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The periodic soliton resonances and recurrent wave solutions to the Davey–Stewartson equa-
tion are presented. The solutions that described the interaction between a y-periodic soliton
and a line soliton are analyzed to show the existence of the soliton resonances. The various
recurrent solutions (The growing-and-decaying mode, breather and rational growing-and-
decaying mode solutions) are presented. The y-periodic soliton and breather solutions can
be constructed as the imbricate series of algebraic soliton solutions and rational growing-
and-decaying mode solutions, respectively.

1 Introduction

It is well known that spin and statistics in quantum mechanics come from symmetries of transfor-
mation. The soliton solutions to some soliton equations show Fermion-like behavior. We could
not obtain the solutions from the initial value problem which forgive the coexistence of com-
pletely same solitons in the wave field to some soliton equations. It is very interesting to know
that what symmetries are hidden in soliton equations related to this problem. Before studying
the symmetries to the soliton equations from the point of view, we will show some propaga-
tion properties of solitons to the Davey–Stewartson (DS) equation which is the two-dimensional
generalization of the nonlinear Schrödinger equation [1].

The higher-dimensional nonlinear wave fields have richer phenomena than one-dimensional
ones since various localized solitons may be considered in higher-dimensional space. The DS
equation has four kinds of soliton solutions: the conventional line, algebraic, periodic and lattice
solitons. The conventional line soliton has an essentially one-dimensional structure. On the other
hand, the algebraic, periodic and lattice solitons have a two-dimensional localized structure.

The solutions to the DS equation have been studied previously in various aspects [2–9]. The
existence of solitons having the structures peculiar to a higher-dimensionality may contribute
to the variety of the dynamics of nonlinear waves. To clarify the dynamics, we must investigate
various interactions between two different kinds of solitons. In the previous papers [10, 11],
the various interactions between two y-periodic solitons, line and periodic and periodic and
algebraic solitons were investigated. And we found the periodic resonant interactions which are
qualitatively different from the interaction between two line solitons. We expect that the periodic
soliton resonances play fundamental role in the nonlinear development of higher-dimensional
wave field as the existence of the periodic soliton resonances may be related to the instability of
the solitons, accompanied by their decay and merging.

The governing equations for the description of the long time evolution of unstable wave train
have been studied by many authors. The extension to the two-dimensional case was examined
by Zakharov [12], Benny and Roskes [13] and Davey and Stewartson [1]. The time evolution of
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the solution of the 1D-NLS equation with periodic boundary condition and with a Benjamin–
Feir unstable initial condition was studied numerically by Lake et al. [15]. They found that
a modulated unstable wave train achieves a state of maximum modulation and returns to an
unmodulated initial state, which is well known as the Fermi–Pasta–Ulam (FPU) recurrence.
One of the important feature of the solutions of the NLS equations in one- and two-dimensions
is the recurrence of the unstable wavetrain to its initial state.

The purposes of this study are (i) to review periodic soliton solutions and recurrent solutions
and (ii) to show that these solutions can be constructed by imbricate series of rational soliton
solutions or rational growing-and-decaying mode solutions.

2 Periodic soliton resonances

The Davey–Stewartson equation may be written as

{
iut + puxx + uyy + r|u|2u− 2uv = 0,
pvxx − vyy − pr(|u|2)xx = 0,

(1)

where p = ±1, r is constant, eq. (1) with p = 1 and p = −1 are called the DS I and DS II
equations, respectively. In this section, we study the resonant interactions between y-periodic
soliton and line soliton mutually parallel propagating to the x-direction of the DS I equation
with r > 0. The solution that describes the interaction between a y-periodic soliton and a line
soliton is written as [11]

u = u0e
i(kx+ly−ωt) g

f
, v = −2p(log f)xx (p = 1) (2)

with

f = 1 − 1
α2

exp(ξ1) cos η +
M

4α4
exp(2ξ1)

+ exp(ξ2)
{

1 − N

α2
exp(ξ1) cos η +

MN2

4α4
exp(2ξ1)

}
,

(3)

g = 1 − 1
α2

exp(ξ1 + iφ) cos η +
M

4α4
exp 2(ξ1 + iφ)

+ exp(ξ2 + iψ)
{

1 − N

α2
exp(ξ1 + iφ) cos η +

MN2

4α4
exp 2(ξ1 + iφ)

}
,

(4)

where

ξ1 = αx− ΩP t + σ1, ξ2 = βx− ΩLt + σ2, η = δy − γt + κ,

sin2 φ

2
=

α2 + δ2

2ru2
0

, sin2 ψ

2
=

β2

2ru2
0

,

ΩP = 2kα− (α2 − δ2) cot
φ

2
, ΩL = β

(
2k − β cot

ψ

2

)
, γ = 2lδ,

M = 1
/[

1 − (α2 + δ2)2

2δ2ru2
0

]
, N =

2ru2
0 sin φ

2 sin ψ
2 cos φ−ψ

2 − αβ

2ru2
0 sin φ

2 sin ψ
2 cos φ+ψ

2 − αβ
.

