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The class of nonlinear second order systems having oscillation solutions has been described.
Let us take note that periodic solution is particular case of oscillation solution. The algorithm
of construction of a reducible transformation transforming initial system to system generated
by finite-dimensional group algebra has been developed. It is important that initial systems
can be essentially nonlinear. The class of relaxation oscillations has been reduced to the
considered case.

Among the variety of second order systems is of interest to select systems in which periodic
or “similar” to it change of system state almost periodic, recurrent or oscillatory can take place.

Consider a nonlinear autooscillatory system of differential equations with one degree of free-
dom {

ẋ = f1(x, y),
ẏ = f2(x, y),

(1)

where (x, y) ∈ R2, the overdot in (1) means derivative “d/dt” with respect to t ∈ [0,+∞),
functions fi(x, y), i = 1, 2 are arbitrary analytical functions in some open domain D of plane
(x, y) that satisfy Lipschitz condition in any bounded closed region that is subset of D.

The mathematical model of autooscillatory system is essentially nonlinear. Restriction of
amplitude of autooscillations takes place in autooscillatory system due to its nonlinearity. The
form of them can be diverse including nonusual. Among similar class of nonlinear systems, the
relaxation systems, are of special class{

εẋ = f1(x, y),
ẏ = f2(x, y),

0 < ε � 1,

where oscillations are very far from harmonic. The construction of approximative analytical
expressions for them cannot be obtained within the limits of classical methods of perturbation
theory and requires special methods. This problem was solved for indicated class of systems.

Suppose that system (1) has integral in the form of curve

F (x, y) = C, 0 ≤ C ≤ C∗, (2)

that satisfies the following conditions:

1. Curve (2) is sectionally smooth;

2. The curve surrounding a system’s state of equilibrium (x0, y0) is closed;

3. Curve (2) restricts some simply connected domain D∗ that is subset of determination
region of system (1) D∗ ⊆ D;



128 L.V. Khomchenko

4. Curve (2) does not have points of self-intersection that means that for given implicit
function F (x, y) = C the following condition takes place:

∆ =
(
∂2F (x, y)

∂x2

)
(0,0)

·
(
∂2F (x, y)

∂y2

)
(0,0)

−
(
∂2F (x, y)
∂x∂y

)2

(0,0)

≥ 0. (3)

Theorem 1. If an autooscillatory nonlinear system with one power of freedom (1) has an
integral (2) in the form of sectionally smooth closed curve for which the conditions 1–4 are
satisfied then system (1) has a restricted and oscillatory solution

u =
m∑

i=1

Ai

∑
j = 2p

p = 0, 1, . . . , [ i
2
]

Cj
i · (−1)

j
2 · cosi−j ϕ · sinj ϕ,

v =
m∑

i=1

Ai

∑
j = 2p + 1

p = 0, 1, . . . , [ i−1
2

]

Cj
i · (−1)

j−1
2 · cosi−j ϕ · sinj ϕ.

And, vice versa, a restricted and oscillatory solution of system (1) corresponds to a phase
trajectory in the form of sectionally smooth closed curve F (x, y) = C that does not have the
points of self-intersection.

Represent system (1) in complex plane by means of the change of variables



x =
1
2
(w + w),

y = − i

2
(w − w),

(4)

where w = u+ iv, w = u− iv.
In view of special properties of the change the system (1) may be rewriten as

{
u̇ = f1(u, v),
v̇ = f2(u, v),

(5)

where u+ iv = w and integral (2) in complex variables shall respectively have the form of

F (u, v) = C, u+ iv = w, (6)

where sectionally smooth closed curve (6) will restrict respective one-connected domain Dw of
complex plane w.

Theorem 2 (approximative transformation of nonlinear system). Suppose that au-
tooscillatory nonlinear system (5) where functions fi(u, v), i = 1, 2 are analytical in some do-
main D of complex plane w has an integral (6) in the form of sectionally smooth closed curve
that satisfies conditions 1–4.

By the method of trigonometric interpolation we construct the power function mapping unit
circle |W | = 1 on curve the (6) to some fixed value of parameter C

w =
m∑

n=1

AnW
n, w = u+ iv, W = U + iV, m → ∞. (7)
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The inverse function

W = U + iV = G(w) =
√
c

m∑
n=1

Bnw
n (8)

transforms integral (6) to the canonical form

WW = C, U2 + V 2 = C. (9)

Then transformation (8) reduces system (5) to a system generated by finite-dimensional group
algebra so(2)

{
U̇ = −α(U, V )V,
V̇ = α(U, V )U.

(10)

Remark 1. The system (10) has an oscillation solution
{

U = ρ cosϕ(t),
V = ρ sinϕ(t),

(11)

where the functions ϕ(t) and α(U, V ) satisfy differential equation for phase ϕ(t) and amplitude ρ
of oscillations

dϕ

dt
= α(ρ, ϕ). (12)

Thus we determine a transformation of coordinates in form of power series for receiving phase
trajectory of system (1) in the form of a family of concentric circles with centre in the origin.
But a representative point moves along one of phase trajectory with variable angular velocity
dϕ
dt = var. Remark that in particular case with α = 1 the point moves on the circle uniformly.
In this case we have a harmonic solution{

U = A cos(t+ φ),
V = A sin(t+ φ),

where A is the amplitude of oscillations and φ is the phase of oscillations.

Remark 2. The solution (11) is periodic if function ϕ(t) is periodic or ϕ(t) = t.

The Riemannian theorem, the theorem of conformity of domain boundaries at one-to-one
conformal mapping of domains and Christoffel–Schwarz integral [5] realizing mapping of unit
circle |W | ≤ 1 on internal region of polygon are theoretical base for transformation (7). The
constants of integral will be unit circle points which correspond to vertices of a polygon when
mapping.

For numerical solution we use of stated problem Filchakov method of trigonometric inter-
polation of conformal mapping of domains. This method allows to obtain with help of simple
formulas any given accuracy of construction of function mapping unit circle on internal region
of any previously given simply connected and one-sheet domain Dw restricted by curve (6).

It is of great importance that the method of trigonometric interpolation does not give any
restrictions on the manner of setting of contour what means that curve (6) can be given analy-
tically, graphically or tabular, only by a discrete series of points.

Remark 3. Taking into consideration that in power series (8) the coefficients are imaginary

Bn = B(1)
n + iB(2)

n , w = u+ iv,
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and using the Newton binomial formula it is possible to determine real and imaginary parts for
the transformation W = G(w) :

U =
√
c

m∑
n=1

B(1)
n

∑
k = 2l

l = 0, 1, . . . ,
[

n
2

]
Ck

n(−1)
k
2 un−kvk −√

c
m∑

n=1

B(2)
n

∑
k = 2l + 1

l = 0, 1, . . . ,
[

n−1
2

]
Ck

n(−1)
k−1
2 un−kvk.

V =
√
c

m∑
n=1

B(1)
n

∑
k = 2l + 1

l = 0, 1, . . . ,
[

n−1
2

]
Ck

n(−1)
k−1
2 un−kvk +

√
c

m∑
n=1

B(2)
n

∑
k = 2l

l = 0, 1, . . . ,
[

n
2

]
Ck

n(−1)
k
2 un−kvk.

Similar problem for analysis of autonomous second order systems that are closed to nonlinear
conservative is solved in [4]. The main result of this paper is a considerable extension of the
class of studied systems was without essential restrictions for the functions f1(x, y), f2(x, y).
Moreover there is a possibility of generalization of theory in case n > 2.
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