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Preface

The Fourth International Conference “Symmetry in Nonlinear Mathe-
matical Physics” was traditionally organized by the Institute of Mathema-
tics of the National Academy of Sciences of Ukraine and M. Dragomanov
National Pedagogical University. It continues the series of the the scientific
meetings started in 1995 due to efforts of Professor Wilhelm Fushchych.
The specific feature of the conference held in Kyiv, July 9–15, 2001 was
that it was a part of the Ukrainian Mathematical Congress devoted to
200 Anniversary of the great Ukrainian mathematician Mykhailo Ostroh-
rads’kyi.

The conference generated significant interest of mathematicians and phy-
sicists. More than 120 participants from 26 countries presented their talks
the majority of which is included in these Proceedings. The Proceedings
contain also papers whose authors were unable to come to conference but
submitted their papers.

The Proceedings are published in two parts and contain 109 papers. The
titles of conference talks not presented for publication at the Proceedings
are given in the end of part 2.

A number of papers included into Proceedings is devoted to traditional
subjects of Lie theory, i.e., analysis of symmetries of nonlinear partial diffe-
rential equations, symmetry reduction and construction of exact solutions.
In these papers which are collected in the first part both classical Lie
methods and modern trends in symmetry analysis are represented. The
first part contains also papers related to the inverse scattering approach.
The first paper includes the biographical essay of M. Ostrohrads’kyi.

The trend of our conference is continuous increase of contributions de-
voted to problems of algebra, group theory and symmetries in physics and
other natural sciences. These contributions are collected in the second
part which includes papers devoted to representations and applications of
classical and deformed Lie algebras, supersymmetry and its various genera-
lizations.

We believe that all papers present a valuable contribution to the symmet-
ry analysis of equations of mathematical physics and other applications of
symmetry.

Anatoly NIKITIN

March, 2002
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The paper describes life and research of the great Ukrainian mathematician Mykhailo Ost-
rohrads’kyi, whose 200th anniversary was marked in 2001. His development as a mathe-
matician and his joint work with other most prominent scientists of his time are presented.
Mykhailo Ostrohrads’kyi published more than 50 research papers, and laid foundation to
many areas in calculus, differential equations and mathematical physics. The paper gives
a review of some important results and formulae by Ostrohrads’kyi, shows their importance
to further development of science.

On September 12, 2001 (it is September 24 according to
the new calendar) there is 200th anniversary of Mykhailo Va-
syl’ovych Ostrohrads’kyi, an outstanding Ukrainian mathe-
matician, whose papers rightfully belong to the treasury of
science and profoundly influenced development of mathemati-
cal analysis, the theory of differential equations, mathematical
physics, and mechanics and rightfully belong to the treasury
of science. His attention was always concentrated on extremely
important problems of his time of both theoretical and practical
nature. Similarly to Lagrange, he sought general approaches to
the investigation of problems of different nature, discovering,
as a result, original ways of reaching his goal.

Investigations of Ostrohrads’kyi embraced the entire spec-
trum of problems studied by prominent European mathema-
ticians of that time, such as N. Abel, W. Hamilton, C. Gauss,
A. Cauchy, J. Lagrange, P. Laplace, J. Liouville, S. Poisson, J. Fourier, C. Jacobi, etc. For
this reason, his results had certain intersections with results of these scientists, but they were
never inferior to them in the generality of problems considered the rigorousness and originality of
exposition, and efficiency of applications. He was a star of the first magnitude in the constellation
of these outstanding personalities.

For better understanding of the significance of the scientific heritage of Ostrohrads’kyi, one
must characterize, at least in general terms, the epoch in which his views were formed and his
scientific activity developed. It fell mainly to the first half of the 19th century, one of the most
remarkable and productive periods in the history of exact natural sciences. At the beginning of
the 19th century, many fundamental works were published, such as the five-volume Treatise on
Celestial Mechanics (1799–1825) by Laplace and the two-volume Analytical Mechanics (1811–
1815) by Lagrange. In these works, deep in content and masterful in exposition, the results of
predecessors in mechanics and astronomy were outlined and systematized, and foundations for
future investigations in these branches of science were laid. It is quite possible that the general
methods presented in the indicated work of Lagrange most strongly affected the formation of
scientific views of Ostrohrads’kyi. He substantially developed and generalized them in numerous
papers and lectures.

As V.A. Steklov noted about the first half of the 19th century in his speech at the celebration
of the centenary of Ostrohrads’kyi, “this was an exciting period of time, when almost every day
brought new ideas and new discoveries in various areas of mathematical physics and, with it,
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in mathematical analysis. Without no overstatement one can say that little has been added to
the scientific ideas of that era, and today’s efforts are mainly at streamlining and developing the
theories of the great thinkers of that time, of extending their applications, and of perfecting the
proofs”. Mykhailo Ostrohrads’kyi participated in almost all mentioned areas of mathematical
physics. His works in the theories of heat, elasticity, and attraction, as well as hydrodynamics,
are not inferior in their significance to the works of the luminaries of science of that time.

Mykhailo Vasyl’ovych Ostrohrads’kyi, a son of a landowner Vasyl Ivanovych and of Iryna An-
driyivna (born Ustymovych) was born in his father’s estate in the village Pashenna of Kobelyaky
povit (district), Poltava region1.

At 9 Myshko entered the pension at the Poltava Gymnasium named House for Education
of Poor Gentry, where one of the tutors was another famous person from Poltava, a poet
I.P. Kotlyarevs’kyi. From here Mykhailo Ostrohrads’kyi was transferred to Romny Postal Office
where he soon was awarded with a civil title of Collegial Registrar. In 1815 14-year old civil
servant was dismissed from his position and entered the same pension once more. Ostrohrads’kyi
was not distinguished by a particular diligence, but was noticed as a lively, capable and smart
boy.

The following data with respect to first years of Ostrohrads’kyi’s studies at the Poltava Gym-
nasium were discovered in its archive. During the first month of his studies at the Gymnasium
he was marked as “average” by capability, “diligent” by diligence and “fair” by manners, and
at the end of the first year of studies – “smart” by capability and “courteous” by manners.

During 1813 Ostrohrads’kyi, with the 9-grade system, had the following grades: 6 for psy-
chology, 7 for moral philosophy, 2 for history and geography, 0 for Latin, French and German.
We can see that Ostrohrads’kyi did not like languages, especially Latin.

In 1816 father took him to St. Petersburg to enlist him into one of the guard ’s regiment,
but, at the advice of P.A. Ustymovych, M.V. Ostrohrads’kyi’s uncle, changed his decision and
decided to enlist him to Kharkiv University.

Ostrohrads’kyi attended the university at first as a free listener, but later, in 1817, entered as
a student of the department of physics and mathematics. During the first year of the university
course and the first half of the second year he studied badly and continued to dream about the
military service, and every moment he was ready to exchange the university for any regiment.

At the age of 17 on October 3, 1818 Ostrohrads’kyi completed his studies at the university,
and received his student’s diploma noting that he studied algebra, trigonometry, curve-line
geometry, civil architecture, practical geometry, history, statistics of Russia and world history
with very good success, and military studies, function theory, integral and variation calculus
and Russian language and literature with excellent success.

In 1820 he had exams together with other students, and at the general meeting of the univer-
sity his name was distinguished. At the time, seeing Ostrohrads’kyi’s success, the professor of
mathematics T.F. Osipovs’kyi wanted to award Ostrohrads’kyi with the candidate’s degree. To
get this degree Ostrohrads’kyi had to take the exam on philosophy, but the philosophy professor
refused to take an exam for the reason he did not attend lectures on philosophy.

The Ostrohrads’kyi went to the university management, produced his diploma and gave it
to professors who had a meeting, with the request to “remove his name from the student list”.

Mykhailo Vasyl’ovych went to the village to his father, stating his firm intent to go abroad
and to study with famous French mathematicians. Father listened to his son and quite favored
his intent.

In May 1822 Ostrohrads’kyi started his journey, but he was robbed in Chernihiv. Father gave
him money once more, and in August of the same year he was in Paris already. Having reached
his goal with great difficulties, Ostrohrads’kyi attended lectures in Sorbonna and Collége de

1Biographical data were taken from the sketch by P.I. Trypols’kyi [1].
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France, and his bright talent attracted attention of famous French mathematicians: Laplace,
Fourier, Ampere, Poisson, Cauchy etc. He was very friendly with the two latter researchers, and
later exchanged letters with them, and he was accepted in Laplace’s home as a family member.

The scientific talent of Ostrohrads’kyi was powerful, versatile, and, at the same time, original.
In only six years of his stay in Paris, which was the center of mathematical research at that
time, he got well informed about diverse new ideas and theories, concentrated on the most im-
portant problems that were the object of the work of the constellation of French genii (Laplace,
Poisson, Cauchy, Fourier, etc.), and succeeded in their solution, getting ahead of these scientists
in many issues. In the memoir On Definite Integrals Taken between Imaginary Limits submitted
to the Académie Française in 1825, Cauchy expressed this by the following words: “Monsieur
Ostrohrads’kyi, a young Russian man gifted by an extraordinary insight and very skillful in
the analysis of infinitesimals, also applied these integrals and, transforming them to ordinary
ones, gave a new proof of the formulae mentioned above, and communicated other formulae,
which I now present . . . ” In his works, as we already noted, Cauchy repeatedly referred to
Ostrohrads’kyi. He reviewed his scientific works and was one of the numerous French mathe-
maticians who enthusiastically supported the candidacy of Ostrohrads’kyi for the election as an
Immortal of the Académie Française. In 1856, he was elected the corresponding member of this
academy.

The real mathematical debut of Ostrohrads’kyi took place in 1826, when he submitted his
Mémoire sur la Propagation des Ondes dans un Bassin Cylindrique to the Académie Française.
Under various additional physical assumptions, the problem of wave propagation on the surface
of water was studied by Newton, Laplace, Lagrange, Cauchy, and Poisson. The main input
of M.V.Ostrohrads’kyi to this issue was that he was the first who considered this problem in
a closed cylinder of finite depth. Poisson and Cauchy, who were present at the talk given by
Ostrohrads’kyi, highly evaluated the results presented, after which it was decided to publish
them in Mémoires Présentées par Divers Savants. This was a great honor for Ostrohrads’kyi,
who was only 25 years of age. This success strengthened the reputation of the scientist. Warm
relationships between him and French mathematicians, such as Cauchy, Poisson, J. Sturm, G.
Lamé, etc., were established and lasted for many years.

In 1828, Ostrohrads’kyi moved to St. Petersburg. Only at that moment, after coming back
to Russia, Ostrohrads’kyi was appreciated by his compatriots, and a circle of people who loved
mathematics was established around him at once, who wanted to find out about new views
and methods in calculus. In the same year, in 1928 (on December 17) the Imperial Academy
of Science elected him as Adjunct of Applied Mathematics, in 1830 he received the title of
Extraordinary Academician, and in a year – the title of Ordinary Academician. In July 1830 he
was sent to Paris with a research purpose and at that time presented to the Paris institute his
course of celestial mechanics, where he showed great independence, mainly in simplification of
explanation of general methods. Arago and Poisson, having considered this work at the request
of the Paris Academy, awarded Ostrohrads’kyi with a praising reference that was finished by the
following words: “We believe that the paper by Ostrohrads’kyi deserves the Academy’s praise
and approval”; in this Arago puts Ostrohrads’kyi’s name along with that of immortal Laplace.

Inspired by the first successes, Ostrohrads’kyi set the grand problem of presentation of various
sections of mathematical physics by means of mathematical methods. In one of his reports sub-
mitted to the St. Petersburg Academy in 1830, he wrote: “The followers of Newton developed
the great law of universal gravitation in detail and applied mathematical analysis to numerous
important problems in general physics and physics of weightless substances. The collection of
their works about the system of universe forms the immortal folios of Celestial Mechanics, from
which astronomers will take the elements for their tables for a long time. However, physical
and mathematical theories are still not unified; they are distributed over numerous collections of
academic memoirs and are investigated by different methods, often very doubtful and imperfect;
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moreover, there are theories developed but never presented. I set it as my aim to combine these
theories, present them by using a uniform method, and indicate their most important appli-
cations. I already collected the necessary materials on the motion and equilibrium of elastic
bodies, propagation of waves on the surface of incompressible liquids and propagation of heat
inside solid bodies and, in particular, inside the globe. However, these theories will constitute
only the necessary part of the entire work, which will also embrace the distribution of electricity
and magnetism in bodies capable of being electrified or magnetized through electrodynamical
influence, motion of electric fluids, motion and equilibrium of liquids, action of capillarity, dis-
tribution of heat in liquids, and probability theory; in this last part, I will dwell upon several
issues in which the famous author of Celestial Mechanics was apparently wrong.”

In this respect it is interesting to recall that D. Hilbert, who, as a true mathematician, was
concerned with the absence of order in the triumphal progress of physics at the beginning of the
20th century and decided to give a mathematical presentation of physics by using the axiomatic
approach (the sixth Hilbert problem). However, despite his deep faith in the omnipotence of
the axiomatic method and its capability to bring an order into chaos, Hilbert realized that
mathematics alone is insufficient for the solution of all physical problems. Although Hilbert
spent a lot of effort and time to be well informed about new physical investigations, he failed to
implement his plan concerning physics.

In the most general statement, the problem indicated was formulated by Ostrohrads’kyi in
his report made at a session of the St. Petersburg Academy of Sciences on November 5, 1828,
and published as an academic edition in 1831 in French under the title Note sur la Theorie
de la Chaleur. Steklov wrote the following words with respect to this paper: “After Fourier
constructed the differential equation of heat propagation in solids, the need for formulation of
techniques to determine the temperature of a body that is sought for according to conditions of
the problem.

Fourier himself and also Poisson considered the cases of cooling of a solid ball, cylinder, cube
and rectangular parallelepiped.

In all these cases Fourier employed the same technique knows now as the Fourier method,
but he was unlikely to see the property of its generality in its total. At least we cannot see that
from Fourier’s research papers, and I am hardly wrong to say that the Fourier method in all its
generality was first formulated by Ostrohrads’kyi, and then (in 1829) by Lamé and Duhamel.”

In this research Ostrohrads’kyi in part went ahead of Cauchy who in 15 years in his memoir
Recherches sur les intégrales des équations linéares aux differences partielles obtained the same
results once more, and in the note to this memoir Cauchy said: “I would like to compare the
theorems I found with those obtained by Ostrohrads’kyi in one of his memoirs, but having bad
memory and even not knowing whether this memoir by Ostrohrads’kyi was published anywhere,
I am unable to do that”. Evidently that the memoir by Ostrohrads’kyi being considered contains
just the same conclusions Cauchy was interested in, or at least, part of them.

Ideas of Ostrohrads’kyi’s report of 1828 were continued in his two Notes on the Theory of
Heat, submitted to the St. Petersburg Academy of Sciences on September 5, 1828, and July 8,
1829. Maybe, this title does not adequately reflect the content of these notes, but it indicates
that, in the 1820s, the analytical theory of heat was the leading topic in mathematical physics
(for the most part, this is true for Paris, where Ostrohrads’kyi worked in 1822—1828).

The results of the Notes are important not only from the viewpoint of their significance for
physics. It is difficult to overestimate their general mathematical significance because, on the
one hand, they laid the foundation for important theories, which has been successfully developed
up to now, and, on the other hand, the statements obtained therein constitute a part of the
foundations of contemporary mathematical analysis.

In this context, the first note is the most important. It consists of two parts. In the first
part, the general scheme of the solution of boundary-value problems in mathematical physics
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is described. The formula for the transformation of the volume integral of the divergence type
into a surface integral was derived that now is an integral part of any calculus textbook, and is
called the Ostrohrads’kyi–Gauss formula.

The appearance of this formula was stimulated by the needs of potential theory, theory of heat,
and variational calculus. The first steps related to volume integrals were made by Lagrange, who
found a method for their calculation and gave a formula for a change of variables that generalizes
the corresponding Euler formula for double integrals. As for the surface integrals, the Analytical
Mechanics of Lagrange (1813) contains only certain notes related to specific cases. However,
the development of electrostatics and the theory of magnetism expanded the circle of problems
of potential theory. Furthermore, the investigation of the distribution of static electricity over
the surface of a body led to the necessity of introducing the notion of surface integral. It first
appeared in the paper by Gauss published in 1813 and related to potential theory, and some
theorems from this work can be regarded as partial cases of Ostrohrads’kyi formula. The formula
itself was not shown in the indicated work by Gauss.

Hence, the first great merit of Ostrohrads’kyi lies in the fact that he was the first who realized
the mentioned formula (Ostrohrads’kyi–Gauss formula) is of independent interest and indicated
its general mathematical importance. In his prominent work of 1834 on variational calculus, he
extended this formula to the case of arbitrarily many variables. Its vector interpretation was
given in the Treatise on Electricity and Magnetism by J. Maxwell, who stressed the priority of
Ostrohrads’kyi in the discovery of this formula.

The second substantial result, which is also contained in the first part of the mentioned note,
is the introduction of an adjoint operator L∗ for a linear differential operator L of arbitrary order
with constant coefficients and the derivation of the integral relation for them. For many years,
numerous mathematicians worked on the generalization of this formula, and today it is one of
the cornerstones of the entire theory of boundary-value problems for differential and difference
equations.

The second part of the note was devoted to the application of the general scheme presented
in the first part to problems of heat propagation in solid bodies of arbitrary form, namely,
to the solution of the mixed heat propagation problem in a bounded domain G with smooth
boundary ∂G.

The key point of the work considered was the hypothesis that the spectrum of problem under
consideration is discrete and that spectral decomposition of an arbitrary function f(x) inside the
domain G. M.V. Ostrohrads’kyi understood that decomposition gives mapping of the function
only inside the domain G.

On this occasion, Ostrohrads’kyi wrote: “I think that the series of the decomposition obtai-
ned always converges, but it is very difficult to prove this wonderful property in the general
case”. These words indicate that Ostrohrads’kyi was aware of the complexity of the problem
of convergence of such series. Indeed, at those times, numerous fields of mathematical analysis
did not have necessary tools not only for solving this problem, but even for getting started with
it. The validity of the hypothesis advanced by Ostrohrads’kyi was completely confirmed in the
1960s.

