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Recent results concerning the application of Lie transformation group methods to structural
mechanics are presented. Focus is placed on the point Lie symmetries and conservation laws
inherent to the Bernoulli–Euler and Timoshenko beam theories as well as to the Marguerre-
von Kármán equations describing the large deflection of thin elastic shallow shells within the
framework of the nonlinear Donnell–Mushtari–Vlasov theory.

1 Introduction

The present paper is concerned with the invariance properties (point Lie symmetries) of three
classes of self-adjoint partial differential equations arising in structural mechanics – the dynamic
beam equations of Bernouli–Euler and Timoshenko type governing vibration of beams on a
variable elastic foundation and dynamic stability of fluid conveying pipes, and Marguerre-von
Kármán equations describing the large deflection of thin isotropic elastic shallow shells subjected
to an external transverse load and a nonuniform heating.

Once the invariance properties of a given differential equation are established, several impor-
tant applications are available. First, it is possible to obtain classes of group-invariant solutions.
For a self-adjoint equation another application of its symmetries arises since it is the Euler–
Lagrange equation of a certain functional. If a symmetry group of such an equation turned
out to be its variational symmetry as well, that is a symmetry of the associated functional,
then Noether’s theorem guarantees the existence of a conservation law for the solutions of this
equation. Needless to recall the fundamental role of the conserved quantities and conservation
laws (or the corresponding balance laws) for the natural sciences, however it is worthy to point
out that the available conservation (balance) laws should not be overlooked in the examination
of discontinuous solutions (acceleration waves, shock waves, etc.) or in the numerical analysis
(when constructing finite difference schemes or verifying numerical results, for instance) of any
system of differential equations of physical interest. It should be remarked also that the path-
independent integrals (such as the well known J-, L- and M -integrals) related to the conservation
laws are basic tools in fracture analysis of solids and structures.

Throughout this paper: Greek (Latin) indices have the range 1, 2 (1, 2, 3), unless explicitly
stated otherwise, and the usual summation convention over a repeated index is employed. The
k-th order partial derivatives of a dependent variable, say w, that is ∂kw/∂xα1∂xα2 . . . ∂xαk

(k, α1, α2, . . . , αk = 1, 2, . . .), are denoted either by wα1α2...αk
or wxα1xα2 ...xαk , where x1, x2, . . .

are the independent variables. A similar notation is used for the partial derivatives of any
other function, say f , of the independent variables but, in this case, the indices indicating the
differentiation are preceded by a coma. Dα (α = 1, 2, . . .) denote the total derivative operators.
For the basic notions and statements used in the group analysis of differential equations and
variational problems see [1] or [2].
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2 Symmetries and conservation laws of beam equations

Bernoulli–Euler beams. Consider the class of self-adjoint partial differential equations

γw1111 + χαβwαβ + κ(x)w = 0, (1)

in two independent variables x = (x1, x2) and one dependent variable w(x), where γ = const �= 0,
χαβ are arbitrary constants, and κ(x) is an arbitrary smooth function. Equations of this special
type are used to study problems concerning dynamics and stability of both elastic beams resting
on elastic foundations and pipes conveying fluid. In these cases, x1 is associated with the spatial
variable along the rod axis, x2 – with the time, and w represents the transversal displacement
field.

In [3] the point Lie symmetries of (1) are examined and the solution of the corresponding
group-classification problem with respect to the arbitrary element {γ, χαβ , κ(x)} is given. Evi-
dently, each equation of form (1) is invariant under the point Lie groups generated by the vector
fields X0 = w∂/∂w and Xu = u (x) ∂/∂w, where u (x) is any smooth solution of the respective
equation. The results of the group-classification are summarized in Table 1 below, where the
equations invariant under larger groups are given through their coefficients together with the
generators of the associated symmetry groups.

