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In this paper, nonlocal symmetries are considered for some integrable equations including the
first equation of the AKNS hierarchy, the so-called breaking soliton equation, the Boussinesq
equation and the Toda equation. Besides, using invariant transformations of corresponding
spectral problems, more nonlocal symmetries can be produced from one seed symmetry.

1 Introduction

Symmetries and conservation laws for differential equations are the central themes of perpetual
interest in mathematical physics. During past thirty years, the study of symmetries has been
connected with the development of soliton theory and, in fact, it constitutes an indispensable
and important part of soliton theory.

Let us begin with the celebrated Korteweg de Vries equation

ut + 6uux + uxxx = 0, (1)

where the subscripts represent derivatives. A symmetry of the KdV equation (1) is defined as a
solution of its linearized equation

σt + 6(uσ)x + σxxx = 0. (2)

It is well known that x-translation and t-translation invariance of (1) leads to the following
symmetries: ux, ut of the KdV equation (1). In order to find more generalized symmetries, the
concepts of recursion operators or strong symmetries, and hereditary symmetries were introduced
by Olver and Fuchssteiner and used to find these symmetries [1, 2]. Furthermore, Galilean
invariance of the KdV equation (1) leads to symmetry tux − 1

6 , which may be viewed as the
origin of active research on the time-dependent symmetries and the corresponding Lie algebraic
structures for nonlinear equations; and these time-dependent symmetries are connected with
nonisospectral problems (see, e.g. [3–6]). Apart from the symmetries mentioned above, there
exist so-called nonlocal symmetries expressed by spectral functions, e.g., σ = (φ2)x is a symmetry
of the KdV equation (1), where φ is a spectral function of Lax pair

φxx + uφ = λφ, (3)

φt = uxφ − (2u + 4λ)φx. (4)

To search for nonlocal symmetries is an interesting topic. On one hand, these nonlocal symme-
tries enlarge class of symmetries. Besides, nonlocal symmetries are connected with integrable
models. Such an example is the nonlocal symmetry σ = (φ2)x generates well-known sinh-Gordon
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equation and Liouville equation [7]. Further more examples can be found in [8–10]. A natu-
ral problem arises now: how to find nonlocal symmetries? An effective method to find nonlocal
symmetries seems to find inverse of the corresponding recursion operators (see [11]). However, to
find inverse of recursion operators is a difficult problem by itself. Recently one of authors (Lou)
re-obtained the nonlocal symmetry σ = (φ2)x from the conformal invariance of the Schwartz
form of the KdV equation (1) [12]. It is an interesting result. As explained below, this nonlocal
symmetry is basic one of the KdV equation, from which all the known nonlocal symmetries
can be obtained. In fact, we know from [12] that dn

dλn (φ2)x is also a symmetry and inverse
recursion operator of the KdV equation (1) appears naturally when dn

dλn (φ2)x is rewritten as a
single multiplication form. Secondly, the other two nonlocal seed symmetries ∂xφ2∂−1

x φ−2 and
∂xφ2∂−1

x φ−2∂−1
x φ−2 are easily obtained from (φ2)x by considering the fact that Lax pair (3), (4)

of the KdV equation is invariant under transformation φ −→ φ∂−1
x φ−2 and (3), (4) are linear

differential equations with respect to φ. That means all the known nonlocal symmetries of the
KdV equation in literature can be obtained from one seed symmetry (φ2)x.

In this paper, we intend to search for nonlocal seed symmetries of some integrable models. It
is noticed that recently there have been active research on nonlinearization of spectral problems
and generation of finite dimensional integrable systems (see, e.g. [13]). In literature, there are
two cases to be considered: Bargmann and Neumann constraints. For the KdV equation, it
is obvious that Bargmann constraint is equivalent to symmetry constraint ux = (φ2)x. With
this observation in mind, we are going to derive nonlocal symmetries along this line. Besides,
using invariance of spectral problem, more nonlocal symmetries can be produced from one seed
symmetry.

2 The AKNS case

The AKNS hierarchy is(
q
r

)
t

= LnK0 = Ln

( −iq
ir

)
, (5)

where

L =

( −D + 2qD−1r 2qD−1q

−2rD−1r D − 2rD−1q

)

with D = ∂
∂x , D−1 =

∫ x

−∞
dx. In what follows, we only consider n = 2 case for the sake of

convenience in calculation. In this case, (5) becomes

(
q
r

)
t

= i

(
−qxx + 2q2r

rxx − 2r2q

)
, i =

√−1. (6)

Its Lax pair is [14](
φ1x

φ2x

)
=

( −iλ q
r iλ

) (
φ1

φ2

)
, (7)