Ostrohrads’kyi’s decomposition formula has a universal character because it is also applicable
to non-self adjoint boundary value problems and for the case when the domain G is not bounded.

“Finally, note that the the eigenvalues of problem under consideration are always real, which is
a consequence of the law of propagation of heat, but even this general fact must be established
by mathematical analysis”, Ostrohrads’kyi wrote in the same note. This means that, unlike
many known scientists (Poisson, Laplace, Fourier, Poincaré, etc.) who worked in the field of
mathematical physics and mechanics and thought that the rigorousness requirements can be
weakened in these fields science, Ostrohrads’kyi had an opposite opinion consonant with the
convictions of Gauss, Cauchy, and Abel.
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In the second of his Notes on the Theory of Heat, Ostrohrads’kyi, for the first time, solved a
mixed heat propagation problem with the difference that a function T (t, x) instead of zero enters
the right-hand side of the boundary condition, i.e., in the case where this condition is inhomoge-
neous. This problem was considered earlier by Laplace and Poisson in the case where T (t, x) does
not depend on t. Ostrohrads’kyi reduced the problem with an inhomogeneous boundary condi-
tion to a problem with a homogeneous boundary condition, but for an inhomogeneous equation
whose solution was sought in the form of an infinite series. The Ostrohrads’kyi method of reduc-
tion of an inhomogeneous boundary-value problem to a homogeneous one is presented in modern
textbooks on mathematical physics as the Duhamel principle. Indeed, J. Duhamel solved this
problem simultaneously with Ostrohrads’kyi, but he published his result in 1833, whereas Os-
trohrads’kyi published his note in the Mémoires de l’Academie des Sciénces de St.-Pétersbourg
in 1831.

The systematic investigation of the problem of expansions of the mentioned type in the
eigenfunctions of the operator was continued by Ostrohrads’kyi’s followers, in particular, by
M.G. Krein, O.Ya. Povzner, I.M. Glazman, Yu.M. Berezans’kyi, V.O. Marchenko and by their
students.

Among other works of Ostrohrads’kyi that significantly influenced the subsequent develop-
ment of the theory of partial differential equations and variational calculus, a special place
belongs to his fundamental work Mémoire sur le Calcul des Variations des Integrales Multiples
submitted to the St. Petersburg Academy of Sciences on January 24, 1834. This memoir imme-
diately drew the attention of mathematicians. In 1836, it was reprinted by the known Crelle’s
Journal für die reine und angewandte Mathematik, and its complete English version appeared
in 1861 in A History of the Calculus of Variations during the 19th Century by I. Todhunter. It
was the paper where fundamental results on the integral calculus of functions of many variables
were presented. These results are regarded as classical for a long time already, and, up to now,
they serve as the main tool in the theory of partial differential equations. First of all, this con-
cerns Gauss–Ostrohrads’kyi formula in the case of arbitrary multiplicity n, the rule of location
of the integration limits with respect to each variable when passing from an n-fold integral to
a repeated integral, and the method for finding the derivative with respect to a parameter of
a multidimensional volume integral with a variable limit of integration that, together with the
integrand, depends on this parameter. In the same work, for the first time, Ostrohrads’kyi in-
troduced (simultaneously with Jacobi) the notion of functional determinants (Jacobians). The
developed foundations of integral calculus enabled Ostrohrads’kyi to completely solve the prob-
lem of calculation of the variation of an n-fold integral with variable limits of integration. Note
that, under certain restrictions on the domain of integration, a formula for the first variation was
obtained earlier by Euler for n = 2 and by Lagrange for n = 3. Without additional restrictions,
in the case n = 2, the corresponding formula was established by Poisson simultaneously with
the general case considered by Ostrohrads’kyi.

In the same memoir, Ostrohrads’kyi actually showed that the problem of variational calculus
on the extremum of a multiple integral is equivalent to the problem of finding a certain solution
of a partial differential equation. Later, this fact, which Riemann called the Dirichlet principle,
drew the attention of Gauss, Thomson, and Dirichlet. It was established that this principle
plays a key role in numerous variational methods for the solution of boundary-value problems for
differential equations. A considerable contribution to the development of these methods for va-
rious classes of equations was made by mathematicians from Ukraine such as M.M. Bogolyubov,
M.M. Krylov, M.P. Kravchuk, N.I. Pol’s’kyi, Yu.D. Sokolov, and their followers.

In connection with the investigations carried out by Ukrainian mathematicians, in particular,
at the Institute of Mathematics of the Ukrainian Academy of Sciences, it is reasonable to recall
Ostrohrads’kyi’s work Note sur la Méthode des Approximations Successives (1835) devoted to
the integration of the nonlinear Duffing equation using the expansion in the small parameter a.
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Later, it became clear that this equation plays an important role in the investigation of the
process of pitching and rolling of a ship. Much later, the method of a small parameter received
wide recognition due to the works of Poincaré, O.M. Lyapunov, M.M. Krylov, M.M. Bogolyubov,
Yu.A. Mitropol’skii, and their students. Thus, the Ostrohrads’kyi method was a predecessor of
the theory of nonlinear oscillations.

Besides the aforementioned programmatic works, in which Ostrohrads’kyi laid the founda-
tions of the theory of partial differential equations, he also wrote many papers related to the
integration of specific equations of mathematical physics and mechanics. Among them, one
should mention his large (100 p.) work Memoir on Differential Equations Related to the Isoperi-
metric Problem. Among other important results presented in this memoir, it was shown that all
differential equations of variational (Euler–Lagrange) problems with one independent variable
can be reduced to canonical systems. Most textbooks on the theory of ordinary differential
equations contain the Ostrohrads’kyi–Liouville formula published by M.V. Ostrohrads’kyi in
his note On Linear Differential Equation of the n-th Order (1838) (in the case n = 2, it was
obtained by Abel in 1827). In the works of Liouville, there is no this very formula.

M.V. Ostrohrads’kyi wrote 54 research memoirs, all in French, 50 of these were read at the
meetings of the Russian Academy of Sciences and published in its editions, and others were
published in the editions of the Paris Academy of Sciences.

As to the appearance of the manuscripts of the great mathematician we can say the following.
He was very unwilling to do any rewriting.

He was a brilliant lecturer, and merits of his lectures were dependent a lot on his mood.
Sometimes he gave the whole lecture on mechanics or higher mathematics not using a blackboard,
if even complicated formulae were to be introduced.

He lectured with a great passion; wrote huge letters and for this reason made the blackboard
full very fast, and then rushed to a large table covered by black impregnated fabric, continued
to write at it and then lifted it to show to the listeners what was written. With his passionate
lecturing he got tired very soon and sat to rest for a few minutes, drinking a lot of water.

He had a very good memory, remembered many historical and literature works that he read
when he was young: knew many poems by heart, his favorite poet was T.H. Shevchenko, almost
all poems of which he knew also by heart. His handwriting was so bad that even his close
relatives could not read it.

He did not interfere into household issues at all, his wife dealt with that; he preferred walks
at hand with his servant Shchak and philosophizing on different issues.

He rarely got ill, and with no problem sustained severe Petersburg climate after the south.
He could be often seen at the Neva embankment under a strong rain without an umbrella and
galoshes; note that he hated polished boots. In 1830 he had to be treated maybe for the first
time. The matter was that during his trip to Paris he injured his eye because of careless using
a phosphor match, and he had to go to a doctor. But prompt departure to Russia did not allow
him to complete his treatment in Paris, and he got a cold at his eye while going back by sea
and after his return to Paris lost his eye at all because of unsuccessful treatment.

In 1831 Ostrohrads’kyi got married, secretly to his father, to Maria Vasylivna Kupfer from
Livland that brilliantly wrote verses in German, played and sang, and he encouraged her in all
ways to perfect herself in these arts. At the end of his life Ostrohrads’kyi became very religious,
and he had an icon-lamp burning even during not so important holidays. His mother’s shadow
reportedly told him: “Mykhailo, believe and pray!” From that time he became religious.

Many foreign scientific institutions elected Ostrohrads’kyi as their member: he was awarded
by one of the most honorary titles for a scientists – a title of a corresponding member of the
Paris Academy of Sciences, and titles of a member of Turin, Rome, American Academies, and
a title of Honorary Doctor of the Alexander University. Among all that he was especially proud
by the title of the member of the American Academy.
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Ostrohrads’kyi made history not only as a first-rank scientist. He was a great teacher whose
activity had a decisive influence on the increase of the level and role of science, first of all,
mathematics, mechanics, and engineering, in the Russian Empire. Any other scientist and
pedagogue of the first half of the 19th century can hardly be compared with him in this respect.
The time of Euler with his fundamental achievements in the Russian mathematics and mechanics
was followed by a certain fall. No systematic investigations were performed in these directions.
This fall lasted till the appearance of Ostrohrads’kyi. After he moved to St. Petersburg, this
city became the center of the mathematical life of Russia. His scientific works, inimitable
lectures, and gifted disciples indicated the rise of the Russian science. Ostrohrads’kyi was
an active promoter of new physical and mathematical achievements and the author of many
textbooks on mathematics and mechanics, which were used by several generations of scientists
and engineers. It is difficult to find a scientific institution of St. Petersburg where he did
not give lectures. He devoted much time to pedagogic activity, and, thus, less time left for
his scientific work. “A man, without doubt, of brilliant mind”, P.L. Chebyshev wrote about
Ostrohrads’kyi, “he did not accomplish even a half of what he could have done if he were not
“bogged down” with tiresome permanent teaching work”. However, this teaching “bog” made
its great input into the progress of mathematics and physics in Russia. Under the influence
of two Ukrainians, namely, Ostrohrads’kyi and V.Ya. Buniakowski, the first scientific schools
were created in these directions, whose branches gave the world such renowned scientists as
P.L. Chebyshev, M.E. Zhukovs’kyi, A.M. Lyapunov, V.A. Steklov, G.F. Voronoi, S.A. Chaplygin,
etc.

Mykhailo Vasyl’ovych died unexpectedly. In summer of 1861 he came to his own estate in
Ukraine and caught cold. Instead of treatment he decided to go to St. Petersburg, but had
to stay in Poltava because of his illness. He died on December 20, 1861 (1 January, 1862) at
midnight.

The last will of Ostrohrads’kyi was to be buried, as Shevchenko, in Ukraine. In accordance
with his will, he was buried in his home village of Pashenna (now Pashenivka), Poltava province.
Two hundred years ago, this land gave the world Ostrohrads’kyi, who, in the period of rapid
development of science at the beginning of the 19th century, was the only Slavonian who, to-
gether with the glorious team of West-European scientists, created the foundations of modern
mathematics, physics, and mechanics.
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Sophus Lie, more than a century ago, investigated the problem of linearization of the equa-
tion y′′ = f(x, y, y′), where ()′ means d/dx [1]. Originally, he investigated the necessary
conditions for linearization by a point transformation and showed that f must be a cubic
in y′ and that other conditions must be satisfied. Later, he and others such as Tresse [2]
worked out actual construction of the linearizing transformations, often using group theory.
The present author will show a method of construction using differential forms, suitable
when certain intermediate equations can be integrated explicitly.

1 Introduction

The possible linearization of the equation

y′′ = f(x, y, y′), (1)

where the prime indicates differentiation with respect to x, might be considered a simple problem,
but it is actually rather complex. It is a very old problem, having been investigated by Sophus
Lie [1] and by other subsequent authors (for example Tresse [2], Ibragimov [3, 4, 5], Berkovich [6],
Grissom et al [7], Kamran et al [8, 9], Bocharov et al [10], Schwarz [11], Steeb [12], and N. Eu-
ler [13]). These methods use group theory or approach the problem as a Cartan equivalence
problem. There are also treatments that consider equivalence of nonlinear and linear partial
differential equations, such as those by Kumei and Bluman [14, 15].

In 1998 the author spent a month at the University of Witwatersrand in South Africa as the
guest of Fazal Mahomed. During that month this was one of the problems that we looked at, and
it became intriguing as the possibility of using differential forms in its treatment emerged. This
talk is a detailed report on that research. The author has reported on it before in a summary
fashion [16].

The previous papers that treat this as a Cartan equivalence problem use the Cartan theory.
The differential forms used here are not part of that theory, but are used to make the treatment
simpler and more obvious. One can carry out the same calculations without forms. The virtue of
this approach is that the linearization can be achieved, in principle, by solving some intermediate
linear differential equations. We will see how this can be done.

2 Basic theory and conditions for linearizability

We begin by adopting Lie’s approach: assume a point transformation given by new variables

X = F (x, y), Y = G(x, y), (2)

and require that

d2Y/dX2 = 0. (3)
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We note that this is a special case of a linear equation. Lie does not consider other cases,
with terms in dY/dX and Y . We will comment on this later.

Now consider the conditions imposed on F (x, y) and G(x, y) by this requirement. We first
construct, using equation (2),

dY/dX = (Gxdx+Gydy)/(Fxdx+ Fydy) =
(
Gx +Gyy

′) / (
Fx + Fyy

′) ,
where subscripts x and y denote differentiation. Now the second derivative equation may be
written simply in terms of a differential d(dY/dX) = 0, or(

Fx + Fyy
′) d (

Gx +Gyy
′)− (

Gx +Gyy
′) d (

Fx + Fyy
′) = 0,

which now may be treated as a differential form equation. We expand the differentials and
obtain(

Fx + Fyy
′) (

dGx + y′dGy +Gydy
′)− (

Gx +Gyy
′) (

dFx + y′dFy + Fydy
′) = 0

or

Tdy′ + ρy′2 + (λ+ δ)y′ + σ = 0, (4)

where

T = FxGy − FyGx

and we have the 1−forms

ρ = FydGy −GydFy, λ = FydGx −GydFx,

σ = FxdGx −GxdFx, δ = FxdGy −GxdFy. (5)

We note that

dT = δ − λ. (6)

Rewrite equation (4) as

dy′ = α+ βy′ + γy′2, (7)

where

α = −σ/T, β = −(λ+ δ)/T, γ = −ρ/T. (8)

This sort of equation has occurred in other contexts, such as in searching for Bäcklund
transformations, where y′ may be viewed as a fiber coordinate on a base space parameterized
by x and y.

We remember from differential form calculus that ddω = 0, where ω is any form, and that
1−forms anticommute under the hook product ∧. For integrability of equation (7), we ask
ddy′ = 0, or

0 = dα+ dy′ ∧ β + y′dβ + 2y′dy′ ∧ γ + y′2dγ,

and with substitution from equation (7) we have

0 = dα+
(
α+ βy′ + γy′2

)
∧ β + y′dβ + 2y′

(
α+ βy′ + γy′2

)
∧ γ + y′2dγ.
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The y′3 term vanishes because γ ∧ γ = 0; we equate the coefficients of the other powers of y′ to
zero and get

dα = β ∧ α, dβ = 2γ ∧ α, dγ = γ ∧ β. (9)

Now we go back to equations (5) and expand the differentials:

ρ = Fy(Gxydx+Gyydy)−Gy(Fxydx+ Fyydy),
λ = Fy(Gxxdx+Gxydy)−Gy(Fxxdx+ Fxydy),
σ = Fx(Gxxdx+Gxydy)−Gx(Fxxdx+ Fxydy),
δ = Fx(Gxydx+Gyydy)−Gx(Fxydx+ Fyydy),

or

ρ = Adx+Bdy, λ = Cdx+Ady, σ = Ddx+ Edy, δ = Edx+Hdy, (10)

where

A = FyGxy −GyFxy, B = FyGyy −GyFyy, C = FyGxx −GyFxx,

D = FxGxx −GxFxx, E = FxGxy −GxFxy, H = FxGyy −GxFyy.

Thus, from equations (8) and (10),

α = −(Ddx+ Edy)/T, β = −(Cdx+ Edx+Ady +Hdy)/T,
γ = −(Adx+Bdy)/T. (11)

We now substitute α, β, and γ into equation (7) for dy′, divide by dx to convert the differential
forms to functions, and rewrite it as:

y′′ + f0 + f1y
′ + f2y

′2 + f3y
′3 = 0, (12)

where the fk are given by

f0 = D/T, f1 = (C + 2E)/T, f2 = (H + 2A)/T, f3 = B/T.

We define K and L as

K = E/T, L = A/T, (13)

and replace D, C, H, and B in the 1−forms in equation (11) in favor of the fk, K, and L,
obtaining

α = −f0dx−Kdy, β = (K − f1)dx+ (L− f2)dy, γ = −Ldx− f3dy. (14)

We also note from equation (6) for dT that now

dT/T = (3K − f1)dx+ (f2 − 3L)dy. (15)

We see from the above that it is necessary, for the original assumption of linearizability to
hold, that the expression f(x, y, y′) in equation (1) be a cubic in y′. Thus the original form of
the equation which we have is to be that in equation (12) above, with the fk known functions
of x and y. We see that the 1−forms α, β, γ, and dT/T are now expressed in terms of these
four known functions fk and two other functions K and L. The first three of these 1−forms can
now be substituted into equations (9) to find conditions on the various functions.
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If we do that, the first equation, for dα, gives the equation

f0y −Kx = −K(K − f1) + f0(L− f2),

which is nonlinear in K. The other equations give similar results. However, we can simplify the
situation by defining new variables:

T = 1/W 3, E = U/W 4, A = V/W 4,

so that from equation (13)

K = U/W, L = V/W. (16)

Equation (15) now becomes

3dW/W = (f1 − 3K)dx+ (3L− f2)dy. (17)

We now have this situation. The dW equation (17) gives expressions for Wx and Wy. The
dα equation in equation (9) gives, after substitution for Wx, an expression for Ux which is linear
in U , V , and W . The dγ equation gives an expression for Vy, which is also linear. The dβ
equation gives a linear expression for Vx−Uy. The integrability condition on W , ddW = 0, gives
a linear expression for Vx + Uy. The latter two equations can be solved for Vx and Uy. Thus we
have expressions for all derivatives of U , V , and W , all of which are linear and homogeneous
(no constant terms) in the same variables.

