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Lie Submodels of Rank 1 for MHD Equations

Victor O. POPOVYCH

Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Street, Kyiv, Ukraine

The MHD equations describing flows of a viscous homogeneous incompressible fluid of finite
electrical conductivity are reduced by means of Lie symmetries to partial differential equa-
tions in three independent variables. Symmetry properties of the reduced systems are inves-
tigated.

1. Introduction. The MHD equations (the MHDEs) describing flows of a viscous homogeneous
incompressible fluid of finite electrical conductivity have the following form:

�ut + (�u · �∇)�u−��u+ �∇p+ �H × rot �H = �0, div �u = 0,
�Ht − rot(�u× �H)− νm� �H = �0, div �H = 0.

(1)

System (1) is very complicated and construction of its new exact solutions is a difficult problem.
In [1, 2] the MHDEs (1) are reduced to ordinary differential equations and to partial differential
equations in two independent variables. Following [3], in this paper we reduce the MHDEs
(1) to partial differential equations in three independent variables by means of one-dimensional
subalgebras of the maximal Lie invariance algebra of the MHDEs.
In (1) and below, �u = {ua(t, �x)} denotes the velocity field of a fluid, p = p(t, �x) denotes

the pressure, �H = {Ha(t, �x)} denotes the magnetic intensity, νm is the coefficient of magnetic
viscosity, �x = {xa}, ∂t = ∂/∂t, ∂a = ∂/∂xa, �∇ = {∂a},� = �∇·�∇ is the Laplacian. The kinematic
coefficient of viscosity and fluid density are set equal to unity, permeability is done (4π)−1.
Subscripts of functions denote differentiation with respect to the corresponding variables.
The maximal Lie invariance algebra of the MHDEs (1) is an infinite-dimensional algebra

A(MHD) with the basis elements (see [4])

∂t, D = t∂t + 1
2xa∂a − 1

2u
a∂ua − 1

2H
a∂Ha − p∂p,

Jab = xa∂b − xb∂a + ua∂ub − ub∂ua +Ha∂Hb −Hb∂Ha , a<b,

R(�m) = ma∂a +ma
t ∂ua −ma

ttxa∂p, Z(χ) = χ∂p,

(2)

where ma = ma(t) and χ = χ(t) are arbitrary smooth functions of t (for example, from
C∞((t0, t1),R)). Summation is understood over repeated indices. The indices a, b take val-
ues 1, 2, 3 and i, j takes respectivily values 1, 2. The algebra A(MHD) is isomorphic to the
maximal Lie invariance algebra A(NS) of the Navier–Stokes equations [5, 6, 7].
In addition to continuous transformations generated by operators (2), the MHDEs admit

discrete transformations Ib of the form

t̃ = t, xb = −xb, x̃a = xa,

p̃ = p, ũb = −ub, H̃b = −Hb, ũa = ua, H̃a = Ha, a �= b,
where b is fixed.

2. Inequivalent one-dimensional subalgebras of A(MHD). A complete set of A(MHD)-
inequivalent one-dimensional subalgebras of A(MHD) is exhausted by the following algebras:

1. A1
1(κ) = 〈D + κJ12〉, where κ ≥ 0.
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2. A1
2(κ) = 〈∂t + κJ12〉, where κ∈{0; 1}.

3. A1
3(η, χ) = 〈J12+R(0, 0, η(t))+Z(χ(t))〉 with smooth functions η and χ. Algebras A1

3(η, χ)
and A1

3(η̃, χ̃) are equivalent if ∃ ε, δ∈R, ∃ ε1, ε2∈{−1; 1}, ∃λ∈C∞((t0, t1),R):

η̃(t̃) = ε1e−εη(t), χ̃(t̃) = ε2e2ε(χ(t) + λtt(t)η(t)− λ(t)ηtt(t)), (3)

where t̃ = te−2ε + δ.

