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We consider different types of symmetries of partial differential equations. Using symmetry
operators we construct corresponding ansatzes, reducing initial equations to the system with
fewer independent variables.

It is well known that invariance of system of partial differential equations with respect to
a Lie group of point transformations of independent and dependent variables is a sufficient
condition of reduction of the system under study to a system of equations with fewer number of
independent variables with help of a corresponding ansatz. This property is sucessfully exploited
in constructing of exact solutions for many linear and nonlinear equations of mathematical
physics [1]. By using the results of [2] we construct an ansatz for �D, �B, �E, �H, which reduces
the nonlinear Maxwell equations

∂ �D

∂t
= rot �H,

∂ �B

∂t
= −rot �E,

div �D = 0, div �B = 0,
(1)

�D =M(I1, I2) �E +N(I1, I2) �B, �H =M(I1, I2) �B −N(I1, I2) �E, (2)

where M,N ∈ C1(R2, R1), to the system of ordinary differential equations.
The ansatz invariant with respect to the 3-dimensional subalgebra 〈−J01 − J13, J03, P2〉 of

the Poincaré algebra has the form

E1 =
1
2

(
1
ξ
+ ξ

)
Ẽ1 +

1
2

(
1
ξ
− ξ

)
B̃2 − x1

ξ
Ẽ3 +

x2
1

2ξ

(
B̃2 − Ẽ1

)
,

E2 =
1
2

(
1
ξ
+ ξ

)
Ẽ2 − 12

(
1
ξ
− ξ

)
B̃1 +

x1

ξ
B̃3 +

x2
1

2ξ

(
Ẽ2 − B̃1

)
,

E3 = Ẽ3 − x1

(
B̃2 − Ẽ1

)
,

(3)

B1 =
1
2

(
1
ξ
+ ξ

)
B̃1 − 12

(
1
ξ
− ξ

)
Ẽ2 − x1

ξ
B̃3 − x2

1

2ξ

(
Ẽ2 + B̃1

)
,

B2 =
1
2

(
1
ξ
+ ξ

)
B̃2 +

1
2

(
1
ξ
− ξ

)
Ẽ1 − x1

ξ
Ẽ3 +

x2
1

2ξ

(
B̃2 − Ẽ1

)
,

B3 = B̃3 − x1

(
Ẽ2 + B̃1

)
,

(4)
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D1 =
1
2

(
1
ξ
+ ξ

)
D̃1 +

1
2

(
1
ξ
− ξ

)
H̃2 − x1

ξ
D̃3 +

x2
1

2ξ

(
H̃2 − D̃1

)
,

D2 =
1
2

(
1
ξ
+ ξ

)
D̃2 − 12

(
1
ξ
− ξ

)
H̃1 +

x1

ξ
H̃3 +

x2
1

2ξ

(
D̃2 − H̃1

)
,

D3 = D̃3 − x1

(
H̃2 − D̃1

)
,

(5)

H1 =
1
2

(
1
ξ
+ ξ

)
H̃1 − 12

(
1
ξ
− ξ

)
D̃2 − x1

ξ
H̃3 − x2

1

2ξ

(
D̃2 + H̃1

)
,

H2 =
1
2

(
1
ξ
+ ξ

)
H̃2 +

1
2

(
1
ξ
− ξ

)
D̃1 − x1

ξ
D̃3 +

x2
1

2ξ

(
H̃2 − D̃1

)
,

H3 = H̃3 − x1

(
D̃2 + H̃1

)
,

(6)

where Ẽa, B̃a, D̃a, H̃a are unknown functions of the variable ω = x2
0 − x2

1 − x2
3, ξ = x0 − x3.

