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We classify realizations of the Lie algebras of the rotation O(3) and Euclid E(3) groups within
the class of first-order differential operators in arbitrary finite dimensions. It is established
that there are only two distinct realizations of the Lie algebra of the group O(3) which are
inequivalent within the action of a diffeomorphism group. Using this result we describe a
special subclass of realizations of the Euclid algebra which are called covariant.

1. In the present paper we study realizations of the Lie algebra of the Euclid group E(3)
(which will be called in the sequel the Euclid algebra e(3)) within the class of Lie vector fields
on the space V = X ® U of independent and dependent variables. In the case under study X
is the three-dimensional Euclid space having the coordinates = (z1, z2,x3); U is the space of

real-valued scalar functions u(x) = (u1(z),u2(x), ..., u,(x)), and Lie vector fields are first-order
differential operators of the form

Q= fa(x,u)axa +ni($7u)auw (1)
where &,, 7; (a =1,2,3;i=1,...,n) are some sufficiently smooth real-valued functions defined

on the space V, 0,, = %, Oy, = %. Hereafter, we use the summation convention for the

repeated indices.

We say that the operators P,, Jp (a,b = 1,2,3) belonging to class (1) form a basis of the
realization of the Euclid algebra e(3) if (a) they are linearly independent, and (b) they satisfy
the following commutation relations:

[Pa, Py] =0, (2)
[qu Pb] = E(zbcpm (3)
[Jm Jb] = 5abc']07 (4)

where

1, (abc) = cycle (123),
Eabe = {4 —1, (abc) = cycle (213),
0, in the remaining cases.

The realization of the Euclid algebra e(3) within the class of Lie vector fields (1) is called
covariant if coefficients of the basis elements

P, = {S,)(x, u) Oy, + n(i)(x,u)ﬁui (a,b=1,2,3; i=1,...,n) (5)

a
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satisfy the following condition:

(1) gg) (1) (1) (1)
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It is easy to check that the relations (2)—(4) are invariant with respect to an arbitrary invert-
ible transformation of variables x, u

Yo = falz,u), a=1,2,3; v = gi(x,u) i=1,...,n, (7)

where f,, g; are sufficiently smooth functions defined on the space V. That is why we can intro-
duce on the set of realizations of the Euclid algebra e(3) the following relation: two realizations
of the algebra e(3) are called equivalent if they are transformed one into another by means of
an invertible transformation (7). As invertible transformations of the form (7) form a group
(called diffeomorphism group), this relation is the equivalence relation. It divides the set of all
realizations of the Euclid algebra into equivalence classes A1, ..., A,. Consequently, to describe
all possible realizations of e(3) it suffices to construct one representative of each equivalence
class A;, j=1,...,r.

2. As it follows from commutation relations (2)—(4) of the algebra e(3), the latter is the
semi-direct sum of the commutative ideal t> = (P;, P2, P3) and of the simple algebra so(3) =
(J1, J2, J3). That is why we start investigation of covariant realizations of the algebra e(3) by
studying realizations of the translation generators P, (a = 1,2,3) within the class of opera-
tors (1). To this end we will make use of the following lemma.

Lemma 1. Let the operators P, (a = 1,2,3) of the form (5) satisfy relation (6). Then there
ezists a transformation of the form (7) reducing the operators Py, to become P, = 0,,, a = 1,2, 3.

Proof. In view of (6) P, # 0 for all a = 1,2,3. It is well-known [1] that a non-zero operator
PL= &) (w0, + L7 ()

can be always reduced to the form P| = 9,, by transformation (7). If we denote by Pj, P; the
operators P, P3 written in the new variables y, v, then owing to commutation relations (2) they
commute with the operator P| = 0y,. Hence, we conclude that their coefficients are independent
of Y.
o . (1) (1) (1) /(1)
Furthermore, due to the condition (6) at least one of the coefficients £557, €957, 191 s - - -5 Ty,
of the operator Pj is not equal to zero.

