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The Integrability of Some Underdetermined Systems
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The problem of integrability of special nonholonomic systems with single-functional arbi-
trariness of solutions is studied. The algorithm and exact formulas are obtained. As an
example the problem of “Integrating Wheel” motion is considered, and symmetry algebra
for flat control system of n-th order are calculated.

1 Introduction

Mathematical models of various problems of science may be described by the systems of ordinary
differential equations

Fj(t, x, ẋ, . . . , x(n)) = 0, j = 1, r, x ⊂ X, dimX = m, m > r, (1)

which contain more unknown functions (m) than equations (r). Similar systems are considered,
for example, in geometry problems [1], problems of mathematical physics [2], nonholonomic
mechanics [3], control theory [4]. Following [5], we will define such systems as “underdetermined
systems”.
In the present paper we will consider only underdetermined systems of the form

dξi

du
− f i(u)

dτ

du
= 0, (or ωi = dξi − f i(u)dτ = 0),

τ = τ(u), ξi = ξi(u), i = 1, n
(2)

containing n equations and (n+ 1) unknown functions.
The aim of this research is to get exact formulas for the general solution of system (2). It

is well known that sets of solutions of ordinary differential equations of n-th order are defined
by n arbitrary constants. On the contrary the general solution of underdetermined systems
may depends on arbitrary functions (not only constants). Let us consider a well-known example
[3, 6, 7]. The motion of mechanical system with coordinates (x, y, z) is described by equation

dy

dt
− z

dx

dt
= 0, (3)

or in terms of differential forms

ω = dy − zdx = 0, (∂z, ∂x + z∂y). (4)

The integrability conditions for this system are not fulfilled:

dω ∧ ω = −dz ∧ dx ∧ dy �= 0. (5)

Therefore there does not exist any two-dimensional solutions of the form Φ(x, y, z) = C. After
H. Hertz such systems are known as “nonholonomic systems” [8]. But there exist one-dimensional



158 V. Lehenkyi

solutions admitted by equation (3). For example, in [7] we can find a solution {x = t2, y = t4,
z = 2t2}. It is easy to construct the solution {x = cos t, y = t cos t− sin t, z = t}. The question
is: Can we construct a formula, which includes all one-dimensional solutions? We may find the
positive answer in Pars’ book [6]. His solution for (4) is

y = f(x), z = f ′(x). (6)

But this solution is only guess and we do not know what can we do in a more difficult situation.
The algorithm for the general case is given by M. Gromov in his book [1]. Let us illustrate his
algorithm for solving of the system


dξ1

du
= −u2 dτ

du
,

dξ2

du
= u

dτ

du
.

(7)

Following Gromov, rewrite system (7) in the form

Bx′ = 0, (8)

where

B =
( −u2 −1 0

u 0 −1
)
, x =


 τ

ξ1

ξ2


 (9)

and take the solution in the form:

Bx = σ, σ =
(

σ1

σ2

)
, (10)

where σi(u) are arbitrary functions. Let us differentiate (10) taking into account (8). We obtain

B′x = σ′. (11)

System (10), (11) is algebraic with respect to (τ, ξ1, ξ2)


−u2τ − ξ1 = σ1,

uτ − ξ2 = σ2,

−2uτ = dσ1

du
,

τ =
dσ2

du
,

(12)

and has nontrivial solutions iff the condition

dσ1

du
+ 2u

dσ2

du
= 0. (13)

takes place. Equation (13) is also underdetermined but it contains only 2 unknown functions.
Proceeding in the similar way and making in (13) the substitution

σ1 + 2uσ2 = h, (14)
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where h = h(u) is an arbitrary function we have

σ2 =
h′(u)
2

, (15)

and accordingly, from (14)

σ1 = h− uh′(u). (16)

At the last step we substitute (σ1, σ2) in (12) and finally obtain the solution in the form


τ =
h′′

2
,

ξ1 = −u2h
′′

2
+ uh′ − h,

ξ2 = u
h′′

2
− h′

2
.

(17)

Thus the Gromov anzats reduces underdetermined system also to underdetermined system with
dimension is less than of the initial system. Therefore for solving system (2) we have to input
consecutively (n−1) times n, (n−1), . . . , 1 new functions. But the role of these new functions is
intermediate while the solution of initial problem may be defined by only one arbitrary function.
Our goal is to exclude these intermediate calculations. With respect to this at first we have to
calculate the number of arbitrary functions defining the general solution and then to get exact
formulas.