Substituting (3)–(6) in (1) we obtain the reduced system(
B̃′

1 + Ẽ
′
2

)
ω + B̃′

1 − Ẽ′
2 + B̃1 + Ẽ2 = 0,(

B̃′
2 − Ẽ′

1

)
ω + B̃′

2 + Ẽ
′
1 + 2

(
B̃2 − Ẽ1

)
= 0,

B̃′
3 = 0, B̃3 = 0,

(7)

(
H̃ ′

1 + D̃
′
2

)
ω − H̃ ′

1 + D̃
′
2 + 2

(
H̃1 + D̃2

)
= 0,(

H̃ ′
2 − D̃′

1

)
ω −

(
H̃ ′

2 + D̃
′
1

)
+ H̃2 − D̃1 = 0,

D̃′
3 = 0, D̃3 = 0,

(8)

�̃
D =M�̃E +N �̃B, �̃

H =M �̃B −N �̃E, (9)

where M , N are functions of I1 =
�̃
E2 − �̃B2, I2 =

�̃
B
�̃
E, “′” designates differentiation.

To construct invariant solutions it is necessary to the integrate nonlinear system of differential
equations (7)–(9). We obtained a partial solution of the system, when N = 0, M = M(I1) in
the form

Ẽ1 = C1

(
ω−1/2 − ω−3/2

)
, Ẽ2 = C1

(
ω−1/2 + ω−3/2

)
, Ẽ3 = 0, (10)

B̃1 = −C1

(
ω−1/2 − ω−3/2

)
, B̃2 = C1

(
ω−1/2 + ω−3/2

)
, B̃3 = 0, (11)

D̃1 = mC1

(
ω−1/2 − ω−3/2

)
, D̃2 = mC1

(
ω−1/2 + ω−3/2

)
, D̃3 = 0, (12)

H̃1 = −mC1

(
ω−1/2 − ω−3/2

)
, H̃2 = mC1

(
ω−1/2 + ω−3/2

)
, H̃3 = 0, (13)

where m =M(0).
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Substituting the solution in (3)–(6), we obtain an exact solution of the nonlinear Maxwell
equations

E1 =
2C1x3(

x2
0 − x2

1 − x2
3

)3/2
, E2 =

2C1x0(
x2

0 − x2
1 − x2

3

)3/2
, E3 = − 2C1x1(

x2
0 − x2

1 − x2
3

)3/2
,

B1 = − 2C1x3(
x2

0 − x2
1 − x2

3

)3/2
, B2 =

2C1x0(
x2

0 − x2
1 − x2

3

)3/2
, B3 =

2C1x1(
x2

0 − x2
1 − x2

3

)3/2
,

D1 =
2C1mx3(

x2
0 − x2

1 − x2
3

)3/2
, D2 =

2C1mx0(
x2

0 − x2
1 − x2

3

)3/2
, D3 = − 2C1mx1(

x2
0 − x2

1 − x2
3

)3/2
,

H1 = − 2C1mx3(
x2

0 − x2
1 − x2

3

)3/2
, H2 =

2C1mx0(
x2

0 − x2
1 − x2

3

)3/2
, H3 =

2C1mx1(
x2

0 − x2
1 − x2

3

)3/2
.

In analogous way we construct solutions invariant under the following subalgebras of Poincaré
algebra: 〈J03, P1, P2〉, 〈J12+αP0, P1, P2〉, 〈J03+αJ12, P1, P2〉, 〈P0−J01−J13, P0+P3, P2〉, where
α = const.
The existence of the operator of the classical symmetry is not a necessary condition for

reduction of partial differential equations, as it is shown in [3, 4, 5]. It was proved in [6] that the
conditional symmetry under involutive set of operators is the necessary and sufficient condition
for reduction of partial differential equations by means of a corresponding ansatz.
Operators of nonpoint symmetry can be used to reduction of differential equations too. For

simplicity we consider a second order equation of the form

F (x1, x2, u, ux1 , ux2 , ux1x1 , ux1x2 , ux2x2) = 0. (14)

We search for a solution of (14) as a solution of system

∂u

∂x1
= v1(x1, x2, u),

∂u

∂x2
= v2(x1, x2, u). (15)

Denote u ≡ x3 and consider v1, v2 as a functions of variables x1, x2, x3; v1, v2 ∈ C1
(
R3, R1

)
.