Table 1

# Coefficients Generators

1 κ(x) = f(β2x1 − β1x2) β1X1 + β2X2

2
χ22 �= 0, det(χαβ) = 0, κ(x) =

(
β2 + x2

)−2
f(y),

y =
(
β2 + x2

)−1/2 {
β1 + x1 − χx2

} {β1 + 2χβ2}X1

+2β2X2 + X3

3
χ22 = 0, det(χαβ) �= 0, κ(x) =

(
β2 + x2

)−4/3
f(y),

y =
(
β2 + x2

)−1/3 {
β1 + 2x1 − (

χ11/χ12
)
x2

} {β1 + 3(χ11/χ12)β2}X1

+6β2X2 + 2X̃3

4 χ22 �= 0, det(χαβ) = 0, κ(x) = κ0

(
β + x2

)−2
, X1, 2βX2 + X3

5 χ22 = 0, det(χαβ) �= 0, κ(x) = κ0

(
β + x2

)−4/3
X1, 3βX2 + X̃3

6
χ22 �= 0, det(χαβ) = 0,
κ(x) = κ0

(
β + x1 − χx2

)−4
βX1 + X3,
χX1 + X2

7
χ22 = 0, det(χαβ) �= 0,
κ(x) = κ0

(
β + 2x1 − (

χ11/χ12
)
x2

)−4
βX1 + 2X̃3,
(χ11/χ12)X1 + 2X2

8 χ22 det(χαβ) �= 0, κ(x) = const X1, X2

9 χ22 det(χαβ) = 0, κ(x) = const �= 0 X1, X2

10 χ22 �= 0, det(χαβ) = 0, κ(x) = 0 X1, X2, X3

11 χ22 = 0, det(χαβ) �= 0, κ(x) = 0 X1, X2, X̃3

Here f is an arbitrary function, β, β1, β2 are arbitrary real constants, χ = χ12/χ22 and Xα =
∂/∂xα, X3 =

(
x1 + χx2

)
∂/∂x1 + 2x2∂/∂x2, X̃3 =

(
x1 + χx2

)
∂/∂x1 + 3x2∂/∂x2.

It is found [3] that all vector fields quoted under numbers 1, 3, 5, 7, 8, 9 and 11 generate
variational symmetries of the respective equations of form (1), while in case # 2 variational
symmetries are associated with {β1 + 2χβ2}X1 + 2β2X2 + X3 + (1/2)X0, in case # 4 – with X1
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and 2βX2 + X3 + (1/2)X0, in case # 6 – with χX1 + X2 and βX1 + X3 + (1/2)X0, and in case
# 10 – with X1, X2 and X3 + (1/2)X0.

Once the variational symmetries are identified, we derive the corresponding conservation laws.
They are listed in Table 2 in the same order as in Table 1 using the notation:

B1
(1) = −(1/2)

{
γ(2w1w111 − w2

11) + χ11w2
1 − χ22w2

2 + κw2
} − (1/2)(χ2µwwµ),2 ,

B2
(1) = −χ2µw1wµ + (1/2)(χ2µwwµ),1 ,

B1
(2) = −χ1µw2wµ + γ(w2w111 − w11w12) − (1/2)(γw1w11 − χ1µwwµ),2 ,

B2
(2) = −(1/2)

{
γw2

11 + χ22w2
2 − χ11w2

1 + κw2
}

+ (1/2)(γw1w11 − χ1µwwµ),1 ,

Bα
(3) =

{
x1 + χx2

}
Bα

(1) + 2x2Bα
(2) + χαµwwµ + (1/2)γδ1α(ww111 − w1w11),

B̃α
(3) =

{
x1 + (χ11/χ12)x2

}
Bα

(1) + 3x2Bα
(2)

+ (1/2)
{
χαµwwµ + δ1α(χ11ww1 + 2χ12ww2 − γw1w11)

}
.

Table 2

# Conservation laws

1 Dα

{
β1Bα

(1) + β2Bα
(2)

}
= 0

2 Dα

{(
β1 + 2χβ2

)
Bα

(1) + 2β2Bα
(2) + Bα

(3)

}
= 0

3 Dα

{(
β1 + 3χβ2

)
Bα

(1) + 6β2Bα
(2) + 2B̃α

(3)

}
= 0

4 DαBα
(1) = 0, Dα

{
2βBα

(2) + Bα
(3)

}
= 0

5 DαBα
(1) = 0, Dα

{
3βBα

(2) + B̃α
(3)

}
= 0

6 Dα

{
βBα

(1) + Bα
(3)

