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Lie Submodels of Rank 1 for MHD Equations
Victor O. POPOVYCH

Institute of Mathematics of NAS of Ukraine, 8 Tereshchenkivska Street, Kyiv, Ukraine

The MHD equations describing flows of a viscous homogeneous incompressible fluid of finite
electrical conductivity are reduced by means of Lie symmetries to partial differential equa-
tions in three independent variables. Symmetry properties of the reduced systems are inves-
tigated.

1. Introduction. The MHD equations (the MHDESs) describing flows of a viscous homogeneous
incompressible fluid of finite electrical conductivity have the following form:

G+ (@-VYi—Ai+Vp+H xrot H=0, divi=0,

N B L. B (1)
Hy —rot(ii x H) — v AH =0,  divH =0.

System (1) is very complicated and construction of its new exact solutions is a difficult problem.
In [1, 2] the MHDESs (1) are reduced to ordinary differential equations and to partial differential
equations in two independent variables. Following [3], in this paper we reduce the MHDESs
(1) to partial differential equations in three independent variables by means of one-dimensional
subalgebras of the maximal Lie invariance algebra of the MHDEs.

In (1) and below, @ = {u®(t,Z)} denotes the velocity field of a fluid, p = p(t,Z) denotes
the pressure, H = {H*(t,Z)} denotes the magnetic intensity, vy, is the coefficient of magnetic
viscosity, T = {x,}, 0y = 8/0t, 8y = 0/024, V = {0,}, A = V-V is the Laplacian. The kinematic
coefficient of viscosity and fluid density are set equal to unity, permeability is done (47)~1.
Subscripts of functions denote differentiation with respect to the corresponding variables.

The maximal Lie invariance algebra of the MHDEs (1) is an infinite-dimensional algebra
A(MHD) with the basis elements (see [4])

O, D =10+ 33400 — 3uDye — $H e — po,
Jab = l‘aab — ZL'baa + Uaaub — Ubaua —+ H“@Hb — E[b@]{a7 a<b, (2)
R(m) = m®0y + m{Oye — mxa0p,  Z(X) = XOp,

where m® = m®(t) and x = x(t) are arbitrary smooth functions of ¢ (for example, from
C*((to,t1),R)). Summation is understood over repeated indices. The indices a, b take val-
ues 1,2,3 and ¢, j takes respectivily values 1,2. The algebra A(MHD) is isomorphic to the
maximal Lie invariance algebra A(NS) of the Navier—Stokes equations [5, 6, 7].

In addition to continuous transformations generated by operators (2), the MHDEs admit
discrete transformations I of the form

EZ tu Tp = —Tp, ia = Zaq,
p=p, ﬂb:—ub, ﬁb:—Hb, u®* = u?, H®=H* a#b,
where b is fixed.

2. Inequivalent one-dimensional subalgebras of A(MHD). A complete set of A(MHD)-
inequivalent one-dimensional subalgebras of A(MHD) is exhausted by the following algebras:

1. Al(3) = (D + sJ12), where 3 > 0.
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2. Al(5) = (O + sJ12), where € {0;1}.

3. AY(n,x) = (Ji2+R(0,0,n(t))+ Z(x(t))) with smooth functions n and . Algebras Ai(n, x)
and AL(7, x) are equivalent if Je,6€R, ey, eae{-1;1}, IN€C>®((to,t1),R):

i(f) = ere™n(t), X = e2® (x(t) + M (O)n(t) = A(B)7ue(1)), (3)
where ¢ =te % + 4.
4. Al(m,x) = (R(m(t)) + Z(x(t))) with smooth functions 7 and x: (1, x) # (6, 0). Al-

gebras A}(m,x) and A}l(fﬁ,f() are equivalent if 3e,0€R, Je;€{-1;1}, IC #0, IB€0O(3),
e C>((to, t1), R3):

m(f) = Ce™*Bmi(t), X(f) = Ce1e® (x(t) + lu(t) - m(t) — mg(t) - (1)), (4)
where t = te 2 +6.