We summarize all these relations in a nice matrix equation

dr = Mr, (18)

where

r =

 U
V
W

 and M = Pdx+Qdy, (19)

where

P = (1/3)

 −2f1 −3f0 3f0y + 3f0f2

0 f1 2f2x − f1y − 3f0f3

−3 0 f1


and

Q = (1/3)

 −f2 0 2f1y − f2x + 3f0f3

3f3 2f2 3f3x − 3f1f3

0 3 −f2

 .
For integrability, ddr = 0, or 0 = dMr −M ∧ dr = dMr −M ∧Mr, giving

dM = M ∧M

which is not zero since M is a matrix. Substitution for M in terms of P and Q gives the
condition

Qx − Py = [P,Q],
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the necessary condition on the fk for linearization to be possible. This matrix condition reduces
to two equations:

f0yy + f0(f2y − 2f3x) + f2f0y − f3f0x + (1/3)(f2xx − 2f1xy + f1f2x − 2f1f1y) = 0 (20)

and

f3xx + f3(2f0y − f1x) + f0f3y − f1f3x + (1/3)(f1yy − 2f2xy + 2f2f2x − f2f1y) = 0. (21)

To summarize, we note that linearizability requires the original differential equation to be a
cubic in y′, with the coefficients satisfying equations (20) and (21). These conditions are written
out in Lie [1] and in Ibragimov [3], for example.

3 Construction of the linearizing point transformations

In the following, we will need U , V, and W, so we will need to solve equations (18). It is
important to note that the most general solution is apparently not necessary; special solutions
will suffice. Thus one can make simplifying assumptions in the solution. Once the equations are
solved, then we construct K and L from equations (16).

In order to find the F (x, y) and G(x, y) for which we are seeking, we revert to equations (5)
and solve for dFx, dFy, dGx, and dGy. Solution for the first two gives

dFx = (Fyσ − Fxλ)/T, dFy = (Fyδ − Fxρ)/T.

Solution for the second two, dGx and dGy, shows that they satisfy the same equation, so we will
write only equations for the derivatives of F . We note that δ + λ = −Tβ and that δ − λ = dT ,
so we can solve these equations for δ and λ. We can also substitute for σ and ρ in terms of α
and γ. We get finally

dFx = −Fyα+ Fx(β + dT/T )/2, dFy = Fxγ + Fy(−β + dT/T )/2.

We substitute for α, β, γ, and dW in terms of the expressions obtained above, with the fk, K,
and L. The dW terms disappear and we are left with two equations which we can express in
matrix form as follows.

Write

R =
[
Fx
Fy

]
and S =

[
Gx
Gy

]
.

Now

dR = ZR, dS = ZS, (22)

where

Z =
[

(2K − f1)dx− Ldy f0dx+Kdy
−Ldx− f3dy Kdx+ (f2 − 2L)dy

]
.

This linear equation set can be solved for R; there will be two independent solutions, which can
be taken as R and S. See equation (22). (Integrability is guaranteed by the previous conditions,
as can be seen by setting ddR = 0.) Finally, one can solve

dF = [dx dy]R, dG = [dx dy]S (23)

for F and G.
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We can summarize the procedure.
1. Make sure that the original differential equation is a cubic in y′.

2. Test the coefficients fk to see whether they satisfy equations (20) and (21). If equations (1)
and (2) are satisfied, then the equation is linearizable in principle.

3. Construct the 3× 3 matrix M and solve equation (18) (linear!) for the three components
of r – a special solution is usually sufficient – and construct K and L.

4. Construct the 2× 2 matrix Z and solve equation (22) (linear!) for R or S.

5. Solve equation (23); the two independent solutions may be taken as F and G.

Steps (1) and (2) test for linearizability; steps (3)–(5) perform the construction (in principle).

4 Examples

4.1 The general linear equation

We first consider the equation

y′′ + a(x)y′ + b(x)y + c(x) = 0.

We see that f2 = f3 = 0, f1 = a(x), and f0 = b(x)y + c(x). Equations (20) and (21)
are satisfied, so this equation can in principle be cast into the form (3). However, when one
writes out equation (18), one sees quickly that the resulting linear equations give a second-order
equation for U , say, which is as difficult to solve as the original equation. Thus this method is
not a magic way to simplify the general linear second-order equation.

4.2 An equation considered by Ibragimov

Ibragimov [3] considered the equation

y′′ = x−1
[
ay′3 + by′2 +

(
1 + b2/3a

)
y′ + b/3a+ b3/27a2

]
,

which has f3 = −a/x, f2 = −b/x, f1 = −
(
1 + b2/a

)
/x, f0 = −

(
b/3a+ b3/27a3

)
/x, and which

satifies the linearizability conditions. Inspection shows that one may take a = 1 without loss of
generality, and that, by defining new variables U/x, V/x, and W/x2, one can write an equation
like the r equation (18) for which the matrix coefficients are constants, so that it can be solved
directly. The details are rather messy, but one eventually gets the linearizing transformation

X = F = y + cx, Y = G = [y + c(x− 1)]2 + x2,

where c = b/3. However, this does not save any labor, because the original equation is separable
in y′ and x and can be integrated quickly!

4.3 A trial equation

We consider the equation

y′′ + (2/x)y′ +
(
18x2 y3 − 2x/y2

)
y′3 = 0, (24)

which satisfies the linearizability conditions. We see that f0 = f2 = 0, f1 = 2/x, and f3 =
18x2y3 − 2x/y2. Thus the matrices P and Q are

P =

 −4/3x 0 0
0 2/3x 0
−1 0 2/3x

 and Q =

 0 0 0
18x2y3 − 2x/y2 0 2/y2

0 1 0

 .
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From equations (18) and (19), we see that dU = −(4U/3x)dx; so we take U = 0. Then we
have

dV = (2V/3x)dx+
(
2W/y2

)
dy and dW = (2W/3x)dx+ V dy,

so that Wx = 2W/3x. Integrating, we get W = x2/3a(y), for some function a(y). We also see
that V = Wy = x2/3a′(y), and further that a′′ = 2a/y2. We use the special solution a(y) = y2,
yielding finally

U = 0, V = 2x2/3y, W = x2/3y2, so that K = 0, L = 2/y.

We can now construct the matrix Z. It is

Z =
[

−2dx/x− 2dy/y 0
−2dx/y −

(
18x2 y3 − 2x/y2

)
dy −4dy/y

]
.

Write R =
[
b
c

]
. Then from equation (22) we have db = −2(dx/x + dy/y)b, which enables

immediate integration: b = k/
(
x2y2

)
, where k is a constant. We also have cx = by, which when

integrated gives c = 2k/
(
xy3

)
+ g(y).

Finally, we have cy =
(
18x2 y3 − 2x/y2

)
b− 4c/y, or, after simplification, g′+ 4g/y = −18ky.

Solution gives g(y) = −3ky2 +m/y4, where m is another constant. Integration of equation (23),
dF = [dx dy]R, now gives two solutions, one proportional to k and the other proportional to m.
We take these two solutions as F and G:

X = F (x, y) = 1/
(
xy2

)
+ y3, Y = G(x, y) = 1/y3,

the linearizing transformation. Construction of d2Y/dX2 shows that it is zero provided the
original differential equation (24) is satisfied.

Equation (24) was constructed by trial and error in order to provide a useful example of the
use of the method. It turns out to have a eight-parameter symmetry group. One can naively try
a reduction of order based on a scale transformation together with the usual tricks. Inspection of
scale in the equation shows that y has the scale x−1/5, so that y = x−1/5u produces the equation

x2u′′ + (8/5)xu′ − (4/25)u+
(
18u3 − 2/u2

)
(xu′ − u/5)3 = 0.

We continue by defining s = lnx, v = du/ds, and by converting the independent variable
to u, with the dependent variable v. We find

vdv/du+ 3u/5− 4v/25 +
(
18u3 − 2/u2

)
(v − u/5)3 = 0,

a rather nasty Abel equation.
Of course, this naive procedure applied to second order equations in general produces an

Abel equation. Application of more sophisticated techniques such as used by Stephani [17] may
produce a solution more easily when there are a number of symmetries (which has not been tried
here). But the matter does raise the question, is it necessary for an equation to have a certain
number of symmetries in order for this method to work well? Ibragimov [3] and Euler [13]
note that the answer is yes; a necessary and sufficient condition for linearization by a point
transformation is that the equation admit the sl(3,R) Lie point symmetry algebra, or that it
admit eight point symmetries. So this is another way to test for linearizability, although the
calculation of the symmetries may be lengthy.
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4.4 The general Kepler problem

The radial Newtonian central force equation, after substitution for the angular momentum and
change of independent variable to θ, can be written(

�/r2
)

(d/dθ)
[(
�/mr2

)
dr/dθ

]
− �2/

(
mr3

)
− f(r) = 0,

where f(r) is the force. If f(r) = −(�2A/m)rn, where A is constant, and we let r → y, θ → x,
we have, where k = n+ 4,

y′′ − (2/y)y′2 − y +Ayk = 0.

Thus f3 = 0, f2 = −2/y, f1 = 0, f0 = Ayk − y. The linearizability conditions require k = 1 or 2
so that n = −3 or −2. Why are not more values of n allowed? Because of the restriction of the
original assumption of equations (2) and (3).

4.5 Geodesics on a sphere

This equation,

y′′ = 2y′2 cot y + sin y cos y,

(which also has an eight-parameter symmetry algebra) is treated by Stephani [17, p. 78]. We
have

f1 = f3 = 0, f2 = −2 cot y, f0 = − sin y cos y,

and it is easily seen that the linearization conditions are satisfied. A special solution for r gives
V = 0, U = sinx(sin y)2/3, W = cosx(sin y)2/3, so that K = tanx and L = 0. The components
of R may be found to be (b−a sinx cot y)(secx)2 and a secx(csc y)2. We may take the coefficients
of a and b to be two independent solutions; then integration for F and G gives X = F = tanx
and Y = G = cot y secx, and integration of equation (2) gives

cot y = c sinx+ d cosx,

where c and d are constants, the known solution.

4.6 Example from Stephani

The equation,

y′′ = (x− y)y′3,

is also treated in Stephani [17] and has an eight-parameter symmetry algebra. One sees easily
that the linearization conditions are satisfied. The equation for U is dU = 0, so that we may take
U = 0. Then dV = −Wdy and dW = V dy, which are satisfied by V = sin y and W = − cos y,
giving K = 0 and L = − tan y. Solution for R and S, and then for F and G, gives F = X = tan y
and G = Y = (x− y) sec y. Now Y = aX + b, where a and b are constants, gives the solution of
the equation essentially as suggested by Stephani:

x = y + a sin y + b cos y.

5 Third-order equation

Some authors have studied the third-order ordinary differential equation [18, 12]. The approach
used in the present paper, however, does not readily yield a solution to the third-order problem.



Linearization of Second Order Ordinary Differential Equations 35

Acknowledgements

The author expresses appreciation to Fazal Mahomed and the Department of Computational
and Applied Mathematics at the University of Witwatersrand in Johannesburg for a delightful
month of study there. He also expresses appreciation to M.A.H. MacCallum, Fazal Mahomed,
Norbert Euler, and Mikhail Sheftel for help with the literature.
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Nonlinear reaction-diffusion systems are known to exhibit very many novel spatiotemporal
patterns. Fisher equation is a prototype of diffusive equations. In this contribution we
investigate the integrability properties of the generalized Fisher type equation to obtain
physically interesting solutions using Lie symmetry analysis. In particular, we report several
travelling wave patterns, static patterns and localized structures depending upon the choice
of the parameters involved.

1 Introduction

Nonlinear partial differential equations are frequently used to model a wide variety of phenomena
in physics, chemistry, biology and other fields [1, 2, 3]. In such models, when large aggregates
of microstructures consisting of particles, atoms, molecules, defects, dislocations, etc. are able
to move and/or interact, the evolution of the concentration of the species can be shown to obey
nonlinear diffusion equations of reactive type. These equations play an important role in dis-
sipative dynamical systems. Many interesting physical phenomena, such as wall propagation
in liquid crystals, nerve impulse propagation in nerve fibres, pattern formation in dissipative
systems, nucleation kinetics and neutron action in the reactor, are closely connected with the
study of nonlinear diffusion equations. The underlying systems give rise to very many sim-
ple/complex patterns which are essentially distinct structures on a suitable space-time scale
and they arise as collective and cooperative phenomena due to the underlying large number of
constituent subsystems. These structures tell us a lot about the dynamics as well as about the
microscopic behaviour of the underlying systems to some extent. As the interactions among the
constituents are nonlinear, novel structures which can mimic naturally occurring patterns arise.
These structures can be stationary or changing with time.

Generally, in the study of dissipative systems, one of the challenging problems is the selection
mechanism. That is, one would like to know the kinds of evolving velocity and emerging patterns
that would be selected in a kinetic process when the system is suddenly quenched into an unstable
state. Aronson and Weinberger’s work on the Fisher type nonlinear diffusion equation [4] has
shown the existence of distinct selection mechanism, that is the solution u(x, t) of the Fisher
equation in (1 + 1) dimensions,

ut = uxx + u(1− u), (1)

converges to a local travelling wave with a definite speed from a wide class of initial data. Further
it is known that equation (1) has a travelling wave solution called a cline [3] which is nothing
but a wave travelling in the x-direction with c ≥ cmin = 2. However, the first explicit analytic
form for a cline solution was obtained by Ablowitz and Zeppetella [5], who showed that an exact
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propagating wavefront solution (see Fig. 1) is of the form

u(x, t) = 1−
[

1 +
k√
6

exp

(
x− 5√

6
t

√
6

)]−2

, (2)

where k is an arbitrary constant. Here the authors made use of the Painlevé singularity structure
analysis of equation (1) to find the exact solution in the year 1979.

Figure 1. An exact wavefront solution [5] of the Fisher equation
(
ξ = x− 5√

6
t
)

.

There is continuing interest in recent literature [6] to investigate more general forms of the
Fisher equation. For instance, there is an interesting generalization of the Fisher equation in
the description of bacterial colony growth, chemical kinetics and many other natural phenomena
and it is of the general form [10]

∂u(r, t)
∂t

= D�u(r, t) + Λ(u)[∇u(r, t)]2 + λu(r, t)G(u,r, t), (3)

where D is the diffusion coefficient, Λ is the nonlocal growth rate, λ is the local growth rate,
G(u,r, t) is the local growth function, ∇ and� are gradient and Laplacian operators respectively.
As a special case of equation (3), we obtain the generalized Fisher type equation

ut −�u− m

1− u
(∇u)2 − u(1− u) = 0, (4)

where the subscript denotes partial differentiation with respect to time. In the study of popu-
lation dynamics, u(r, t) refers to the population density at point r at time t. In equation (4),
the linear term modelling the birth rate gives rise to an exponential growth in time while the
quadratic term that models competition between individuals for food, etc. leads to a stable,
homogeneous value u = 1 at long times and the diffusion term models the spatial variation of
the population. This introduces the possibility of spatial pattern formation between the homo-
geneous regions with u = 1 and u = 0 for appropriate initial conditions. Further, the classical
Fisher equation (m = 0) occurs in models of population growth [3], neurophysiology [7], Brow-
nian motion [8] and nuclear reactors [9]. Besides allowing for exact solutions, the m = 2 case
finds its application in real systems such as the bacterial colony growth [10] where the square-
gradient term corresponds to the nonlocal growth occuring at concentration gradients which
is similar to the nonlinear terms in the Kuramoto–Sivashinsky equation for propagating flame
and in the theory of growing interfaces. Moreover, models which admit exact solutions are of
considerable importance for understanding general behaviour of nonlinear dissipative systems.
In one dimensional space, such models have received considerable attention. But many realistic
models are two or three dimensional in nature and in this direction, Brazhnik and Tyson [6]
considered equation (4) in two spatial dimensions and explored five kinds of travelling wave pat-
terns namely plane, V and Y -waves, a separatrix and space oscillating propagating structures.
All these structures were found when the medium is unbounded and spatially homogeneous.
Further they show that when the medium is bounded and no flux is allowed through the boun-
daries, only plane and oscillating waves survive because the frontline of the wave must approach
the boundary orthogonally.



38 P.S. Bindu and M. Lakshmanan

In general, obtaining solutions for reaction-diffusion systems is more complex than that for
pure dispersive systems. For the latter there are several analytical methods like the inverse
scattering transform method [11], the Hirota method [12], Bäcklund transformation method [13],
Lie–Bäcklund symmetries method and so on. On the other hand, for nonlinear diffusive systems,
no such formal techniques are available to solve them analytically. Very often perturbation
analysis or numerical techniques are used to treat them. There is therefore an urgent need
to isolate and identify integrable nonlinear reaction-diffusion systems which can act as model
systems to deal with more complicated cases. In this connection, symmetry analysis can play a
very crucial role.

Consider for example, the well known case of Burgers equation

ut = νuxx + uux,

where ν is the diffusion coefficient. It can be considered to be integrable in the sense that
it is linearizable: Under the Cole–Hopf transformation u = −νvx/v, it reduces to the linear
heat equation. It possesses interesting Lie point symmetry structures and infinite number of
Lie–Bäcklund symmetries. So, it will be quite interesting to know about other such integrable
reaction-diffusion equations and the role of symmetries that allows the system to exhibit different
spatiotemporal patterns and structures which usually possess some kind of symmetry. In this
direction, the method of Lie groups is the most powerful method to analyse nonlinear partial
differential equations (PDEs) and hence we make use of it and the singularity structure analysis
to investigate the integrability properties and hence the dynamics/patterns of (4). We report
in this paper that the m = 2 case of equation (4) possesses infinite dimensional Lie symmetry
structure, which allows one to linearize it both in (1 + 1) and (2 + 1) dimensions and to obtain
a large class of exact solutions. We also obtain several exact solutions for the m �= 2 case.

The plan of the paper is as follows. In Section 2, we briefly recall some of the important
reaction-diffusion equations exhibiting novel/complex patterns. Then in Section 3, by carrying
out the singularity structure analysis, we point out that the PDE (4) is free from movable
critical singular manifolds for the specific value m = 2. More interestingly, we point out that
the Bäcklund transformation deduced from the Laurent expansion gives rise to the linearizing
transformation for this case in a natural way. In Sections 4 and 5, we discuss different underlying
patterns via symmetry analysis and similarity reductions for the generalized Fisher type equation
in 1- and 2-spatial dimensions, respectively. Finally we summarize our results in Section 6.

