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We consider scalar (1 + 1)-dimensional evolution equation of order n ≥ 2, which possesses
time-independent formal symmetry (i.e. it is integrable in the sense of symmetry approach),
shared by all local generalized time-independent symmetries of this equation. We show that
if such equation possesses the nontrivial canonical conserved density ρm, m ∈ {−1, 1, 2, . . .},
then it has no polynomial in time local generalized symmetries (except time-independent
ones) of order higher than n+m+1. Some generalizations of this result and related results are
also presented. Using them, we have found all local generalized time-dependent symmetries
of Harry Dym and mKdV equations.

Introduction

The scalar (1+ 1)-dimensional evolution equation, having the time-independent formal symme-
try, is either linearizable or integrable via inverse scattering transform (see e.g. [1, 2, 3, 4] for
the survey of known results and [5] for the generalization to (2 + 1) dimensions).

It is natural to ask whether such equation may have local generalized time-dependent sym-
metries, different from time-independent ones, forming the integrable hierarchy of the equation
considered, and how to find all of them (cf. Ch. V of [4]). To the best of our knowledge, there
were no attempts to find general answer to this question, although long ago all local generalized
symmetries of KdV [6, 7] and Burgers [6] equations were found.

In this paper we present the results, enabling one to answer this question for a large class of
evolution equations. In particular, we prove that if ρ−1 = (∂F/∂un)−1/n �∈ ImD, but ∇F (ρ−1) ∈
ImD, then the equation ut = F (x, u, . . . , un), n ≥ 2, has no local generalized time-dependent
symmetries of order higher than n (see Section 1 and Theorem 1 in Section 2 for details).

Next, for the majority of nonlinear evolution equations one can prove the polynomiality in time
of all their local generalized symmetries, using scaling or other arguments, so it is interesting to
consider the conditions of existence of polynomial in time symmetries, especially for the equations
with ρ−1 ∈ ImD. To this end one can apply our Theorem 2, stating that if canonical conserved
density ρm �∈ ImD for some m ∈ N, then the equation ut = F (x, u, . . . , un), n ≥ 2, possessing
time-independent formal symmetry, has no polynomial in time local generalized symmetries
(except time-independent ones) of order higher than the number pF = pF(m), given by (20).

Finally, on the basis of Theorems 1 and 2 we suggest the scheme of finding all local generalized
time-dependent symmetries of a given integrable evolution equation and apply it to Harry Dym
and modified KdV equations. We also discuss in brief the generalization of our results to the
systems of evolution equations.
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1 Basic definitions and known results

We consider the scalar (1 + 1)-dimensional evolution equation

∂u/∂t = F (x, u, u1, . . . , un), n ≥ 2, ∂F/∂un �= 0, (1)

where ul = ∂lu/∂xl, l = 0, 1, 2, . . ., u0 ≡ u, and the local generalized symmetries of this equation,
i.e. the right hand sides G of evolution equations

∂u/∂τ = G(x, t, u, u1, . . . , uk), (2)

compatible with equation (1) (following [3, 6] we identify the symmetries with their character-
istics).

For any function H = H(x, t, u, u1, . . . , uq) the greatest number m such that ∂H/∂um �= 0 is
called its order and is denoted as m = ordH. For H = H(x, t) we assume that ordH = 0. We
shall call the function f of x, t, u, u1, . . . local [4], if it has finite order.

We shall denote by S(k)
F the space of local generalized symmetries of order not higher than

k of Eq.(1). Let also SF =
∞⋃

j=0
S

(j)
F , ΘF = {H(x, t)|H(x, t) ∈ SF }, SF,k = S

(k)
F /S

(k−1)
F for

k = 1, 2, . . ., SF,0 = S(0)
F /ΘF .

Finally, let AnnF be the set of all local time-independent generalized symmetries of Eq.(1).
In what follows we shall always consider time-dependent local generalized symmetries of Eq.(1)
as the elements of quotient space SF /AnnF . In other words, we shall consider time-dependent
symmetries modulo time-independent ones (i.e. up to the addition of linear combinations of
time-independent symmetries).
SF is Lie algebra with respect to the so-called Lie bracket [2, 4]

{h, r} = r∗(h)− h∗(r) = ∇h(r)−∇r(h),

where for any sufficiently smooth function f of x, t, u, u1, . . . , us we have introduced the notation

f∗ =
s∑

i=0

∂h/∂uiD
i, ∇f =

∞∑
i=0

Di(f)∂/∂ui.