3. Lie ansatzes of codimension one for the MHD field. Using of the algebras Al — A}
(in the case when additional restrictions for parameters are satisfied), we can construct ansatzes
of codimension one for the MHD field. Let us list these ansatzes.

L@ = [t|7Y20(r) v + $t713 + st ey x 7,
H = [t|20(r)G, (5)
p =t g+ gt E* + gat
where i = [t|~'/20T (1)&, T = »In |t|. Here and below
v =0 (Y1, 92, ¥3), G =G"(y1,y2,y3),  a=qa(y1,y2,y3),

cosT —sinT O

O(r)=| sint cost 0 |, r=(z?+22)"2 & =(0,0,1).
0 0 1
2. it = O(r)i+ 33 x &, H=0()0, p=q+ L, (©)

where § = O (7)%, 7 = »t.
3. ul = xpr ol —aor™20? w? = zorT ol + 120,
ud = v3 + n(t)r—2v? + n(t) arctan zo /1,
H' = 277Gl — 29r2G?, H? = 2or 7 'GY + 21772G?, H? = G +n(t)r2G?,

p=q— gna(t)(n(t) " af + x(t) arctan zp /w1,

(7)

where y; = r, yo = x3 — n(t) arctan xy/x1, y3 : =7 = t.

Notion. The expression for the pressure p from ansatz (7) is indeterminate in the points
t € (to,t1) where n(t) = 0. If there are such points ¢, we will consider ansatz (7) on the intervals
(tg,t7) that are contained in the interval (to, %) and that satisfy one of the conditions:

&) () £0 Vit e (6, 60);
b)n(t) =0 Vi e (6,6,

In the latter case we consider ny/n := 0.
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With the algebra A}(1, x), an ansatz can be constructed only for such ¢ wherefore 77(t) # 0.
If this condition is satisfied, it follows from (4) that the algebra A}(,x) is equivalent to the
algebra Al(1,0). An ansatz constructed with the algebra A}(17,0) has the following form:
4. @ = vt 4+ o3 m| 72w 4 (7 - D) || 2wy — gl TR,
H = G'it + G3|m|~%m, -
p = |ilg — 5| H? — || 72 (i - ) (171 - ©) + 5 (g - 171) 17| ~* (171 - )~
- | — — —7 2 — — | — —
7| =4 (e - 73)0)” + (gl it =2 = (17l 7] =)y,

where y; = i’ - T, y3 = 7 := [ |m|dt, 7i’ are smooth vector-functions such that

_3
2

il =it it =y i =0, |i] = |m|Y2 (9)

Notion. There exist vector-functions ¢ which satisfy conditions (9). They can be constructed in

the following way [3]: let us fix smooth vector-functions k' = k¥(t) such that k'-m = k'-k2 =0,
|k = |m|'/2, and set
il = klcostp(t) — K2sine(t), @2 = kLsinw(t) + k2 cos v (t). (10)

Then il @2 =Fki-k2—oy=0 if = [(k} k).

4. Reduced systems in three independent variables. Substituting ansatzes (5) and (6)
into the MHDESs (1), we obtain reduced systems of PDEs with the same general form

V)G — AT+ Vq+ G x 1ot G+ yé&; x 7 =0,
( ~V)C3—(C3-V)v—umAG+’ng:0, (11)
dive =375, divG =0.

—~
<y

<L

Hereafter the functions v®, G%, and q are differentiated with respect to the variables y;, y2, and
ys. The constants v, take the values

1. v1 = 2xsignt, 2 = —signt;
2. Y1 = 2%, Y2 = 0.