(
φ1

φ2

)
t

=

(
2iλ2 + iqr −2qλ − iqx

−2rλ + irx −2iλ2 − iqr

) (
φ1

φ2

)
. (8)
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It is known that the Bargmann constraint is [15]

(
q
r

)
= c0

(
φ2

1

−φ2
2

)

and K0 =
( −iq

ir

)
is a symmetry of (6). Thus σ =

(
φ2

1

φ2
2

)
is possible to become a symmetry

of (6). Indeed, a direct calculation shows that σ =
(

φ2
1

φ2
2

)
is a symmetry (see also [16]). In

order to obtain more seed symmetries, we now consider the invariance property of (7) and (8).
To this end, we have

Proposition 1. Lax pair (7) and (8) is invariant under transformation

φ1 −→ F (t)φ1 + (α − 1)
1
φ2

+ φ1

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)
,

φ2 −→ F (t)φ2 + α
1
φ1

+ φ2

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)
,

where α is an arbitrary constant and F (t) is a function of t defined by

F (t) = −
∫ t [

α
iqx + 2λq

φ2
1

+ (1 − α)
irx − 2λr

φ2
2

]
x=x0

dt.

Proof: direct calculation.

Proposition 2. Suppose that

(
φ

(i)
1

φ
(i)
2

)
(i = 1, 2) is a solution of (7) and (8). Then

(
φ

(1)
1 φ

(2)
1

φ
(1)
2 φ

(2)
2

)

is a symmetry of (6).

Using Proposition 1 and 2, we know that




F (t)φ2
1 + (α − 1)

φ1

φ2
+ φ2

1

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)

F (t)φ2
2 + α

φ2

φ1
+ φ2

2

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)



and




[
F (t)φ1 + (α − 1)

1
φ2

+ φ1

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)]2

[
F (t)φ2 + α

1
φ1

+ φ2

(
α

∫ x

x0

q

φ2
1

dx + (α − 1)
∫ x

x0

r

φ2
2

dx

)]2




are symmetries of (6). Furthermore, in [17], the inverse of recursion operator L was obtained.
Thus more symmetries can be obtained from seed symmetries and inverse recursion operator L−1.
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3 The breaking soliton equation

The breaking soliton equation under consideration is

uxt = 4uxuxy + 2uyuxx − uxxxy (9)

which was first introduced by Calogero and Degasperis [18]. Set v = ux, then (9) can be
written as

vt = 4vvy + 2(∂−1
x vy)vx − vxxy. (10)

Its bi-Hamiltonian structure and the Lax pair equations with non-isospectral problem have been
discussed in [19]. In [10], one of authors (Lou) found a nonlocal symmetry of (9)

σ = 2φxφ(1 + ∂−1
x φ−3φy) + φ−1φy

with

−φxx + vφ = 0, (11)

φt = −vyφ + 2φx∂−1
x vy. (12)

It is easily verified that Lax pair (11), (12) is invariant under the transformation φ −→ φ∂−1
x

1
φ2 .

Besides, we have

Proposition 3. Suppose φ1 and φ2 are two solutions of (11), (12). Then

σ(ε, δ) = 2(εφ1 + δφ2)x(εφ1 + δφ2)
(
1 + ∂−1

x (εφ1 + δφ2)−3(εφ1 + δφ2)y

)
+ (εφ1 + δφ2)−1(εφ1 + δφ2)y

and ∂m+n

∂εm∂δn σ(ε, δ) are symmetries of (10) (here ε, δ are arbitrary constants).

Using these results, many nonlocal symmetries can be obtained.

4 The Boussinesq equation

The Boussinesq equation under consideration is [20]

utt +
(
u2

)
xx

+
1
3
uxxxx = 0. (13)

The corresponding Lax pair is

φxxx +
3
2
uφx +

(
3
4
ux − 3

4
∂−1

x ut

)
φ = 0, (14)

φt = −φxx − uφ (15)

and its adjoint version is

φ∗
xxx +

3
2
uφ∗

x +
(

3
4
ux +

3
4
∂−1

x ut

)
φ∗ = 0, (16)

φ∗
t = φ∗

xx + uφ∗. (17)
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Just as the KP case [12, 21], it is easily verified that (φφ∗)x is a symmetry of (13). In
the following, we want to give more symmetries of (13) by considering invariance property
of (14), (15) and (16), (17). To this end, we obtain

Proposition 4. Suppose φ1 and φ2 are two linearly independent spectral functions of (14), (15)
(or (16), (17)) corresponding to u. Then

Φ = ψ1(t)φ1 − ψ2(t)φ2 + φ1

∫ x

x0

φ2

W 2(φ1, φ2)
dx − φ2

∫ x

x0

φ1

W 2(φ1, φ2)
dx

is also a spectral function of (14), (15) (or (16), (17)) corresponding to u, where

W (φ1, φ2) ≡ φ1xφ2 − φ1φ2x, (18)

ψ1(t) =
∫ t [

φ2x

W 2(φ1, φ2)

]
x=x0

dt, (19)

ψ2(t) =
∫ t [

φ1x

W 2(φ1, φ2)

]
x=x0

dt. (20)

Proof: direct calculation.