}
= 0, Dα

{
χBα

(1) + Bα
(2)

}
= 0

7 Dα

{
βBα

(1) + 2B̃α
(3)

}
= 0, Dα

{
(χ11/χ12)Bα

(1) + 2Bα
(2)

}
= 0

8 DαBα
(1) = 0, DαBα

(2) = 0

9 DαBα
(1) = 0, DαBα

(2) = 0

10 DαBα
(1) = 0, DαBα

(2) = 0, DαBα
(3) = 0

11 DαBα
(1) = 0, DαBα

(2) = 0, DαB̃α
(3) = 0

In addition, each equation (1) admits conservation laws of form

Dα{χαµ(uwµ − u,µ w) + δ1αγ(uw111 + u,11 w1 − u,111 w − u,1 w11)} = 0,

u(x) being any solution of the equation considered.
Timoshenko beams. The Timoshenko beam equations

�Jϕtt = EJϕxx + nGA(wx − ϕ), �Awtt = nGA(wxx − ϕx), (2)

describe the motion of beams accounting for the buckling of the beam cross-section. They are
two coupled second order linear partial differential equations in two independent variables – the
time t and the coordinate along the beam axis x, the dependent variables being w(x, t) and
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ϕ(x, t), associated with the transversal displacement of the beam axis and the rotation angle,
respectively. In these equations � is the density of the beam material, E – the modulus of
elasticity, G – the shear modulus, J and A – the moment of inertia and the area of the beam
cross-section, n – a coefficient related to the buckling of the cross-section.

The generator XH of each one-parameter group H, admitted by (2), has the form

XH = C1X1 + C2X2 + C3X3 + XS

(see [4, 5]), where Ci (i = 1, 2, 3) are real constants, (w̃, ϕ̃) is a solution of (2), and

X1 = ∂/∂x, X2 = ∂/∂t, X3 = w∂/∂w + ϕ∂/∂ϕ, XS = w̃(x, t)∂/∂w + ϕ̃(x, t)∂/∂ϕ.

Denoting r∗ = rank (C1, C2, C3w + w̃(x, t), C3ϕ + ϕ̃(x, t)), r∗∗ = rank (C1, C2), where rank(·)
is the rank of the matrix in parentheses, the necessary conditions for existence of solutions to
Timoshenko beam equations invariant under the transformations of H (i.e. H-invariant solu-
tions) are of the form

r∗ ≤ 2, r∗∗ = r∗. (3)

The inequality (3) holds for every choice of Ci, w̃(x, t) and ϕ̃(x, t), because r∗ is either 1 or 0.
There exist only two opportunities to satisfy the equality (3). They are C2

1 +C2
2 > 0, if r∗ = 1 or

C2
1 + C2

2 = 0, if r∗ = 0. The only interesting alternative here is the first one, because if r∗ = 0,
the group H consists of the identity only. Thus, we proved the following.

Proposition 1 [4, 5]. H-invariant solutions of the Timoshenko beam equations exist only if
the group generator XH incorporates at least one of the vector fields X1 or X2 associated with
the translations along the independent variables.

The invariant of the group H with generator XH could be obtained, seeking for solutions to
the equation XH(f) = 0. Examining the cases C1 �= 0 and C1 = 0, we found the most general
form of the H-invariant solutions of (2) to be

w(x, t) = [w(y) + W (x, t)]Σ, ϕ(x, t) = [ϕ(y) + Φ(x, t)]Σ, (4)

where y = C2x − C1t and the functions W (x, t) and Φ(x, t) are solutions of the equations

C1Wx + C2Wt = w̃(x, t)Σ−1, C1Φx + C2Φt = ϕ̃(x, t)Σ−1. (5)

In (4) and (5) we denote Σ = exp(C3x/C1) if C1 �= 0, otherwise Σ = exp(C3t/C2). Equations (5)
are first-order linear partial differential equations, so it is a simple matter to obtain their solutions
once Ci, w̃(x, t) and ϕ̃(x, t) are specified.

The following basic conservation laws of densities At and fluxes Ax, that is

∂At/∂t + ∂Ax/∂x = 0,

are found to hold on the smooth solutions of the Timoshenko beam equations [4, 5].

