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The group classification of linear hyperbolic partial differential equation is carried out with
the use of the new approach to solving group classification problems suggested recently by
Zhdanov and Lahno (J. Phys. A: Math. Gen., V.32, 7405 (1999)).

1. Consider a partial differential equation of the hyperbolic type

utx +A(t, x)ut +B(t, x)ux + C(t, x)u = 0, (1)

where u = u(t, x), ut = ∂u
∂t , ux = ∂u

∂x , utx = ∂2u
∂t∂x . Group classification of equations (1) admitting

non-trivial (finite-parameter) symmetry group has been performed by L.V. Ovsjannikov [1, 2].
His classification scheme is based on using the Laplace invariants

h = At +AB − c, k = Bx +AB − C.

The results obtained can be formulated as follows.

Theorem 1 (Ovsjannikov [1, 2]). Equation (1) admits a Lie algebra of the dimension higher
than 1 if and only if the functions

p =
k

h
, q =

∂x∂y(lnh)
h

are constant. If p and q are constant, then equation (1) is equivalent either to the Euler–Poisson
equation (q �= 0)

utx − 2ut

q(t+ x)
− 2pux

q(t+ x)
+

4pu
q2(t+ x)2

= 0 (2)

or to equation (q = 0)

utx + tut + pxux + ptxu = 0 (3)

and its symmetry algebra is a three-dimensional Lie algebra L3.

What is more, Ovsjannikov has proved that the basis of the Lie algebra L3 is formed by the
operators

∂t − ∂x, t∂t + x∂x, t2∂t − x2∂x +
2
q
(pt− x)u∂u

for equation (2), and by the operators

t∂t − x∂x, ∂t − xu∂u, ∂x − ptu∂u

for equation (3).



142 V. Lahno and A. Onyshchenko

In this paper we perform group classification of equation (1) by using an alternative approach
suggested in [3].

2. Using the infinitesimal Lie method we obtain that equation (1) is invariant under infinite-
dimensional transformation group, which is generated by the operator

X∞ = ω(t, x)∂u, ωtx +Aωt +Bωx + Cω = 0,

and under the one-parameter transformation group, whose infinitesimal operators reads as

X = f(t)∂t + g(x)∂x + h(t, x)u∂u, (4)

where

ht +Bḟ + fBt + gBx = 0,
hx +Ag′ + gAx + fAt = 0,

htx + Cḟ + fCt + Cg′ + gCx +Aht +Bhx = 0.

(5)

In (5) the following notations are used, ḟ = df
dt , g

′ = dg
dx .

Furthermore, as the direct calculations show, the equivalence group of the equation (1) is a
superposition of the following transformations:

(a) τ = α(t), ξ = β(x), v = θ(t, x)u+ ρ(t, x),
(b) τ = α(x), ξ = β(t), v = θ(t, x)u+ ρ(t, x),

(6)

where α and β are arbitrary smooth functions, θ �= 0 and θ, ρ satisfy the condition

θtρx + ρtθx − θρtx + ρθtx − 2ρθ−1θtθx − Cθρ = 0.

In order to perform group classification of equation (1), we start with studying realizations of
real Lie algebras within the class of operators (4) up to the equivalence relation determined by
transformations (6). As a next step, we select those realizations, that form bases of invariance
algebras of equations (1).

Remark 1. We use the known classification of non-isomorphic real Lie algebras (see, for
example, [4, 5]).

Remark 2. Equation

utx = 0 (7)

is invariant under infinite-dimensional transformation group, which is generated by the operator

X∞ = f(t)∂t + g(x)∂x + λu∂u,

where f and g are arbitrary smooth functions and λ = const. What is more, its general solution
reads as

u = ϕ(t) + ψ(x)

with arbitrary smooth functions ϕ, ψ. Furthermore, the equation

utx +B(x)ux = 0, B �= 0, (8)

has the following general solution:

u =
∫

ϕ(x)e−tB(x)dx+ ψ(t),

where ϕ, ψ are arbitrary smooth functions.
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Therefore, we consider only equations of the form (1), which are inequivalent to (7) and (8).
It is well-known, that a linear partial differential equation of the form (1) is invariant under

the operator u∂u and this operator satisfies the following commutation relation:

[X,u∂u] = 0,

where X has the form (4).
Consequently, the function h(t, x) in operator (3) is determined up to a constant summand.
The list of non-isomorphic two-dimensional real Lie algebras is exhausted by the following

two algebras:

A2.1 = 〈e1, e2〉, [e2, e2] = 0;
A2.2 = 〈e1, e2〉, [e2, e2] = e2.