2 Reaction-diffusion systems and various patterns

The general form of the nonlinear reaction-diffusion equation is given by

∂C

∂t
= ∇ · (D∇C) + F (CT , r, t), C = (c1, c2, . . . , cn)T ,

D = diag (D1, D2, . . . , Dn), F = (f1, f2, . . . , fn)T .

Here C represents the population or concentration densities of the species and D and F are,
in general, nonlinear functions of C representing the diffusivity and the reaction kinetics re-
spectively. In such a case, the dynamics is dominated by the onset of patterns. Inspite of the
absence of rigorous analytical tools as in the case of soliton systems, combined local analysis
and numerical investigations on such systems have been found to exhibit a number of important
spatiotemporal patterns.

Some of the dominant patterns exhibited by these systems are homogeneous or uniform steady
states, travelling waves, spiral waves, Turing patterns (rolls, stripes, hexagons, rhombs, etc.),
localized structures, spatiotemporal chaos and so on. A few of the well known models include
the following:
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2.1 The Oregonator model

This model explains the various features of the Belousov–Zhabotinsky reaction and was intro-
duced by Fields, Körös and Noyes of University of Oregon, USA in 1972. In its simplest version
it reads as [14]

u1t = D1∇2u1 + η−1

[
u1(1− u1)− bu2(u1 − a)

(u1 + a)

]
,

u2t = D2∇2u2 + u1 − u2. (5)

Here u1 is the concentration of the autocatalytic species HBrO2, u2 is the concentration of the
transition ion catalyst in the oxidised state Ce3+ and Fe3+ and η, a and b are parameters.
This model is the most popular among the pattern forming chemical reactions. In particular,
(5) exhibits ‘propagating pulse solutions’ that can travel through the system without attenuation.
Besides, it admits periodic wave trains, target patterns and in two dimensions they generate
spiral waves.

2.2 Gierer–Meinhardt model

It describes possible interaction between an activator a and a rapidly diffusing inhibitor h and
is of the form [15]

at = Da∇2a+ ρa
a2

(1 +Kaa2)
− µaa+ σa,

ht = Dh∇2h+ ρha
2 − µhh+ σh,

where Da and Db are the two diffusion coeffcients, ρa and ρb are the removal rates and σa and σb
are the basic production terms of the activator and inhibitor respectively. Further Ka corre-
sponds to the saturation constant. This model is mainly used in the study of the development
of an organism in biological pattern formation. They are also used to model cell differentiation,
cell movement, shape changes of cells and tissues and so on.

2.3 Brusselator model

Among the various reaction-diffusion type model systems, this is one of the best studied models
for the formation of chemical patterns theoretically [16]. It is based on the chemical reactions

A −→ X, B +X −→ Y, 2X + Y −→ 3X, X −→ E,

where the concentration of the species A, B and E are maintained constant. Thus they form
the real constant parameters of the system. The evolution of the active species X and Y can be
described by

Xt = A− (B + 1)X +X2Y +DX∇2X,

Yt = BX −X2Y +DY∇2Y, (6)

after proper rescaling. Here DX and DY are diffusion coefficients. This model exhibits hetero-
geneous patterns through Turing instability.
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2.4 Lotka–Volterra predator-prey model

Taking into consideration the interaction of two species in which the population of the prey is
dependent on the predator and vice-versa, the model equations [17] become

S1t = D1S1xx + a1S1 − b1S1S2,

S2t = D2S2xx − a2S2 + b2S1S2.

Here S1 and S2 are the population densities of prey and predator. D1 and D2 are the diffusivities
of the two populations, respectively. The parameters a1, a2 are the linear ratio of birth and
death rates of the individual species while b1, b2 are the nonlinear decay and growth factors due
to interaction.

2.5 FitzHugh–Nagumo nerve conduction model

The Hodgkin–Huxley model describes the propagation of the electrical impulses along the axonal
membrane of a nerve fibre. FitzHugh–Nagumo nerve conduction equation [18] is the simplest
version of the above model and is represented by the following set of equations:

Vt = Vxx + V − V 3

3
−R+ I(x, t),

Rt = c(V + a− bR). (7)

Here the membrane potential is V (x, t), R corresponds to the lumped refractory variable and
I(x, t) is the external injected current. The parameters a and b are positive constants while c
stands for the temperature factor. The above model has been widely used to study various phe-
nomena in neurophysiology and cardiophysiology. This system exhibits travelling wave pulses [3].
In particular, the two-dimensional version of (7) admits ring wave patterns as well as spiral wave
patterns for a variety of special initial conditions.

As mentioned in the introduction, symmetries can play a very important role in determining
the underlying dynamics of nonlinear systems. Particularly they can help to identify integrable
cases of the above type of reactive-diffusive systems, if they exist. As an important case study,
we now investigate integrability and symmetry properties of the generalized Fisher type equa-
tion (4).

3 Singularity structure analysis

This analysis separates out the m = 2 case for both the (1 + 1) and (2 + 1) dimensions as the
only system for which the Fisher equation (4) is free from movable critical singular manifolds
satisfying the Painlevé property [13]. By locally expanding the solution in the neighbourhood
of the non-characteristic singular manifold φ(x, t) = 0, φx, φt �= 0 in the form of the Laurent
series [19]

u =
∞∑
j=0

ujφ
j+p,

the possible values of the power of the leading order term are found to be

(i) p = −2,

(ii) p =
1

1−m
, m �= 1,

(iii) p = 0.
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For all these leading orders, only for the value m = 2 the solution is free from movable critical
singular manifolds since for p = −1 the leading order coefficient u0 becomes arbitrary besides
the arbitrary singular manifold φ. In all other cases only one arbitrary function exists for m = 2
thereby leading to special solutions.

More interestingly, from the Laurent series expansion if we cut off the series at “constant”
level term, that is j = −p for the leading order p = 1/(1 −m) = −1, m = 2, one can deduce
the Bäcklund transformation that gives rise to the linearizing transformation in a natural way.
Thus, defining the relation

u =
u0

φ
+ u1, (8)

we demand that if u1 is a solution of equation (4) for the case m = 2, then u is also a solution,
from which the Bäcklund transformation is deduced. Now starting from the trivial solution,
u1 = 0 of (4), we find that the equations for u0 and φ in equation (8) are consistent for the
choice u0 = φ, giving rise to the new solution u = 1. This is nothing but an exact solution of
equation (4). Then with u1 = 1 as the new seed solution, one can check from equations satisfied
by u0 and φ that

u0 = −1, φt − φxx − φ+ 1 = 0. (9)

Choosing φ = 1 + χ, equation (9) can be rewritten as the linear heat equation,

χt − χxx − χ = 0. (10)

Thus the transformation

u = 1− 1
1 + χ

, (11)

where χ satisfies the linear heat equation (10), is the linearizing transformation for equation (1)
in (1 + 1) dimensions for the choice m = 2 in an automatic way. We note that this is exactly
the transformation given in ref. [20] in an adhoc way. Here we have given an interpretation
for the transformation in terms of the Bäcklund transformation. The same transformation (11)
linearizes equation (3) in (2 + 1) dimensions (for m = 2) as well, where χ satisfies the two
dimensional linear heat equation χt − χxx − χyy − χ = 0. Further equation (11) transforms
equation (4) in (3 + 1) dimensions to the 3-dimensional heat equation as well; however, we do
not study the case further here.

4 Symmetries and integrability properties
of (1 + 1) dimensional generalized Fisher equation

The generalized Fisher equation (4) in its (1 + 1) dimensional form reads as

ut − uxx −
m

1− u
− u+ u2 = 0. (12)

An invariance analysis of equation (12) under the infinitesimal transformations

x −→ X = x+ εξ(t, x, u), t −→ T = t+ ετ(t, x, u),
u −→ U = u+ εφ(t, x, u), ε	 1,

separates out the m = 2 case in that it possesses a nontrivial infinite-dimensional Lie algebra of
symmetries

τ = a, ξ = b, φ = c(t, x)(1− u)2.



42 P.S. Bindu and M. Lakshmanan

Here a, b are arbitrary constants and c(t, x) is any solution of the linear heat equation ct−cxx−c =
0. For all other values of m in equation (12) one gets trivial translation symmetries

τ = a, ξ = b, φ = 0.

In order to obtain solutions of physical importance and corresponding patterns, we make use
of the method of similarity reductions. This leads to the similarity reduced variables for the
m = 2 case as

z = ax− bt, u = 1− a

a+ v(z) +
∫
c(t, x)dt

. (13)

Using (13), equation (12) can be reduced for the m = 2 case to the similarity reduced ordinary
differential equation (ODE)

a2v′′ + bv′ + v = 0

whose general solution is

v = I1e
m1z + I2e

m2z, m1,2 =
−b±

√
b2 − 4a2

2a2
,

where I1 and I2 are integration constants thereby leading to

u =



1− a

a+ I1em1(ax−bt) + I2em2(ax−bt) +
∫
c(t, x)dt

, b2 − 4a2 > 0;

1− a

a+ ep(ax−bt) (I1 + I2(ax− bt)) +
∫
c(t, x)dt

, b2 − 4a2 = 0;

1− a

a+ ep(ax−bt) (I1 cos q(ax− bt) + I2 sin q(ax− bt)) +
∫
c(t, x)dt

, b2 − 4a2 < 0

with p = −b/2a2, q =
√

4a2 − b2/2a2, as the solution to the original PDE (12). Here the
similarity reduced variable (13) is nothing but the linearizing transformation (11).

Proceeding in a similar fashion for all the other (nonintegrable) cases (m �= 2), the similarity
variables z = ax− bt and u = w(z) reduce equation (12) to the ODE

a2vv′′ −ma2v′2 + bvv′ − (1− v)v2 = 0, v = 1− w, (14)

which is in general nonintegrable except for m = 0 and b/a = 5/
√

6. This special choice leads
to the cline solution (2) obtained by Ablowitz and Zeppetella [5]. In the static case (b = 0), one
obtains elliptic function solutions. Besides, a particular solitary wave solution

u = 1− (3− 2m)
(2− 2m)

[
sech2

(
I2 −

x

2

√
1

1−m

)]
, m < 1

with I2 as the second integration constant, which is a limiting case of a elliptic function solution,
is also obtained (refer Fig. 2). In the general case, as equation (14) is of nonintegrable nature,
we make use of numerical techniques to study the underlying dynamics. Here we obtain typical
periodic wave trains for b/a = 0 which is in accordance with the fact that reaction-diffusion
systems exhibiting limit cycle motion in the absence of diffusion exhibits travelling wave patterns
(Fig. 3a,b). For b/a = 1, we get a propagating pulse (Fig. 3c) and the corresponding phase
portrait (v − v′) shows a stable spiral equilibrium point (Fig. 3d). On increasing the value of
b/a, that is, at b/a ≥ 2 (b = 2.041) [5], the system supports a travelling wave front (Fig. 3e) and
the trajectories in the phase plane (v − v′) correspond to a stable node (Fig. 3f).
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Figure 2. A static solitary wave pulse for m = 1/2 of the generalized Fisher equation (12).

Figure 3. Propagating patterns and corresponding phase portraits in the v− v′ plane of equation (14):
(a) periodic pulses; (b) limit cycle; (c) travelling pulse; (d) stable spiral; (e) travelling wavefront; (f) stable
node.

5 The (2 + 1) dimensional generalized Fisher equation

Extending a similar analysis to the (2 + 1) dimensional case of the generalized Fisher equation

ut − uxx − uyy −
m

1− u

(
u2
x + u2

y

)
− u+ u2 = 0, (15)

one finds that the invariance analysis of equation (15) under the infinitesimal transformation
singles out the special value m = 2 for which the Lie point symmetries are

τ = a, ξ = b3y + b4, η = −b3x+ d4, φ = c(t, x, y)(1− u)2,

where η is the infinitesimal symmetry associated with the variable y, c(t, x, y) is the solution of
the two dimensional linear heat equation ct − cxx − cyy − c = 0 and b3, b4 and d4 are arbitrary
constants. But for all other choices of m (�= 2) we get

τ = a, ξ = b3y + b4, η = −b3x+ d4, φ = 0.

In a similar fashion as that for the (1 + 1) dimensional case, the similatiry variables for the
m = 2 case

z1 =
b3
2

(x2 + y2) + b4y − d4x, z2 = −t− a

b3
sin−1

(
d4 − b3x√

d2
4 + 2b3z1 + b24

)
,
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u = 1− a

w(z1, z2) +
∫
c(t, x, y)dt

(16)

reduce the PDE (15) to

wz2 + 2b3wz1 +
(
2b3z1 + b24 + d2

4

)
wz1z1 +

a2wz2z2
2b3z1 + b24 + d2

4

+ w − a = 0. (17)

Here too one can obtain the linear heat equation

χt − χxx − χyy − χ = 0,

χ =
1
a

[
w(z1, z2) +

∫
c(t, x, y)dt

]
,

from the similarity form (16). Such a transformation can be interpreted as the linearizing
transformation from a group theoretical point of view.

Carrying out a Lie symmetry analysis for equation (17) also, one can obtain the new similarity
variables

ζ = z̄1, w = a+ e

(
c1z̄2
c3

) [
f(ζ) +

1
c3

∫
ĉ2(z̄1, z̄2)e

(
− c1

c3
z̄2

)
dz̄2

]
,

z̄1 = 2b3z1 + b24 + d2
4, z̄2 = z2, b3, d4 �= 0,

where f satisfies the linear second order ODE of the form

ζ2f ′′ + ζf ′ + (A+Bζ)f = 0,

A = (ac1/2b3c3)2, B = (1 + c1/c3)/4b23, (18)

with prime denoting differentiation w.r.t. ζ. Thus the solution to the original PDE reads as

u = 1− a

[
a+ e

(
c1
c3
z̄2

)(
I1Z1

(
2
√
Bz̄1

)
+ I2Z2

(
2
√
Bz̄1

)
−

∫
ĉ2(z̄1, z̄2)

c3
e

(
c1
c3
z̄2

)
dz̄2

)
+

∫
c(t, x, y)dt

]−1

. (19)

In the limit b4 = d4 = c1 = 0 the system is found to exhibit circularly symmetric structures
given in Fig. 4.
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Figure 4. Circularly symmetric patterns of the (2 + 1) dimensional generalized Fisher equation (15) for
m = 2.
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More interestingly, in the special case b3 = 0, d4 = 0 the system exhibits propagating wave
structures and the corresponding forms are

u =



1− a

{
a+ exp

[
− k

(
a

b4
x− t

) ][
I1 cos(

√
k1c5b4y) + I2 sin

(√
k1c5b4y

)
+

∫
ĉ3(z1, z2)

c5
ekz2dz2

]
+

∫
c(t, x, y)dt

}−1

, k1 < 0,

1− a

{
a+ exp

[
− k

(
a

b4
x− t

) ][
I1e
√
k1c5b4y + I2e

−√k1c5b4y

+
∫
ĉ3(z1, z2)

c5
ekz2dz2

]
+

∫
c(t, x, y)dt

}−1

, k1 > 0,

1− a

{
a+ exp

[
− k

(
a

b4
x− t

) ][
I1c5b4y + I2

+
∫
ĉ3(z1, z2)

c5
ekz2dz2

]
+

∫
c(t, x, y)dt

}−1

, k1 = 0,

(20)

where the parameter k1 = 1
b24c

2
5

[
k −

(
ak
b4

)2
− 1

]
with k = −c2/c5 and z1 = b4y, z2 = a

b4
x − t.

Here c2, c4, c5 are arbitrary constants of integration. Equation (20), in particular exhibits
the five classes of bounded travelling wave solutions reported by Brazhnik and Tyson [6] for
certain choice of the parameters involved along with the specific assumptions of the functions
ĉ3(z1, z2) = 0 and c(t, x, y) = 0. The corresponding solutions are given below.

Among the classes of solutions, the simplest travelling wave solution (Fig. 5a)

u = 1− 1

1 +A exp
[
−k

(
a
b4
x− t

)
±
√
k1c5b4y

] , k1 > 0

can be constructed by assuming either I1 = 0 or I2 = 0. For I1 = I2 (�= 0), we obtain a V-wave
pattern (Fig. 5b)

u = 1− 1

1 +A exp
[
−k

(
a
b4
x− t

)]
cosh

(√
k1c5b4y

) , k1 > 0.

Again the case I2 = 0 and k1 < 0 leads to a wave front oscillating in space (Fig. 5c) and is
represented by

u = 1− 1

1 +A exp
[
−k

(
a
b4
x− t

)] ∣∣cos
(√
k1c5b4y

)∣∣ .
But when I1 �= 0 and I2 = 0 we get a separatrix (Fig. 5d)

u = 1− 1

1 +A|y| exp
[
−k

(
a
b4
x− t

)] .
Finally for positive k1 and I1 = −I2 the Y-wave solution (Fig. 5e) becomes

u = 1− 1

1 +A exp
[
−k

(
a
b4
x− t

)] ∣∣sinh
(√
k1c5b4y

)∣∣ .
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Figure 5. Five interesting classes of propagating wave patterns as obtained in ref. [6], which follow from
equations (20): (a) travelling waves; (b) V-waves; (c) oscillating front; (d) separatrix solution; (e) Y-waves
with ξ = −k( a

b4
x− t).

In each of the above solutions A is a positive constant. It is a well known fact about Fisher
equation is that it forms a basis for many nonlinear models of different nature. As a result,
the above solutions are reminiscent of patterns from different fields. In particular, V-waves are
characterized in the framework of geometrical crystal growth related models [21] and in excitable
media [22] while space oscillating fronts are relevant to cellular flame structures and patterns in
chemical reaction diffusion systems [23]. Further it has been shown in [24] with a geometrical
model that excitable media can support space-oscillating fronts. Several static structures can
also be obtained as limiting cases of the above solutions (19) and (20).