From Proposition 4, we know

σ =
[(

c0φ1 + c1φ2 + c2ψ1(t)φ1 − c2ψ2(t)φ2 + c2φ1

∫ x

x0

φ2

W 2(φ1, φ2)
dx

−c2φ2

∫ x

x0

φ1

W 2(φ1, φ2)
dx

)
(c3φ

∗
1 + c4φ

∗
2 + c5ψ

∗
1(t)φ∗

1 − c5ψ
∗
2(t)φ∗

2

+c5φ
∗
1

∫ x

x∗
0

φ∗
2

W 2(φ∗
1, φ

∗
2)

dx − c5φ
∗
2

∫ x

x∗
0

φ∗
1

W 2(φ∗
1, φ

∗
2)

dx

)]
x

(21)

is also a symmetry of (13), where φi and φ∗
i (i = 1, 2) are spectral functions of (14), (15) and

(16), (17) respectively, ψi(t) (i = 1, 2) is defined by (19), (20) and

ψ∗
1(t) =

∫ t [
φ∗

2x

W 2(φ∗
1, φ

∗
2)

]
x=x∗

0

dt, (22)

ψ∗
2(t) =

∫ t [
φ∗

1x

W 2(φ∗
1, φ

∗
2)

]
x=x∗

0

dt. (23)

5 The Toda equation

The Toda equation under consideration is [22]

d2

dt2
ln v(n) = v(n − 1) − 2v(n) + v(n + 1) (24)

or equivalently

dv(n)
dt

= v(n)∂−1
t [v(n − 1) − 2v(n) + v(n + 1)] (25)
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which may be rewritten in a coupled form
dp(n)

dt
= v(n) − v(n + 1), (26)

dv(n)
dt

= v(n)(p(n − 1) − p(n)). (27)

It is known that (25) or (26), (27) has a Lax pair

yn+1 + p(n)yn + v(n)yn−1 = λyn, (28)

ynt = v(n)yn−1 − 1
2
λyn (29)

and its adjoint version is

y∗n−1 + p(n)y∗n + v(n + 1)y∗n+1 = λy∗n, (30)

−y∗nt = v(n + 1)y∗n+1 −
1
2
λy∗n. (31)

Here the adjoint operator of a difference operator is defined by(
a(n)ek∂n

)∗
= e−k∂na(n).

A symmetry of the Toda equation (25) is defined as a solution of its linearized equation
dσ(n)

dt
= σ(n)∂−1

t [v(n− 1) − 2v(n) + v(n + 1)] + v(n)∂−1
t [σ(n− 1) − 2σ(n) + σ(n + 1)].(32)

Just as the two-dimensional Toda equation [23], it is easily verified that σ(n) = (yny∗n−1)t

is a symmetry of the Toda equation (25). To obtain more seed symmetries,we now consider
invariance property of (28), (29) and (30), (31). We obtain

Proposition 5. Suppose yn is a spectral function of (28), (29) and lim
n→−∞ p(n) = 0. Then

ȳn = yn

n∑
k=−∞

k−1∏
i=−∞

v(i)

ykyk−1

is also a spectral function of (28), (29).

Proof: direct calculation.
Similarly, we have

Proposition 6. Suppose y∗n is a spectral function of (30), (31) and lim
n→∞ p(n) = 0. Then

ȳ∗n = y∗n
∞∑

k=n

∞∏
i=k+2

v(i)

y∗ky
∗
k+1

is also a spectral function of (30), (31).

From Proposition 5 and 6, we know



c1yn + c2yn

n∑
k=−∞

k−1∏
i=−∞

v(i)

ykyk−1





c3y

∗
n−1 + c4y

∗
n−1

∞∑
k=n−1

∞∏
i=k+2

v(i)

y∗ky
∗
k+1







t

is also a symmetry of (25), where yn and y∗n are spectral functions of (28), (29) and (30), (31)
respectively and ci is an arbitrary constant (i = 1, 2, 3, 4).
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6 Summary

In this paper, nonlocal symmetries are considered for four integrable equations as examples
which include the first equation of the AKNS hierarchy, the so-called breaking soliton equation,
the Boussinesq equation and the Toda equation. Besides, using invariance properties of corre-
sponding spectral problems under suitable transformations, more nonlocal symmetries can be
produced from one seed symmetry.
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