenvalues) and, what
is more,

rank
∥∥∥∥
∂Uµ

∂λa

∥∥∥∥
3 3

µ=0 a=1

= 3. (4)

For more details, see our paper [5].
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Next, we introduce an equivalence relation E on the set of all coordinate systems providing
separability of FPE. We say that two coordinate systems t, ω1, ω2, ω3 and t̃, ω̃1, ω̃2, ω̃3 are
equivalent if the corresponding Ansatzes (2) are transformed one into another by the invertible
transformations of the form

t→ t̃ = f0(t), ωi → ω̃i = fi(ωi), (5)

where f0, . . . , f3 are some smooth functions and i = 1, 2, 3. These equivalent coordinate sys-
tems give rise to the same solution with separated variables, therefore we shall not distinguish
between them. The equivalence relation (5) splits the set of all possible coordinate systems into
equivalence classes. In a sequel, when presenting the lists of coordinate systems enabling us to
separate variables in FPE we will give only one representative for each equivalence class.

Following [5] we choose the reduced equations (3) to be

ϕ′0 = (T0(t)− Ti(t)λi)ϕ0, ϕ′′a = (Fa0(ωa) + Fai(ωa)λi)ϕa, (6)

where T0, Ti, Fa0, Fai are some smooth functions of the indicated variables, a = 1, 2, 3. With
this remark the system of nonlinear PDEs for unknown functions ω1, ω2, ω3 takes the form

∂ωi

∂xa

∂ωj

∂xa
= 0, i �= j, i, j = 1, 2, 3; (7)

3∑
i=1

Fia(ωi)
∂ωi

∂xj

∂ωi

∂xj
= Ta(t), a = 1, 2, 3; (8)

Bj
∂ωa

∂xj
+
∂ωa

∂t
+∆ωa = 0, a = 1, 2, 3; (9)

3∑
i=1

Fi0(ωi)
∂ωi

∂xj

∂ωi

∂xj
+ T0(t) +

∂Ba

∂xa
= 0. (10)

The system of equations (7), (8) has been integrated in [5]. Its general solution �ω = �ω(t, �x)
is given implicitly by the following formulae:

�x = T (t)H(t)�z(�ω) + �w(t). (11)

Here T (t) is the time-dependent 3× 3 orthogonal matrix:

T (t) =



cosα cosβ − sinα sinβ cos γ − cosα sinβ − sinα cosβ cos γ sinα sin γ
sinα cosβ + cosα sinβ cos γ − sinα sinβ + cosα cosβ cos γ − cosα sin γ

sinβ sin γ cosβ sin γ cos γ


, (12)

α, β, γ being arbitrary smooth functions of t; �z = �z(�ω) is given by one of the eleven formulae
1. Cartesian coordinate system,

z1 = ω1, z2 = ω2, z3 = ω3, ω1, ω2, ω3 ∈ R.

2. Cylindrical coordinate system,

z1 = eω1 cosω2, z2 = eω1 sinω2, z3 = ω3, 0 ≤ ω2 < 2π, ω1, ω3 ∈ R.

3. Parabolic cylindrical coordinate system,

z1 = (ω2
1 − ω2

2)/2, z2 = ω1ω2, z3 = ω3, ω1 > 0, ω2, ω3 ∈ R.
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4. Elliptic cylindrical coordinate system,

z1 = a coshω1 cosω2, z2 = a sinhω1 sinω2, z3 = ω3,

ω1 > 0, −π < ω2 ≤ π, ω3 ∈ R, a > 0.

5. Spherical coordinate system,

z1 = ω−1
1 sechω2 cosω3, z2 = ω−1

1 sechω2 sinω3, z3 = ω−1
1 tanhω2,

ω1 > 0, ω2 ∈ R, 0 ≤ ω3 < 2π.

6. Prolate spheroidal coordinate system,

z1 = a cschω1 sechω2 cosω3, a > 0, z2 = a cschω1 sechω2 sinω3,

z3 = a cothω1 tanhω2, ω1 > 0, ω2 ∈ R, 0 ≤ ω3 < 2π.
(13)

7. Oblate spheroidal coordinate system,

z1 = a cscω1 sechω2 cosω3, a > 0, z2 = a cscω1 sechω2 sinω3,

z3 = a cotω1 tanhω2, 0 < ω1 < π/2, ω2 ∈ R, 0 ≤ ω3 < 2π.

8. Parabolic coordinate system,

z1 = eω1+ω2 cosω3, z2 = eω1+ω2 sinω3, z3 = (e2ω1 − e2ω2)/2,
ω1, ω2 ∈ R, 0 ≤ ω3 ≤ 2π.