Finally, a similar analysis for the nonintegrable (m �= 2) case yields static patterns/structures
in (x, y) variables. Here one has to look for certain special solutions due to its nonintegrable
nature. That is, for b3 = 0 and d4 = 0 with the similarity variables z1 = b4y, z2 = a

b4
x − t,

u = w(z1, z2), the reduced ODE reads as

Df ′′ +
Dm

1− f
f ′2 − c1f

′ + f(1− f) = 0,

D =
(
a2

b24
c1

2 + b24c2
2

)
, ()′ = d/dζ,

with ζ = −c1
(
a
b4
x− t

)
+ c2b4y and w = f(ζ), giving rise to plane wave structures. For b3 = 0,

the similarity variables z1 = d4x− b4y, z2 = ax− b4t and u = w(z1, z2) reduces the PDE to an
ODE

Af ′′1 +Bf ′1 −
Am

f1
f

′2
1 − f1 + f2

1 = 0, ()′ = d/dζ

with f1 = 1 − f , A = a2
(
c21d

2
4 + c22b

2
4

)
, B = −d4b4(c1 + c2) and ζ = ac2(d4x − b4y) − d4(c1 +

c2)(ax−b4t), w = f(ζ). Then the system is found to possess elliptic function solutions including
the limiting case of the solitary pulse for certain choices of the constants involved.
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6 Conclusion

Our studies on the integrability/symmetry properties of the the generalized Fisher type nonlinear
reaction-diffusion equation show that the system under consideration possesses interesting Lie
point symmetries that could form infinite dimensional Lie algebra for the particular choice of the
system parameter m = 2, thereby exhibiting various interesting patterns and dynamics. Besides,
the singularity structure analysis singles out the m = 2 case as the only system parameter for
which the generalized Fisher type equation is free from movable critical singular manifolds. The
generalized Fisher equation is found to possess a large number of interesting wave patterns. It
will be of interest to consider other physically interesting reaction-diffusion systems from the
Lie symmetry point of view and to study the underlying patterns.
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The magnetic Rayleigh problem where a semi-infinite plate is given an impulsive motion
and thereafter moves with constant velocity in a non-Newtonian power law fluid of infinite
extent is studied. The solution of this highly non-linear problem is obtained by means
of the transformation group theoretic approach. The one-parameter group transformation
reduces the number of independent variables by one and the governing partial differential
equation with the boundary conditions reduce to an ordinary differential equation with the
appropriate boundary conditions. Effect of the parameters and time on the velocity has
been studied and the results are plotted.

1 Introduction

An investigation is made of the magnetic Rayleigh problem where a semi-infinite plate is given
an impulsive motion and thereafter moves with constant velocity in a non-Newtonian power
law fluid of infinite extent. We will study the non-stationary flow of an electrically conducting
non-Newtonian fluid of infinite extent in a transverse external magnetic field. The rheological
model of this fluid is given by the well-known expression for a power law fluid [13]

τij = −pδij + k

∣∣∣∣1
2
I2

∣∣∣∣n−1
2

eij ,

where τij is the shear stress, p is the pressure, δij is the Kronecker symbol, k the coefficient of
consistency, I2 the second strain rate invariant, eij the strain rate tensor and n is a parameter
characteristic of the non-Newtonian behavior of the fluid.

For n = 1, the behavior of the fluid is Newtonian, for n > 1, the behavior is dilatant and for
0 < n < 1, the behavior is pseudo-plastic.

The equation of motion of the semi-infinite flat plate in the infinite power law non-Newtonian
fluid after an impulsive end loading and maintaining constant velocity thereafter is

∂u

∂t
− γ

∂

∂y


[(

∂u

∂y

)2
]n−1

2 ∂u

∂y

 +MH2u = 0,

where u(y, t) is the velocity of the fluid flow in the horizontal direction, V is the steady state
velocity of the plate, t is the time, y is the coordinate normal to the plate, n is constant,
γ

(
= k

ρ

)
is constant, k is the coefficient of consistency, ρ is the density of the fluid, M

(
= σµ2

ρ

)
is constant, σ is the magnetic conductivity, µ is the magnetic permeability and H is the magnetic
field strength and is function of time H = H(t).
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The solution of this highly non-linear problem is obtained by means of the transformation
group theoretic approach. The one-parameter group transformation reduces the number of
independent variables by one and the governing partial differential equation with the boundary
conditions reduce to an ordinary differential equation with the appropriate boundary conditions.
Effect of the parameters M , w (= γV n−1), n and time t on the velocity u(y, t) has been studied
and the results are plotted.

Fluids that obey Newton’s law of viscosity are called Newtonian fluids.
Newton’s law of viscosity is τ = µdudy , where τ is the shear stress and µ is the viscosity. Not

all fluids follow the Newtonian stress-strain relation. Some fluids, such as “Ketchup” are “shear-
thinning”; that is the coefficient of resistance decreases with increasing strain rate. Fluids that do
not follow the Newtonian relation are called non-Newtonian fluids. Viscosity of non-Newtonian
fluids is a function of the strain rate [8].

In 1970, Sapunkov [11] studied non-Newtonian flow of an electrically conducting fluid. He
obtained approximate solution to the problem solved in this paper but only in the special case
of very strong or very weak magnetic fields. The solution was obtained only for a power law
fluid for n = 2. In 1971, Vujanovic [12] obtained approximate solution by means of a new and
effective variational method. In 1972, Vujanovic, Strauss and Djukic [13] used a new variational
principle. This new principle allows one to obtain the solution in a straightforward manner. The
mathematical technique used in the present analysis is the one-parameter group transformation.
The group methods, as a class of methods, which lead to reduction of the number of independent
variables, were first introduced by Birkhoff [4] in 1948, where he made use of one-parameter
transformation groups. In 1952, Morgan [10] presented a theory, which has led to improvements
over earlier similarity methods. The method has been applied intensively by Abd-el-Malek et
al. [1, 2, 5, 7], Ames [3], Morgan and Gaggioli [9] and A.J.A. Morgan [10]. In this work, we
present a general procedure for applying a one-parameter group transformation to the Raylrigh
problem for a power law non-Newtonian conducting fluid.

Under the transformation, the partial differential equation with boundary conditions is re-
duced to an ordinary differential equation with the appropriate corresponding conditions. The
equation is then solved numerically using non-linear finite difference method applied to the non
linear second order boundary value problem [6] to calculate approximated value of the velocity
of the fluid u(y, t).

The fluid studied here is assumed to be incompressible and such that the electric and polari-
zation effects can be neglected.

2 Formulation of the problem and the governing equation

Consider the equation of motion of the semi-infinite flat plate in the infinite power law non-
Newtonian fluid (Rayleigh problem) of the form:

∂u

∂t
− γ

∂

∂y


[(

∂u

∂y

)2
]n−1

2 ∂u

∂y

 +MH2u = 0 (1)

with the boundary conditions

(i) u(0, t) = V, t > 0,
(ii) u(∞, t) = 0, t > 0

and initial condition

u(y, 0) = 0, y > 0.
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Equation (1) can be written as:

∂u

∂t
− nγ

(
∂u

∂y

)n−1 (
∂2u

∂y2

)
+MH2u = 0. (2)

Assume

u(y, t) = V F (y, t), (3)

where F (y, t) is unknown function and its proper form will be determined later on.
Substitution from (3) into (2) yields

V
∂F

∂t
− nγV n

(
∂F

∂y

)n−1 (
∂2F

∂y2

)
+MH2V F = 0,

which can be written as:

∂F

∂t
− nγV n−1

(
∂F

∂y

)n−1 (
∂2F

∂y2

)
+MH2F = 0 (4)

with the boundary conditions

(i) F (0, t) = 1, t > 0, (5)
(ii) F (∞, t) = 0, t > 0 (6)

and initial condition

F (y, 0) = 0, y > 0. (7)

3 Solution of the problem

Our method of solution depends on the application of a one-parameter group transformation to
the partial differential equation (4). Under this transformation the two independent variables
will be reduced by one and the differential equation (4) transforms into an ordinary differential
equation.

3.1 The group systematic formulation

The procedure is initiated with the group G, a class of transformation of one-parameter a of the
form:

y = hy(a)y + ky, t = ht(a)t+ kt, F = hF (a)F + kF , H = hH(a)H + kH , (8)

where h’s and k’s are real-valued and at least differentiable in the real argument a.

3.2 The invariance analysis

To transform the differential equation, transformations of the derivatives of F andH are obtained
from G via chain-rule operations:

Si =
[
hS

hi

]
Si, Sij =

[
hS

hihj

]
Sij , i = y, t, j = y, t, (9)

where S stands for F .
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Equation (4) is said to be invariantly transformed, for some function A(a) whenever:{
∂F

∂t
− nγV n−1

(
∂F

∂y

)n−1 (
∂2F

∂y2

)
+MH

2
F

}

= A(a)

{
∂F

∂t
− nγV n−1

(
∂F

∂y

)n−1 (
∂2F

∂y2

)
+MH2F

}
. (10)

Substitution from (8) and (9) into (10) yields

hF

ht
∂F

∂t
− nγV n−1

(
hF

hy
∂F

∂y

)n−1 (
hF

(hy)2
∂2F

∂y2

)
+M

(
hHH + kH

)2 (
hFF + kF

)
= A(a)

{
∂F

∂t
− nγV n−1

(
∂F

∂y

)n−1 (
∂2F

∂y2

)
+MH2F

}
. (11)

The invariance of (11) implies

kH = kF = 0, and
hF

ht
=

(
hF

)n
(hy)n+1 =

(
hH

)2
hF = A(a).

The invariance of the auxiliary conditions (5)–(7) implies that

hF = 1, ky = kt = 0,

which yields

hy =
(
ht

) 1
n+1 , hH =

1√
ht
.

Finally, we get the one-parameter group G, which transforms invariantly the differential
equation (4) and the auxiliary conditions (5)–(7).

The group G is of the form:

y =
(
ht

) 1
n+1 y, t = htt, F = F, H =

(
1√
ht

)
H. (12)

3.3 The complete set of absolute invariants

Our aim is to make use of group methods to represent the problem in the form of an ordinary
differential equation.Then we have to proceed in our analysis to obtain a complete set of absolute
invariants. If η ≡ η(y, t) is the absolute invariant of the independent variables then,

gj(y, t, F,H) = Ψj [η(y, t)] , j = 1, 2,

are the two absolute invariants corresponding to F and H.
The application of a basic theorem in group theory, see Moran and Gaggioli [9], states that:

a function g(y, t, F,H) is an absolute invariant of a one-parameter group if it satisfies the fol-
lowing first-order linear differential equation:

4∑
i=1

(αiSi + βi)
∂g

∂Si
= 0, Si ≡ y, t, F,H, (13)

where

αi =
∂hSi

∂a

(
a0

)
and βi =

∂kSi

∂a

(
a0

)
, i = 1, 2, 3, 4 (14)

and a0 denotes the value of “a” which yields the identity element of the group G.
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At first, we seek the absolute invariant of the independent variables. Owing to equation (13),
η(y, t) is an absolute invariant if it satisfies the following first-order linear differential equation

(α1y + β1)
∂η

∂y
+ (α2t+ β2)

∂η

∂t
= 0. (15)

Since ky = kt = 0, and according to the definition of the β’s then β1 = β2 = 0.
Now, equation (15) may be rewritten in the form,

α1y
∂η

∂y
+ α2t

∂η

∂t
= 0.

Applying separation of variables method, one can be obtain a solution in the form,

η = yt−β , where β =
α1

α2
. (16)

The second step is to obtain the absolute invariants of the dependent variables F and H.
By a similar analysis, using equations (12), (13) and (14), we get

F (y, t) = φ(η), (17)

and the second absolute invariant is

H(t) = q(t). (18)

4 The reduction to an ordinary differential equation

Using a substitution from (16)–(18) into equation (4), we get

[
−βyt−(β+1)

] dφ
dη

− nγV n−1

(
t−β

dφ

dη

)n−1 (
t−2β d

2φ

dη2

)
+Mq2φ = 0,

from which we get

nγV n−1

(
d2φ

dη2

)(
dφ

dη

)n−1 [
t1−β(n+1)

]
+ βη

dφ

dη
−Mtq2φ = 0. (19)

For (19) to be reduced to an ordinary differential equation in one variable η, it is necessary
that the coefficients should be constants or functions of η only. Thus

q(t) =
E√
t
, β =

1
n+ 1

. (20)

Hence, equation (19) will be,

nw

(
d2φ

dη2

)(
dφ

dη

)n−1

+ βη
dφ

dη
−Nφ = 0, (21)

where N
(
= E2M

)
and w

(
= γV n−1

)
are constants.

Under the similarity variable η, the boundary conditions (5)–(7) are

φ(0) = 1, φ(∞) = 0.
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Figure 1. Effect of N on the normalized velo-
city for n = 1, w = 0.1 and t = 1.

Figure 2. Effect of w on the normalized velocity
for n = 1, N = 3 and t = 1.

5 Numerical solution

5.1 Study the effect of N

Consider n = 1, w = 0.1 and t = 1. From equation (20) β = 1
2 , which yields η = y√

t
.

Equation (21) will be(
d2φ

dη2

)
+ 5η

dφ

dη
− 10Nφ = 0.

The result for different values of N is plotted in Fig. 1.

5.2 Study the effect of w

Consider n = 1, N = 3 and t = 1. From equation (20) β = 1
2 which yields η = y√

t
.

Equation (21) will be

w

(
d2φ

dη2

)
+
η

2
dφ

dη
− 3φ = 0.

The result for different values of w is plotted in Fig. 2.

5.3 Study the effect of t

Consider n = 1, N = 3 and w = 0.1. From equation (20) β = 1
2 which yields η = y√

t
.

Equation (21) will be(
d2φ

dη2

)
+ 5η

dφ

dη
− 30φ = 0.

The result for different values of t is plotted in Fig. 3.

5.4 Study the effect of n

Consider N = 3, t = 1 and w = 0.1. Equation (21) will be

n

(
d2φ

dη2

)
+ 10βη

dφ

dη
− 30φ = 0.

The result for different values of n is plotted in Fig. 4.
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Figure 3. Effect of time t on the normalized
velocity for n = 1, N = 3 and w = 0.1.

Figure 4. Effect of n on the normalized velocity
for N = 3, t = 1 and w = 0.1.

6 Results and discussion

The methods for obtaining similarity transformation were classified into (a) direct methods and
(b) group-theoretic methods. The direct methods such as separation of variables do not invoke
group invariance. It is fairy straightforward and simple to apply. Group-theoretic methods
on the other hand are mathematically more elegant, and the important concept of invariance
under a group of transformations is always invoked. In some group-theoretic procedures such
as the Birkhoff–Morgan method and the Hellums–Churchill, method the specific form of the
group is assumed a priori. On the other hand, procedure such as the finite group method of
Moran–Gaggioli is deductive. In this procedure, a general group of transformations is defined
and similarity solutions are systematically deduced. The Rayleigh problem for a power law
non-Newtonian conducting fluid, which is given by equation (1), is solved using group-theoretic
method.

According to Fig. 1, the velocity of the fluid flow increases as the constant N decreases.
The constant N is a property of the fluid, it depends on the density of the fluid, the magnetic
conductivity and the magnetic permeability. According to Fig. 2, the velocity of the fluid flow
increases as γ

(
= k

ρ

)
increases, where γ is constant for the same fluid, since the studied fluid is

assumed to be incompressible, where k is the coefficient of consistency and ρ is the density of
the fluid. According to Fig. 3, the velocity of the fluid flow increases with increase of time.

We studied two cases for constant n, as shown in Fig. 4.
For n = 1, the behavior of the fluid is Newtonian. For n > 1, the behavior of the fluid is

dilatant.
Conditional symmetries, contact symmetries and the classical Lie approach will lead better

reductions and more solutions to the differential equations only but not for the initial and
boundary value problems, since the given conditions limit the reduction.
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The nonlinear diffusion equation arises in many important areas of science and technology
such as modelling of dopant diffusion in semiconductors. We give analytical solution to
N -dimensional radially symmetric nonlinear diffusion equation. The transformation group
theoretic approach is applied to analysis of this equation. The one-parameter group trans-
formation reduces the number of independent variables by one, and the governing partial
differential equation with the boundary conditions reduce to an ordinary differential equa-
tion with the appropriate boundary conditions. Effect of the time t on the concentration
diffusion function C(r, t) has been studied and the results are plotted.

1 Introduction

The problem of m-dimensional radially symmetric nonlinear diffusion equation, was treated
by King [9] in 1988. He introduced an approximate similarity solution to the porous-medium
equation in one and two dimensions. He studied the case (m = 1) and assumed D(C) = D0C

n.
The problems considered arise in the modelling of dopant diffusion in semiconductors. He studied
the cases n = 1 for arsenic and boron in silicon; n = 2 for phosphorus in silicon; n = 2 or 3 for
zinc in gallium arsenide.

Also, Hill [10] in 1989 studied the case (m = 1) and assumed D(C) = Cn but he introduced a
new exact solution for the power law diffusivity of index n = −4/3 using one-parameter continu-
ous group of transformations. D. Hill and J. Hill [11] in 1990 extended the results given in [10] for
particular power law diffusivities Cn (such as n = −1/2,−1,−3/2 and −2) using one-parameter
continuous group of transformations. King [12] in 1990 gave a new closed-form similarity solu-
tions to N -dimensional radially symmetric nonlinear diffusion equation. He studied two cases.
First D(C) = Cn (power-law diffusivities) for both n > 0 (slow diffusion), and n < 0 (fast dif-
fusion), second D(C) = eC (exponential diffusivities). The mathematical technique used in the
present analysis is the one-parameter group transformation. The group methods, as a class of
methods, which lead to reduction of the number of independent variables, were first introduced
by Birkhoff [13] in 1948, where he made use of one-parameter transformation groups. In 1952,
Morgan [7] presented a theory, which has led to improvements over earlier similarity methods.
The method has been applied intensively by Abd-el-Malek et al. [1, 2], Ames [3, 4, 5], Moran
and Gaggioli [6] and A.J.A. Morgan [7]. In this work, we present a general procedure for apply-
ing a one-parameter group transformation to the multi-dimensional diffusion equation. Under
the transformation, the partial differential equation with boundary conditions, is reduced to
an ordinary differential equation with the appropriate corresponding conditions. The equation
is then solved numerically using non-linear finite difference method applied to the non-linear
second order boundary value problem [14], see appendix.
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2 Formulation of the problem and the governing equation

Consider a multi-dimensional diffusion equation of the form:

∂

∂r

[
D(C)

∂C

∂r

]
+
m− 1
r

D(C)
∂C

∂r
=
∂C

∂t
, (1)

with the boundary conditions

(i) C(0, t) = F (t),
(ii) C(∞, t) = 0,

and initial condition

C(r, 0) = 0,

where C(r, t) is the concentration and D(C) is diffusion coefficient.
The functions D(C) and F (t) are unknown functions and their proper forms will be deter-

mined later on; and m is an arbitrary constant.
Assume

C(r, t) = F (t)q(r, t), (2)

and

D(C) = Z(r, t), (3)

where q(r, t) is unknown function and its proper form will be determined later on.
Substitution from (2) and (3) into (1) yields

∂

∂r

(
Z(r, t)

∂

∂r
[F (t)q(r, t)]

)
+
m− 1
r

Z(r, t)
∂

∂r
[F (t)q(r, t)] =

∂

∂t
[F (t)q(r, t)] . (4)

Equation (4) can be rewritten in the form:

F

[
∂Z

∂r

∂q

∂r
+ Z

∂2q

∂r2

]
+ FZ

m− 1
r

∂q

∂r
− F

∂q

∂t
− q

dF

dt
= 0 (5)

with the boundary conditions

(i) q(0, t) = 1, (6)
(ii) q(∞, t) = 0, (7)

and initial condition

q(r, 0) = 0. (8)

3 Solution of the problem

Our method of solution depends on the application of a one-parameter group transformation to
the partial differential equation (5). Under this transformation the two independent variables
will be reduced by one and the differential equation (5) transforms into an ordinary differential
equation.



