
Proceedings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part 1, 131–136.

About Symmetries of Exterior Differential

Equations, Appropriated to a System of Quasilinear

Differential Equations of the First Order

Alexander KUSYUMOV

Dept. Aerohydrodynamic, Kazan State Technical University
Karl Marks Str. 10, 420111 Kazan, Russia
E-mail: sysroot@unc3.ksu.ras.ru

The symmetries for a quasilinear system of first order partial differential equations are de-
termined. The transformation to a system of exterior differential equations is used. Is shown
that the use of this method allows to simplify a problem of defining equations determination.

1 Introduction

Most calculations of symmetries of differential equations are done with the classical L.V. Ovsyan-
nikov method [1]. In 1965 K.P. Surovikhin published a paper [2], in which the differential forms
were applied for searching symmetries. In the K.P. Surovikhin paper the system of hyperbolic
type equations was considered, and the canonization method for finding symmetries of a exterior
differential equations system was applied. In 1971 F.B. Estabrook and B.K. Harrison published
a paper [3] in which the Lie derivatives were used for finding symmetries of the exterior differen-
tial equations system. This method is easier and universal compared to a canonization method.
This method has also certain advantages compared to the L.V. Ovsyannikov method.
However, as it was noted by B.K. Harrison [4], this method was not used widely in the

literature. The author also developed a method for finding the symmetries of exterior differential
equations with use of the Lie derivatives [5] (the author did not know about the F.B. Estabrook
and B.K. Harrison method). In the present paper this method is applied to finding symmetries
of quasilinear partial differential equations of the first order. The advantages of this method on
a comparison with the L.V. Ovsyannikov method are considered.

2 System of exterior differential equations

A quasilinear system of the first order partial differential equations is considered as a submainfold
(surface) Σ in 1-jets space J1(π) of a bundle π : E −→ M local cuts [6]. This submainfold is
determined by the system of equations

F k
(
xi, uj , pj

i

)
= 0, (1)

where xi ∈ M ⊂ Rn, uj ∈ U ⊂ Rm, pj
i ∈ J1(π), E =M ×U . Thus in the space J1(π) there is a

Cartan distribution C, defined by Cartan 1-forms

Ωj = duj −
n∑

i=1

pj
idx

i. (2)
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The surface Σ is integral variety Cartan’s distribution. Therefore together with (1) should be
fulfilled

Ωj = 0. (3)

Thus, a cut u : M −→ E is a solution of the system (1) if the relations (1), (3) are fulfilled.
We shall designate system of relations (1), (3) as CΣ.
For the quasilinear system of equations (1), we have

F k = ckji(x, u)p
j
i + ck0(x, u), (4)

where ckji(x, u), c
k
0(x, u) are continuous functions.

We can obtained now a system of exterior differential equations. For this purpose we shall
multiply each equation of the system (1) and the base volume M

ωk
F = F kdx1 ∧ . . . ∧ dxn. (5)

From Cartan 1-forms we can obtain the n-forms

Ωj
i = Ω

j ∧ (dx1 ∧ . . . ∧ dxn)i = duj ∧ (dx1 ∧ . . . ∧ dxn)i + pj
i (−1)idx1 ∧ . . . ∧ dxn, (6)

where (dx1 ∧ . . . ∧ dxn)i = dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn.

The system of exterior differential equations Λ(Σ) is obtained by the following method

ωk = ωk
F − (−1)ickjiΩj

i = 0. (7)

After substitution (5), (6) we have

ωk = −(−1)ickji(x, u)duj ∧ (dx1 ∧ . . . ∧ dxn)i + ck0(x, u)dx
1 ∧ . . . ∧ dxn. (8)

Let us note, that the system Λ(Σ) on the space E is determined.
Thus initial system of equations CΣ, defined as the surface Σ with Cartan distribution C,

appropriated by the system of the exterior differential equations Λ(CΣ)

Ωj = 0, ωk = 0. (9)

From Ωj = 0 and ωk = 0 it follows that F k = 0. Hence the systems CΣ and Λ(CΣ) are
equivalent and any integrated variety CΣ is an integrated variety for Λ(CΣ) and vice versa.

3 About symmetries for CΣ and Λ(CΣ)

Let us consider now a problem of symmetries for CΣ and Λ(CΣ).
According to [1] and [6], the classical infinitesimal symmetry of the equations CΣ is Lie vector

field X, such that

X(Ωk) = λjΩj , (10)

X(F k) = αjF j . (11)

Here λj , αj are some functions, and X(Ωk) is determined by the Lie derivative

X(Ωk) = d(X�Ωk) +X�d(Ωk),
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where � is an interior product. The Lie vector field X belongs to a space, tangent to J1(π), and
X is a lift of a vector field X, tangent to a space of a bundle E

X = X +X(1), (12)

where

X = ξi(x, u)
∂

∂xi
+ φj(x, u)

∂

∂uj
, X(1) = ζj

i (x, u, p)
∂

∂pj
i

, (13)

ξi, φj , ζj
i are some functions. We shall designate the Lie algebra of vector fields X as sym(Σ).