4. A1
4(�m, χ) = 〈R(�m(t)) + Z(χ(t))〉 with smooth functions �m and χ: (�m, χ) �≡ (�0, 0). Al-

gebras A1
4(�m, χ) and A

1
4( �̃m, χ̃) are equivalent if ∃ ε, δ∈R, ∃ ε1∈{−1; 1}, ∃C �= 0, ∃B∈O(3),

∃�l∈C∞((t0, t1),R3):

�̃m(t̃) = Ce−εB�m(t), χ̃(t̃) = Cε1e2ε(χ(t) +�ltt(t) · �m(t)− �mtt(t) ·�l(t)), (4)

where t̃ = te−2ε + δ.

3. Lie ansatzes of codimension one for the MHD field. Using of the algebras A1
1 − A1

4

(in the case when additional restrictions for parameters are satisfied), we can construct ansatzes
of codimension one for the MHD field. Let us list these ansatzes.

1. �u = |t|−1/2O(τ)�v + 1
2 t

−1�x+ κt−1�e3 × �x,
�H = |t|−1/2O(τ)�G,

p = |t|−1q + 1
8 t

−2|�x|2 + 1
2κt−2r2,

(5)

where �y = |t|−1/2OT (τ)�x, τ = κ ln |t|. Here and below
va = va(y1, y2, y3), Ga = Ga(y1, y2, y3), q = q(y1, y2, y3),

O(τ) =



cos τ − sin τ 0
sin τ cos τ 0
0 0 1


 , r = (x2

1 + x
2
2)

1/2, �e3 = (0, 0, 1).

2. �u = O(τ)�v + κ�e3 × �x, �H = O(τ)�G, p = q + 1
2κr2, (6)

where �y = OT (τ)�x, τ = κt.

3. u1 = x1r
−1v1 − x2r

−2v2, u2 = x2r
−1v1 + x1r

−2v2,

u3 = v3 + η(t)r−2v2 + ηt(t) arctanx2/x1,

H1 = x1r
−1G1 − x2r

−2G2, H2 = x2r
−1G1 + x1r

−2G2, H3 = G3 + η(t)r−2G2,

p = q − 1
2ηtt(t)(η(t))−1x2

3 + χ(t) arctanx2/x1,

(7)

where y1 = r, y2 = x3 − η(t) arctanx2/x1, y3 := τ = t.

Notion. The expression for the pressure p from ansatz (7) is indeterminate in the points
t ∈ (t0, t1) where η(t) = 0. If there are such points t, we will consider ansatz (7) on the intervals
(tn0 , t

n
1 ) that are contained in the interval (t0, t1) and that satisfy one of the conditions:

a) η(t) �= 0 ∀ t ∈ (tn0 , tn1 );
b) η(t) = 0 ∀ t ∈ (tn0 , tn1 ).

In the latter case we consider ηtt/η := 0.



192 V.O. Popovych

With the algebra A1
4(�m, χ), an ansatz can be constructed only for such t wherefore �m(t) �= �0.

If this condition is satisfied, it follows from (4) that the algebra A1
4(�m, χ) is equivalent to the

algebra A1
5(�m, 0). An ansatz constructed with the algebra A

1
4(�m, 0) has the following form:

4. �u = vi�ni + v3|�m|−2 �m+ (�m · �x)|�m|−2 �mt − yi|�m|−1�ni
t,

�H = Gi�ni +G3|�m|−2 �m,

p = |�m|q − 1
2 | �H|2 − |�m|−2(�mtt · �x)(�m · �x) + 1

2(�mtt · �m)|�m|−4(�m · �x)2−
− 3

2 |�m|−4((�mt · �ni)yi)
2 + (1

4 |�m|tt|�m|−2 − 3
8(|�m|t)2|�m|−3)yiyi,

(8)

where yi = �ni · �x, y3 = τ :=
∫ |�m|dt, �ni are smooth vector-functions such that

�ni · �m = �n1 · �n2 = �n1
t · �n2 = 0, |�ni| = |�m|1/2. (9)

Notion. There exist vector-functions �ni which satisfy conditions (9). They can be constructed in
the following way [3]: let us fix smooth vector-functions �ki = �ki(t) such that �ki · �m = �k1 ·�k2 = 0,
|�ki| = |�m|1/2, and set

�n1 = �k1 cosψ(t)− �k2 sinψ(t), �n2 = �k1 sinψ(t) + �k2 cosψ(t). (10)

Then �n1
t · �n2 = �k1

t · �k2 − ψt = 0 if ψ =
∫
(�k1

t · �k2)dt.