9. Paraboloidal coordinate system,

z1 = 2a coshω1 cosω2 sinhω3, a > 0, z2 = 2a sinhω1 sinω2 coshω3,

z3 = a(cosh 2ω1 + cos 2ω2 − cosh 2ω3)/2, ω1, ω3 ∈ R, 0 ≤ ω2 < π.

10. Ellipsoidal coordinate system,

z1 = a
1

sn(ω1, k)
dn(ω2, k

′) sn(ω3, k), a > 0, k2 + k′2 = 1,

z2 = a
dn(ω1, k)
sn(ω1, k)

cn(ω2, k
′) cn(ω3, k), 0 < k, k′ < 1,

z3 = a
cn(ω1, k)
sn(ω1, k)

sn(ω2, k
′) dn(ω3, k),

0 < ω1 < K, −K ′ ≤ ω2 ≤ K ′, 0 ≤ ω3 ≤ 4K.

11. Conical coordinate system,

z1 = ω−1
1 dn(ω2, k

′) sn(ω3, k), k2 + k′2 = 1, 0 < k, k′ < 1,

z2 = ω−1
1 cn(ω2, k

′) cn(ω3, k), z3 = ω−1
1 sn(ω2, k

′) dn(ω3, k),
ω1 > 0, −K ′ ≤ ω2 ≤ K ′, 0 ≤ ω3 ≤ 4K.

H(t) is the 3× 3 diagonal matrix

H(t) =



h1(t) 0 0
0 h2(t) 0
0 0 h3(t)


 , (14)

where
(a) h1(t), h2(t), h3(t) are arbitrary smooth functions for the completely split coordinate system

(case 1 from (13)),
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(b) h1(t) = h2(t), h1(t), h3(t) being arbitrary smooth functions, for the partially split coordi-
nate systems (cases 2–4 from (13)),

(c) h1(t) = h2(t) = h3(t), h1(t) being an arbitrary smooth function, for non-split coordinate
systems (cases 5–11 from (13))

and �w(t) stands for the vector-column whose entries w1(t), w2(t), w3(t) are arbitrary smooth
functions of t.

Note that we have chosen the coordinate systems ω1, ω2, ω3 with the use of the equivalence
relation E (5) in such a way that the relations

∆ωa = 0, a = 1, 2, 3 (15)

hold for all the cases 1–11 in (13). Solving (9) with respect to Bj(�x), i = 1, 2, 3 we get (see,
also [5])

�B(�x) = M(t)(�x− �w) + �̇w. (16)

Here we use the designation

M(t) = Ṫ (t)T −1(t) + T (t)Ḣ(t)H−1(t)T −1(t), (17)

where T (t), H(t) are variable 3×3 matrices defined by formulae (12) and (14), correspondingly,
�w = (w1(t), w2(t), w3(t))T and the dot over a symbol means differentiation with respect to t.

As the functions B1, B2, B3 are independent of t, it follows from (16) that

�B(�x) = M�x+ �v, �v = const, (18)

M = const, (19)

�̇w = M�w + �v. (20)

Taking into account that Ṫ T −1 is antisymmetric and T ḢH−1T −1 is symmetric part of
M (17), correspondingly, we get from (19)

Ṫ (t)T −1(t) = const, (21)

T (t)Ḣ(t)H−1(t)T −1(t) = const. (22)

Relation (21) yields the system of three ordinary differential equations for the functions α(t),
β(t), γ(t)

α̇+ β̇ cos γ = C1,

β̇ cosα sin γ − γ̇ sinα = C2,

β̇ sinα sin γ + γ̇ cosα = C3,

(23)

where C1, C2, C3 are arbitrary real constants. Integrating the above system we obtain the
following form of the matrix T (t):

T (t) = C1T̃ C2, (24)

where C1, C2 are arbitrary constant 3× 3 orthogonal matrices and

T̃ =




− cos s cos bt sin s cos s sin bt
sin bt 0 cos bt

sin s cos bt cos s − sin s sin bt


 (25)

with arbitrary constants b and s.
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The substitution of equality (24) into (22) with subsequent differentiation of the obtained
equation with respect to t yields

C−1
2 T̃ −1 ˙̃T C2L+ L̇+ L C−1

2
˙(T̃ −1)T̃ C2 = 0, (26)

where L = ḢH−1, i.e. li = ḣi/hi, i = 1, 2, 3. From (26) we have

li = const, i = 1, 2, 3;
b (l1 − l2) cosα2 sin γ2 = 0,
b (l1 − l3)(− sinα2 sinβ2 + cosα2 cosβ2 cos γ2) = 0,
b (l2 − l3)(sinα2 cosβ2 + cosα2 sinβ2 cos γ2) = 0,