Here D = ∂/∂x +
∞∑
i=0
ui+1∂/∂ui is the total derivative with respect to x. We shall denote by

ImD the image of the space of local functions under the action of the operator D.
G is symmetry of Eq.(1) if and only if [4]

∂G/∂t = −{F,G}. (3)

Let us note without proof (cf. Lemma 5.21 from [4]) that for any G ∈ SF , ordG = k ≥ n0,
we have

∂G/∂uk = ck(t)Φk/n, (4)

where ck(t) is a function of t, Φ = ∂F/∂un,

n0 =

{
max(1− j, 0), if F is such that ∂F/∂un−i = φi(x), i = 0, . . . , j,
2 otherwise.

(5)

In what follows we shall assume without loss of generality that any symmetry G ∈ SF,k,
k ≥ n0 vanishes, provided the relevant function ck(t) is identically equal to zero.
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We make also a blanket assumption that all the functions that appear below in this paper
(the function F , symmetries G, etc.) are locally analytical functions of their arguments.

For any local functions P,Q the relation R = {P,Q} implies [2]

R∗ = ∇P (Q∗)−∇Q(P∗) + [Q∗, P∗], (6)

[∇P ,∇Q] = ∇R. (7)

Here ∇P (Q∗) ≡
∞∑

i,j=0
Dj(P ) ∂2Q

∂uj∂ui
Di and likewise for ∇Q(P∗); [·, ·] stands for the usual commu-

tator of linear differential operators.
For P = G, Q = F , using Eq.(3), we obtain

∂G∗/∂t ≡ (∂G/∂t)∗ = ∇G(F∗)−∇F (G∗) + [F∗, G∗]. (8)

Now let us remind some facts concerning the formal series in powers of D (see e.g. [1, 3, 5] for
more information; in contrast with these references we let the coefficients of the series depend
explicitly on time, but this obviously doesn’t alter the results, listed below), i.e. the expressions
of the form

H =
m∑

j=−∞
hj(x, t, u, u1, . . .)Dj . (9)

The greatest integer m such that hm �= 0 is called the degree of formal series H and is denoted by
degH. For any formal series H of degree m �= 0 there exists unique [5] (up to the multiplication
by m-th root of unity) formal series H1/m of degree 1 (or −1 for m < 0) such that (H1/m)m = H.
The fractional powers of H are defined as Hl/m = (H1/m)l for all integer l.

Let us also define [3] the residue of the formal series H as the coefficient at D−1, i.e. resH =
h−1, and the logarithmic residue as res lnH = hm−1/hm.

The formal series R is called the formal symmetry (of infinite rank) of Eq.(1), if it satisfies
the relation (cf. [3])

∂R/∂t+∇F (R)− [F∗,R] = 0. (10)

Finally, let us introduce the important notion of master symmetry [8] for the particular case
of local functions: the local function B(x, u, u1, . . .) is called (time-independent local) master
symmetry of Eq.(1), if for any P ∈ AnnF we have {B,P} ∈ AnnF . If in addition {B,F} �= 0, we
shall call B strong master symmetry. Like for the time-dependent symmetries, we shall always
consider master symmetries up to the addition of the terms, being the linear combinations of
time-independent symmetries.

2 The no-go theorem

By Theorem 1 from [10] for any symmetry G of Eq.(1) of order k > n+ n0 − 2 we have

G∗ =
k∑

j=k−n+1

cj(t)F
j/n
∗ +

(
1
n
ċk(t)D−1(Φ−1/n)− k

n
ck(t)D−1(∇F (Φ−1/n))

)
F

k−n+1
n∗ + N, (11)

where cj(t) are some functions of t and N is some formal series, degN < k − n+ 1.
Analyzing the terms, standing underD−1, we conclude that if Φ−1/n �∈ ImD, while∇F (Φ−1/n)

∈ ImD, then G∗ (and hence G itself) becomes nonlocal, and nonlocal terms vanish only if
ċk(t) = 0.