If these algebras are maximal invariance algebras of equation (1), then one of their basis
operators must coincide with the operator u∂u. Consequently, we have to consider realizations
of the algebra A2.1 only.

Proposition 1. Let the algebra A2.1 be invariance algebra of equation (1). The set of inequiv-
alent realizations of this algebra is exhausted by the following two realizations:

A2.1 = 〈u∂u, ∂t〉;
A2.2 = 〈u∂u, ∂t + ∂x〉.

The corresponding invariant equations can be taken in the following form:

A1
2.1 : utx +B(x)ux + u = 0; (9)

A2
2.2 : utx +B(z)ux + C(z)u = 0, z = t− x, C �= 0. (10)

Proof. First of all we note that the operator u∂u is invariant under action of the changes of
variables (6). Choose e1 = u∂u as the first basis operator of the Let in the algebra A2.1 and let
the second basis operator e2 have the general form (4).
If f · g �= 0 in the operator e2, then making the change of variables (6), where α, β, θ, ρ are

solutions of the system of differental equations

α̇f = 1, β′g = 1, fθt + gθx + hθ = 0, θ �= 0, fρt + gρx = 0,

reduces this operator to the operator

e′2 = ∂τ + ∂ξ.

If f �= 0, g = 0 in the operator e2, then performing the change of variables (6), where β = β(x),
ρ = ρ(x) and functions α, θ are solutions of system of differential equations

α̇f = 1, fθt + hθ = 0, θ �= 0,
reduces this operator to become

e′2 = ∂τ .

If f = 0, g �= 0 in the operator e2, then making another change of variables (6) (t → x,
x → t) reduces this case to the previous one.
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If, finally, f = g = 0 in the operator e2, then h �= 0 and
e2 = h(t, x)u∂u, h �= const.

Thus, we obtain three inequivalent realizations of the algebra A2.1 within the class of opera-
tors (3):

A1
2.1 = 〈u∂u, ∂t〉,

A2
2.1 = 〈u∂u, ∂t + ∂x〉,

A3
2.1 = 〈u∂u, h(t, x)u∂u〉, h �= const.

The direct verification of conditions (5) for the obtained realizations yields the following
results:

• Invariant equations for the first and second realizations have the form:

A1
2.1 : utx +A(x)ut +B(x)ux + C(x)u = 0, C �= 0; (11)

A2
2.1 : utx +A(z)ut +B(z)ux + C(z)u = 0, z = t− x. (12)

• If the realization A3
2.1 is invariance algebra of an equation of the form (1), then h = const.

Furthermore, it is not difficult to verify that the realization A1
2.1 is invariant with respect to

the change of variables

τ = t+ λ, λ = const, ξ = β(x), v = θ(x)u+ ρ(x), θ �= 0. (13)

If in (13) β, θ and ρ are solutions of the system of differential equations

θx = θA, β′ = C − θ−1∂xB, Bθ−1θxρ−Bρx − Cρ = 0,

then this change of variables reduces equation (11) to equation of the form (9).
Using analogous reasonings, it is not difficult to show that equation (12) is equivalent to (10).
Proposition 1 is proved.
Thus obtained classification of equations (1), which are invariant under two-dimensional Lie

algebras, permits realizing further group classification of equation (1) by the method suggested
in [3].
The system of determining equations (5) for equation (9) reads as

ht +Bḟ + gBx = 0, hx = 0, ḟ + g′ = 0. (14)

The second and third equations from (14) imply that h = h(t), f = λ1t + λ2, g = −λ1x + λ3,
where λ1, λ2, λ3 = const.
Consequently, extension of the symmetry of equation (9) is only possible, if the function B

in first equation (14) within the equivalence relation has the form

B = mx, m = const, m �= 0,
which means that equation (9) reads as

utx +mxux + u = 0, m = const. (15)

Its invariance algebra is the four-dimensional Lie algebra

〈u∂u, ∂t, t∂t − x∂x, ∂x −mtu∂u〉.
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Analogously, we verify that extension of symmetry of equation (10) is only possible, if it has
the form

utx +
m

z
ux +

k

z2
u = 0, m, k = const, k �= 0, z = t− x. (16)

The invariance algebra of equation (16) is the four-dimensional Lie algebra

〈u∂u, ∂t + ∂x, t∂t + x∂x +
1
2
mu∂u, t

2∂t + x2∂x +mtu∂u〉.

Cosequently, the following assertion holds true:

Proposition 2. Equation (1) admits a Lie algebra of infinitesimal operators (4), whose dimen-
sion is higher than two, if it is either equivalent to equation (15) or to (16), its invariance algebra
being necessarily four-dimensional.

It is straightforward to verify that the results obtained in Proposition 2 are equivalent to
results obtained by Ovsjannikov.
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