(27)

where α2, β2, γ2 are the Euler angles for the orthogonal matrix C2. Thus we obtain the following
forms of hi:

hi = ci exp(lit), ci = const, li = const, i = 1, 2, 3. (28)

From (27) we get the possible forms of b, li and C2:

(i) b = 0, l1, l2, l3 are arbitrary constants,
C2 is an arbitrary constant orthogonal matrix;

(ii) b �= 0, l1 = l2 = l3,
C2 is an arbitrary constant orthogonal matrix;

(iii) b �= 0, l1 = l2 �= l3, C2 =



ε1 cos θ −ε1 sin θ 0

0 0 −ε1ε2
ε2 sin θ ε2 cos θ 0


 ,

(29)

where ε1, ε2 = ±1, and θ is arbitrary constant. We do not adduce cases b �= 0, l1 �= l2 = l3 and
b �= 0, l2 �= l1 = l3 because they are equivalent to case (iii).

Finally, we give a list of the drift velocity vectors �B(�x) providing separability of the corre-
sponding FPEs. They have the following form:

�B(�x) = M�x+ �v,

where �v is arbitrary constant vector and M is constant matrix given by one of the following
formulae:

1. M = T L T −1, where L =



l1 0 0
0 l2 0
0 0 l3


, l1, l2, l3 are constants and T is an arbitrary con-

stant 3×3 orthogonal matrix, i.e. M is a real symmetric matrix with eigenvalues l1, l2, l3.

(a) l1, l2, l3 are all distinct. The new coordinates ω1, ω2, ω3 are given implicitly by formula

�x = T H(t)�z(�ω) + �w(t), (30)

where �z(�ω) is given by formula 1 from (13), �w(t) is solution of system of ordinary
differential equations (20) and

H(t) =



c1e

l1t 0 0
0 c2e

l2t 0
0 0 c3e

l3t


 (31)

with arbitrary constants c1, c2, c3.



254 A. Zhalij

(b) l1 = l2 �= l3. The new coordinates ω1, ω2, ω3 are given implicitly by (30), where �z(�ω)
is given by one of the formulae 1–4 from (13) and H(t) is given by (31) with arbitrary
constant c1, c2, c3 satisfying the condition c1 = c2 for the partially split coordinates
2–4 from (13).

(c) l1 = l2 = l3, i.e. M = l1I, where I is unit matrix. The new coordinates ω1, ω2, ω3

are given implicitly by formula (30), where �z(�ω) is given by one of the eleven formu-
lae (13) and H(t) is given by (31) with arbitrary constants c1, c2, c3 satisfying the
condition c1 = c2 for the partially split coordinates 2–4 from (13) and the condition
c1 = c2 = c3 for the non-split coordinates 5–11 from (13).

2. M = b C1




0 cos s 0
− cos s 0 sin s

0 − sin s 0


 C−1

1 + l1I, where I is the unit matrix and C1 is an

arbitrary constant 3 × 3 orthogonal matrix, b, s, l1 are arbitrary constants and b �= 0.
The new coordinates ω1, ω2, ω3 are given implicitly by formula (11), where �z(�ω) is given
by one of the eleven formulae (13), T (t) is given by (24)–(25), �w(t) is solution of system

of ordinary differential equations (20) and H(t) = exp(l1t)



c1 0 0
0 c2 0
0 0 c3


 with arbitrary

constants c1, c2, c3 satisfying the condition c1 = c2 for the partially split coordinates 2–4
from (13) and the condition c1 = c2 = c3 for non-split coordinates 5–11 from (13).

3. M = C1




1
2(l1 + l3 + (l1 − l3) cos 2s) b cos s 1

2(l3 − l1) sin 2s
−b cos s l1 b sin s

1
2(l3 − l1) sin 2s −b sin s 1

2(l1 + l3 − (l1 − l3) cos 2s)


 C−1

1 , where

C1 is an arbitrary constant 3 × 3 orthogonal matrix, b, s, l1, l2 are arbitrary constants,
l1 �= l3 and b �= 0. The new coordinates ω1, ω2, ω3 are given implicitly by formula (11),
where �z(�ω) is given by one of the formulae 1–4 from (13), T (t) is given by (24), (25) and
(iii) from (29), �w(t) is solution of system of ordinary differential equations (20) and

H(t) =



c1e

l1t 0 0
0 c2e

l1t 0
0 0 c3e

l3t




with arbitrary constants c1, c2, c3 satisfying the condition c1 = c2 for the partially split
coordinates 2–4 from (13).
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