Theorem. For point infinitesimal symmetries of systems CΣ and Λ(CΣ) the relation is fulfilled

sym(Σ) = cosym(Σ).

Proof. The vector field X of a point symmetry is uniquely determined by the Lie vector field
X. Therefore it is enough to show that any symmetry of a system CΣ is a symmetry of a system
Λ(CΣ) and vice versa.
Let at first X is infinitesimal symmetry CΣ, i.e.,

X(F k) |CΣ= (X +X(1))(F k) |CΣ= 0. (14)

Let us show, that

X(ωk) |Λ(CΣ)= X(ωk) |Λ(Σ)= 0. (15)

Taking into account (6) and (10), we have

X(Ωk
i ) |Λ(CΣ)= [λ

jΩj ∧ (dx1 ∧ . . . ∧ dxn)i + γlΩk ∧ (dx1 ∧ . . . ∧ dxn)l] |Λ(CΣ)= 0, (16)

where γ is some function. Taking into account (5) and (11), we have

X(ωk
F ) = X(F k)(dx1 ∧ . . . ∧ dxn) + F kX(dx1 ∧ . . . ∧ dxn)

= αjF j(dx1 ∧ . . . ∧ dxn) + βF k(dx1 ∧ . . . ∧ dxn) = (αjωj
F + βωk

F ),

and, thus

X(ωk
F ) = µjωj

F ,

where µj , β are some functions. Hence, taking into account (7) and (17)

X(ωk) |Λ(CΣ)= [X(ω
k
F )− (−1)iX(ckjiΩj

i )] |Λ(CΣ)= µjωj
F |Λ(CΣ)= 0.

As the forms ωk are defined in coordinates of space E, then X(1)(ωk) = 0. Therefore

X(ωk) |Λ(CΣ)= 0.

We can write the latter equality as

X(ωk) = ρk
jω

j + σk
jΩ

j ,

where ρk
j , σ

k
j are some functions. As the forms ω

j and vector field X are defined on a space of
a bundle E, then, σk

j ≡ 0 and, therefore, (16) is fulfilled.
Let now X be an infinitesimal symmetry of Λ(Σ), i.e., (16) is fulfilled. Let us define the

vector field X = X +X(1) so, that it is a Lie field (saves the Cartan distribution). Let us show
that (15) also is fulfilled.
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Taking into account (17) we have

X(ωk) |Λ(Σ)= X(ωk) |Λ(CΣ)= X(ωk) |CΣ=

= X(ωk) |CΣ= [X(ωk
F )− (−1)iX(ckjiΩj

i )] |CΣ= [X(ωk
F )] |CΣ= 0

and we can write

X(ωk
F ) = µjωj

F .

From here follows, that

X(F k) = αjF j

and consequently (15) is fulfilled. The theorem is proved.
So the problem of searching infinitesimal symmetries for the given class of equations system

CΣ is equivalent to a problem of searching infinitesimal symmetries for the system Λ(CΣ), to
be exact systems Λ(Σ). Thus infinitesimal symmetries are vector fields, tangents to base of
bundle E, and not to a space of a bundle J1(π). As it is shown below, such lowering of a vector
field space dimensionality reduces to some decreasing of difficulty in construction of the defining
equations system.

4 Example

As example, let us consider a system of two equations

∂uk

∂x1
+ ckj

(
x1, x2, u1, u2

) ∂uj

∂x2
+ ck0

(
x1, x2, u1, u2

)
= 0, (17)

where i, j, k = 1, 2.
The system of the exterior differential equations Λ(Σ) will look like

ωk = duk ∧ dx2 − ckjdu
j ∧ dx1 + ck0dx

1 ∧ dx2 = 0. (18)

Infinitesimal symmetry of a system Λ(Σ) will be a vector field

X = ξ1
(
x1, x2, u1, u2

) ∂

∂x1
+ ξ2

(
x1, x2, u1, u2

) ∂

∂x2

+ φ1
(
x1, x2, u1, u2

) ∂

∂u1
+ φ2

(
x1, x2, u1, u2

) ∂

∂u2
.

The defining equations for cosym(Σ) are obtained from a condition (16). We have

X(ωk) = dφk ∧ dx2 + duk ∧ dξ2 − ckj
(
dφj ∧ dx1 + duj ∧ dξ1

)
−X�d(ckj )duj ∧ dx1 + ck0

(
dξ1 ∧ dx2 + dx1 ∧ dξ2

)
+X�d(ck0)dx1 ∧ dx2.