Then the compability condition of the system (15) takes the form

v1
2 + v

1
3v

2 = v2
1 + v

2
3v

1. (16)

Any solution of (15) satisfies (14), if the following equality holds

F
(
x1, x2, x3, v

1
1 + v

1
3v

1, v1
2 + v

1
3v

2, v2
2 + v

2
3v

2
)
= 0. (17)

Thus the problem of construction of an ansatz of type (15) is reduced to the problem of finding
of operators of classical and conditional symmetry of the system (16), (17).
Let us consider the infinitesimal operator of one–parametrical group of transfomations of

independent and dependent variables

Q = ξ1(x1, x2, u)∂x1 + ξ
2(x1, x2, u)∂x2 + η(x1, x2, u)∂u (18)

and first prolongation of Q

Q
1
= Q+

(
η1 + ηuu1 − u1

(
ξ11 + ξ

1
uu1

) − u2

(
ξ21 + ξ

2
uu1

))
∂u1

+
(
η2 + ηuu2 − u1

(
ξ12 + ξ

1
uu2

) − u2

(
ξ22 + ξ

2
uu2

))
∂u2 ,

(19)
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where lower indices designate differentiation of ξp, η (p = 1, 2) with respect to the corresponding
variables. We associate the operator Q′

Q′ = ξ1(x1, x2, x3)∂x1 + ξ
2(x1, x2, x3)∂x2 + ξ

3(x1, x2, x3)∂x3

+
(
ξ31 + ξ

3
3v

1 − v1
(
ξ11 + ξ

1
3v

1
) − v2

(
ξ21 + ξ

2
3v

1
))
∂v1

+
(
ξ32 + ξ

3
3v

2 − v1
(
ξ12 + ξ

1
3v

2
) − v2

(
ξ22 + ξ

2
3v

2
))
∂v2 ,

η(x1, x2, x3) = ξ3(x1, x2, x3)

(20)

with operator Q.

Theorem. Let equation (14) be invariant with respect to one-parameter group generator Q (18).
Then the operator Q′ belongs to the invariance algebra of system (16), (17).

Proof. Acting by the operator Q
1

′ on the manifold (16), we obtain

ξ312 + ξ
3
32v

1 − v1
(
ξ112 + ξ

1
32v

1
) − v2

(
ξ212 + ξ

2
32v

1
)
+ v1

2

(
ξ33 − ξ11 − ξ23v2 − 2v1ξ13

)
−v2

2

(
ξ21 + ξ

2
3v

1
) − ξ12v1

1 − ξ22v1
2 − v1

3ξ
3
2 + v

2
(
ξ313 + ξ

3
33v

1 − v1
(
ξ113 + ξ

1
33v

1
)

−v2
(
ξ213 + ξ

2
33v

1
)
+ v1

3

(
ξ33 − ξ11 − 2v1ξ13 − ξ23v2

) − v2
3

(
ξ21 + ξ

2
3v

1
)

−v1
1ξ

1
3 − v1

2ξ
2
3 − v1

3ξ
3
3

)
+

(
ξ32 + ξ

3
3v

2 − v1
(
ξ12 + ξ

1
3v

2
) − v2

(
ξ22 + ξ

2
3v

2
))
v1
3

= ξ321 + ξ
3
31v

2 − v1
(
ξ121 + ξ

1
31v

2
) − v2

(
ξ221 + ξ

2
31v

2
)
+ v2

1

(
ξ33 − ξ22 − ξ13v1 − 2v2ξ23

)
−v1

1

(
ξ12 + ξ

1
3v

2
) − ξ11v2

1 − ξ21v2
2 − v2

3ξ
3
1 + v

1
(
ξ323 + ξ

3
33v

2 − v1
(
ξ123 + ξ

1
33v

2
)

−v2
(
ξ223 + ξ

2
33v

2
)
+ v2

3

(
ξ33 − ξ22 − 2v2ξ23 − ξ13v1

) − v1
3

(
ξ12 + ξ

1
3v

2
) − v2

1ξ
1
3

−v2
2ξ

2
3 − v2

3ξ
3
3

)
+

(
ξ31 + ξ

3
3v

1 − v1
(
ξ11 + ξ

1
3v

1
) − v2

(
ξ21 + ξ

2
3v

1
))
v2
3.