Using Group Theoretic Method to Solve Multi-Dimensional Diffusion Equation 59

3.1 The group systematic formulation

The procedure is initiated with the group G, a class of transformation of one-parameter a of the
form:

r̄ = hr(a)r + kr, t̄ = ht(a)t+ kt, F̄ = hF (a)F + kF ,

q̄ = hq(a)q + kq, Z̄ = hZ(a)Z + kZ , (9)

where h’s and k’s are real-valued and at least differentiable in the real argument “a”.

3.2 The invariance analysis

To transform the differential equation, transformations of the derivatives of F , q and Z are
obtained from G via chain-rule operations:

Si =
[
hS

hi

]
Si, Sij =

[
hS

hihj

]
Sij , i, j = r, t, (10)

where S stands for F , q and Z.
Equation (5) is said to be invariantly transformed, for some function A(a) whenever:

F̄
[
Z̄r q̄r + Z̄q̄rr

]
+ F̄ Z̄

m− 1
r̄

q̄r − F̄ q̄t − q̄F̄t

= A(a)
(
F [Zrqr + Zqrr] + FZ

m− 1
r

qr − Fqt − qFt

)
. (11)

Substitution from (9) and (10) into (11) yields

(
hFF + kF

) [
hZhq

(hr)2
Zrqr +

(
hZZ + kZ

) hq

(hr)2
qrr

]
+

(
hFF + kF

) (
hZZ + kZ

) m− 1
hrr + kr

hq

hr
qr −

(
hFF + kF

) hq
ht
qt − (hqq + kq)

hF

ht
Ft

= A(a)
(
F [Zrqr + Zqrr] + FZ

m− 1
r

qr − Fqt − qFt

)
. (12)

The invariance of (12) implies

kF = kZ = kq = kr = 0, and
hFhZhq

(hr)2
=
hFhq

ht
= A(a).

which yields

ht =
(hr)2

hZ
.

The invariance of the auxiliary conditions (6)–(8) implies that hq = 1, kt = 0.
Finally, we get the one-parameter group G, which transforms invariantly the differential

equation (5) and the auxiliary conditions (6)–(8).
The group G is of the form:

r̄ = hrr, t̄ =
(hr)2

hZ
t, F̄ = hFF, q̄ = q, Z̄ = hZZ. (13)
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3.3 The complete set of absolute invariants

Our aim is to make use of group methods to represent the problem in the form of an ordinary
differential equation. Then we have to proceed in our analysis to obtain a complete set of
absolute invariants.

If η ≡ η(r, t) is the absolute invariant of the independent variables, then

gj(r, t;F, q, Z) = Ψj [η(r, t)] , j = 1, 2, 3

are the three absolute invariants corresponding to F , q and Z represented by gj . The appli-
cation of a basic theorem in group theory, see Moran and Gaggioli [6], states that: a function
g(r, t;F, q, Z) is an absolute invariant of a one-parameter group if it satisfies the following first-
order linear differential equation:

5∑
i=1

(αiSi + βi)
∂g

∂Si
= 0, Si ≡ r, t, F, q, Z, (14)

where

αi =
∂hSi

∂a

(
a0

)
and βi =

∂kSi

∂a

(
a0

)
, i = 1, 2, 3, 4, 5 (15)

and a0 denotes the value of a which yields the identity element of the group G.
The group method applied to the given partial differential equation with the specific boundary

conditions yields a unique solution as the condition (14) is used.
At first, we seek the absolute invariant of the independent variables. Owing to equation (14),

η(r, t) is an absolute invariant if it satisfies the following first-order linear differential equation,

(α1r + β1)
∂η

∂r
+ (α2t+ β2)

∂η

∂t
= 0. (16)

Since kr = kt = 0, and according to the definition of the β’s then β1 = β2 = 0.
Now, equation (16) may be rewritten in the form,

α1r
∂η

∂r
+ α2t

∂η

∂t
= 0.

Applying separation of variables method, one can obtain a solution in the form,

η = rt−B, where B =
α1

α2
. (17)

The second step is to obtain the absolute invariants of the dependent variables F , q and Z.
By a similar analysis, using equations (13), (14) and (15), we get

F (t) = R(t)φ(η), (18)

Since F (t) and R(t) are independent of r, while η is a function of r and t, then φ(η) must be
constant, say φ(η) = 1, and from which

F (t) = R(t), (19)

and the second absolute invariant is

q(r, t) = θ(η). (20)

Also, the last absolute invariant is

Z(r, t) = Γ(t)W (η). (21)
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4 The reduction to an ordinary differential equation

By means of substitution from (17)–(21) into equation (5), we get

RΓt−2BW ′θ′ +RΓt−2BWθ
′′

+R(m− 1)ΓWθ′
t−B

r
+
RBθ′

t
η − θR′ = 0.

Dividing by RΓt−2B

W ′θ′ +Wθ
′′

+
m− 1
η

Wθ′ +
ηt2B−1

Γ
θ′ − R′t2B

RΓ
θ = 0. (22)

For (22) to be reduced to an ordinary differential equation in one variable η, it is necessary
that the coefficients should be constants or functions of η only. Thus

C1 =
Bt2B−1

Γ
, C2 =

R′t2B

RΓ
. (23)

Using (23) we get,

Γ(t) =
Bt2B−1

C1
, R(t) = t

BC2
C1 .

Hence, equation (22) will be,

Wθ
′′

+W ′θ′ +
m− 1
η

Wθ′ + C1ηθ
′ − C2θ = 0. (24)

Under the similarity variable η, the boundary conditions are

θ(0) = 1, θ(∞) = 0.

5 Numerical solution

Consider W = η.
Case 1. C1=1 and C2 = 1. Equation (24) will be

ηθ
′′

+mθ′ + ηθ′ − θ = 0.

To know the final value of η, using order of Magnitude Analysis [8]

dθ

dη
∼= ∆θ
ηmax

∼= 1
ηmax

,
d2θ

dη2
=

d

dη

[
dθ

dη

]
∼= 1
η2
max

.

Subcase 1a. Take B = 1
2 , then

η =
r√
t
, Γ(t) =

1
2
, D(C) =

r

2
√
t

=
η

2
, F (t) =

√
t, C(r, t) =

√
tθ(η).

The result for different values of time t is plotted in Fig. 1.
Subcase 1b. Take B = 1, then

η =
r

t
, Γ(t) = t, D(C) = r, F (t) = t, C(r, t) = tθ(η).

The result for different values of time t is plotted in Fig. 2.
Case 2. C1 = 1 and C2 = 2. Equation (24) will be

ηθ
′′

+mθ′ + ηθ′ − 2θ = 0.
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Figure 1. Effect of time t on the concentration
function C(r, t) for C1 = 1, C2 = 1 and B = 1/2
at m = 1.

Figure 2. Effect of time t on the concentration
function C(r, t) for C1 = 1, C2 = 1 and B = 1
at m = 1.

Figure 3. Effect of time t on the concentration
function C(r, t) for C1 = 1, C2 = 2 and B = 1/2
at m = 1.

Figure 4. Effect of time t on the concentration
function C(r, t) for C1 = 1, C2 = 2 and B = 1
at m = 1.

Subcase 2a. Take B = 1
2 , then

η =
r√
t
, Γ(t) =

1
2
, D(C) =

r

2
√
t

=
η

2
, F (t) = t, C(r, t) = tθ(η).

The result for different values of time t is plotted in Fig. 3.
Subcase 2b. Take B = 1, then

η =
r

t
, Γ(t) = t, D(C) = r, F (t) = t2, C(r, t) = t2θ(η).

The result for different values of time t is plotted in Fig. 4.
Case 3. C1 = 3 and C2 = 2. Equation (24) will be

ηθ
′′

+mθ′ + 3ηθ′ − 2θ = 0.

Subcase 3a. Take B = 1
2 , then

η =
r√
t
, Γ(t) =

1
6
, D(C) =

r

6
√
t

=
η

6
, F (t) = t

1
3 , C(r, t) = t

1
3 θ(η).
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Figure 5. Effect of time t on the concentration
function C(r, t) for C1 = 3, C2 = 2 and B = 1/2
at m = 1.

Figure 6. Effect of time t on the concentration
function C(r, t) for C1 = 3, C2 = 2 and B = 1
at m = 1.

The result for different values of time t is plotted in Fig. 5.
Subcase 3b. Take B = 1, then

η =
r

t
, Γ(t) =

t

3
, D(C) =

r

3
, F (t) = t

2
3 , C(r, t) = t

2
3 θ(η).

The result for different values of time t is plotted in Fig. 6.

6 Results and discussion

The methods for obtaining similarity transformation were classified into (a) direct methods and
(b) group-theoretic methods. The direct methods such as separation of variables do not invoke
group invariance. It is fairy straightforward and simple to apply. Group-theoretic methods
on the other hand are mathematically more elegant and the important concept of invariance
under a group of transformations is always invoked. In some group-theoretic procedures such
as the Birkhoff–Morgan method and the Hellums–Churchill, method the specific form of the
group is assumed a priori. On the other hand, procedure such as the finite group method of
Moran–Gaggioli is deductive. In this procedure, a general group of transformations is defined
and similarity solutions are systematically deduced.

The N -dimensional radially symmetric nonlinear diffusion equation, which is given by equa-
tion (1) is solved without made any assumption for the function D(C) and the constant m. It is
found that no numerical results could be obtained for equation (24) if we take W = η2, W = eη,
W = e−η, W = 1

η and W = 1
η2+1

. The only value of W , to obtain results that W = η. Studying
different cases for values of C1 and C2 show that, for constant value of m (m = 1), C(r, t) is
exponential increasing as t increases.

7 Appendix

Assume θ
′′

= f(η, θ, θ′), θ(0) = α and θ(∞) = β. Let Wi be the numerical solution for θ(ηi).
Substituting for the derivatives θ′, θ′′ with their approximations in finite difference; we get

Wi−1 − 2Wi +Wi+1

h2
= f

(
ηi,Wi,

Wi+1 −Wi−1

2h

)
, (25)

where h is the step size in η.
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Equation (25) can be written in the form

Wi−1 − 2Wi +Wi+1 = h2f

(
ηi,Wi,

Wi+1 −Wi−1

2h

)
,

which can be rewritten as,

F (Wi−1,Wi,Wi+1) = 0. (26)

Writing this equation for i = 1, 2, 3, . . . , n. Taking into consideration that the space domain
η ∈ [0,∞) is subdivided into the computational mesh η0 < η1 < η2 < · · · < ηn < ηn+1, where
ηn+1 will be at a far away distance from the initial point η0 to represent our artificial boundary
at ∞. The result is a system of nonlinear equation in the unknowns W1,W2, . . . ,Wn. The
system is solved iteratively using the Newton method for such problem, which leads to,

J (K)
[
W

(K+1) −W
(K)

]
= −F (K)

.

where J (K) denotes the Jacobian of the system evaluate at the iterative step K. W
(K) and

W
(K+1) represent the unknown vector at step K and K + 1, respectively. F

(K) is the vector
representing the expression in (26) above evaluated at the iterative step K. The Jacobian
matrix J is obtained which is three-diagonal matrix. The resulting system is solved using the
Lower-Upper decomposition.
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Hopf bifurcations in problems with O(2) symmetry are considered. In these problems, the
Jacobian matrix is always singular at the circle of Z2 symmetric steady state solutions.
While a couple of imaginary eigenvalue cross the imaginary axis, the Hopf bifurcation is
not of standard type. The canonical coordinates transformation is used for removing the
zero eigenvalue and converting the problem into the standard form. The method is applied
to a system of ordinary differential equations on C3 with many parameters and the stable
solutions are obtained using the centre manifold reduction. Further symmetry breaking
bifurcation is obtained on periodic solutions, leading to modulated travelling waves solutions.

1 Introduction

We consider bifurcations which occur in systems with O(2) symmetry. In particular we consider
the Hopf bifurcation from a non-trivial steady state solutions giving rise to a branch of direction
reversing wave (RW) solutions. Further bifurcation from these time periodic solutions lead to
a branch of modulated travelling (MTW) solutions. The standard Hopf theorem [1] cannot be
applied in this situation since there is a zero eigenvalue of the Jacobian at every nontrivial steady
state solution, due to the group orbit of solutions.

Krupa [2] considers the related, but more general problem of bifurcation from group orbits for
problems which are equivariant with respect to subgroups of O(n). In this case, the degeneracy
is dealt with by splitting the vector field into two parts, one tangent to the group orbit and one
normal to it. A standard bifurcation analysis can then be performed on the normal vector field
and the results are then interpreted for the whole vector field.

Barkley [3] considers Hopf bifurcation on the branch of travelling wave solutions, in the study
of reaction diffusion system. He presented a low-dimensional ordinary differential equations
model which has travelling wave solutions which undergo a Hopf bifurcation giving rise to MTW
solutions. They decoupled some of the variables involved in the system by a simple change of
coordinates to facilitate the analysis.

Landsberg and Knobeloch [4] studied the problem and showed that in problems with O(2)
symmetry a codimension-one symmetry breaking Hopf bifurcation from a circle of non-trivial
steady states gives rise to periodic motions. These periodic solutions reverse their direction
of propagation in a periodic manner. In another paper [5], they also refer to the modulated
travelling waves which can bifurcate from the RW solutions. However, they did not perform
any analysis of the bifurcations involved. We address these problems and related issues in this
paper.

In this paper we first consider the method of canonical coordinates in more detail to give
a clearer understanding of the type of solution which occurs and we analyse a further possible
bifurcation from the branch of time periodic solutions, to modulated travelling wave solutions.
In Section 2 we obtain the reduced equations to analyse the bifurcations and establish the
relationship between different coordinate system employed. Section 3 is devoted to a numerical
example to illustrate the method and to clarify the issues involved.
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2 Setting the system

Consider the system of equations ż = g(z, λ), where z = (z1, z2, z3) ∈ C3 =: X and λ ∈ R is
the bifurcation parameter. Let zj = xj + iyj , j = 1, 2, 3 and assume that g is equivariant with
respect to the diagonal action of O(2) defined by

rα(z1, z2, z3) =
(
eiαz1, e

iαz2, e
iαz3

)
,

s(z1, z2, z3) = (z̄1, z̄2, z̄3) . (1)

Due to the reflection s the space X can be decomposed as X = Xs ⊕ Xa, where Xs and Xa

are the symmetric and anti-symmetric spaces with respect to the reflection s, respectively. Let
us assume that non-trivial solutions zs = zs(λ) bifurcate from trivial solutions at λ = 0. For
these non-trivial steady states at least one of the variables, say z1, is non-zero. There is a
corresponding group orbit of solutions which are generated by the rotation. These solutions are
contained in Fix(Z2) × R, where Z2 = {I, s}. The reflection s implies that y1 = y2 = y3 = 0.
We now write the original equations in real form as

ẋ = f(x, λ), x = (x1, x2, x3, y1, y2, y3), (2)

where f = (f1(x, λ), f2(x, λ), f3(x, λ), g1(x, λ), g2(x, λ), g3(x, λ)). The reflection s implies that
gz(zs, λ) = diag (gsz(zs, λ) : gaz (zs, λ)), where gsz and gaz are associated with symmetric and anti
symmetric spaces, respectively (see [6]). Clearly in real form these blocks take the form gsz = [fij ],
gaz = [gij ], where fij = ∂fi

∂xj
and gij = ∂gi

∂yj
, i, j = 1, 2, 3. All of the derivatives are evaluated at

(zs, λ).
The rotation symmetry implies that gz(zs, λ)Azs = 0 for all λ, where the linear operator A

is defined by Az = d
dα(rαz)|α=0. In this case Az = (iz1, iz2, iz3) and so Azs ∈ Xa. Thus the

anti-symmetric block is singular. We now assume that gz(zs, λ) also has eigenvalues ±iω0 at
(z0, λ0), where z0 = zs(λ0). Since we are interested in symmetry breaking Hopf bifurcation then
we assume that these eigenvalues occur in an anti-symmetric block. A necessary condition for
this bifurcation is that the anti-symmetric block gaz has a minimum dimension three. We then
show that a branch of periodic solutions bifurcates from the steady state branch at (z0, λ0)
with a spatio-temporal symmetry (s, π). Further bifurcation can be obtained by breaking this
symmetry. However, due to the zero eigenvalue the Hopf bifurcation is not of standard type.
We thus use canonical coordinates [4, 7] in order to decouple one of the variables and then use
the standard theory.