4. Reduced systems in three independent variables. Substituting ansatzes (5) and (6)
into the MHDEs (1), we obtain reduced systems of PDEs with the same general form

(�v · ∇)�v −��v +∇q + �G× rot �G+ γ1�e3 × �v = �0,
(�v · ∇)�G− (�G · ∇)�v − νm��G+ γ2

�G = �0,

div�v = 3
2γ2, div �G = 0.

(11)

Hereafter the functions va, Ga, and q are differentiated with respect to the variables y1, y2, and
y3. The constants γa take the values

1. γ1 = 2κ sign t, γ2 = − sign t;
2. γ1 = 2κ, γ2 = 0.

For ansatzes (7) and (8) the reduced equations have the form

3. M1 + q1 + y−3
1 ((G3)2 − (v3)2 − 2ηv3

2)− v1
1y

−1
1 + v1y−2

1 = 0,

M2 + (1 + η2y−2
1 )q2 + 2ηy−3

1 (G1G3 − v1v3 + v3
1 − ηv1

2−
−2v3y−1

1 )− y−1
1 v2

1 + 2ηty
−2
1 v3 − ηttη

−1y2 − ηχy−2
1 = 0,

M3 − ηq2 + v3
1y

−1
1 + 2ηy−1

1 v1
2 + χ = 0,

N 1 + νm(−2ηy−3
1 G3

2 + y
−2
1 G1 − y−1

1 G1
1) = 0,

N 2 + νm(−2η2y−3
1 G1

2 + 2ηy
−3
1 G3

1 − y−1
1 G2

1 − 4ηG3y−4
1 ) = 0,

N 3 + 2y−1
1 (v3G1 − v1G3) + 2νmηy−1

1 G1
2 + νmG

3y−1
1 = 0,

vi
i + v

1y−1
1 = 0, Gi

i +G
1y−1

1 = 0,

(12)

where Ma = va
τ + v

jva
j −GjGa

j − va
11 − (1 + η2y−2

1 )va
22,

N a = Ga
t + v

iGa
i −Giva

i − νmGa
11 − νm(1 + η2y−2

1 )Ga
22.
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4. vi
τ + v

jvi
j −GjGi

j − vi
jj + qi + 2β

iα−3v3 = 0,

v3
τ + v

jv3
j −GjG3

j − v3
jj = 0,

Gi
τ + v

jGi
j −Gjvi

j − νmGi
jj + ατα

−1Gi = 0,

G3
τ + v

jG3
j −Gjv3

j − νmG3
jj − 2βjGj − 2ατα

−1G3 = 0,

vi
i = 0, Gi

i = 0,

(13)

where α = α(τ) = |�m|, βi = βi(τ) = (�mτ · �ni).

5. Symmetry of reduced systems. Let us study symmetry properties of systems (11), (12),
and (13). All results of this subsection are obtained by means of the standard Lie algorithm
[9, 8].

Symmetry properties of the systems (11). The maximal Lie invariance algebra of sys-
tem (11) is the algebra

a) 〈∂a, ∂q, J
1
12〉 if γ1 �= 0;

b) 〈∂a, ∂q, J
1
ab〉 if γ1 = 0, γ2 �= 0;

c) 〈∂a, ∂q, J
1
ab, D

1
1〉 if γ1 = γ2 = 0.

Here J1
ab = ya∂yb

− yb∂ya + va∂vb − vb∂va +Ga∂Gb −Gb∂Ga ,

D1
1 = ya∂ya − va∂va −Ga∂Ga − 2q∂q .

