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On SO(3)-Partially Invariant Solutions

of the Euler Equations
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SO(3)-partially invariant solutions having minimal defect are constructed for the Euler equa-
tions describing flows of an ideal incompressible fluid.

The concept of partially invariant solutions was introduced by Ovsiannikov [1] as a generalization
of invariant solutions, which is possible for systems of partial differential equations (PDEs). The
algorithm for finding partially invariant solutions is very difficult to apply. For this reason it is
used more rarely than the classical Lie algorithm for constructing invariant solutions.

The Euler equations (EEs) describing flows of an ideal incompressible fluid have the following
form:

�ut + (�u · �∇)�u + �∇p = �0, div �u = 0. (1)

It is well known [2, 3] that the maximal Lie invariance algebra of EEs is the infinite dimensional
algebra A(E), generated by the following basis elements:

∂t, Jab = xa∂b − xb∂a + ua∂ub − ub∂ua (a < b),

Dt = t∂t − ua∂ua − 2p∂p, Dx = xa∂a + ua∂ua + 2p∂p,

R(�m) = R(�m(t)) = ma(t)∂a + ma
t (t)∂ua −ma

tt(t)xa∂p,

Z(χ) = Z(χ(t)) = χ(t)∂p.

(2)

In the following �u = {ua(t, �x)} denotes the velocity of the fluid, p = p(t, �x) denotes the pressure,
�x = {xa}, ∂t = ∂/∂t, ∂a = ∂/∂xa, �∇ = {∂a}, � = �∇ · �∇ is the Laplacian, ma = ma(t)
and χ = χ(t) are arbitrary smooth functions of t (for example, from C∞((t0, t1),R)). The
fluid density is set equal to unity. Summation over repeated indices is implied, and we have
a, b = 1, 2, 3. Subscripts of functions denote differentiation with respect to the corresponding
variables.

Let us note that the algebra so(3) generated by the operators Jab is a subalgebra of A(E).
Invariant solutions of (1) have been already constructed. For example, in [4, 5] EEs are

reduced to partial differential equations in two and three independent variables by means of the
Lie algorithm. In this paper we obtain SO(3)-partially invariant solutions of the minimal defect
that is equal to 1 for the given representation of so(3).

A complete set of functionally independent invariants of the group SO(3) in the space of the
variables (t, �x, �u, p) is exhausted by the functions t, |�x|, �x · �u, |�u|, p, so SO(3)-partially invariant
solution of the minimal defect has the form

uR= v(t, R),

uθ = w(t, R) sinψ(t, R, θ, ϕ),

uϕ= w(t, R) cosψ(t, R, θ, ϕ),

p = p(t, R).

(3)
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Hereafter for convenience the spherical coordinates are used:

R = |�x|, ϕ = arctan
x2

x1
, θ = arccos

x3

|�x| ,

uR =
�x · �u
|�x| , uϕ =

(�e3 × �x) · �u
|(�e3 × �x)| , uθ =

((�e3 × �x) × �x) · �u
|((�e3 × �x) × �x)| , �e3 := (0, 0, 1).

Substituting (3) into EEs (1), we obtain the system of PDEs for the functions v, w, ψ, p :

vt + vvR −R−1w2 + pr = 0,

wt + vwR + R−1vw = 0,

w(ψt + vψR + R−1wψθ sinψ + R−1w cosψ(sin θ)−1(ψϕ − cos θ)) = 0,

Rvr + 2v + wψθ cosψ − (sin θ)−1w sinψ(ψϕ − cos θ) = 0.

(4)

It follows from (4) if w = 0 that v = ηR−2, p = ηtR
−1 − 1

2η
2R−4 + χ, where η and χ are

arbitrary smooth functions of t. The corresponding solution of EEs

uR =
η

R2
, uθ = uϕ = 0, p =

ηt

R
− η2

2R4
+ χ (5)

is invariant with respect to SO(3). Note that flow (5) is a solution of the Navier-Stokes equations
too, and it is the unique SO(3)-partially invariant solutions of the minimal defect for the Navier-
Stokes equations.

Below w 	= 0. Then two last equations of (4) form an overdetermined system in the function ψ.
This system can be rewritten as follows

ψθ + Rw−1 sinψ(ψt + vψR) = −G cosψ,

ψϕ + Rw−1 cosψ(ψt + vψR) sin θ = G sinψ sin θ + cos θ,
(6)

where G = G(t, R) := w−1(RvR + 2v). The Frobenius theorem gives the compatibility condition
of (6):

Gt + vGR = R−1w(1 + G2). (7)

If condition (7) holds, system (6) can be integrated implicitely. Namely, its general solution has
the form

F (Ω1,Ω2,Ω3) = 0, (8)

where F is an arbitrary function of Ω1, Ω2, and Ω3,

Ω1 =
sin θ sinψ −G cos θ√

1 + G2
, Ω2 = ϕ + arctan

cosψ
cos θ sinψ + G sin θ

, Ω3 = h(t, r),

h = h(t, R) is a fixed solution of the equation ht + vhR = 0 such that (ht, hR) 	= (0, 0). Equa-
tion (8) can be solved with respect to ψ in a number of cases, for example, if either FΩ1 = 0 or
FΩ2 = 0.