Summing up, we conclude that the operator Pj is of the form

1 1
Py = €3 (2,3, v)dy, + 1 (42, Y3, 0)O,
not all the functions f;g), 55(31), 77/2(11), .. ,77/2(5) being identically equal to zero.
Making a transformation

21 :y1+F(y27y3av)7 22 :G(y%y?nv)?
Z3:w0(y27y3vv)v wi:wi(y27y37v)7 i=1,...,n,
where the functions F', G are particular solutions of differential equations
1 1 1 1
5;(2 )(yZa Y3, U)Fyg + éé(?,)(y27 Ys, U)Fyz + 77/2(1 )(y27 Ys, U)Fuz + 5;(1 )(3/2» Y3, U) = 07

5;(21) (y27 Y3, U)Gyg + E;(Sl) (y27 Y3, U)Gyg, + 77/2(11) (y27 Y3, ’U)Gul =1
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and wq, w1, . ..,w, are functionally-independent first integrals of the Euler—Lagrange system
dyo  dys  dvy duy,
) — o) T Tay
22 52(3 M1 "2n

which has exactly n+1 functionally-independent integrals, we reduce the operator P to the form
P = 9,,. It is easy to check that transformation (8) does not alter the form of the operator Pj.
Being rewritten in the new variables z, w it reads as P;' = 0.,.

As the right-hand sides of (8) are functionally-independent by construction, transformation
(8) is invertible. Consequently, operators P, are equivalent to operators P,, where P/ = 0,,,
Pl = 0,, and

P = i (2,0)0s, + 15 (2,0)8., £ 0

1)

(coefficients of the above operator are independent of z1, zo because of the fact that it commutes

with the operators P, Pj). And what is more, due to (6) at least one of the coefficients

g/§1)7 T]gfl), . 777;)/7(11) of the operator P4 is not identically equal to zero.

It is not difficult to verify that there exists the invertible transformation
Zl :zl+F(z37w>a ZQ :Z2+G(2’3,W),
Z3:H(z3,w), Wi:Qi(Zg,w), izl,...,n,

which reduces the operators P!, a = 1,2,3 to the form P} =9,,,a=1,2,3.

Lemma is proved.

Due to Lemma 1 the operators P, can be reduced to the form P, = 0., by means of a
properly chosen transformation (7). Inserting the operators

Pa: Ta ) Ja:gab(x7u)8:vb+nai($7u)aui7 a7b:17273; izla"'7n7

into commutation relations (3) and equating the coefficients of the linearly-independent opera-
tors Og,, Ou, (@ =1,2,3; i =1,...,n) we arrive at the system of partial differential equations
for the functions Eup(x, u), Nei(x, u)

gaczb = —Eabe> Naixz, = 07 a, b7 Cc= 17 27 37 1= 17 -y N
Integrating the above system we conclude that the operators J, have the form
Ja == _Eabcxbaa:c +jab(u)axb +ﬁai(u)a’ui7 CL,b = 172737 1= 17' <oy N, (9)

where jqp, Nap are arbitrary smooth functions.
Inserting (9) into the commutation relations (4) and equating the coefficients of 9,, (i =
1,...,n) show that the operators J, = 14i0y,, (a = 1,2, 3) have to fulfill (4) with J, — Jq.

Lemma 2. Let first-order differential operators
Ja = Nai(u)0Oy,, a=1,2,3, i=1,...,n, (10)

satisfy commutation relations (4) of the Lie algebra so(3). Then either all of them are equal to
zero, i.e.

ja:()y a = 172737 (11)
or there exists a transformation

vi:FZ-(u), i=1,...,n,



Towards a Classification of Realizations of the Euclid Algebra e(3) 149

reducing these operators to one of the following forms:

1. J1 = —sinujtan ug0y, — cos u10y,,
J2 = —cosujtan ugdy, + sinu0y,, (12)
j3 = auﬁ

2. J1 = —sinuitanuzdy, — cosuiOy, + sinuy sec ugly,,
Jo = — cosujtan ugdy, + sin ugdy, + COS Uy SeC U0y, (13)
j3 = aul-

The proof of Lemma 2 requires long cumbersome calculations which are omitted here.

