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Classes of the nonlinear Schrödinger-type equations compatible with the Galilei relativity
principle are obtained. Solutions of these equations satisfy the continuity equation.

The continuity equation is one of the most fundamental equations of quantum mechanics
∂ρ

∂t
+ �∇ ·�j = 0. (1)

Depending on definition of ρ (density) and�j = (j1, . . . , jn) (current), we can construct essentially
different quantum mechanics with different equations of motion, which are distinct from classical
linear Schrödinger, Klein–Gordon–Fock, and Dirac equations.

At the beginning we study a symmetry of the continuity equation considering (ρ,�j) as de-
pendent variables related by (1).

Theorem 1 [1]. The invariance algebra of equation (1) is an infinite-dimensional algebra with
basis operators

X = ξµ(x)
∂

∂xµ
+

(
aµν(x)jν + bµ(x)

) ∂

∂jµ
, (2)

where j0 ≡ ρ; ξµ(x) are arbitrary smooth functions; x = (x0 = t, x1, x2, . . . , xn) ∈ Rn+1;

aµν(x) =
∂ξµ

∂xν
− δµν

(
∂ξi

∂xi
+ C

)
; C = const, δµν is the Kronecker delta; µ, ν, i = 0, 1, . . . , n,(

b0(x), b1(x), . . . , bn(x)
)
is an arbitrary solution of equation (1).

Here and below we imply summation over repeated indices.
An infinite-dimensional algebra with basis operators (2) contains as subalgebras the general-

ized Galilei algebra

AG2(1, n) = 〈Pµ, Jab, Ga, D
(1), A〉 (3)

and the conformal algebra

AP2(1, n) = AC(1, n) = 〈Pµ, Jab, J0a, D
(2),Kµ〉. (4)

We use the following designations in (3) and (4)

Pµ = ∂µ, Jab = xa∂b − xb∂a + ja∂jb − jb∂ja (a < b),

Ga = x0∂a + ρ∂ja , J0a = xa∂0 + x0∂a + ja∂ρ + ρ∂ja ,

D(1) = 2x0∂0 + xa∂a − nρ∂ρ − (n+ 1)ja∂ja , D(2) = xµ∂µ − nρ∂ρ − nja∂ja ,

A = x2
0∂0 + x0xa∂a − nx0ρ∂ρ + (xaρ− (n+ 1)x0j

a)∂ja ,

Kµ = 2xµD
(2) − xνx

νgµi∂i − 2xνSµν , Sµν = gµij
ν∂ji − gνij

µ∂ji ,

gµν =




1, µ = ν = 0
−1, µ = ν �= 0
0, µ �= ν,

µ, ν, i = 0, 1 . . . , n; a, b = 1, 2, . . . , n.
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Thus, the continuity equation satisfies the Galilei relativity principle as well as the Lorentz–
Poincare–Einstein relativity principle and, depending on the definition of ρ and �j, we will come
to different quantum mechanics.

Let us consider the scalar complex-valued wave functions and define ρ and �j in the following
way

ρ = f(uu∗), jk = −1
2
ig(uu∗)

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

)
+

∂ϕ(uu∗)
∂xk

, k = 1, 2, . . . , n, (5)

where f , g, ϕ are arbitrary smooth functions, f �= const, g �= 0. Without loss of generality, we
assume that f ≡ uu∗.

Let us describe all functions g(uu∗), ϕ(uu∗) for continuity equation (1), (5) to be compatible
with the Galilei relativity principle, defined by the following transformations:

t → t′ = t, xa → x′a = xa + vat.

Here we do not fix transformation rules for the wave function u.
If ρ and �j are defined according to formula (5), then the continuity equation (1) is Galilei-

invariant iff

ρ = uu∗, jk = −1
2
i

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

)
+

∂ϕ(uu∗)
∂xk

, k = 1, 2, . . . , n. (6)

The corresponding generators of Galilei transformations have the form

Ga = x0∂a + ixa (u∂u − u∗∂u∗) , a = 1, 2, . . . , n.

If in (6)

ϕ = λuu∗, λ = const, (7)

then the continuity equation (1), (6), (7) coincides with the Fokker–Planck equation

∂ρ

∂t
+ �∇ ·�j + λ∆ρ = 0, (8)

where

ρ = uu∗, jk = −1
2
i

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

)
, k = 1, 2, . . . , n. (9)

The continuity equation (1), (6), (7) was considered in [3, 5].
In [1] we investigated the symmetry properties of the nonlinear Schrödinger equation the

following form

iu0 +
1
2
∆u+ i

∆ϕ(uu∗)
2uu∗

u = F
(
uu∗, (�∇(uu∗))2,∆(uu∗)

)
u, (10)

where F is an arbitrary real smooth function.
For the solutions of equation (10), equation (1), (6) is satisfied and therefore this equation is

compatible with the Galilei relativity principle.
In terms of the phase and amplitude

(
u = R exp(iΘ)

)
, equation (10) has the form

R0 +RkΘk +
1
2
R∆Θ+

1
2R

∆ϕ = 0,

Θ0 +
1
2
Θ2

k − 1
2R

∆R+ F

(
R2,

(
�∇ (

R2
))2

,∆R2

)
= 0.