(19)

The system of defining equations for functions ξi, φj is obtained by a substitution (20) to (16).
The decomposition is carried on under the forms: du1 ∧ du2, du1 ∧ dx1, du2 ∧ dx1, dx1 ∧ dx2.
We have after decomposition from the first equation of the system (19)

∂ξ2

∂u2
− c11

∂ξ1

∂u2
+ c12

∂ξ1

∂u1
= 0,
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c12
∂φ2

∂u1
− c21

∂φ1

∂u2
− ∂ξ2

∂x1
+ c11

(
∂ξ1

∂x1
− ∂ξ2

∂x2

)
+ ξi ∂c

1
1

∂xi
+ φj ∂c

1
1

∂uj

+
[(
c11

)2 + c12c
2
1

] ∂ξ1

∂x2
+ c10

(
c11
∂ξ1

∂u1
+ c21

∂ξ1

∂u2
− ∂ξ2

∂u1

)
= 0,

c12

(
∂φ2

∂u2
− ∂φ1

∂u1

)
− (

c22 − c11
) ∂φ1

∂u2
+ c12

(
∂ξ1

∂x1
− ∂ξ2

∂x2

)
+ c12

(
c11 + c22

) ∂ξ1

∂x2

+ξi ∂c
1
2

∂xi
+ φj ∂c

1
2

∂uj
++c10

(
c12
∂ξ1

∂u1
+ c22

∂ξ1

∂u2
− ∂ξ2

∂u2

)
= 0,

∂φ1

∂x1
+ c1j

∂φj

∂x2
+ ξi ∂c

1
0

∂xi
+ φj ∂c

1
0

∂uj
+ c10

(
∂ξ1

∂x1
+

∂ξ2

∂x2
− c10

∂ξ1

∂u1
− c20

∂ξ1

∂u2

)
= 0.

From the second equation we have

∂ξ2

∂u1
− c21

∂ξ1

∂u2
+ c22

∂ξ1

∂u1
= 0,

c21

(
∂φ2

∂u2
− ∂φ1

∂u1

)
− (

c11 − c22
) ∂φ2

∂u1
+ c21

(
∂ξ1

∂x1
− ∂ξ2

∂x2

)
+ c21

(
c11 + c22

) ∂ξ1

∂x2

+ξi ∂c
2
1

∂xi
+ φj ∂c

2
1

∂uj
+ c20

(
c11
∂ξ1

∂u1
+ c21

∂ξ1

∂u2
− ∂ξ2

∂u1

)
= 0,

−c12
∂φ2

∂u1
+ c21

∂φ1

∂u2
− ∂ξ2

∂x1
+ c22

(
∂ξ1

∂x1
− ∂ξ2

∂x2

)
+ ξi ∂c

2
2

∂xi
+ φj ∂c

2
2

∂uj

+
[(
c22

)2 + c12c
2
1

] ∂ξ1

∂x2
+ c20

(
c12
∂ξ1

∂u1
+ c22

∂ξ1

∂u2
− ∂ξ2

∂u2

)
= 0,

∂φ2

∂x1
+ c2j

∂φj

∂x2
+ ξi ∂c

2
0

∂xi
+ φj ∂c

2
0

∂uj
+ c20

(
∂ξ1

∂x1
+

∂ξ2

∂x2
− c10

∂ξ1

∂u1
− c20

∂ξ1

∂u2

)
= 0.

Thus we have obtained a system of defining equations for determination of symmetries of the
system (19). The system of defining equations is over-determined. The number Nd of the
defining system equations is determined by expression Nd = mNc − Nl. Here m = 2 is the
number of the initial system equations, Nc is number of decomposition conditions, Nl is number
of linearly dependent equations for the defining equations system. For the considered system
Nc = 4 and Nl = 0 (all equations of a defining system are linearly independent). Therefore we
have Nd = 8.
If the system of defining equations obtained by L.V. Ovsjannikov’s technique [2], then the

number of decomposition conditions Nc = 6 (decomposition under p1
1, p

2
1,

(
p1
1

)2,
(
p2
1

)2, p1
1p

2
1 and

under absolute terms). Therefore 2Nc = 12. Thus the general number of the equations will be
also eight, as Nl = 4 (four equations will linearly depend on other equations).

5 About number of decomposition conditions

In more common case the number of decomposition conditions Nc for the exterior differential
equations system corresponding quasilinear first order system is determined by expression

Nc = Cm
m+n −m,
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where m and n are numbers of dependent and independent variables, Cm
m+n is the number of

combinations from n+m elements under n,

Cn
m+n =

(n+m)!
n!m!

.

Thus, the transformation to a system of the exterior differential equations (for a considered
class of the equations) allows to lower the number of decomposition conditions for searching
of symmetries and to eliminate from consideration linearly dependent equations of a defining
system. In some cases it reduces complexity at deriving of the defining equations system.
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