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We classify realizations of the Lie algebras of the rotation O(3) and Euclid E(3) groups within
the class of first-order differential operators in arbitrary finite dimensions. It is established
that there are only two distinct realizations of the Lie algebra of the group O(3) which are
inequivalent within the action of a diffeomorphism group. Using this result we describe a
special subclass of realizations of the Euclid algebra which are called covariant.

1. In the present paper we study realizations of the Lie algebra of the Euclid group E(3)
(which will be called in the sequel the Euclid algebra e(3)) within the class of Lie vector fields
on the space V = X ⊗ U of independent and dependent variables. In the case under study X
is the three-dimensional Euclid space having the coordinates x = (x1, x2, x3); U is the space of
real-valued scalar functions u(x) = (u1(x), u2(x), . . . , un(x)), and Lie vector fields are first-order
differential operators of the form

Q = ξa(x, u)∂xa + ηi(x, u)∂ui , (1)

where ξa, ηi (a = 1, 2, 3; i = 1, . . . , n) are some sufficiently smooth real-valued functions defined
on the space V , ∂xa = ∂

∂xa
, ∂ui = ∂

∂ui
. Hereafter, we use the summation convention for the

repeated indices.
We say that the operators Pa, Jb (a, b = 1, 2, 3) belonging to class (1) form a basis of the

realization of the Euclid algebra e(3) if (a) they are linearly independent, and (b) they satisfy
the following commutation relations:

[Pa, Pb] = 0, (2)

[Ja, Pb] = εabcPc, (3)

[Ja, Jb] = εabcJc, (4)

where

εabc =




1, (abc) = cycle (123),
−1, (abc) = cycle (213),

0, in the remaining cases.

The realization of the Euclid algebra e(3) within the class of Lie vector fields (1) is called
covariant if coefficients of the basis elements

Pa = ξ
(1)
ab (x, u)∂xb

+ η
(1)
ai (x, u)∂ui (a, b = 1, 2, 3; i = 1, . . . , n) (5)
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satisfy the following condition:

rank

∥∥∥∥∥∥∥∥

ξ
(1)
11 ξ

(1)
12 ξ

(1)
13 η

(1)
11 . . . η

(1)
1n

ξ
(1)
21 ξ

(1)
22 ξ

(1)
23 η

(1)
21 . . . η

(1)
2n

ξ
(1)
31 ξ

(1)
32 ξ

(1)
33 η

(1)
31 . . . η

(1)
3n

∥∥∥∥∥∥∥∥
= 3. (6)

It is easy to check that the relations (2)–(4) are invariant with respect to an arbitrary invert-
ible transformation of variables x, u

ya = fa(x, u), a = 1, 2, 3; vi = gi(x, u) i = 1, . . . , n, (7)

where fa, gi are sufficiently smooth functions defined on the space V . That is why we can intro-
duce on the set of realizations of the Euclid algebra e(3) the following relation: two realizations
of the algebra e(3) are called equivalent if they are transformed one into another by means of
an invertible transformation (7). As invertible transformations of the form (7) form a group
(called diffeomorphism group), this relation is the equivalence relation. It divides the set of all
realizations of the Euclid algebra into equivalence classes A1, . . . , Ar. Consequently, to describe
all possible realizations of e(3) it suffices to construct one representative of each equivalence
class Aj , j = 1, . . . , r.

2. As it follows from commutation relations (2)–(4) of the algebra e(3), the latter is the
semi-direct sum of the commutative ideal t3 = 〈P1, P2, P3〉 and of the simple algebra so(3) =
〈J1, J2, J3〉. That is why we start investigation of covariant realizations of the algebra e(3) by
studying realizations of the translation generators Pa (a = 1, 2, 3) within the class of opera-
tors (1). To this end we will make use of the following lemma.

Lemma 1. Let the operators Pa (a = 1, 2, 3) of the form (5) satisfy relation (6). Then there
exists a transformation of the form (7) reducing the operators Pa to become P ′

a = ∂ya, a = 1, 2, 3.

Proof. In view of (6) Pa �= 0 for all a = 1, 2, 3. It is well-known [1] that a non-zero operator

P1 = ξ
(1)
1b (x, u)∂xb

+ η
(1)
1i (x, u)∂ui

can be always reduced to the form P ′
1 = ∂y1 by transformation (7). If we denote by P ′

2, P
′
3 the

operators P2, P3 written in the new variables y, v, then owing to commutation relations (2) they
commute with the operator P ′

1 = ∂y1 . Hence, we conclude that their coefficients are independent
of y1.

Furthermore, due to the condition (6) at least one of the coefficients ξ′(1)22 , ξ′(1)23 , η′(1)21 , . . ., η′(1)2n

of the operator P ′
2 is not equal to zero.