(11)
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Theorem 2 [1]. The maximal invariance algebras for system (11) if F = 0 are the following:

1. 〈Pµ, Jab, Q,Ga, D〉 (12)

when ϕ is an arbitrary function;

2. 〈Pµ, Jab, Q,Ga, D, I, A〉 (13)

when ϕ = λR2, λ = const.

In (12) and (13) we use the following designations:

Pµ = ∂µ, Jab = xa∂xb
− xb∂xa , a < b,

Ga = x0∂xa + ixa∂Θ, Q = ∂Θ, D = 2x0∂x0 + xa∂xa , I = R∂R,

A = x2
0∂x0 + x0xa∂xa − n

2
x0R∂R +

1
2
x2

a∂Θ,

µ = 0, 1, . . . , n; a, b = 1, 2, . . . , n.

(14)

Algebra (13) coincides with the invariance algebra of the linear Schrödinger equation.

Corolarry. System (11), (7) is invariant with respect to algebra (13) if

F = R−1∆R N

(
R∆R

(�∇R)2

)
,

where N is an arbitrary real smooth function.

Let us consider a more general system than (10)

iu0 +
1
2
∆u = (F1 + iF2)u, (15)

where F1, F2 are arbitrary real smooth functions,

Fm = Fm

(
uu∗, (�∇(uu∗))2,∆(uu∗)

)
u, m = 1, 2. (16)

The structure of functions F1, F2 may be described in form (16) by virtue of conditions for
system (15) to be Galilei-invariant.

In terms of the phase and amplitude, equation (15) has the form

R0 +RkΘk +
1
2
R∆Θ−RF2 = 0,

Θ0 +
1
2
Θ2

k − 1
2R

∆R+ F1 = 0,
(17)

where Fm = Fm

(
R2,

(
�∇ (

R2
))2

,∆R2

)
, m = 1, 2.

Theorem 3. System (17) is invariant with respect to algebra (13) if it has the form

R0 +RkΘk +
1
2
R∆Θ−∆R M

(
R∆R

(�∇R)2

)
= 0,

Θ0 +
1
2
Θ2

k − 1
2R

∆R+
∆R

R
N

(
R∆R

(�∇R)2

)
= 0,

(18)

where N,M are arbitrary real smooth functions.
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System (18) written in terms of the wave function has the form

iu0 +
1
2
∆u =

∆|u|
|u|

(
N

(
|u|∆|u|
(�∇|u|)2

)
+ iM

(
|u|∆|u|
(�∇|u|)2

))
u. (19)

Thus, equation (19) admits an invariance algebra which coincides with the invariance algebra of
the linear Schrödinger equation with arbitrary functions M , N .

With certain particular M and N the symmetry of system (18) can be essentially extended.

If in (18) N =
1
2
, then the second equation of the system (equation for the phase) will be the

Hamilton–Jacobi equation [4].
Let us consider some forms of the continuity equation (1) for equation (19).

Case 1. If M = 0, then for solutions of equation (18) equation (1) holds true, where the density
and current can be defined in the classical way (9).

Case 2. If M∆R = −λ
(
∆R +

(�∇R)2

R

)
, then for solutions of equation (19), the continuity

equation (1), (6), (7) (or the Fokker–Planck equation (8), (9)) is valid.
Case 3. If M is arbitrary then for solutions of equation (19), the continuity equation is valid,
where the density and current can be defined by the conditions

ρ = uu∗, �∇ ·�j =
∂

∂xk

(
−1
2
i

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

))
− 2|u|∆|u| M

(
|u|∆|u|
(�∇|u|)2

)
.

Thus, we constructed wide classes of the nonlinear Schrödinger-type equations which are
invariant with respect to algebra (13) (maximal invariance algebra of the linear Schrödinger
equation) and for whose solutions the continuity equation (1) is valid.

The necessary and sufficient condition for the Lorentz invariance of the continuity equation
for the electromagnetic field, where energy density and Poiting vectors depend on the vector
fields �E, �H has been obtained in [6].

References
[1] Fushchych W. and Boyko V., Continuity equation in nonlinear quantum mechanics and the Galilei relativity

principle, J. Nonlin. Math. Phys., 1997, V.4, N 1–2, 124–128.

[2] Fushchych W., Shtelen W. and Serov N., Symmetry Analysis and Exact Solutions of Equations of Nonlinear
Mathematical Physics, Dordrecht, Kluwer Academic Publishers, 1993.

[3] Doebner H.-D. and Goldin G.A., Properties of nonlinear Schrödinger equations associated with diffeomor-
phism group representations, J. Phys, A.: Math. Gen., 1994, V.27, 1771–1780.

[4] Fushchych W., Cherniha R. and Chopyk V., On unique symmetry of two nonlinear generalizations of the
Schrödinger equation, J. Nonlin. Math. Phys., 1996, V.3, N 3–4, 296–301.

[5] Fushchych W.I., Chopyk V., Nattermann P. and Scherer W., Symmetries and reductions of nonlinear
Schrödinger equations of Doebner–Goldin type, Reports on Math. Phys., 1995, V.35, N 1, 129–138.

[6] Boyko V.M. and Tsyfra I.M., Lorentz-invariant continuity equations for the electromagnetic field, in Sym-
metry and Analytical Methods in Mathematical Physics, Works of Institute of Mathematics, Kyiv, 1998,
Vol.19, 43–47.