(5)
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We can investigate the phase shifts after the collision between y-periodic soliton and line soliton
by using the solution. The condition |N | = ∞, corresponds to the phase shift in the propagation
direction becomes infinite for the case αβ > 0. This means that the period of the intermediate
state, where the periodic soliton propagates together with the line soliton, persist infinitely. This
is thought as a resonance between the y-periodic soliton and the line soliton. By equating the
denominator of N to zero, this condition is given by

2ru2
0 sin

φ

2
sin

ψ

2
cos

φ + ψ

2
− αβ = 0. (6)

The condition N = 0 corresponds to the phase shift in the propagating direction becomes
negative infinity for αβ > 0. This means that two solitons can interact infinitely apart each
other. This is thought as extremely repulsive or long range interaction between the y-periodic
soliton and the line soliton. The explicit expression of the condition is obtained by equating the
numerator of N with zero as

2ru2
0 sin

φ

2
sin

ψ

2
cos

φ− ψ

2
− αβ = 0. (7)

We can also show the existence of periodic soliton resonances in the interactions of periodic
soliton-periodic soliton and periodic soliton-algebraic soliton [10, 11].

3 Recurrent solutions

One of the important feature of the solution to the DS equation is the recurrence of the unstable
wavetrain to its initial state. Three kinds of recurrent solutions, growing-and-decaying mode,
breather and rational growing-and-decaying mode solutions are shown in this section, which can
be constructed from the two-soliton solution [15]. The two-soliton solution may be written as [3]

u = u0e
i(kx+ly−ωt) g

f
, v = −2p(log f)xx, (8)

with

f = 1 + eη1 + eη2 + Deη1+η2 , g = 1 + eη1+iφ1 + eη2+iφ2 + Deη1+η2+i(φ1+φ2),

where

ηj = Kjx + Ljy − Ωjt + η0
j , sin2 φj

2
=

pK2
j − L2

j

2ru2
0

,

Ωj = 2pkKj + 2lLj − (pK2
j + L2

j ) cot
φj

2
(j = 1, 2).

(9)

(i) growing-and-decaying mode solution. Taking wave numbers and frequencies pure
imaginary and complex, respectively,

K1 = K∗
2 = iβ, L1 = L∗

2 = iδ, Ω1 = Ω∗
2 = Ω + iγ,

φ1 = φ2 = φ : real, η0
1 = η0

2
∗
, eη0

1 = eη0∗
2 = −(1/2)e−σ̃+iθ,

we have the following dispersion relation and D

sin2 φ

2
=

δ2 − pβ2

2ru2
0

, Ω = − (
δ2 + pβ2

)
cot

φ

2
,

γ = 2pkβ + 2lδ, D =
2

1 + cosφ
> 1.



Periodic Soliton Solutions to the Davey–Stewartson Equation 213

Then, the solution is given by

u = u0e
i(kx+ly−ωt+φ)

[√
D cosh(Ωt + σ − iφ) − cos(βx + δy − γt + θ)

]

×
[√

D cosh(Ωt + σ) − cos(βx + δy − γt + θ)
]−1

,

(10)

v = 2pβ2

√
D cosh(Ωt + σ) cos(βx + δy − γt + θ) − 1[√
D cosh(Ωt + σ) − cos(βx + δy − γt + θ)

]2 , (11)

where σ = σ̃ + log 2√
D

. The existence condition for the non-singular solution is given by D > 1,
which is satisfied for δ2 − pβ2 > 0. This solution grows exponentially at the initial stage and
the growth rate is given by Ω, which is in agreement with the growth rate of the Benjamin–
Feir instability. Therefore, we can regard as this growing-and-decaying mode solution as one
described the nonlinear evolution of the unstable mode.