Table 3
w - translations transversal linear momentum
Xw = ∂

∂ w At
w = ρAwt, Ax

w = nGA(wx − ϕ)
x - translations wave momentum
X1 = ∂

∂ x At
1 = ρAwxwt + ρJϕxϕt, Ax

1 = −E − nGA(wx − ϕ)ϕ
time - translations energy

X2 = ∂
∂ t

At
2 = E = (1/2)

{
EJϕ2

x + nGA(wx − ϕ)2 + ρAw2
t + ρJϕ2

t

}
Ax

2 = −nGA(wx − ϕ)wt − EJϕxϕt

reciprocity relation

XS = w̃ ∂
∂w + ϕ̃ ∂

∂ϕ

Ãt = ρA(ww̃t − wtw̃) + ρJ(ϕϕ̃t − ϕtϕ̃)
Ãx = EJ(ϕxϕ̃ − ϕϕ̃x) + nGA{(wx − ϕ)w̃ − w(w̃x − ϕ̃)}
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3 Marguerre-von Kármán equations

Marguerre-von Kármán (MvK) equations (see e.g. [6, 7, 8]) describe the large deflection of thin
isotropic elastic shallow shells. They can be written in the form [7, 8]:

D∆2W − εαµεβνWαβΦµν = P,

1
Eh

∆2Φ +
1
2
εαµεβνWαβWµν = Q.

(6)

Here, the independent variables are the coordinates x =
(
x1, x2

)
on the shell middle-surface F

supposed to be given by the equation z = f
(
x1, x2

)
,

(
x1, x2

) ∈ Ω ⊂ R2, where
(
x1, x2, z

)
is

a fixed right-handed rectangular Cartesian coordinate system in the 3-dimensional Euclidean
space in which the middle-surface F of the shell is embedded, and f : R2 → R is a smooth
function on a certain domain of interest Ω. The dependent variables are Airy’s stress function Φ,
and W = w + f, where w is the transversal displacement function. In (6): εαβ is the alternating
tensor of F ; E, h and D = Eh3/

[
12

(
1 − ν2

)]
are Young’s modulus, thickness and bending

rigidity of the shell, respectively, ν being Poisson’s ratio; ∆ is the Laplace–Beltrami operator
on F ;

P = Dδαβδµνf,αβµν + p, Q =
1
2
εαµεβνf,αβf,µν + q

(functions p and q appear when the shell is subjected to an external transversal load and nonuni-
form heating). System (6) includes as a special case, with f,αβ = 0, the well-known von Kármán
equations for large deflection of plates.

Actually (6) describe the state of equilibrium of the shell, but introducing, according to
d’Alembert principle, the inertia force −ρw33 = −ρW33 in the right-hand side of the first MvK
equation, w33 being the second derivative of the displacement field with respect to the time
t ≡ x3 and ρ – the mass per unit area of the shell middle-surface, one can extend (6) to describe
the dynamic behaviour of shells. In this case we will speak about the time-dependent MvK
equations, otherwise (6) will be referred to as the time-independent MvK equations. In both
cases, the moment tensor Mαβ , membrane stress tensor Nαβ , and shear-force vector Qα are
given in terms of W and Φ by the expressions

Mαβ = D
{
(1 − ν)δαµδβν + νδαβδµν

} {Wµν − f,µν} ,

Nαβ = εαµεβνΦµν , Qα = Mαµ
,µ + Nαµ {Wµ − f,µ} .

Symmetry groups. The following is known [11] for the symmetry groups of the homoge-
neous time-independent and time-dependent MvK equations.

Proposition 2. The homogeneous time-independent MvK equations admit the group G(S) gen-
erated by the basic vector fields (operators):

Y1 = ∂/∂W, Y2 = ∂/∂x1, Y3 = ∂/∂x2, Y4 = x2∂/∂x1 − x1∂/∂x2, Y5 = x1∂/∂Φ,

Y6 = x2∂/∂Φ, Y7 = ∂/∂Φ, Y8 = x1∂/∂W, Y9 = x2∂/∂W, Y10 = x1∂/∂x1 + x2∂/∂x2.