Summing up, we conclude that the operator P ′
2 is of the form

P ′
2 = ξ

′(1)
2b (y2, y3, v)∂yb

+ η
′(1)
2i (y2, y3, v)∂vi ,

not all the functions ξ
′(1)
22 , ξ′(1)23 , η′(1)21 , . . . , η

′(1)
2n being identically equal to zero.

Making a transformation

z1 = y1 + F (y2, y3, v), z2 = G(y2, y3, v),
z3 = ω0(y2, y3, v), ωi = ωi(y2, y3, v), i = 1, . . . , n,

(8)

where the functions F , G are particular solutions of differential equations

ξ
′(1)
22 (y2, y3, v)Fy2 + ξ

′(1)
23 (y2, y3, v)Fy2 + η

′(1)
2i (y2, y3, v)Fui + ξ

′(1)
21 (y2, y3, v) = 0,

ξ
′(1)
22 (y2, y3, v)Gy2 + ξ

′(1)
23 (y2, y3, v)Gy3 + η

′(1)
2i (y2, y3, v)Gui = 1
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and ω0, ω1, . . . , ωn are functionally-independent first integrals of the Euler–Lagrange system

dy2

ξ
′(1)
22

=
dy3

ξ
′(1)
23

=
dv1

η
′(1)
21

= · · · = dvn

η
′(1)
2n

,

which has exactly n+1 functionally-independent integrals, we reduce the operator P ′
2 to the form

P ′′
2 = ∂z2 . It is easy to check that transformation (8) does not alter the form of the operator P ′

1.
Being rewritten in the new variables z, ω it reads as P ′′

1 = ∂z1 .
As the right-hand sides of (8) are functionally-independent by construction, transformation

(8) is invertible. Consequently, operators Pa are equivalent to operators P ′′
a , where P ′′

1 = ∂z1 ,
P ′′

2 = ∂z2 and

P ′′
3 = ξ

′′(1)
3b (z3, ω)∂zb

+ η
′′(1)
3i (z, ω)∂ωi �= 0

(coefficients of the above operator are independent of z1, z2 because of the fact that it commutes
with the operators P ′′

1 , P ′′
2 ). And what is more, due to (6) at least one of the coefficients

ξ
′′(1)
33 , η

′′(1)
31 , . . . , η

′′(1)
3n of the operator P ′′

3 is not identically equal to zero.
It is not difficult to verify that there exists the invertible transformation

Z1 = z1 + F (z3, ω), Z2 = z2 + G(z3, ω),
Z3 = H(z3, ω), Wi = Ωi(z3, ω), i = 1, . . . , n,

which reduces the operators P ′′
a , a = 1, 2, 3 to the form P ′′′

a = ∂za , a = 1, 2, 3.
Lemma is proved.
Due to Lemma 1 the operators Pa can be reduced to the form Pa = ∂xa by means of a

properly chosen transformation (7). Inserting the operators

Pa = ∂xa , Ja = ξab(x, u)∂xb
+ ηai(x, u)∂ui , a, b = 1, 2, 3; i = 1, . . . , n,

into commutation relations (3) and equating the coefficients of the linearly-independent opera-
tors ∂xa , ∂ui (a = 1, 2, 3; i = 1, . . . , n) we arrive at the system of partial differential equations
for the functions ξab(x, u), ηai(x, u)

ξacxb
= −εabc, ηaixb

= 0, a, b, c = 1, 2, 3, i = 1, . . . , n.

Integrating the above system we conclude that the operators Ja have the form

Ja = −εabcxb∂xc + jab(u)∂xb
+ η̃ai(u)∂ui , a, b = 1, 2, 3, i = 1, . . . , n, (9)

where jab, η̃ab are arbitrary smooth functions.
Inserting (9) into the commutation relations (4) and equating the coefficients of ∂ui (i =

1, . . . , n) show that the operators Ja = η̃ai∂ui , (a = 1, 2, 3) have to fulfill (4) with Ja → Ja.

Lemma 2. Let first-order differential operators

Ja = ηai(u)∂ui , a = 1, 2, 3, i = 1, . . . , n, (10)

satisfy commutation relations (4) of the Lie algebra so(3). Then either all of them are equal to
zero, i.e.

Ja = 0, a = 1, 2, 3, (11)

or there exists a transformation

vi = Fi(u), i = 1, . . . , n,
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reducing these operators to one of the following forms:

1. J1 = − sinu1tanu2∂u1 − cosu1∂u2 ,

J2 = − cosu1tanu2∂u1 + sinu1∂u2 ,

J3 = ∂u1 ;
(12)

2. J1 = − sinu1tanu2∂u1 − cosu1∂u2 + sinu1 secu2∂u3 ,

J2 = − cosu1tanu2∂u1 + sinu1∂u2 + cosu1 secu2∂u3 ,

J3 = ∂u1 .

