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The problem of group classiffication for the class of first-order scalar PDEs invariant under
the Euclid algebra E(n) in considered. We found new nonlinear equations of the form
uaua = F (ut) with wide symmetry properties.

In this paper we study group classification of a class of nonlinear first-order multidimensional
equations

ut = Φ(u, uaua). (1)

uaua is a designation for the sum
(

∂u

∂x1

)2

+
(

∂u

∂x2

)2

+ . . .+
(

∂u

∂xn

)2

, ut =
∂u

∂t
.

u is a scalar function of time t and n spatial variables (x1, x2, . . . , xn). The class (1) includes
many well-known equations with wide symmetry properties.

We will not consider cases when n < 3. It will be more convenient to investigate the class (1)
in the form

uaua = F (u, ut). (2)

The function F is assumed to be sufficiently smooth.
Why is it interesting to study symmetries for this particular class of equations? First, it is

the general class of first order PDEs, that includes many physically interesting equations. It is
interesting to find new equations invariant under known symmetry algebras and new symmetry
algebras. Invariant first-order equations can be used for study of conditional symmetry of higher
order PDEs. First order PDEs may also have interesting generalizations.

The class of equations (2) includes such well-known equations with wide symmetries as the
eikonal equation, the Hamilton–Jacobi and the Hamilton equations.

The Hamilton–Jacobi equation

ut + uaua = 0 (3)

is invariant under the Galilei group. Its maximal Lie invariance algebra was studied in [4] and
can be described by the following basis operators:

P0 = ∂t, Pa = ∂a, Pu = ∂u, Jab = xa∂b − xb∂a, G(1)
a = t∂a +

1
2
xa∂u,

D(1) = t∂0 +
1
2
xa∂a, A(1) = t2∂0 + txa∂a +

1
4
xaxa∂u, G(2)

a = u∂a +
xa

2
∂t,
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D(2)
a = u∂u +

1
2
xa∂a, A(2) = u2∂u + uxa∂a +

1
4
x2∂t,

Ka = 2xa

(
D(1) +D(2)

)
+

(
1
4
tu− x2

)
∂a

(
x2 ≡ xaxa

)
.

The equation (3) is also invariant under a discrete transformation u → t, t → u.
Symmetry of the relativistic Hamilton equation

uαuα = 1 (4)

was studied in [1, 5]. Here

uαuα ≡ u2
0 − u2

1 − . . .− u2
n,

u0 ≡ ut.
The maximal Lie invariance group of the equation (4) is the conformal group C(1, n+ 1).
Basis elements for the corresponding Lie algebra can be written as follows:

∂A = igAB
∂

∂xB
, gAB = diag (1,−1, . . . ,−1),

JAB = xA∂B − xB∂A, D = xA∂A, KA = 2xAD − xBxB∂A,

where A,B = 0, 1, 2, . . . , n+ 1; xn+1 ≡ u, summation over the repeated indices is as follows:

xAxA = x2
0 − x2

1 − x2
2 − · · · − x2

n+1.

The eikonal equation

uαuα = 0, (5)

α = 0, 1, . . . , n; is invariant [1, 5] under an infinite-dimensional algebra, defined by operators

X = (bµνxν + aµ)∂µ + η∂u,

where bµν = −bνµ, aµ, η are arbitrary differentiable functions on u;

∂α = igαβ
∂

∂xB
, gαβ = diag (1,−1, . . . ,−1).

The class of equations we consider will be a natural generalization of equations (3)–(5).
We look for a Lie symmetry operator of the equation (2) in the form

X = ξt(t, xa, u)∂t + ξa(t, xb, u)∂xa + η(t, xa, u)∂u. (6)

The general Lie invariance condition is

1
X(uaua − F (u, ut))

∣∣∣
uaua=F (u,ut)

= 0, (7)

where
1
X is the first Lie prolongation for the operator X.

The condition (7) gives the the following determining equations for operators of invarianse
algebra of the equation (2):

ξa
b + ξb

a = 0, b �= a; ξa
a = ξb

b (8)
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(we will designate ξa
a = d(xa, t, u));

2(ηa − ξt
aut − ξa

uF ) + Fut(ξ
a
t + ξa

uut) = 0; (9)

2F (ηu − d− ξt
uut) = ηFu + Fut(ηt + (ηu − ξt

t)ut − ξt
uu

2
t ). (10)

Lower indices always designate corresponding derivatives.
Determining equations (8) are fulfilled for all equations from the class (2). From (8) we get

the following form for coefficients ξa of the operator X (6):

ξa = ca + d̃xa + λabxb + 2kbxbxa − kaxbxb, (11)

where λab = −λba, ca, d̃, ka are functions on u and t.
The following operators are symmetry operators for all equations from the class (2) irrespec-

tive of the form of the function F (u, ut):

Pt = ∂t, Pa = ∂a, Jab = xa∂b − xb∂a, (12)

that form the basis of the Euclid algebra E(n) in the space of n variables x1, . . . , xn, plus the
translation operator by time variable.

Now we look for equations from the class (2) admitting wider symmetry than the algebra (12).
We need to find functions F for which the conditions (9), (10) are fulfilled with some coefficients
being non-zero.

From the determining equation (9) we conclude that there are two options:

I. ηa = ξt
a = ξa

u = ξa
t = 0, (13)

and F = F (u, ut) is determined by the equation (10).

II. F = r(u)u2
t + s(u)ut + q(u). (14)

The class (2) with F having the form (14) includes all well-known equations (3)–(5).
Let us consider the first option in detail. It follows from the conditions (13) that

η = η(t, u), ξt = ξt(t, u), ξa = ξa(x1, . . . , xn).

The equation (10) takes the form

2F (ηu − d− ξt
uut) = ηFu + Fut

(
ηt + ηuut − ξt

tut − ξt
uu

2
t

)
. (15)

As du = 0, we conclude from (15) that d = const, and the expression for the coefficients ξa can
only take the form

ξa = ca + dxa + λabxb,

where λab = −λba, d, ca are constants.
There will be no conformal or projective symmetry operators in this case.
We adduce some new equations with additional symmetry to (12). For example, if we put

ηu = ξt
t , then in the case ξt

u · ηt < 0 we get the function F of the form

F =
(
1 + u2

t

)
exp(λ arctgut), λ = const. (16)

In the case ξt
u · ηt > 0 we get F = (a+ but)2 (a, b are constants) from the class (14).

The equation

uaua =
(
1 + u2

t

)
exp(λ arctgut) (17)
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has three additional symmetry operators of the form

∂u, −u∂t + t∂u − λ

2
xa∂a, u∂u + t∂t + xa∂a.

It is interesting to note that the change u → t, t → u leaves the equation (17) invariant up
to the change of λ. In this aspect this equation is similar to the Hamilton–Jacobi equation (3).

There are other examples of equations of the form

uaua = F (ut)

with additional to (12) symmetry operators:

1. uaua = uk
t .

If k �= 0, k �= 1, k �= 2, we get three additional operators:

t∂t + u∂u + xa∂a, ∂u, kxa∂a + 2t∂t.

2. uaua = exput.

We get two additional symmetry operator

∂u, 2t∂u − xa∂a.

Summary. We studied the problem of the group classification for the equation (2). Determining
equations for the function F were found, and some partial solutions for these equations con-
structed. Further research will be required for description of all nonequivalent equations of the
form (2) that have additional invariance operators compared to space rotations and space and
time translations. Other research opportunities in this respect include investigation of higher
order PDEs invariant under the some algebras, of conditional symmetry of second-order PDEs
with new equations as additional conditions.
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