Proposition 3. The homogeneous time-dependent MvK equations admit the group G(D) gener-
ated by the basic vector fields:

X1 = Y1, X2 = Y2, X3 = Y3, X4 = ∂/∂x3, X5 = x1∂/∂x1 + x2∂/∂x2 + 2x3∂/∂x3,

X6 = Y4, X7 = x1∂/∂W, X8 = x2∂/∂W, X9 = x3∂/∂W, X10 = x1x3∂/∂W,

X11 = x2x3∂/∂W, X12 = x1f(x3)∂/∂Φ, X13 = x2g(x3)∂/∂Φ, X14 = h(x3)∂/∂Φ,

where f , g and h are arbitrary functions depending on the time only.
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As for the symmetries of the nonhomogeneous MvK equations, we proved that:

Proposition 4. A nonhomogeneous time-independent MvK system is invariant under a vector
field Y iff Y = cjYj (j = 1, . . . , 10), where cj are real constants, and

2Pξµ
,µ + ξµP,µ = 0, 2Qξµ

,µ + ξµQ,µ = 0, ξα = Y (xα), (7)

Y being regarded as an operator acting on the functions ζ : Ω → R, Ω ⊂ R2.

Proposition 5. A nonhomogeneous time-dependent MvK system is invariant under a vector
field X iff X = CjXj (j = 1, . . . , 14), where Cj are real constants, and

Pξi
,i + ξiP,i = 0, Qξi

,i + ξiQ,i = 0, ξi = X(xi), (8)

X being regarded as an operator acting on the functions χ : Ω × T → R, Ω ⊂ R2, T ⊂ R.

The above Propositions imply the following group classification results.

Proposition 6. The time-independent MvK equations admit a group G iff G is generated by
a vector field Y = cjYj (j = 1, . . . , 10) and the right-hand sides P and Q are invariants of G
(when c10 = 0) or eigenfunctions (when c10 �= 0) of its generator Y .

Proposition 7. The time-dependent MvK equations admit a group G iff G is generated by a
vector field X = CjXj (j = 1, . . . , 14) and the right-hand sides P and Q are invariants of G
(when C5 = 0) or eigenfunctions (when C5 �= 0) of its generator X.

Conservation laws. Both the time-independent and time-dependent MvK equations con-
stitute self-adjoint systems and are the Euler–Lagrange equations for the functionals

I(S)[W,Φ] =
∫ ∫ ∫

Π dx1dx2 and I(D)[W,Φ] =
∫ ∫ ∫

(T − Π) dx1dx2dx3,

Π =
D

2

{
(∆W )2 − (1 − ν)εαµεβνWαβWµν

}
+

1
2
εαµεβνΦαβWµWν

− 1
2Eh

{
(∆Φ)2 − (1 + ν)εαµεβνΦαβΦµν

}
− PW − QΦ,

T =
ρ

2
(W3)

2 ,

Π and T being the strain and kinetic energies per unit area of the shell middle-surface.
In [10], the variational symmetries of the above functionals with P = Q = 0 are established

and the associated conservation laws admitted by the smooth solutions of the homogeneous MvK
equations are presented (see Appendices A and B). In particular, each such conservation law
for the time-dependent MvK equations is a linear combination of the basic linearly independent
conservation laws

∂Ψ(j)/∂x3 + ∂Pµ
(j)/∂xµ = 0 (j = 1, 2, . . . , 14)

whose densities Ψ(j) and fluxes Pµ
(j) are presented (together with the generators of the respective

symmetries) on the Table 4 below in terms of Qα, Mαβ , Gαβ and Fα,

Gαβ =
1

Eh

{
(1 + ν)δαµδβν − νδαβδµν

}
Φµν − 1

2
εαµεβνwµwν , Fα = Gαν

,ν .
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Table 4

w - translations transversal linear momentum (first MvK equation)

X1 = ∂
∂ w

Pα
(1) = −Qα, Ψ(1) = ρw3

Φ - translations compatibility condition (second MvK equation)