2 General solution

In the general case we use the definition of “width of solution” which was introduced by E. Cartan
in [9]. We will consider only nonholonomic systems (2), so (n+1)-dimensional integral manifolds
are absent.

Φ(τ, ξi) = C. (18)

At the following step we have to obtain for system (2) Cartan’s characteristics (si). Direct
calculations give

s = n, s1 = 1. (19)

Therefore, the general solution of system (2) depends on one arbitrary function σ(u).
The next step is based on the following. The general solutions of simple cases show that the fi-

nal formulas are linearly dependent on σ(u) and its derivatives up to n-th order (σ′, σ′′, . . . , σ(n)).
Hence we can try to find the general solution of (2) in the form

τ =
n∑

k=0

Akσ
(k),

(
σ(k) = Ukσ

)
,

ξi =
n∑

k=0

Bi
kσ

(k), U =
d

du
,

(20)

with undefined coefficients (Ai, Bi
k). The substitution (20) into (2) leads us (after decomposition

by σ(k)) to the system

Bi
n = f iAn, (21)



160 V. Lehenkyi

UBi
k +Bi

k−1 = f iUAk + f iAk−1, k = 1, n, (22)

UBi
0 = f iUA0. (23)

The substitution (21) into (22) gives us

Bi
n−1 = f iAn−1 −AnUf

i,

Bi
n−2 = f iAn−2 −An−1Uf

i +AnU
2f i + UAnUf

i,

Bi
n−3 = f iAn−3 −An−2Uf

i + U
(
An−1Uf

i
) − U2

(
AnUf

i
)
,

(24)

and we may assume that

Bi
n−k = f iAn−k +

k−1∑
m=0

(−1)m+1Um
(
An−k+m+1Uf

i
)
, (25)

or, redefining the subscript (n− k −→ k),

Bi
k = f iAk +

n−k−1∑
m=0

(−1)m+1Um
(
Am+k+1Uf

i
)
, k = 1, n− 1. (26)

In fact, we get identity via substitution (Bi
k) into (22). From (26) with respect to k = 0 we have

Bi
0 = f iA0 +

n−1∑
m=0

(−1)m+1Um
(
Am+1Uf

i
)
. (27)

The substitution (27) into (23) gives us Ai:

n∑
m=0

(−1)mUm
(
AmUf i

)
= 0. (28)

Let us make the following transformations at (28):
1) rewrite according to Leibnitz formula (see, for example, [10]) the expression

Um(AmUf i) =
m∑

s=0

(
m

s

)
(Um−sAm)Um+1f i; (29)

2) define

Ds =
n∑

m=s

(−1)m
(
m

s

)
Um−sAm. (30)

Then (28) takes the form

n∑
s=0

DsU
s+1f i = 0, i = 1, n. (31)

This system is linear algebraic one with respect to (n+1) unknown variables Ds. The existence
of solutions of the latter system is connected with the rank of functional n× (n+ 1) matrix

W (u) = ai
j , ai

j =
dj+1f i

duj+1
. (32)
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The determinant of square matrix Ŵ (u) (which isW (u) without last column) is a Wronskian for
functions df i

du (see, for example, [11]). If rank of the matrix W (u) is equal to n, then system (31)
has a solution. We may get Dn(u) as arbitrary function.

Dn(u) = h(u). (33)

The remaining coefficients are defined from the system

n−1∑
s=0

DsU
s+1f i = (−1)Un+1f ih(u). (34)

In the particular case Un+1f i = 0 (∀ i) we have Ds = 0, s = 0, n− 1. It is easy to show that
function h(u) is not essential, because of for any h(u) the substitution σ̂ = hσ leave only one
arbitrary function in general solution. Therefore we may assume without loss of generality that

Dn(u) = h(u) = (−1)n. (35)

In this case we have from (28) An = 1, and from (21) Bi
n = f i. By inverting formula (34) we

can calculate the coefficients Ai

Ai =
n−1∑
m=i

(−1)m
(
m

i

)
Um−iDm, (36)

and according to (26) we can obtain Bk
i . As a result we may formulate the following theorem:

Theorem 1. If Wronskian of functions ϕi = df i

du in system (2) is not equal to zero (W (ϕi) �= 0),
then the general solution of system (2) is given by the formulas



τ = σ(n) +
n−1∑
k=0

Akσ
(k),

ξi = f iσ(n) +
n−1∑
k=0

Bi
kσ

(k),

(37)

where σ = σ(u) is an arbitrary function and for calculating coefficients (Ai, Bi
k) one needs to

follow the following algorithm:
1) solve the linear system

n−1∑
s=0

(U s+1f i)Ds = (−1)n+1Un+1f i (38)

with respect to Ds;
2) calculate Ai from (36);
3) calculate Bi

k from recursion relations (21), (22) or from formulas (26).