2.1 Reduced equations

We introduce the canonical coordinates transformation

w1 =
z2
z1
, w2 =

z3
z1
, r = |z1|, θ = arg(z1), (3)

where wj = uj + ivj ∈ C, j = 1, 2 and r ∈ R are all invariant under the rotation and θ → θ+α.
This enable us to decouple the θ variable from the others, when the system (2) is written in
terms of these new variables, with the result

U̇ = G(U, λ), (4)

θ̇ = Gθ(U, λ), (5)

where U = (u1, u2, r1, v1, v2) and is invariant under the rotation. The reflection s acts as
s(u1, u2, r, v1, v2, θ) = (u1, u2, r,−v1,−v2,−θ). Thus, (4) has only a reflection symmetry. We
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note that, for the steady state problem G(U, λ) = 0, the symmetric space is characterized by
v1 = v2 = 0 and the anti-symmetric space by u1 = u2 = r = 0. Thus for steady state solutions
one can restrict the problem to the symmetric space and seek the solutions there. Now, let
us Us = (us1, u

s
2, r

s
1, v

s
1, v

s
2) be a steady solution of (4), then due to the reflection we can write

GU = diag (GsU (Us, λ) : GaU (Us, λ)), where GsU is 3 × 3 matrix and GaU is 2 × 2. Expanding
equation (4) explicitly, using the definition of canonical coordinates, system (2), all the steady
state assumptions, and the computing algebra package MATHEMATICA we can be shown
that GaU is given by

GaU =
[
g22 − us1g12 g23 − us1g13
g32 − us2g12 g33 − us2g13

]
.

We will show that if gaz (zs, λ) has a pair of imaginary eigenvalues then GaU also does (see Theo-
rem 1). Since GU has eigenvalues ±iω0 and no zero eigenvalue therefore we can apply the
standard theory, which implies that there exists a bifurcating branch of periodic solutions with
(s, π) ∈ Z2 × S1 symmetry, since s and π both act as −I on the eigenspace. It is possible to re-
scale time in order to have 2π-periodic solutions. This symmetry then implies that −v1(t+π) =
v1(t), −v2(t+ π) = v2(t), and u1(t+ π) = u1(t), u2(t+ π) = u2(t), r(t+ π) = r(t). As sθ = −θ,
the equivariance condition related to equation (5) is

Gθ(u1, u2, r,−v1,−v2, λ) = −Gθ(u1, u2, r, v1, v2λ).

Thus, for the time periodic solutions, with τ = t+ π, we have

Gθ(u1(τ), u2(τ), r(τ), v1(τ), v2(τ), λ) = Gθ(u1(t), u2(t), r(t),−v1(t),−v2(t), λ)
= −Gθ(u1(t), u2(t), r(t), v1(t), v2(t), λ).

Integrating the above equation over the interval [0, 2π], considering 2π-periodicity of the func-
tions u1, u2, r, v1 and v2, we obtain Gθ, hence θ̇ has zero mean, which implies that θ is periodic.
Therefore, w1 and w2 are periodic and then the original variables z1, z2 and z3 are also time
periodic. A further bifurcation could occur from these periodic solutions which breaks the (s, π)
symmetry. The theory related to this bifurcation is well developed [1] and this is a simple bi-
furcation on time periodic solutions which occurs in the reduced system (4). However, breaking
this symmetry implies that θ̇(t) has no longer zero mean and so we can write θ̇(t) = c + θ̇0(t)
where θ̇0(t) has zero mean and c is constant. Hence θ(t) = ct+θ0(t)+k, where k is the constant
of integration that we set to zero. Since θ̇0 has zero mean, hence θ0 is periodic. Clearly, on the
periodic solutions, due to (s, π) symmetry, c = 0 and therefore θ(t) = θ0(t) is periodic. However,
if this symmetry is broken, then c �= 0 and so θ is not periodic but is composed of a constant
drift with velocity c superimposed on a periodic motion. This bifurcation arises as a simple
symmetry breaking bifurcation in system (4). The solution in the original coordinates is then
given by z1(t) = r(t)eiθ(t) = r(t)ei(ct+θ0(t)) = ei(ct)z̃1(t), where z̃1(t) = r(t)eiθ0(t) is periodic. The
first equation of (3) implies that z2(t) = ei(ct)w1(t)z̃1(t) = ei(ct)z̃2(t), where z̃2(t) = w1(t)z̃1(t)
is periodic. Finally, the second equation of (3) implies that z3(t) = ei(ct)z̃3(t), where z̃3(t) is
periodic. Hence we have the solutions of the form

Z(t) = rctz(t), (6)

where z(t) is a periodic function of time. Thus c = 0 corresponds to a branch of periodic
solutions while c �= 0 corresponds to MTW solutions that consist of time periodic solutions
drifting with constant velocity c along the group orbits. Note that the constant k �= 0 simply
gives rise to a one-parameter family of conjugate solutions, obtained by a constant rotation.
Initially therefore, the solutions are oscillating with only a very small amount of drift and so
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the rotational motion, characterised by the variable θ, continues to oscillate. However, as the
branch is followed further from the bifurcation point, the drift increases which could result in θ
increasing (or decreasing) monotonically.

Now we show GaU also has a purely imaginary eigenvalues on the branch of non trivial steady
state solutions. To see this, we first establish the relationship between two different coordinate
systems.

2.2 Eigenvalues of the reduced system

We now consider the linearisation of equations (4) and (5) on the anti-symmetric space and
obtain a connection between the two sets of coordinates in order to discuss about the eigenvalues
of the reduced system. Since we have a standard Hopf bifurcation in (4) then the bifurcating
solution near to the bifurcation point is given by U(t) = Us + αΦ(t) + O

(
α2

)
, where Φ(t) is a

solution of the linearisation of (4) about the steady state, i.e. Φ(t) = [0, 0, 0, V1(t), V2(t)]T , since
it is the anti-symmetric component of GU which has the imaginary eigenvalues. Again, near to
the bifurcation point, we have θ = θs+αΘ +O

(
α2

)
, where Θ is the solution of the linearisation

of (5) given by Θ̇ = ∂Gθ
∂v1

V1+ ∂Gθ
∂v2

V2. It is easily shown that ∂Gθ
∂v1

= g12 and ∂Gθ
∂v2

= g13, evaluated at
a symmetric steady state solution. The solution of this equation is Θ(t) = Θ0(t)+k, where Θ0(t)
is periodic with zero mean and k is an arbitrary constant of integration. Thus, the linearisation
of (4) and (5) about the symmetric steady state on the anti-symmetric space is given by

V̇ (t) = BV (t), (7)

where B is a (3×3) matrix, constructed by the augmenting a third column and a third row toGaU .
This consists of augmenting a column vector [0, 0, 0]T and a row vector [g12, g13, 0]. Note that
eigenvalues of B are ±iω0 and zero, therefore the solution of (7) is Vk(t) = [V1(t), V2(t),Θ0(t)]T +
k[0, 0, 1]T = Ṽ (t) + ke3, where k ∈ R is arbitrary constant. Note that Ṽ (t) is constructed from
the complex eigenvectors of B corresponding to the eigenvalues ±iω0 and e3 is the eigenvector
corresponding to the zero eigenvalue. Converting back to the original coordinates, we have

z1(t) = r(t)eiθ(t) =
(
rs +O

(
α2

))
ei(θ

s+αΘ0(t)+αk+O(α2)).

Since sin θs = 0, this implies that

x1(t) = rs cos θs +O
(
α2

)
= xs1 +O

(
α2

)
,

y1(t) = α (rs cos θs) (Θ0(t) + k) +O
(
α2

)
= αxs1(Θ0(t) + k) +O

(
α2

)
.

Similarly, it can be shown, by using definition of canonical coordinates, that

x2(t) = xs2 +O
(
α2

)
,

x3(t) = xs3 +O
(
α2

)
,

y2(t) = α [xs2(Θ0(t) + k) + xs1V1(t)] +O
(
α2

)
,

y3(t) = α [xs3(Θ0(t) + k) + xs1V2(t)] +O
(
α2

)
.

Hence, on the anti-symmetric space, the linearisation of the original equations given by

Ẏ (t) = gaz (z0, λ0)Y (t), (8)

has solutions of the form

Yk(t) =

 xs1(Θ0(t) + k)
xs2(Θ0(t) + k) + xs1V1(t)
xs3(Θ0(t) + k) + xs1V2(t)

 = T (Ṽ (t) + ke3) = TVk(t),



Hopf Bifurcation: Canonical Coordinates Transformation 69

where T =

 0 0 xs1
xs1 0 xs2
0 xs1 xs3

. Note that Te3 = [xs1, x
s
2, x

s
3]T = Aza0 , where Aza0 is the anti-

symmetric part of Az0, which is a solution of (8) since it is independent of time and gaz (z0, λ0)Aza0
= 0. A more precise result is the following.

Theorem 1. If gaz is the anti-symmetric block with the eigenvalues ±iω0 and 0 then

(i) gaz (z0, λ0) = TBT−1,

(ii) Vk(t) is a solution of (7) if and only if Yk(t) = TVk(t) is a solution of (8).

Proof. (i) Note that the last column of T is [xs1, x
s
2, x

s
3]T = Aza0 . Thus

gaz (z0, λ0)T = xs1

 g12 g13 0
g22 g23 0
g32 g33 0

 ,
and then it is easily verified that T−1gaz (z0, λ0)T = B.

(ii) follows immediately from (i). �

The first of these results show more clearly that when gaz has eigenvalues ±iω0, then so
does GaU . The second presents the relationship between the eigenvectors.

3 A numerical example

3.1 An equation on C3

Consider the system [4],

ż1 = z2,

ż2 = z3,

ż3 = λz1 + νz2 + ηz3 + a|z1|2z1 + b|z2|2z1 + c|z1|2z2 + d|z1|2z3
+ ez2

1 z̄2 + fz2
1 z̄3 + gz2

2 z̄1 + h|z2|2z2 + jz1z̄2z3 + kz1z2z̄3 + l|z2|2z3 +mz2
2 z̄3. (9)

These equations are the normal form for a triple zero bifurcation with group O(2) symmetry and
such have a number of applications, particularly in fluid dynamics [9]. We write these equations
as ż = g(z, λ), where z = (z1, z2, z3) ∈ C3 and λ is regarded as the bifurcation parameter. It is
easily verified that this system is equivariant with respect to the diagonal action of O(2) defined
by (1) (see [11]). System (9) has trivial solution z = 0 for ∀ λ; a bifurcating branch of solutions
occurs at λ = 0, and is given by x2

1 = −λ/a, y1 = y2 = y3 = 0. As these solutions are invariant
under the reflection symmetry s, conjugate solutions are obtained by applying the rotational
operator rα, giving rise to a circle of steady state solutions for each λ. The trivial solutions will
be stable for λ < 0 and unstable for λ > 0, if η, ν < 0. The bifurcating branch will then be stable
if it is supercritical. This occurs if a < 0. Therefore we choose a = −4.0, η = −2.5, µ = −10
so that a supercritical bifurcation occurs at λ = 0. In order to have a couple of imaginary
eignvalue in anti-symmetric block, evaluated at a non-trivial steady state, we choose d = 0,
f = −16, c = −1, e = 0. Therefore a symmetry breaking Hopf bifurcation occur at λ = 2.5,
giving rise to a branch of RW’s. We choose the rest of the parameters so that periodic orbits
are stable. This can be carried out using the canonical coordinates transformation followed by
the centre manifold reduction [10]. We omit the discussion and only introduce the rest of the
parameters as: b = −10, g = 30, h = 1, j = 10, k = −30, l = 20, m = −30. For these
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Figure 1. Bifurcation diagram of the equations
(9). With η = −2.5 a branch of RW solutions
appear at λ = 2.5, and the SW solutions occur at
λ = 2.7. A secondary bifurcation occurs on the
branch of SW solutions at λ = 2.577 giving rise
to a branch of MTW solutions which connects
to RW solutions at λ = 2.526.
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Figure 2. Enlarged bifurcation diagram around
the bifurcation points. All bifurcation points
stated in Fig. 1 can be seen clearly. A branch
of MTW solutions connects two branches of pe-
riodic orbits. A torus bifurcation obtained on
this branch at η = −2.5 and λ = 2.547.

values of the parameters we applied the numerical method described in the previous section and
the following bifurcations are obtained: on the branch of non-trivial steady states a symmetry
preserving Hopf bifurcation leading to a branch of periodic orbits occurs at λ = 2.70, these are
standing waves (SW) which lie in symmetric space. On the branch of RW solutions a secondary
bifurcation, giving rise to a branch of MTW solutions, occurs at λ = 2.526. This branch connects
with the branch of SW’s at λ = 2.577. On the branch of the MTW solutions a torus bifurcation
is also obtained at λ = 2.547. A bifurcation diagram of these solutions is shown in Fig. 1. This
diagram is enlarged in Fig. 2 to give a clear picture of the bifurcation points involved in the
problem. For λ = 2.595 and η = −2.50 a RW is given in Fig. 3, this is a time periodic solution
and reverses its direction of propagation in a periodic manner [4]. In Fig. 4 and Fig. 5, the MTW
solutions are represented for different values of λ and η. All of these solutions were obtained
using the package AUTO [8]. The MTW’s were reconstructed using equation (6).
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Figure 3. A RW solution at λ = 2.595 and η = −2.50. This is a time periodic solution with the
spatio-temporal symmetry.
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Figure 4. A MTW solution at λ = 2.531 and
η = −2.50. There is a 4-petal flower (2 small and
two large) repeating itself with time progression.
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Figure 5. A MTW solution at λ = 2.0886 and
η = −2.0800. There is a 4-petal flower (each
petal has same amplitude) repeating itself with
time progression.

4 Conclusions

The Hopf bifurcation in problems with O(2) symmetry is considered. The canonical coordinates
transformation were used in order to analyse the problem using standard theory, and also to
convert the solutions back into the original coordinates in order to obtain a correct interpretation
of the results.

We obtained time periodic solutions with spatio-temporal symmetry. Further bifurcation is
obtained by breaking this symmetry resulting in MTW solutions, which is due to the fact that one
of the variables in canonical coordinates drift with constant velocity. In addition an example
on C3 with many parameters [4] was considered to clarify the analysis and centre manifold
reduction is used to obtain stable solutions. Two Hopf bifurcations leading to the SW’s and
the RW’s were obtained on steady state solutions. The occurrence of a second Hopf bifurcation
indicates that if a second parameter was varied there may be a Hopf/Hopf mode interaction.
This is the case that considered by Amdjadi [11] who introduced a numerical method for such
mode interactions.
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Algorithm for construction of conditionally invariant systems of evolution equations and
their subsequent reduction to the systems of ordinary differential equations is suggested.
Classification and reduction theorems are formulated for n-order evolution equations and
for systems of two evolution equations. Two classes of conditionally invariant second order
systems of evolution equations are given, and their reduction to the systems of four ordinary
differential equations is carried out.

1 Introduction

Modelling of dynamic processes in physics, chemistry and other fields of science requires solving
evolution equations. Provided equations under study are linear, the methodology of constructing
exact solutions is developed quite well. In the case of nonlinear equations, there are no general
methods for finding their solutions. Among the most efficient methods for constructing exact
solutions of nonlinear evolution equations are those based on their conditional symmetries [1, 2].

A number of Galaktionov’s papers are devoted to constructing exact solutions of equations

ut = F (u, ux, uxx) , ut =
∂u

∂t
, ux =

∂u

∂x
, uxx =

∂2u

∂x2
, (1)

with quadratic nonlinearities. To this end the technique based on the concept of the invariant
subspace [3] is employed. New approach to reduction of nonlinear evolution equations (1) using
their higher symmetries was suggested in [4]. With the help of this approach, classification of
evolution equations [5] and in accordance with results presented in [6] reduction of initial-value
problem for them to Cauchy problem for system of ordinary differential equations (ODEs) [7]
was carried out. A number of exact solutions of equation (1) with quadratic nonlinearities were
obtained in [8] with the aid of ansatzes, being solutions of third-order linear ODEs.

In all the above mentioned papers the right-hand sides of equation (1) are quadratic polyno-
mials or can be transformed to them by a certain change of variables. Classes of systems

ut = uxx + F (u, v, ux, vx) , vt = −vxx +G (u, v, ux, vx) ,

admitting fourth-order symmetries, were described in [9]. F , G are fifth order polynomials.
In this paper we propose algorithm for construction of classes of systems of evolution equa-

tions, admitting conditional symmetries, and formulate classification and reduction theorems
for systems of evolution equations, which are analogous to theorems, proved in [4]. With help
of this algorithm we classify nonlinear equations

ut = F (t, x, u, ux, uxx) , (2)
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which admit reduction to systems of ODEs. To this end we consider these equations together
with the condition

uxxx = f (t, x, u, ux, uxx) . (3)

Equation (3) can be considered as an ODE with parameter t.
We also give examples for constructing of classes of conditionally invariant systems

ut = uxx + F (x, u, v, ux, vx) , vt = −vxx +G (x, u, v, ux, vx) (4)

and carry out their reduction to systems of four first-order ODEs.

2 Classification algorithm

Let us consider a system of partial differential equations (PDEs)

uit = Fi (t, x, u1, . . . , un) (5)

under additional conditions for functions ui

uix = fi (t, x, u, . . . , un) . (6)

Here and henceforth we assume, unless otherwise specified, that i = 1, n.
Let fi, Fi be continuously-differentiable functions of their arguments in some open domain Ω

and f̄ �= 0 in any point of this domain, ui = ui (t, x) are twice continuously-differentiable
functions. Differentiating (5) with respect to x, (6) with respect to t and equating right-hand
sides of obtained equalities we arrive at following compatibility condition for the system (5), (6)

Fix + u1xFi u1 + · · ·+ unxFi un = fi t + u1tfi u1 + · · ·+ un tfi un .

Taking into account (5), (6), we rewrite it in form

Fix + f1Fi u1 + · · ·+ fnFi un = fi t + fi u1F1 + · · ·+ fi unFn. (7)

By change of variables η = x, ωi = ωi (t, x, u1, . . . , un), where ωi are first integrals of (6):

Lωi = ωix + f1ωiu1 + · · ·+ fnωiun = 0,

(7) is transformed to system

Fiη = gi0 + gi1F1 + · · ·+ ginFn, (8)

where gij (t, ω1, . . . , ωn, η) = fiuj , gi0 (t, ω1, . . . , ωn, η) = fit.
By assumption that functions fi are known and system (5), (6) is compatible, Fi must satisfy

of linear system (8), that can be considered as an ODE with parameters t, ω1, . . . , ωn. Thus

Fi =
n∑
j=1

Gj (t, ω1, . . . , ωn) pij (η, t, ω1, . . . , ωn). (9)

Here (p̄1, . . . , p̄n) is a fundamental system of solutions of (7) andG1, . . . , Gn are arbitrary smooth
functions.