(13)

The proof of Lemma 2 requires long cumbersome calculations which are omitted here.
Notice that the set of inequivalent realizations of the Lie algebra so(3) within the class of

first-order differential operators (10) is exhausted by the realizations given in (12), (13).
Hence, taking into account Lemma 2 we conclude that any covariant realization of the algebra

e(3) is equivalent to the following one:

Pa = ∂xa , Ja = −εabcxb∂xc + jab(u)∂xb
+ Ja, a, b, c = 1, 2, 3, (14)

operators Ja being given by one of formulae (11)–(13).
Making a transformation

ya = xa + Fa(u), vi = ui, a = 1, 2, 3, i = 1, . . . , n,

we reduce operators Ja from (14) to become

J1 = −y2∂y3 + y3∂y2 + A∂y1 + B∂y2 + C∂y3 + J1,

J2 = −y3∂y1 + y1∂y3 + F∂y2 + G∂y3 + J2,

J3 = −y1∂y2 + y2∂y1 + H∂y3 + J3,

(15)

where A, B, C, F , G, H are arbitrary smooth functions of v1, . . . , vn.
Substituting the operators (15) into (4) and equating the coefficients of linearly-independent

operators ∂y1 , ∂y2 , ∂y3 , ∂vi (i = 1, . . . , n) result in the following system of partial differential
equations:

J2A = −C, J3C − J1H = G, J3F = −B,

J1G− J2C = H −A− F, J3A = B, J3B = F −A−H,

J1F − J2B = G, A− F −H = 0, J2H − J3G = C.

(16)

Analyzing system (16) we arrive at the following assertion.

Theorem 1. Any covariant realizations of the algebra e(3) within the class of first-order differ-
ential operators is equivalent to one of the following realizations:

1. Pa = ∂xa , Ja = −εabcxb∂xc , a, b, c = 1, 2, 3;
2. Pa = ∂xa , a = 1, 2, 3,

J1 = −x2∂x3 + x3∂x2 + f∂x1 − fu2 sinu1∂x2 − sinu1tanu2∂u1 − cosu1∂u2 ,

J2 = −x3∂x1 + x1∂x3 + f∂x2 − fu2 cosu2∂x3 − cosu1tanu2∂u1 + sinu1∂u2 ,

J3 = −x1∂x2 + x2∂x1 + ∂u1 ;
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3. Pa = ∂xa , a = 1, 2, 3,
J1 = −x2∂x3 + x3∂x2 + g∂x1 − (sinu1gu2 + cosu1 secu2gu3)∂x3

− sinu1tanu2∂u1 − cosu1∂u2 + sinu1 secu2∂u3 ,

J2 = −x3∂x1 + x1∂x3 + g∂x2 − (cosu1gu2 − sinu1 secu2gu3)∂x3

− cosu1tanu2∂u1 + sinu1∂u2 + cosu1 secu2∂u3 ,

J3 = −x1∂x2 + x2∂x1 + ∂u1 .

Here f = f(u2, . . . , un) is given by the formula

f = α sinu2 + β

(
sinu2 ln

sinu2 + 1
cosu2

− 1
)
,

α, β are arbitrary smooth functions of u3, . . . , un and g = g(u2, . . . , un) is a solution of the
following linear partial differential equation:

cos2 u2gu2u2 + gu3u3 − sinu2 cosu2gu2 + 2 cos2 u2g = 0.

3. Summarizing the results obtained in the previous section yields the following structure of
realizations of the Lie algebra so(3) by Lie vector fields in n variables.

1. If n = 1, then there are no non-zero realizations.
2. As there is no realization of so(3) by real non-zero 2 × 2 matrices, the only non-zero

realizations is given by (12).
3. In the case n = 3 there are two more inequivalent realizations (12) and (13).
4. Provided n > 3, there is no new realizations of so(3) and, furthermore. any realization

can be reduced to a linear one.
Notice that a complete description of covariant realizations of the conformal algebra c(n,m)

in the space of n+m independent and one dependent variables was obtained in [2, 3]. Some new
realizations of the Galilei algebra g(1, 3) were suggested in [4]. Yehorchenko [5], and Fushchych,
Tsyfra and Boyko [6] have constructed new (nonlinear) realizations of the Poincaré algebras
p(1, 2) and p(1, 3) correspondingly. Complete description of realizations of the Galilei algebra
g2(1, 1) in the space of two dependent and two independent variables was obtained in [7, 8].
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