Notice that the set of inequivalent realizations of the Lie algebra so(3) within the class of
first-order differential operators (10) is exhausted by the realizations given in (12), (13).

Hence, taking into account Lemma 2 we conclude that any covariant realization of the algebra
e(3) is equivalent to the following one:

Pa = Uzqs Ja = _5abc$bamc + jab(u)azb + j(h a, b7 c= 17 27 37 (14)

operators J, being given by one of formulae (11)—(13).
Making a transformation

Yo = Tq + Fy(u), v; = Uy, a=1,2,3, i=1,...,n,
we reduce operators J, from (14) to become

J1 = —y28y3 + y36y2 + Aﬁyl + B8y2 + 06y3 + jl,
Jy = —ygayl + y18y3 + F8y2 + G8y3 + Jo, (15)
J3 = —y10y, + Y20y, + HOy, + T3,

where A, B, C, F', G, H are arbitrary smooth functions of vy, ..., v,.

Substituting the operators (15) into (4) and equating the coefficients of linearly-independent
operators Oy, Oy,, Oys, Oy, (i = 1,...,n) result in the following system of partial differential
equations:

JoA = —C, J3C — hH =G, JsF = —B,
JG—TC=H—-A-F, J3A = B, JsB=F—-A—H, (16)
NF —7B=aG, A-—F—-H=0, JoH — J3G = C.

Analyzing system (16) we arrive at the following assertion.

Theorem 1. Any covariant realizations of the algebra e(3) within the class of first-order differ-
ential operators is equivalent to one of the following realizations:

1. P, =0,,, Jo = —EabeTp0s,., a,b,c=1,2,3;

9. P,=0,, a=123
J1 = =220z, + 2303, + [0z, — fu, sSinu10,, — sinujtanugdy, — cosu10y,,
Jy = =230y, + 1034 + fOz, — fu, COS U0z, — cOsuitan ugdy, + sinu10y,,

J3 = =210z, + 20z, + Ou;;
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3. P,=0, a=1,23,

Ji = =290z, + 305, + g0z, — (SN U1 Gy, + COS UL SEC UGy ) Oy

a)’

—sinujtan ugdy,, — cos u10y, + sinug sec ua0y;,

Jo = =130, + 1054 + g0z, — (COS UL Gy, — SIN U SEC UGy ) Org
— cos uptan ug0y, + sin w10y, + cos uy sec uz0y;,

J3 = —1‘18@ + xgaxl + 8u1-

Here f = f(ug,...,uy) is given by the formula

. . sinug + 1
f=asinuy + 3 <SIHUQIH72 - 1) ,
COS U9
a, [ are arbitrary smooth functions of us,...,u, and g = g(ug,...,u,) is a solution of the

following linear partial differential equation:
cos? U2Gusus + Jusuz — S UL COS U2Gy, + 2 cos? ugg = 0.

3. Summarizing the results obtained in the previous section yields the following structure of
realizations of the Lie algebra so(3) by Lie vector fields in n variables.

1. If n =1, then there are no non-zero realizations.

2. As there is no realization of so(3) by real non-zero 2 x 2 matrices, the only non-zero
realizations is given by (12).

3. In the case n = 3 there are two more inequivalent realizations (12) and (13).

4. Provided n > 3, there is no new realizations of so(3) and, furthermore. any realization
can be reduced to a linear one.

Notice that a complete description of covariant realizations of the conformal algebra c(n,m)
in the space of n+m independent and one dependent variables was obtained in [2, 3]. Some new
realizations of the Galilei algebra g(1,3) were suggested in [4]. Yehorchenko [5], and Fushchych,
Tsyfra and Boyko [6] have constructed new (nonlinear) realizations of the Poincaré algebras
p(1,2) and p(1,3) correspondingly. Complete description of realizations of the Galilei algebra
g2(1,1) in the space of two dependent and two independent variables was obtained in [7, 8].
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