X14 = ∂
∂Φ

Pα
(14) = Fα, Ψ(14) = 0

time - translations energy

X4 = ∂
∂ x3

Pα
(4) = −w3Q

α − Φ3F
α + w3βMαβ + Φ3βGαβ

Ψ(4) = T + Π

x1 &x2- translations wave momentum

X2 = ∂
∂ x1

Pα
(2) = δα1(T − Π) + w1Q

α + Φ1F
α − w1βMαβ − Φ1βGαβ

Ψ(2) = −ρw1w3

X3 = ∂
∂ x2

Pα
(3) = δα2(T − Π) + w2Q

α + Φ2F
α − w2βMαβ − Φ2βGαβ

Ψ(3) = −ρw2w3

rotations moment of the wave momentum

X6 = x2 ∂
∂ x1 −x1 ∂

∂ x2

Pα
(6) = x2Pα

(2) − x1Pα
(3) + ε µ

ν wµMαν + ε µ
ν ΦµGαν

Ψ(6) = x2Ψ(2) − x1Ψ(3)

rigid body rotations angular momentum
X7 = x1 ∂

∂ w Pα
(7) = Mα1 − x1Qα + wεανΦν2, Ψ(7) = ρx1w3

X8 = x2 ∂
∂w

Pα
(8) = Mα2 − x2Qα + wεναΦν1, Ψ(8) = ρx2w3

scaling

X5 = xµ ∂
∂ xµ + 2x3 ∂

∂ x3

Pα
(5) = x1Pα

(2) + x2Pα
(3) − 2x3Pα

(4) − wβMαβ − ΦβGαβ

Ψ(5) = x1Ψ(2) + x2Ψ(3) − 2x3Ψ(4)

Galilean boost center-of-mass theorem

X9 = x3 ∂
∂w

Pα
(9) = −x3Qα, Ψ(9) = ρ (x3w3 − w)

X10 = x1x3 ∂
∂w Pα

(10) = x3Pα
(7), Ψ(10) = x1Ψ(9)

X11 = x2x3 ∂
∂w Pα

(11) = x3Pα
(8), Ψ(11) = x2Ψ(9)

X12 = x1 ∂
∂Φ Pα

(12) = x1Fα − Gα1, Ψ(12) = 0

X13 = x2 ∂
∂Φ

Pα
(13) = x2Fα − Gα2, Ψ(13) = 0

The following statements [6] hold for the nonhomogeneous MvK equations.

Proposition 8. A conservation law of flux Aα
(j) and characteristic Λα

(j) (j = 1, . . . , 9) admitted
by the smooth solutions of the homogeneous time-independent MvK equations takes the form

Aµ
(j),µ + S(j) = 0, S(j) = −Λ1

(j)P − Λ2
(j)Q, (9)

on the smooth solutions of the non-homogeneous time-independent MvK equations;

S(j) = Ãµ
(j),µ,

iff (7) hold, and then (9) can be written as a divergence free expression (i.e. it becomes a proper
conservation law), otherwise it has supply (production) S(j).
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Proposition 9. Each conservation law of density Ψ(i), flux Pα
(i) and characteristic Λα

(i) (i =
1, . . . , 14) admitted by the smooth solutions of the homogeneous time-dependent MvK equations
takes the form

Ψ(i),3 + Pµ
(i),µ + S(i) = 0, S(i) = −Λ1

(i)P − Λ2
(i)Q, (10)

on the smooth solutions of the non-homogeneous time-dependent MvK equations;

S(i) = Ψ̃(i),3 + P̃µ
(i),µ,

iff (8) hold, and hence (10) becomes a proper conservation law, otherwise it has supply (produc-
tion) S(i).
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Kármán equations, in Proc. of IMSE 98 (August 10-13, 1998, Houghton, MI, USA), CRC Publishers (to
appear).

[7] Vassilev V., Symmetry groups and equivalence transformations in the nonlinear Donnell–Mushtari–Vlasov
theory for shallow shells, J. Theor. and Appl. Mech., 1997, V.27, 43–51.

[8] Vassilev V., Application of Lie groups to the theory of shells and rods, Nonlinear Analysis, Proc. of the
Second World Congress of Nonlinear Analysts, 1997, V.30, N 8, 4839–4848.

[9] Djondjorov P. and Vassilev V., Nonlinear waves in the von Kármán plate theory, in Proc. of IMSE 98
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