In an important particular case Un+1f i = 0 (∀ i) (system (38) is homogeneous) the latter
formulas simplify to

An = 1, Ai = 0, Bn = f i, Bi
k = (−U)n−kf i, k = 0, n− 1. (39)
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Figure 1. “Integrating Wheel”

3 Examples

Example 1 [3, p.28]. Let us consider the motion of a nonholonomic system (“Integrating
Wheel”) on the plane OXY (see Fig. 1).
During the rotation of wheel around its axis the coordinates x and y are bounded by following

equations

ẋ = Rϕ̇ sinβ, ẏ = Rϕ̇ cosβ, (40)

where ϕ̇ is angular velocity, R is radius, β is angle of orientation of the wheel on the plane.
Denoting by

ξ1 =
x

R
, ξ2 =

y

R
, τ = ϕ, β = u, (41)

we get the system



dξ1

du
= sinu

dτ

du
,

dξ2

du
= cosu

dτ

du
.

(42)

According to Theorem 1 the result will be following. System (38) has the form(
cosu sinu
− sinu − cosu

) (
D0

D1

)
=

(
cosu
− sinu

)
, (43)

and its solution is

D0 = 1, D1 = 0. (44)

By formulas (36) one can obtain

A1 = −D1 = 0, A0 = D0 − UD1 = 1. (45)

Finally, by using (26) we have

B1
1 = − cosu, B1

0 = 0, B2
1 = sinu, B2

0 = 0, (46)
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and the general solution takes the form


τ = σuu + σ,

ξ1 = sinuσuu − cosuσu,

ξ2 = cosuσuu + sinuσu,

(47)

where σ = σ(u) is arbitrary function from C3.

Example 2. Let us calculate the symmetry algebra of a control system

x(n) = u, x(n) =
dnx

dtn
. (48)

Rewrite system (48) in Cauchy form

ẋ1 = x2, ẋ2 = x3, . . . , ẋn = u, (49)

where x1 = x, x2 = ẋ, . . ., xn = x(n−1). Now with system (49) we can associate the differential
operator

X0 = X̂0 + u∂xn , X̂0 = ∂t + xi+1∂xi , i = 1, n− 1. (50)

The symmetry operator is

X = τ(t, x, u)∂t + ξj(t, x, u)∂xj + ϕ(t, x, u)∂u, j = 1, n. (51)

Symmetry conditions give us the following determining equations

Xf j + f jX0τ −X0ξ
j = 0, (52)

f jUτ − Uξj = 0, j = 1, n. (53)

The last equation is the same as (2). From (53) we have

ξi
u − xi+1τu = 0, (54)

ξn
u − uτu = 0. (55)

According to Theorem 1 the solution of (55) has the form

τ = σu, ξn = uσu − σ, (56)

where σ = σ(t, x, u) is arbitrary function. Now for (54) we have

ξi = xi+1σu + gi, (57)

where gi = gi(t, x). Omitting the intermediate calculations, we can formulate the general result
as following.

Theorem 2. The maximal invariance algebra for control flat system (49) is infinite-dimensional
and its infinitesimal operator is

X = − ∂

∂xn

(
X̂n−2

0 g
)
∂t +

(
−xi+1 ∂

∂xn

(
X̂n−2

0 g
)
+ X̂i−1

0 g

)
∂xi

+
(
X̂n−1

0 g
)
∂xn +

(
X2

0 X̂
n−2
0

)
g∂u, i = 1, n− 1.

(58)

where g = g(t, x1, . . . , xn−1).

Important details and other examples the reader may find in [12].



164 V. Lehenkyi

4 Conclusion

The calculation of the general solution of system (2) according to Theorem 1 consists of only
regular actions (solving of linear system and differentiation), so these procedures are easy realized
in the analytical system REDUCE. Besides, exact formulas are very useful in supervising of
control systems (see the details in [12]).
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