It is easy to verify, that this equality is fulfilled identically on the manifold (16). Thus we obtain

Q
1

′ (v1
2 + v

1
3v

2 − v2
1 − v2

3v
1
) ∣∣∣

v1
2+v1

3v2=v2
1+v2

3v1
≡ 0. (21)

It is necessary to prove that the equation (17) admits operator Q′ to prove the theorem. One
property of coordinates of prolonged operators Q

2
, Q

1

′ is used for this purpose, where

Q
2
= Q

1
+ εu11∂u11 + ε

u12∂u12 + ε
u22∂u22 , (22)

εuab = ηab + ubηau + uaηbu + uaubηuu + uabηu − uc (ξcab + ubξ
c
au)

− uauc (ξcbu + ubξ
c
uu)− uac (ξcb + ubξ

c
u)− ucb (ξca + uaξ

c
u)− uabucξ

c
u,

(23)

a, b, c = 1, 2, we mean summation over the index c.
Making the substitution u = x3, u1 = v1, u2 = v2, u11 = v1

1 + v
1
3v

1, u12 = v1
2 + v

1
3v

2,
u22 = v2

2 + v
2
3v

2 in (23), we obtain coefficients ε′u12 , ε′u22 associated with εu11 , εu12 , εu22 . Then
the following equalities

ε′u11 = Q
1

′ (v1
1 + v

1
3v

1
)
, ε′u12 = Q

1

′ (v1
2 + v

1
3v

2
)
, ε′u22 = Q

1

′ (v2
2 + v

2
3v

2
)

(24)

are fulfilled. The correctness of (24) is verified by direct calculations. Thus, derivatives u11, u12,
u22 are transformed in the same way as the combinations v1

1 + v
1
3v

1, v1
2 + v

1
3v

2, v2
2 + v

2
3v

2 under
the group transformations. From this it follows that the system (16), (17) is invariant under the
group G′

1 provided G1 is the invariance group of equation (14).
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Thus, we conclude that the group of transformations admissible by equation (14) is not wider
than the symmetry group of the system (16), (17). In the general case the symmetry group of
system (16), (17) contains the invariance group of (14) as a subgroup. There is a possibility of
expansion of this group by studying the symmetry properties of the system, as it is shown in
[7, 8]. To obtain new solutions it is necessary to use the symmetry operators of system (16),
(17), which are not prolongated operators of point symmetry of equation (14), as well as the
operators of conditional symmetry of the system. By using this approach we constructed ansatzes
reducing nonlinear equations to the system of ordinary differential equations. Integrating the
reduced system we obtained new solutions of nonlinear heat and wave equations.
The method of conditional symmetry is generalised to the Lie–Bäcklund operators (see for

example [9])

X = η(x, u, . . . , u
r
)∂u. (25)

Let us consider differential equations

U(x, u, u
1
, . . . , u

k
) = 0, (26)

where u ∈ Ck
(
Rn, R1

)
, x ∈ Rn.

Definition. Equation (26) is conditionaly invariant with respect to operator (25), if the follo-
wing condition is satisfied

X
k
U

∣∣∣
[η=0]∞

=M, (27)

where M �= 0, M
∣∣∣
[U=0]r

= 0, [η = 0]∞ is a set of all differential consequences of the equation

η = 0, [U = 0]r is a set of all differential consequences of r-th order of the equation U = 0.

The corresponding ansatz, which is a solution of the equation

η(x, u, . . . , u
r
) = 0,

reduces equation (26) to the system of equations with smaller number of independent variables.
Using this property we can construct exact solutions of partial differential equations.
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