For ansatzes (7) and (8) the reduced equations have the form

3. M+ g1+ y (G2 = (%) = 2nd) —oly T+ 0y 2= 0,

M2+ (1+ 1%y %)ga + 20y, 2 (GHGP — vl + 0 — oy —
=203y 1) — gy 0?4 200y 0 — a2 — iy ” =0,

M® =gy + vy + 20y vy + x =0,
N+ v (<2097 G + 9 ° G =y ' GY) = 0,
N2+ v (=202 PGy + 20y ° G — 4y 1 G — 4GPy t) = 0,
N3 4+ 2y (V3G — 0 ' GB) + 2y PG+ 0GByt = 0,
fuf—l—fulyl_l =0, Gﬁ—l—Glyl_l =0,

(12)

where M® =v¢ + vJv G]G“ — vy — (14 n?y; ?)vsy,
N =G¢ +0'G¢ — G — v, Gy — v (14 7y %)
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4. vl + vjv§ — GjG;'- — v;'-j +q; + 28303 =0,

vl +vlv? — GIGS — 3 =0,

Gt + ijé» - ij;» — ymGé-j +a,a”lGP =0, (13)
G3 + ij? — ij;’ — z/mG?j —239G7 - 20,07 1G3 = 0,
vf =0, GZ:: =0,

where a = (1) = |m|, 8° = 3(1) = (M, - 7).

5. Symmetry of reduced systems. Let us study symmetry properties of systems (11), (12),
and (13). All results of this subsection are obtained by means of the standard Lie algorithm
[9, 8].

Symmetry properties of the systems (11). The maximal Lie invariance algebra of sys-
tem (11) is the algebra

a) (Oa, 0Oy, J112> ity #0;
b) (04, Oy, Jib> if 41 =0, #0;
¢) (Oa, Oy, JY, D) if y1 =72 =0.
Here Jib = YaOy, — YpOy, + VO — v Dya + GOgp — Gdga
Di = 4,0y, — v90pa — G*Dga — 240, .
Note. All Lie symmetry operators of (11) are induced by operators from A(MHD): The op-

erators J;b and Dj are induced by J,, and D. The operators c,0, (c, = const) and 0, are
induced by either

R(|t|"?(cy cosT — casinT, e sinT + cacosT,¢3)),  Z(|t|Y),
where 7 = s In [t|, for ansatz (5) or
R(eq cos st — cgsin st ¢ sin st + ¢o cos #t, c3),  Z(1)

for ansatz (6), respectively. Therefore, Lie reduction of system (11) gives only solutions that can
be obtained by reducing the MHDEs with two- and three-dimensional subalgebras of A(MHD).

Symmetry properties of the systems (12). Let A™* be the maximal Lie invariance algebra
of system (12). Studying symmetry properties of (12), one has to consider the following cases:
A.n,x =0. Then

AT = <a7'7 D%? Rl(((’r))v Zl(/\(T)»?
where D} =270, + y;0,, — v'0,i — 20303 — G'0gi — 2G30s — 240,
Rl(C(T)) = 482 + CTa’U2 - CTTy26q7 z? ()‘(7—)) = A(T)aq

Here and below ¢ = ((7) and A = A(7) are arbitrary smooth functions of 7 = t.

B.n =0, x # 0. In this case an extension of A™® exists for x = (C17 + C2)~!, where
C4,Cy = const. Let C1 # 0. We can make Co vanish by means of equivalence transformation (3),
i.e., x = Ct7!, where C' = const. Then

A™ = (D}, Ri(C(7)), ZV(A(T)))-
If C; =0, x=C =const and A™* = (9,, R1(¢(7)), Z (\(7))).
For other values of x, i.e., when x,rX # XrXr, A" = (R1(¢(7)), Z(\(7))).
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C. n # 0. Using equivalence transformation (3) we always can make x = 0. In this case an
extension of A™#* exists for n = £|C7 + C’g]l/Z, where C1,Cs = const. Let C7 # 0. We can
annihilate Cy by means of equivalence transformation (3), i.e., n = C|7|'/2, where C' = const.
Then

A™ = (D, Ro(|7['/?), Ro(|7|"* 7)), Z'(A(7))),
where Ry(((7)) = (0y, + (+0,2. If C1 =0, i.e., n = C = const,
A = (O Dy, TOyy + D2y ZHN(T))).
For other values of 7, i.e., when (9?),, # 0,
A = (Ro(n(7)), Ra(n(r) [(n(7))~2dr), Z'(A(7))).