Note. All Lie symmetry operators of (11) are induced by operators from A(MHD): The op-
erators J1

ab and D
1
1 are induced by Jab and D. The operators ca∂a (ca = const) and ∂q are

induced by either

R(|t|1/2(c1 cos τ − c2 sin τ, c1 sin τ + c2 cos τ, c3)), Z(|t|−1),

where τ = κ ln |t|, for ansatz (5) or
R(c1 cosκt− c2 sinκt, c1 sinκt+ c2 cosκt, c3), Z(1)

for ansatz (6), respectively. Therefore, Lie reduction of system (11) gives only solutions that can
be obtained by reducing the MHDEs with two- and three-dimensional subalgebras of A(MHD).

Symmetry properties of the systems (12). Let Amax be the maximal Lie invariance algebra
of system (12). Studying symmetry properties of (12), one has to consider the following cases:
A. η, χ ≡ 0. Then

Amax = 〈∂τ , D
1
2, R1(ζ(τ)), Z1(λ(τ))〉,

where D1
2 = 2τ∂τ + yi∂yi − vi∂vi − 2v3∂v3 −Gi∂Gi − 2G3∂G3 − 2q∂q,

R1(ζ(τ)) = ζ∂2 + ζτ∂v2 − ζττy2∂q, Z1(λ(τ)) = λ(τ)∂q.

Here and below ζ = ζ(τ) and λ = λ(τ) are arbitrary smooth functions of τ = t.
B. η ≡ 0, χ �≡ 0. In this case an extension of Amax exists for χ = (C1τ + C2)−1, where

C1, C2 = const. Let C1 �= 0. We can make C2 vanish by means of equivalence transformation (3),
i.e., χ = Cτ−1, where C = const. Then

Amax = 〈D1
2, R1(ζ(τ)), Z1(λ(τ))〉.

If C1 = 0, χ = C = const and Amax = 〈∂τ , R1(ζ(τ)), Z1(λ(τ))〉.
For other values of χ, i.e., when χττχ �= χτχτ , Amax = 〈R1(ζ(τ)), Z1(λ(τ))〉.
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C. η �= 0. Using equivalence transformation (3) we always can make χ = 0. In this case an
extension of Amax exists for η = ±|C1τ + C2|1/2, where C1, C2 = const. Let C1 �= 0. We can
annihilate C2 by means of equivalence transformation (3), i.e., η = C|τ |1/2, where C = const.
Then

Amax = 〈D1
2, R2(|τ |1/2), R2(|τ |1/2 ln |τ |), Z1(λ(τ))〉,

where R2(ζ(τ)) = ζ∂y2 + ζτ∂v2 . If C1 = 0, i.e., η = C = const,

Amax = 〈∂τ , ∂y2 , τ∂y2 + ∂v2 , Z1(λ(τ))〉.
For other values of η, i.e., when (η2)ττ �= 0,

Amax = 〈R2(η(τ)), R2(η(τ)
∫
(η(τ))−2dτ), Z1(λ(τ))〉.

Note. In all cases considered above the Lie symmetry operators of (12) are induced by oper-
ators from A(MHD): The operators ∂τ , D1

2, and Z
1(λ(τ)) are induced by ∂t, D, and Z(λ(t)),

respectively. The operator R(0, 0, ζ(t)) induces the operator R1(ζ(τ)) for η ≡ 0 and the operator
R2(ζ(τ)) (if ζττη − ζηττ = 0) for η �= 0. Therefore, the Lie reduction of system (12) gives only
the solutions that can be obtained by reducing the MHDEs with two- and three-dimensional
subalgebras of A(MHD).

Symmetry properties of the systems (13). Let us introduce the notations

S1 = ∂v3 − 2βiα−3yi∂q, S2 = (α)2∂G3 , Z̃(λ(τ)) = λ∂q,

R̃(ψ̄(τ)) = ψi∂yi + ψ
i
τ∂vi − ψi

ττyi∂q, ψ̄ = (ψ1, ψ2),

D̃ = τ∂τ + 1
2yi∂yi − 1

2v
i∂vi − 1

2G
i∂Gi − q∂q, Ĩ = v3∂v3 +G3∂G3 ,

J̃12 = y1∂y2 − y2∂y1 + v
1∂v2 − v2∂v1 +G1∂G2 −G2∂G1 .