(ii) Breather solution. To obtain analytical expression for the breathing wave solution,
we set K1 = K2 = a, L1 = L2 = b and φ1 = −φ2 = iΦ in eq. (9), where a and b are real. Then,
frequencies Ω1 and Ω2 are complex and are complex conjugate with each other and the solution
is given by,

u = u0e
i(kx+ly−ωt)

√
D cosh ξ − cosh Φ cos(γt + θ) + i sinh Φ sin(γt + θ)√

D cosh ξ − cos(γt + θ)
, (12)

v = −2pa2D
1 − 1√

D
cosh ξ cos(γt + θ)[√

D cosh ξ − cos(γt + θ)
]2 , (13)

where

ξ = ax + by − Ωt + σ, sinh2 Φ
2

=
b2 − pa2

2ru2
0

> 0,

Ω = 2(pka + lb), γ =
(
b2 + pa2

) √
2ru2

0

b2 − pa2
+ 1, D = 1 +

b2 − pa2

2ru2
0

,

(14)

where σ and θ are arbitrary phase constants.
(iii) Rational growing-and-decaying mode solution. We consider the long wave limit

of the growing-and-decaying mode solution. Putting K1 = K∗
2 = iεc, L1 = L∗

2 = iεd, η0
1 = η0∗

2 =
ε(iθ̃′ − σ̃′) + iπ, and taking the limit as ε → 0, we have

u = u0e
i(kx+ly−ωt)

{
1 − 4α(α± iη)

α2 + η2 + ξ2

}
, (15)

v = −4pc2
α2 + η2 − ξ2

(α2 + η2 + ξ2)2
, (16)

where

ξ = cx + dy − γt + θ′, η = Ωt + σ′,

Ω = ± (
d2 + pc2

)√
2ru2

0

d2 − pc2
, γ = 2pkc + 2ld, α2 =

d2 − pc2

2ru2
0

.
(17)
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4 Periodic soliton and recurrent solutions as imbricate series
of rational solutions

Zaitsev has succeeded in obtaining a periodic soliton solution by the imbricate series of algebraic
soliton solutions for the Kadomtsev–Petviashvili (KP) equation with positive dispersion [16]. It
is known that the lattice soliton solution to the KP equation with positive dispersion that have
doubly periodic array of the localized structure in the x-y plane was constructed as doubly
imbricate series of algebraic soliton solutions, which was expressed by using Weierstrass’s ℘
function or the Riemann theta functions [17]. In this section, we show that the y-periodic
soliton and breather solutions can be constructed as the imbricate series of algebraic soliton
solutions and rational growing-and-decaying mode solutions, respectively.

(i) Y -periodic soliton solution as imbricate series of algebraic soliton solutions.
It is interesting to note that the algebraic soliton solutions is given as the following form:

u = u0eiζ

[
1 +

2iB

ξ + i
√
η2 + A2

] [
1 +

2iB

ξ − i
√

η2 + A2

]
, (18)

v = 2p

[
1

(ξ + i
√
η2 + A2)2

+
1

(ξ − i
√
η2 + A2)2

]
. (19)

where

ζ = kx + ly − ωt, ξ = x−
(

2pk − p−R2

B

)
t + ξ0, η = R(y − 2lt) + η0,

B =

√
p + R2

2ru2
0

, A2 = 4B2

/(
2B2 − p−R2

ru2
0

)
,

(20)

The y-periodic soliton solution can be obtained from two-soliton solution of Satsuma and
Ablowitz as follows:

u = u0eiζ(1 − tan2 φ

2
) cos2 φ

2

[
1 − 2

tan φ
2

1 − tan2 φ
2

×
1√
D

tan φ
2 cos(δy − γt + θ) − i sinh(αx− Ωt + σ)

cosh(αx− Ωt + σ) − 1√
D

cos(δy − γt + θ)

]
,

(21)

v = −2pα2
1 − 1√

D
cosh(αx− Ωt + σ) cos(δy − γt + θ)[

cosh(αx− Ωt + σ) − 1√
D

cos(δy − γt + θ)
]2 , (22)

where

D =
[
1 − (δ2 + pα2)2

2ru2
0δ

2

]−1

> 1, sin2 φ

2
=

δ2 + pα2

2ru2
0

,

Ω = 2pkα− (pα2 − δ2) cot
φ

2
, γ = 2lδ.

(23)
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On the basis of eqs. (18) and (19), we assume the form of the y-periodic soliton solution as
follows:

u = û0eiζ

[
1 +

∑
m

ib
ξ′ + iν(η) + imπ

] [
1 +

∑
m

ib
ξ′ − iν(η) + imπ

]
, (24)

v =
pα2

2

∑
m

[
1

(ξ′ + iν(η) + imπ)2
+

1
(ξ′ − iν(η) + imπ)2

]
, (25)

where the summation
∑
m

means lim
N→∞

N∑
m=−N

, ν(η) is a function of η to be determined afterward.