On Local Time-Dependent Symmetries of Integrable Evolution Equations 199

Lemma 1 If G ∈ SF,k, k ≥ n0, and there exists a linear differential operator L =
q∑

j=0
aj∂

j/∂tj,

aj ∈ C, such that L(ck(t)) = 0, then L(G) = 0.

Proof of the lemma. Let us assume that the statement of the lemma is wrong, i.e. L(G) =
G̃ �= 0. It is obvious that G̃ ∈ S(k−1)

F (G̃ ∈ ΘF for k = 0) and that the determining equations (3)
for G̃ contain neither ck(t) nor its time derivatives. Since by assumption G ∈ SF,k, G must
vanish if ck(t) vanishes. On the other hand, this is impossible, because G̃ is independent of ck(t)
and its derivatives and G̃ �= 0. This contradiction may be avoided only if G̃ = 0, what proves
the lemma.

Using Lemma 1 with L = ∂/∂t, we conclude from the above that if Φ−1/n �∈ ImD and
∇F (Φ−1/n) ∈ ImD, then all the elements of SF,q for q > n+ n0 − 2 are time-independent, and
hence, since we consider time-dependent symmetries modulo time-independent ones, Eq.(1) has
no local time-dependent generalized symmetries of order higher than n+ n0 − 2.

Finally, from the definition (5) of n0 it is clear that for n0 = 0, 1 Φ−1/n = φ̃(x) ∈ ImD and
hence the case Φ−1/n �∈ ImD is possible only for n0 = 2. Thus, we have proved

Theorem 1 If (∂F/∂un)−1/n �∈ ImD, while ∇F ((∂F/∂un)−1/n) ∈ ImD, then Eq.(1) has no
local time-dependent generalized symmetries of order higher than n.

Let B be strong master symmetry of Eq.(1) and ordB > n. Then Q = B+t{B,F} obviously
is time-dependent symmetry of Eq.(1) of order higher than n, what contradicts to Theorem 1.
This contradiction proves the following

Corollary 1 If the conditions of Theorem 1 hold for Eq.(1), then it has no local time-indepen-
dent strong master symmetries of order higher than n.

As an example, let us consider Harry Dym equation

ut = u3u3.

It is straightforward to check that we have (∂F/∂u3)−1/3 = u−1 �∈ ImD, but ∇F (u−1) ∈ ImD.
Hence, the equation in question has no time-dependent symmetries of order higher than 3. Fur-
ther computation of symmetries of orders 0, . . . , 3 shows that, apart from the infinite hierarchy
of time-independent symmetries, Harry Dym equation has only two local time-dependent gen-
eralized symmetries: u+3tu3u3 and xu1 +3tu3u3, and both of them are equivalent to Lie point
symmetries.

3 Structure of linear in time symmetries

Consider polynomial in time t symmetries of Eq.(1) from the space SF,q. Using Lemma 1 with
L = ∂s/∂ts, one may easily check that in order to possess polynomial in time symmetry from SF,q

Eq.(1) must possess (at least one) linear in t symmetry Q = K+tH ∈ SF,q, ∂K/∂t = ∂H/∂t = 0,
H ∈ SF,q. It is obvious that

{F,H} = 0. (12)

Since Q ∈ SF,q, it is clear that k ≡ ordK ≤ q. The substitution of G = Q and P = F into (3)
and (8) yields

{F,K} = −H, (13)

∇K(F∗)−∇F (K∗) + [F∗,K∗] = H∗. (14)
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Since for arbitrary F and K ord{F,K} ≤ k + n− 1, Eq.(13) implies that k + n− 1 ≥ q and
hence k ≥ q − n+ 1.