For arbitrary values of the parameter-functions α and βi, the system (13) is invariant under the
algebra

Aall = 〈R̃(ψ̄), S1, S2, Z̃(λ)〉.
Extensions of the maximal Lie invariance algebra of system (13) exist in the following cases (for
each extension we write down its basis operators):

1. βi = 0, ατ = 0, νm = 1: D̃, ∂τ , J̃12, I, G
3∂v3 + v3∂G3 .

2. βi = 0, ατ = 0, νm �= 1: D̃, ∂τ , J̃12, I.

3. βi = 0, α = a2|τ + a0|a1 , a1a2 �= 0: D̃ + a0∂τ , J̃12, I.

4. βi = 0, α = a2e
a1τ , a1a2 �= 0: ∂τ , J̃12, I.

5. βi = 0, αατατττ + (ατ )2αττ − 2α(αττ )2 �= 0: J̃12, I.

6. βi �= 0, βi
τ = 0, ατ = 0: D̃ − 3

2I, ∂τ .

7. β1 = ρ cos θ, β2 = ρ sin θ, α = a2|τ + a0|a1 , where

ρ = b1|τ + a0|a1/2−1, θ = b2 ln |τ + a0|+ b3, and (a1b1, b2) �= (0, 0):

D̃ + a0∂τ − b2J̃12 + 1
2(a1 − 1)I.

8. β1 = ρ cos θ, β2 = ρ sin θ, α = a2e
a1τ , where

ρ = b1e3a1τ/2, θ = b2τ + b3, and (a1b1, b2) �= (0, 0):

∂τ − b2J̃12 + 3
2a1I.
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Note. The vector-functions �ni from Ansatz 4 are determined up to the transformation

�n1 −→ �n1 cos δ − �n2 sin δ, �n2 −→ �n1 sin δ + �n2 cos δ,

where δ = const. Therefore, δ can be chosen such that b3 = 0.

Note. The operators R(ψ̄(t)) + C1S
1, Z̃(λ(τ)) from Aall are induced by the operators R(�l(t)),

Z(χ(t)), respectively. Here

χ(t) = λ(τ(t)), �l(t) = ψi(τ(t))�ni(t) + ϕ(t)�m(t),

where 2ψi(τ(t))(�ni
t(t) · �m(t)) + ϕ(t)|�m(t)|2 = C1.

The operator S2 is not induced by operators from A(MHD). Therefore, Lie reduction of sys-
tem (13) can give solutions that can not be obtained by reducing the MHDEs with two- and
three-dimensional subalgebras of A(MHD).

Consider inducing the operators from extension of Aall. The operators I and G3∂v3 + v3∂G3

are not induced by operators from A(MHD).
The operator J̃12 belongs to the maximal Lie invariance algebra of the system (13) if βi = 0.

In this case �m = |�m|�e, where �e = const and |�e| = 1. Then, the operator J̃12 is induced by
e1J23 + e2J31 + e3J12.
For �m = eσt(c2 cos θ, c2 sin θ, c1) with c1, c2, σ,κ, δ = const and θ = κt+δ , where c21+c

2
2 = 1,

the operator ∂t + κJ12 induces the operator ∂τ − c1κJ̃12 + σI if the following vector-functions
�ni are chosen:

�n1 = �k1 cos c1θ + �k2 sin c1θ, �n2 = −�k1 sin c1θ + �k2 cos c1θ, (14)

where �k1 = (− sin θ, cos θ, 0) and �k2 = (c1 cos θ, c1 sin θ,−c2).
For �m = |t+ δ̃|σ+1/2(c2 cos θ, c2 sin θ, c1) with θ = κ ln |t+ δ̃|+ δ and c1, c2, σ,κ, δ, δ̃ = const,

where c21 + c
2
2 = 1, the operator D + δ̃∂t + κJ12 induces the operator D̃ + δ̃∂τ − c1κJ̃12 + σI, if

the vector-functions �ni are chosen in form (14).
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