Equation (7) and two first equations of (4) form the “reduced” system for the invariant
functions v, w, and p. It can be represented as the union of the system

R2ftR + ffRR − (fR)2 = g, f := R2v

R2gt + fgR = 0, g := (Rw)2,
(9)
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for the functions v and w (this system can be also considered a system for the functions f and g)
and the equation

pR = −vt − vvR −R−1w2 (10)

which is one for the function p if v and w are known. Therefore, to construct solutions for EEs,
we are to carry out the following chain of actions: 1) to solve the system (9); 2) to integrate (10)
with respect to p; 3) to find the function ψ from (8).

Theorem. The maximal Lie invariance algebra of (9) is the algebra

A = 〈 ∂t, D
R = R∂R + v∂v + w∂w, D

t = t∂t − v∂v − w∂w 〉.
A complete set of A-inequivalent one-dimensional subalgebras of A is exhausted by four

algebras. Let us enumerate these algebras and the corresponding ansatzes for the functions v
and w as well as the reduced systems arising after substituting the ansatzes into (9).

1. 〈 ∂t 〉 : v = R−2ϕ1(ω), w = R−1ϕ2(ω), ω = R, ϕ2 	= 0;

ϕ1ϕ1
ωω − (ϕ1

ω)2 = (ϕ2)2, ϕ1ϕ2
ω = 0.

2. 〈DR 〉 : v = Rϕ1(ω), w = R/ϕ2(ω), ω = t, ϕ1ϕ2 	= 0;

3ϕ1
ω = 3(ϕ1)2 + (ϕ2)−2, ϕ2

ω = 2ϕ1ϕ2.

3. 〈 ∂t + DR 〉 : v = Rϕ1(ω), w = Rϕ2(ω), ω = lnR− t, ϕ1
ωϕ

2
ω 	= 0;

(ϕ1 − 1)ϕ1
ωω − (ϕ1

ω)2 − ϕ1
ω(ϕ1 + 3) − 3(ϕ1)2 = (ϕ2)2,

(ϕ1 − 1)ϕ2
ω + 2ϕ1ϕ2 = 0.

4. 〈Dt + κDR 〉 : v = Rt−1ϕ1(ω), w = Rt−1ϕ2(ω), ω = lnR− κ ln |t|, ϕ1ϕ2 	= 0;

(ϕ1 − κ)ϕ1
ωω − (ϕ1

ω)2 − ϕ1
ω(ϕ1 + 3κ + 1) − 3(ϕ1)2 − 3ϕ1 = (ϕ2)2,

(ϕ1 − κ)ϕ2
ω + (2ϕ1 − 1)ϕ2 = 0.

Two first reduced systems can be integrated completely. As a result we obtain the following
expressions for the functions v, w, and p :

1. v =
C3

2R2

(
eC2R + C2

1e
−C2R

)
, w =

C1C2C3

R
, C1, C2, C3 = const, C1C2C3 	= 0,

=⇒ p = − C2
3

8R4

(
e2C2R + 2C2

1 + C4
1e

−2C2R
)
− C2

1C
2
2C

2
3

2R2
+ χ(t),

G =
1

2C1

(
eC2R − C2

1e
−C2R

)
, h = t−

∫
dR

v(R)
.

2. v =
℘t

2℘
R, w =

3C
2℘

R, =⇒ p = C2
( 1
℘2

− ℘
)
R2 + χ(t), G =

℘t

C
, h =

R2

℘
.

Here C = const, C 	= 0, ℘ = ℘(Ct, 0, 1) is the Weierstrass function, χ is an arbitrary smooth
function of t.

System (9) has solutions for which f and g are polynomial with respect to R. Thus, if
deg(f,R) = 1 and, therefore, deg(g,R) � 2, then f = C2tR, g = C2R2−C4t2, where C = const,
C 	= 0, i.e.

v =
C2t

R
, w =

C

R

√
R2 − C2t2 =⇒ p = χ(t), G =

Ct√
R2 − C2t2

, h =
√

R2 − C2t2.
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The solution of system (9), given above, is invariant with respect to the algebra 〈Dt + DR 〉.
If deg(f,R) = 3 and, therefore, deg(g,R) � 4, we have two families of solutions:

a) f = −R3

t
+ C2

1 (t3 + C2)R, g = 3C2
1 t

2R2 − C4
1 (t3 + C2)2, C1, C2 = const, C1 	= 0, i.e.

v = −R

t
+ C2

1

t3 + C2

R
, w =

C1

R

√
3t2R2 − C2

1 (t3 + C2)2, =⇒ p = −R2

t2
+ χ(t),

G =
−3R2 + C2

1 t(t
3 + C2)2

C1t
√

3t2R2 − C2
1 (t3 + C2)2

, h =
√

3t2R2 − C2
1 (t3 + C2)2.

b) f =
℘t

2℘
R3 + (C1 cosα + C2 sinα)R, g =

(
3C0

2℘
R2 − C1 sinα + C2 cosα

)2

− C2
1 − C2

2 ,

v =
f

R2
, w =

√
g

R
=⇒ p = C2

0

( 1
℘2

− ℘
)
R2 + χ(t), G =

fR√
g
, h =

√
g.

Here C0, C1, C2 = const, C0 	= 0, ℘ = ℘(C0t, 0, 1) is the Weierstrass function, α =
∫

3C0℘
−1dt,

χ is an arbitrary smooth function of t. The last solution is a generalization of the invariant
solution with respect to the algebra 〈DR 〉.

The solutions given above exhaust all the solutions of system (9), for which f and g are
polynomial with respect to R.
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