Plugging the symmetry Q into (11) and setting t = 0, we immediately obtain the following
representation for K∗, provided q > n+ n0 − 2:

K∗ =
k∑

j=q−n+1

κjF
j/n
∗ +

(
γ

n
D−1(Φ−1/n)− δk,q

k

n
κkD

−1(∇F (Φ−1/n))
)
F

q−n+1
n∗ + N, (15)

where κj ∈ C, γ = Φ−q/n∂H/∂uq ∈ C, γ �= 0; N is some formal series with time-independent
coefficients, degN < q − n+ 1; δk,q = 1 if k = q and 0 otherwise.

Let us mention that if k = q, κk �= 0, we may consider the symmetry Q′ = Q − (κq/γ)H =
tH +K ′ ∈ SF,q instead of Q, and for Q′ we have ordK ′ < q. Thus, we can always assume that
ordK < q and hence κkδk,q = 0.

4 Polynomial in time symmetries of evolution equation
having formal symmetry

From now on we shall consider the evolution equation (1), possessing a time-independent
(∂L/∂t = 0) formal symmetry L of nonzero degree p. By definition, L satisfies the equation

[∇F − F∗,L] = 0. (16)

It is clear that for any integer q cLq/p, c = const also is formal symmetry of Eq.(1) [3].
Therefore, without loss of generality we may assume in what follows that deg L = 1 and
L = (∂F/∂un)1/nD + · · · [3].

It is known [2] that there exists at most one (up to the addition of linear combination of local
generalized time-independent symmetries Z = Z(x, u, u1, . . .) of Eq.(1), satisfying [∇Z −Z∗,L] =
0) such local generalized time-independent symmetry Y of Eq.(1) that1

[∇Y − Y∗,L] �= 0.

Let us choose Y to be of minimal possible order r, adding to it, if necessary, the appropriate
linear combination of the symmetries Z ∈ AnnF , which satisfy the condition [∇Z − Z∗,L] = 0.

From now on we shall assume (it is clear that this does not lead to the loss of generality)
that for any local generalized time-independent symmetry P = P (x, u, u1, . . .) ∈ SF /S

(r)
F

[∇P − P∗,L] = 0. (17)

Finally, let us assume that (∂F/∂un)−1/n ∈ ImD, i.e. the necessary condition of existence of
time-dependent symmetries of order higher than n, given in Theorem 1, is satisfied.

Now let us consider again the symmetry Q = K+ tH ∈ SF,q, ordQ = q > max(r, n+n0 −2).
Using Jacobi identity, Eq.(17) for P = H, Eqs. (13), (16), and Eqs.(6), (7) for P = F , Q = K,
we obtain that for all integer s

[∇F − F∗, [Ls,∇K −K∗]] = −[∇K −K∗, [∇F − F∗,Ls]]− [Ls, [∇K −K∗,∇F − F∗]] =
−[Ls, [∇K −K∗,∇F − F∗]] = [Ls,∇H −H∗] = 0.

1If, e.g., as in the majority of cases, all time-independent symmetries are generated by hereditary recursion
operator R from one seed symmetry, leaving R invariant, the symmetry Y with such property does not exist.
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Hence, by Lemma 8 from [2] [Ls,∇K − K∗] =
ks∑

j=−∞
cj,sLj , cj,s ∈ C. Straightforward but

lengthy check, which we omit here, shows that in fact ks = s+ q − n, and thus

[Ls,∇K −K∗] =
s+q−n∑
j=−∞

cj,sLj , cj,s ∈ C, cs+q−n,s �= 0. (18)

Since res∇G(Ls) = 0 for s ≤ −2 and res Lj = 0 for j < −1, Eq.(18) for s ≤ −2 yields

res [Ls,K∗] = −
s+q−n∑
j=−∞

cj,sres Lj = −
s+q−n∑
j=−1

cj,sres Lj . (19)

But the residue of the commutator of two formal series always lies in ImD [3]. On the other
hand, ρj = res Lj , j = −1, 1, 2, 3, . . . (and ρ0 = res ln L) are nothing but the so-called canonical
conserved densities for Eq.(1) [3], and hence ∇F (ρj) ∈ ImD. The density ρj is called nontrivial,
if ρj �∈ ImD, and trivial otherwise.