Note. In all cases considered above the Lie symmetry operators of (12) are induced by oper-
ators from A(MHD): The operators 8,, D3, and Z'(\(7)) are induced by 8;, D, and Z(A(t)),
respectively. The operator R(0,0,((t)) induces the operator R;({(7)) for n = 0 and the operator
Ro(¢(7)) (if Grrm — Cnrr = 0) for n # 0. Therefore, the Lie reduction of system (12) gives only
the solutions that can be obtained by reducing the MHDEs with two- and three-dimensional
subalgebras of A(MHD).

Symmetry properties of the systems (13). Let us introduce the notations
' = Oy — 2807 Pydy, S? = (a)20gs,  Z(MT)) = A0,
R((7)) = '8y, + 10 — V0ryily, b = (01, 07),
D =70, + 140y, — 300, — 1G9 — q0y, I = v30,3 + G30s,
Jia = Y10y, — Y20y, + 0102 — 0201 + G O — G20

For arbitrary values of the parameter-functions o and 3%, the system (13) is invariant under the
algebra

AN = (R(¥), S', §%, Z(N)).
Extensions of the maximal Lie invariance algebra of system (13) exist in the following cases (for
each extension we write down its basis operators):
1. 3=0,ar =0, v, =1: D, 9-, Ji2, I, G303 + v39s.
2. =00, =0, v, £1: D, 8;, Jia, I.
3. B =0, a=as|t + ag|™, aray #0: D+ agdy, Ji2, I.
4. Bt =0, a = aze™™, ajag # 0: O, Jia, 1.
5. B =0, acrarrr + (ar)?arr — 20(arr)? # 0: Jio, 1.
6. B #0,6.=0,a, =0: D—3I, 0,.
7. Bt = pcosf, 3% = psinb, a = as|T + ap|®, where
p=bi|T 4+ ag|/>7 1, 0 = byIn |7 + ao| + bz, and (a1by, ba) # (0,0):
D + apd; — by Jia + %(al - 1I.
8. Bl = pcosh, B? = psinb, a = aye®”, where
p=01€37/2 0 = by + b3, and (a1by, bo) # (0,0):
Or — b2j12 + %all.
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Note. The vector-functions 7’ from Ansatz 4 are determined up to the transformation
il — it cosd — A sin 4, 2 — flsind + 72 cos
where § = const. Therefore, d can be chosen such that bg = 0.
Note. The operators R((t)) + C1.8%, Z(A(7)) from A%! are induced by the operators R(I(t)),
Z(x(t)), respectively. Here
X(t) = A(r(t), Ut) =¥ (r (1) (1) + o()m(t),
where 20" (7(8)) (7 (¢) - 71()) + (t) [ (t)[* = C1.

The operator S? is not induced by operators from A(MHD). Therefore, Lie reduction of sys-
tem (13) can give solutions that can not be obtained by reducing the MHDEs with two- and
three-dimensional subalgebras of A(MHD).

-

Consider inducing the operators from extension of A*!. The operators I and G303 + v>9s
are not induced by operators from A(MHD).

The operator Jis belongs to the maximal Lie invariance algebra of the system (13) if 3% = 0.
In this case /M = |m|€, where € = const and |€] = 1. Then, the operator Jys is induced by
e1Jog + eaJ31 + ez Jia.

For m = e%!(cg cos B, casin B, 1) with ¢y, ¢, 0, 2,6 = const and 0 = st+6 , where c2+c2 = 1,
the operator 9; + s¢J19 induces the operator 0, — c1xJis + ol if the following vector-functions
i’ are chosen:

1 — klcos 10 + k2 sin af, = —k'sin c10 + k2 cos c10, (14)

where k! = (—sin#, cos6,0) and k2 = (¢1 cos 6, ¢y sin 6, —cy).

For m = \t+5\"+1/2(02 cos B, cosinf, ¢1) with 6 = x1In ]t—i—é! +4d and c1, 2,0, 5,6, § = const,
where cl + 02 =1, the ‘operator D + 88, + »J12 induces the operator D+ 60, — cyseJia + ol, if
the vector- functlons 7" are chosen in form (14).
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