The function
√

η2 + A is deformed to ν(η) by nonlinear effects. Equations (24) and (25) are
rewritten as follows

u = û0eiζ(1 − b2)
[
1 − 2b

1 − b2
b cos 2ν(η) + i sinh 2ξ′

cosh 2ξ′ − cos 2ν(η)

]
, (26)

v = −2pα2 1 − cos 2ν(η) cosh 2ξ′

[cosh 2ξ′ − cos 2ν(η)]2
. (27)

Comparing these eqs. (26) and (27) with eqs. (21) and (22), respectively, we find

û0 = u0 cos2 φ

2
, b = − tan

φ

2
, ξ′ =

1
2

(αx− Ωt + σ′),

ν(η) = 1
2 cos−1

[
1√
D

cos(δy − γt + θ)
]
.

(28)

The substitution of eq.(28) into eqs.(24) and (25) gives the y-periodic soliton solution as an
imbricate series of algebraic solitons. Taking the limφ → 0 (α → 0, δ → 0 but δ/α = R is
finite), we have

ξ′ =
α

2
ξ, ν(η) =

α

2

√
η2 + A2, b = αB. (29)

This means that the solutions (21) and (22) are simple summations of algebraic soliton solutions
for very small φ.

Recently, the lattice soliton solution to the DS equation was constructed as doubly imbricate
series of algebraic soliton solutions which was expressed by using Weierstrass’s ℘ function or the
Riemann theta functions [18].

(ii) Breather solution as imbricate series of rational growing-and-decaying mode
solutions. At first, we have to note that the rational growing-and-decaying mode solution is
rewritten as following form,

u = u0eiζ

[
1 ∓ 2iα

η + i
√
ξ2 + α2

] [
1 ∓ 2iα

η − i
√
ξ2 + α2

]
, (30)

v = −2pc2
[{

1

(η + i
√
ξ2 + α2)2

+
1

(η − i
√
ξ2 + α2)2

}

+
2α

(η + i
√
ξ2 + α2)2

2α

(η − i
√
ξ2 + α2)2

]
.

(31)
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On the basis of eqs. (30) and (31), we assume the form of the breather solution as follows,

u = ū0eiζ

{
1 + ib

∑
m

1
η′ + iν(ξ) + mπ

} {
1 + ib

∑
m

1
η′ − iν(ξ) + mπ

}
, (32)

v = 4Aα2

[∑
m

1
(η′ + iν(ξ) + mπ)2

+
∑
m

1
(η′ − iν(ξ) + mπ)2

+4α2

{∑
m

1
(η′ + iν(ξ) + mπ)2

}{∑
m

1
(η′ − iν(ξ) + mπ)2

}]
,

(33)

Equations (32) and (33) are rewritten as follows,

u = ū0(1 − b2)eiζ

[
1 − 2b

1 − b2
b cos 2η′ − i sin 2η′

cosh 2ν(ξ) − cos 2η′

]
, (34)

v = 16Aα2

[
4α2 + 1 − cos 2ν(ξ) cos 2η′

(cosh 2ν(ξ) − cos 2η′)2

]
. (35)

Comparing these eqs. (34) and (35) with eqs. (12) and (13), respectively, we find

η′ =
1
2
η =

1
2

(Ωt + σ), b =
[

2ru2
0

b2 − pa2
+ 1

]− 1
2

= tanh
Ψ
2
, A = − pa2ru2

0

b2 − pa2
,

ū0 =
u0

1 − b2
, ν(ξ) =

1
2

ln
(√

D cosh ξ +
√
D cosh2 ξ − 1

)
,

(36)

where

D = 1 +
b2 − pa2

2ru2
0

. (37)

Substituting eq. (36) into eqs. (32) and (33), we have the imbricate series constructing breather
solution.

5 Conclusion

The DS equation has four kinds of soliton solutions and three kinds of recurrent wave solutions.
We have investigated the interaction between y-periodic soliton and line soliton. There are two-
types of singular interactions, namely the resonant interaction and the long range interaction.
In the long range interaction, the line soliton receives a small transverse disturbance of the same
wave number as approaching y-periodic soliton. The disturbance on the line soliton develops into
the same y-periodic soliton as approaching soliton. The line soliton emits the y-periodic soliton
forward and changes into the messenger line soliton. Then, we observe that the same y-periodic
solitons coexist in the wave field when the messenger line soliton is propagating between them.
It was also shown that the periodic soliton solutions and the recurrent wave solutions can be
constructed as imbricate series of algebraic soliton solutions and rational growing-and-decaying
mode solutions, respectively. If we can regard the y-periodic soliton as a sequence of infinite
algebraic solitons, we see that same algebraic soliton can not coexist, but infinite algebraic
solitons can coexist in the wave field, which is a kind of condensation. We would like to go on
to investigate on the symmetries related to these phenomena.
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