If the density ρs+q−n is nontrivial, while ρj , j = −1, 1, . . . , s+q−n−1 are trivial, then Eq.(19)
contains a contradiction. Namely, its l.h.s. lies in ImD, while the nonzero term cs+q−n,sρs+q−n

on its r.h.s. does not belong to ImD.
Since the density ρ−1 = (∂F/∂un)−1/n is trivial by assumption, let us restrict ourselves to the

case s+ q − n ≥ 1. This inequality is compatible with the condition s ≤ −2 for the non-empty
range of values of s if and only if q > n+2. Therefore, the range of values of s, for which Eq.(19)
may contain the contradiction, is n− q + 1, . . . ,−2.

Thus, if for q > max(n + 2, r) at least one of the densities ρ1, . . . , ρq−n−2 is nontrivial, then
Eq.(18) (and hence Eq.(13) with H ∈ SF,q as well) has no local time-independent solutions K.

Let

pF =

{
m+ n+ 1, if (17) is satisfied for all P ∈ AnnF ,

max(r,m+ n+ 1) otherwise,
(20)

where m ∈ N is the smallest number such that ρm �∈ ImD, while for j = −1, 1, . . ., m−1, j �= 0,
ρj ∈ ImD (ρ−1 ∈ ImD by assumption).

It is clear from the above that Eq.(1) has no polynomial in time symmetries from SF /S
(pF)

F

(except time-independent ones), and we obtain (cf. Theorem 1 and Corollary 1)

Theorem 2 If Eq.(1) has time-independent formal symmetry L, deg L �= 0, of infinite rank,
and for some m ∈ N ρm �∈ ImD, while for j = −1, 1, . . ., m− 1, j �= 0, ρj ∈ ImD, then Eq.(1)

has no polynomial in time2 local generalized symmetries from SF /S
(pF)

F .

Corollary 2 If the conditions of Theorem 2 hold for Eq.(1), then it has no local time-indepen-
dent strong master symmetries of order higher than pF.

Let us mention that provided one can prove that all the symmetries from SF /S
(pF)

F are poly-
nomial in time, Theorem 2, exactly like Theorem 1, implies the absence of any time-dependent
local generalized symmetries of order higher than pF of Eq.(1).

It is also important to stress that the application of Theorem 2 does not require the check of
triviality of the density ρ0, as shows the well known example of Burgers equation

ut = u2 + uu1.
2Of course, except time-independent ones.
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This equation has time-independent formal symmetry of degree 1 and local generalized polyno-
mial in time symmetries of all orders [6], and its canonical densities ρ−1, ρ1, ρ2, . . . are trivial,
while ρ0 is nontrivial.

Let us mention without proof that our results may be partially generalized to the case of
systems of evolution equations of the form (1), where u is s-component vector, provided s × s
matrix Φ = ∂F/∂un is nondegenerate (detΦ �= 0), may be diagonalized by means of some
similarity transformation Φ → Φ′ = ΩΦΩ−1 and has s distinct eigenvalues λi. We shall call the
systems (1) with such properties nondegenerate weakly diagonalizable. For such systems we have
the following analogs of Theorems 1 and 2:

Theorem 3 If for all eigenvalues λi of Φ we have λ−1/n
i �∈ ImD, but ∇F (λ−1/n

i ) ∈ ImD,
then nondegenerate weakly diagonalizable system (1) has no local time-dependent generalized
symmetries of order higher than n.

Theorem 4 If nondegenerate weakly diagonalizable system (1) has time-independent formal
symmetry L = ηDq + · · · of infinite rank, with det η �= 0 and q = deg L �= 0, (17) is satisfied for
all time-independent symmetries P of (1), and3 for some m ∈ N ρl

m �∈ ImD for all l = 1, . . . , s,
while for j = −1, 1, . . ., m− 1, j �= 0, ρa

j ∈ ImD for all a = 1, . . . , s, then (1) has no polynomial

in time local generalized symmetries (except time-independent ones) from SF /S
(m+n+1)
F .

The modification of Corollaries 1 and 2 for the case of nondegenerate weakly diagonalizable
systems is obvious, so we leave it to the reader.

Let us note that the requirements of Theorem 4 may be relaxed. Namely, if there exist
nontrivial densities ρa

j with j < m, j �= 0, but only for j = m all the densities ρl
m, l = 1, . . . , s,

are nontrivial, and the nontrivial densities ρa
j with j < m, j �= 0, are linearly independent of ρa

m

with the same value of index a, then the statement of Theorem 4 remains true.
Thus, Theorems 1 – 4 reveal interesting duality between time-dependent symmetries and

canonical conserved densities of integrable evolution equations, which is completely different from
the one coming e.g. from the famous Noether’s theorem. Namely, as one can conclude from Theo-
rems 1 – 4, the nontriviality of these densities (except ρ0) turns out to be an obstacle to existence
of polynomial in time (or even any time-dependent) local generalized symmetries of sufficiently
high order of such equations, provided they possess time-independent formal symmetry. This
result appears to be rather unexpected in view of the well known fact that the existence of canon-
ical conserved densities is the necessary condition of existence of high order time-independent
symmetries of the evolution equations, see e.g. [1]. However, the apparent contradiction between
these two results vanishes, if we consider nonlocal symmetries. Indeed, integrable evolution sys-
tems usually possess the infinite number of nonlocal polynomial in time symmetries, which form
the so-called hereditary algebra, see e.g. [9], and the nonlocal variables that these symmetries
depend on turn out to be nothing but the integrals of nontrivial conserved densities.

5 Applications

It is well known that the straightforward finding of all time-dependent local generalized sym-
metries of a given integrable evolution equation, and especially the proof of completeness of the
obtained set of symmetries, is a highly nontrivial task (see e.g. [7] for the case of KdV equa-
tion), in contrast with time-independent symmetries, all of which usually can be obtained by
the repeated application of the recursion operator to one seed symmetry.

3See [3] for the definition of densities ρl
k.
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Fortunately, our results allow to suggest a very simple and efficient way to find all local
generalized time-dependent symmetries of a given integrable evolution equation.

First of all, one should find the smallest m ∈ {−1, 1, 2, . . .} such that the canonical conserved
density ρm is nontrivial. If m �= −1, then one should evaluate the number pF and check

the polynomiality in time of all local generalized symmetries from the space SF /S
(pF)

F , using
scaling arguments or e.g. the results of [11]. If m = −1 or the polynomiality really takes
place, then by Theorem 1 or 2 there exist no time-dependent symmetries (of course, modulo the
infinite hierarchy of time-independent ones) of order higher than n or pF respectively. Finally,
all time-dependent symmetries of orders 0, . . . , n or 0, . . . , pF can be found by straightforward
computation, using e.g. computer algebra.

The similar scheme, this time based on Theorems 3 and 4, works for integrable nondegenerate
weakly diagonalizable systems of evolution equations as well, provided all P ∈ AnnF satisfy (17)
(for m = −1 this is not required).

Our method fails, if ρj are trivial for all j = −1, 1, 2, . . . or it is impossible (for m �= −1) to

prove that all the elements of the space SF /S
(pF)

F are polynomial in time. However, such situ-
ations are typical for linearizable equations, while for genuinely nonlinear integrable equations
one usually encounters no difficulties in the application of the above scheme.

Let us consider for instance the modified Korteweg-de Vries (mKdV) equation

ut = u3 + u2u1.

It has the recursion operator (see e.g. [4]) R = D2 +(2/3)u2− (2/3)u1D
−1u and L = R1/2 is the

formal symmetry of degree 1, which satisfies (17) for all P ∈ AnnmKdV, since the operator R is
hereditary. The density ρ1 = u2 is nontrivial, while ρ−1 = 1 ∈ ImD, so we have pmKdV = 5. All
local time-dependent generalized symmetries of mKdV equation are polynomial in time [11], so
by Theorem 2 it has no local generalized time-dependent symmetries of order greater than 5.
The computation of symmetries of orders 0, . . . , 5 shows that the only generalized symmetry of
mKdV equation, that doesn’t belong to the infinite hierarchy of time-independent symmetries,
is the dilatation xu1 + u+ 3t(u3 + u2u1), which is equivalent to Lie point symmetry.
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