Substituting general solutions of (6) into (5), (9) we obtain system of ODEs that is equivalent

Ċi (t) = gi (t, , C1 (t) , . . . , Cn (t)) .

Now we consider the case that right-hand sides of equations (6) do not depend on t explicitly:

uix = fi (x, u1, . . . , un) . (10)

Then system (8) is homogenous (fit = 0 and consequently gi0 = 0).
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Theorem 1. Let Q = ξ (x, u1, . . . , un) ∂x +
n∑
l=1

ϕl (x, u1, . . . , un) ∂ul
be symmetry operator of

system (10) and in system (5) Fi = ϕi − ξfi. Then system (5), (10) is compatible. Here and in
the sequel ∂x = ∂

∂x , ∂ul
= ∂

∂ul
.

Proof. Since Q is a symmetry operator of system (10), then Pr(1)Q (uix − fi) = 0, for uix = fi.

Pr(1)Q = Q+
n∑
l=1

ϕl∂ulx
, ϕl = Dx (ϕl − ξulx) + ξulxx

is first prolongation of Q. Dx signifies total derivative with respect to x [10].
For system (10) we have

Pr(1)Q (uix − fi) =

[
ξ∂x +

n∑
l=1

ϕl∂ul
+

n∑
l=1

(Dx (ϕl − ξulx) + ξulxx) ∂ulx

]
(uix − fi)

= Dx (ϕi − ξuix) + ξuixx − ξfix −
n∑
l=1

ϕlfiul
= Dx (ϕi − ξuix) + ξDxfi − ξfix −

n∑
l=1

ϕlfiul

= Dx (ϕi − ξuix) + ξ

n∑
l=1

fiul
ulx −

n∑
l=1

ϕlfiul
= Dx (ϕi − ξfi)−

n∑
l=1

(ϕl − ξfl) fiul
= 0.

Hence Dx (ϕi − ξfi) =
n∑
l=1

(ϕl − ξfl) fiul
, that is equivalent to (7), that is compatibility condition

for the system (5), (6) (fit = 0). �

Theorem 2. Let (10) admit n independent symmetry operators Q1, . . . , Qn, where Qj = ξj∂x+
n∑
l=1

ϕlj∂ul
. Then functions P̄ j = ϕ̄j − ξjf̄ form fundamental system of solutions of (8) (gi0 = 0)

and its general solution (compatibility condition of (5), (10)) has a form

Fi =
n∑
j=1

Gj (t, ω1, . . . , ωn) (ϕij − ξjfi) , (11)

where ωi = ωi (x, u1, . . . , un), G1, . . . , Gn are arbitrary smooth functions and substitution of
solution of (10) ui = Ui (x,C1 (t) , . . . , Cn (t)) in (5), (11) gives following system of ODEs

Ċi =
n∑
j=1

Gj (t, C1, . . . , Cn) gj (C1, . . . , Cn) =
n∑
j=1

GjQj (ωi) |ui=Ui . (12)

Proof. The first assertion of theorem (condition (11)) follows from Theorem 1 and fact, that

Dxωi = ωix +
n∑
l=1

ωiul
ulx = ωix +

n∑
l=1

ωiul
fl = Lωi = 0.

Let us prove (12). By assumption that right-hand side (10) does not vanish anywhere in Ω,
this system has n independent first integrals, hence ū and ω̄ are mutually inverse functions.
Thus, if we substitute ui = ui (x, ω1, . . . , ωn) in (5) and differentiate obtained equalities with
respect to t, then we have the system

n∑
j=1

∂ui
∂ωj

Dtωj =
n∑
j=1

Gj (ϕij − ξjfi). (13)
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det
∥∥∥ ∂ui
∂ωj

∥∥∥ �= 0, because in the opposite case functions u1, . . . , un are linearly dependent and
number of independent first integrals are smaller than n. Thus, system (13) as a system of
linear algebraic equations has the unique solution

Dtω =
∥∥∥∥ ∂ui∂ωj

∥∥∥∥−1 n∑
j=1

GjPj .

According to inverse function theorem,
∥∥∥ ∂ui
∂ωj

∥∥∥−1
=

∥∥∥ ∂ωi
∂uj

∥∥∥ and consequently this solution can
be rewritten component-wise as follows:

Dtωi =
n∑
j=1

Gj

n∑
l=1

(ϕlj − ξjfl)ωiul
=

n∑
j=1

Gj

n∑
l=1

(ϕljωiul
− ξjflωiul

)

=
n∑
j=1

Gj

(
n∑
l=1

ϕljωiul
+ ξjωix

)
=

n∑
j=1

GjQj (ωi). (14)

The same result we obtain by immediate differentiating ωi (x, u1, . . . , un) with respect to t
in consideration of (11). Taking into account, that DxDtωi = DtDxωi = 0, we conclude that
right-hand side of (14) does not depend on x explicitly. After that, to complete proof, we change
u1, . . . , un for U1, . . . , Un taking into account, that

Ci (t) = ωi (x, U1 , . . . , Un) , Ċi = Dtωi (x, U1, . . . , Un) . �

Thus, we formulate the following algorithm for constructing of classes of conditionally invari-
ant systems of evolution equations and their reduction to systems of ODEs:

• calculate symmetry algebra of equation (10);

• find its first integrals;

• integrate (10) (if (10) admit n-parametric solvable symmetry algebra then it can be inte-
grated in quadratures [10]);

• determine Fi by formula (11);

• write system of ODEs (12) for functions C1 (t) , . . . , Cn (t).

3 Classification and reduction of equations (2)

Now we go to the problem classification of equations (2), which are conditionally invariant under
condition (3). First we consider auxiliary systems

ut = F (t, x, u, v, w) , vt = G (t, x, u, v, w) , wt = H (t, x, u, v, w) ; (15)
ux = v, vx = w, wx = f (t, x, u, v, w) . (16)

Note, that system (16) is equivalent (3). Compatibility condition of the given system is

Fx + vFu + wFv + fFw = G, Gx + vGu + wGv + fGw = H,

Hx + vHu + wHv + fHw = ft + fuF + fvG+ fwH.

First integrals of systems (16) are functionally independent solutions of the equation

ωix + vωiu + wωiv + fωiw = 0.
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If (15), (16) is compatible, then F , G, H satisfy the system

Fη = G, Gη = H, Hη = ft + fuF + fvG+ fwH,

that is equivalent equation

Fηηη − fuxxFηη − fuxFη − fuF = ft. (17)

A solution of linear equation (17) has the form F = F g + F p, where F p is a partial solution
of equation (17) and

F g = G1p1 +G2p2 +G3p3, Gj = Gj (t, ω1, ω2, ω3) , pj = pj (η, ω1, ω2, ω3)

is the general solution of corresponding homogeneous equation.
Thus, having solved (17) we obtain in the explicit form the function F , for which sys-

tem (2), (3) is compatible. According to theorem, proved in [4], substitution of ansatz which is
a solution of equation (3), into (2), reduces (2) to a system of three ODEs.

Assertion analogous to Theorem 2 can be formulated for equations

ut = F
(
t, x, u, u(1), . . . , u(n−1)

)
, (18)

u(n) = f
(
x, u, u(1), . . . , u(n−1)

)
, (19)

where u(i) = ∂iu
∂xi , F ∈ Cn+1 (Ω), f ∈ C1 (Ω), Ω ⊂ Rn+1, u = u (x, t) ∈ Cn+1 (Ω′), Ω′ ⊂ R2.

Theorem 3. Let ω1, . . . , ωn be first integrals and Q1, . . . , Qn be independent symmetry operators
of equations (19): Qj = ξj (x, u) ∂x + ϕj (x, u) ∂u. If

F =
n∑
j=1

Gj (t, ω1, . . . , ωn) (ϕj − ξjux), (20)

Gj are arbitrary sufficiently smooth functions, then system (18), (19) is compatible and substi-
tution of general solution (19) u=U (x,C1(t) , . . . , Cn(t)) in (18) reduces it to system of ODEs

Ċi =
n∑
j=1

Gj (t, C1, . . . , Cn) gj (C1, . . . , Cn) =
n∑
j=1

GjPr(n−1)Qj (ωi) |u=U .

Proof follows from the fact that if Q is symmetry operator of (19), then Pr(n−1)Q
∣∣
u(i)=ui

is
symmetry operator of system

u1x = u2, u2x = u3, . . . , unx = f (x, u1, . . . , un) , where u1 = u.

We apply obtained result for classification and reduction equations (2) under additional condition

uxxx = f (x, u, ux, uxx) . (21)

It is well-known that solution of third order ODE admitting three-parametrical solvable
symmetry group can be constructed in quadratures. Using normal forms of ODEs (21), which
admit three-parametrical solvable symmetry algebrae, we constructed (by formula (20)) nine
classes of evolution equations (2) that are conditionally invariant under these types of (21). We
also reduced obtained classes of evolution equations to system of three ODEs. Here we do not
adduce these results, as they is cumbersome. This problem will be considered in further papers.
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4 Examples of reduction of systems of evolution equations

Consider system

ut = F (t, x, u, v, ux, vx) , vt = G (t, x, u, v, ux, vx) (22)

under additional conditions

uxx = f (x, u, v, ux, vx) , vxx = g (x, u, v, ux, vx) . (23)

We apply described procedure and obtain following system for determining functions F , G

Fηη − fuxFη − fvxGη − fuF − fvG = 0, Gηη − guxFη − gvxGη − guF − gvG = 0.

Theorem 4. Let ωj = ωj (x, u, v, ux, vx) are first integrals and

Qj = ξj (x, u, v) ∂x + ϕj (x, u, v) ∂u + ψj (x, u, v) ∂v

are independent symmetry operators of system (23), j = 1, 4. If

F =
4∑
j=1

Rj (t, ω1, . . . , ω4) (ϕj − ξjux) , G =
4∑
j=1

Rj (t, ω1, . . . , ω4) (ψj − ξjvx) ,

Rj are arbitrary twice continuously-differentiable function, then system (22), (23) is compatible
and substituting of solutions of (23) u = U (x,C1 (t) , . . . , C4 (t)), v = V (x,C1 (t) , . . . , C4 (t))
into (22) reduces it to system of four ODE

Ċi =
4∑
j=1

Rj (t, C1, . . . , C4) gj (C1, . . . , C4) =
4∑
j=1

RjPr(1)Qj (ωi) |u=U,v=V , i = 1, 4.

Proof of Theorem 4 is analogous to proof of Theorem 3 ((23) can be changed into equivalent
first-order system).

Remark 1. For a system (4), (23) compatibility condition is

F =
4∑
j=1

Rj (t, ω1, . . . , ω4) (ϕj − ξjux)− f (x, u, v, ux, vx) ,

G =
4∑
j=1

Rj (t, ω1, . . . , ω4) (ψj − ξjvx) + g (x, u, v, ux, vx) .

There are more than sixty nonequivalent classes of systems (23) with four dimensional sol-
vable symmetry algebras. Here we give some examples of application of exposed algorithm to
construction and reduction of classes of systems (4). We write systems (23), their symmetries,
general solutions and first integrals, functions F , G and reduced systems.

1. uxx = ξ′′ (x) ln vx + f (x) , vxx = g′ (x) vx,
Q1 = ∂u, Q2 = ∂v, Q3 = x∂u, Q4 = ξ (x) ∂u + v∂v,

u = lnC1 (t) ξ (x) +
∫ x∫ z (

ξ′′ (y) g (y) + f (y)
)
dydz + C3 (t)x+ C4 (t) ,
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v = C1 (t)
∫ x

eg(y)dy + C2 (t) , ω1 = vxe
−g(x), ω2 = v − ω1

∫ x

eg(y)dy,

ω3 = ux − ξ′ (x) (ln vx − g (x))−
∫ x (

ξ′′ (y) g (y) + f (y)
)
dy,

ω4 = u− xω3 − ξ (x) (ln vx − g (x))−
∫ x∫ z (

ξ′′ (y) g (y) + f (y)
)
dydz,

F = ξ (x)R4 + xR3 +R1 − ξ′′ (x) ln vx − f (x) , G = vR4 +R2 + g′ (x) vx,

Ċ1 = C1R4, Ċ2 = C2R4 +R2, Ċ3 = R3, Ċ4 = R1.

2. uxx = x−1fx (vx) + x−1 lnxg (vx) , vxx = x−1g (vx) ,
Q1 = ∂u, Q2 = ∂v, Q3 = x∂u, Q4 = x∂x + (u+ v) ∂u + v∂v,

u =
1

C1 (t)

∫ C1(t)x∫ z f
(
H−1 (y)

)
+ ln yg

(
H−1 (y)

)
y

dydz − lnC1 (t)
C1 (t)

∫ C1(t)x

H−1 (y) dy

+ C3 (t)x+ C4 (t) , v =
1

C1 (t)

∫ C1(t)x

H−1 (y) dy + C2 (t) , H (y) = e
∫ y dz

g(z) ,

ω1 =
H (vx)
x

, ω2 = v − 1
ω1

∫ H(vx)

H−1 (y) dy,

ω3 = ux −
∫ H(vx) f

(
H−1 (y)

)
+ ln yg

(
H−1 (y)

)
y

dy +
ln (H (vx))

x
vx,

ω4 = u− xω3 −
x

H (vx)

∫ H(vx)∫ z f
(
H−1 (y)

)
+ ln yg

(
H−1 (y)

)
y

dydz

+
x

F (vx)
ln

(
H (vx)
x

)∫ H(vx)

F−1 (y) dy,

F = (u+ v − xux)R4 + xR3 +R1 − x−1fx (vx) + x−1 lnxg (vx) ,

G = (v − xvx)R4 +R2 + x−1g (vx) ,

Ċ1 = −C1R3, Ċ2 = C2R4 +R2, Ċ3 = R3, Ċ4 = (C2 + C4)R4 +R1.

In conclusion we note, that Theorem 4 can be easy generalized for classification and reduction
of system of evolution equations

uit = Fi

(
t, x, u1, . . . , un, u

(1)
1 , . . . , u1

n, . . . , u
(k−1)
1 , . . . , u(k−1)

n

)
under additional conditions

u
(k)
i = fi

(
x, u1, . . . , un, u

(1)
1 , . . . , u1

n, . . . , u
(k−1)
1 , . . . , u(k−1)

n

)
,

admitting kn independent symmetries. Here u(j)
i = ∂jui

∂xj .
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Lie symmetry reduction of systems of nonlinear reaction-diffusion equation with respect to
one-dimensional algebras is carried out. Some classes of exact solutions of the investigated
equations are found.

1 Introduction

Nonlinear reaction-diffusion equations are widely used in mathematical physics, chemistry and
biology. In the present paper we consider the system of nonlinear diffusion equations of the
following general form

∂u1

∂t
− ∂2

∂x2
(a11u1 + a12u2) = f1(u1, u2),

∂u2

∂t
− ∂2

∂x2
(a21u1 + a22u2) = f2(u1, u2), (1)

where u1 and u2 are functions dependent on t and x; a11, a12, a21, a22 are constant parameters
and a11a22 − a21a12 �= 0.

In [1] a constructive algorithm was proposed for investigation of conditional and classical Lie
symmetries of partial differential equations and classical symmetries of systems of two nonlinear
diffusion equations with 1 + m independent variables t, x1, . . . , xm were described. Namely, all
possible non-linearities f1, f2 and the corresponding group generators were found. We notice
that symmetry properties of nonlinear multidimensional systems of reaction-diffusion equations
were also investigated in papers [2, 3]. In the present paper using the results obtained in [1]
we carry out symmetry reduction of equation (1) with respect to one-dimensional symmetry
algebras. We restrict ourselves to such non-linearities f1 and f2 found in [1] which are defined
up to arbitrary functions.

2 Symmetry reduction of equation (1)

We will not give the detailed calculations but present the operators, ansatzes and corresponding
reduced systems for some nonlinearities f1, f2 found in [1, 3]. We use the following notation:

X0 = α
∂

∂t
+ β

∂

∂x
, D1 = 2t

∂

∂t
+ x

∂

∂x
− 2
k
B̂, B̂ = Babub

∂

∂ua
,

D3 = 2t
∂

∂t
+ x

∂

∂x
− 2
k

(
∂

∂u1
− 2nu1

∂

∂u2

)
, D4 = 2t

∂

∂t
+ x

∂

∂x
− 2
k
pα

∂

∂uα
,

where α and β are arbitrary real coefficients, Bab are elements of the 2× 2 matrix B which will
be specified in the following.
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1. Consider the following system of type (1)

∂u1

∂t
− a

∂2u1

∂x2
= exp

(
k
u2

u1

)
ϕ1u1,

∂u2

∂t
− b

∂2u1

∂x2
− a

∂2u2

∂x2
= exp

(
k
u2

u1

)
(ϕ1u2 + ϕ2), (2)

where ϕ1 and ϕ2 are arbitrary (but fixed) functions of u1, a11 = a22 = a, a12 = 0, a21 = b.
This system admits the symmetry operator

X = X0 + νD1, where B =
(

0 0
1 0

)
.

The corresponding ansatz be obtained using the Lie algorithms is

u1 = ω1(z), u2 = −2
k

ln(νx+ β)ω1(z) + ω2(z), z =
2(νx+ β)2

2νt+ α
. (3)

Substituting the ansatz (3) into (2) we come to the following reduced equations

2νz2ω̇1 + 2ν2azω̇1 + 8ν2az2ω̈1 = − exp
(
k
ω2

ω1

)
ϕ1ω1,

2νz2ω̇2 +
2ν2a

k
ω̇1 −

8ν2a

k
zω̇1 + 2ν2bzω̇1 + 2ν2azω̇2 + 8ν2bz2ω̈1 + 8ν2az2ω̈2

= − exp
(
k
ω2

ω1

)
(ϕ1ω2 + ϕ2).

In other words the ansatz (3) reduces (2) to the system of ordinary differential equations.
The following results (related to equations found in [1]) are presented more briefly.
2. Equations:

∂u1

∂t
− a

∂2u1

∂x2
+ b

∂2u2

∂x2
= ϕ1u2 + ϕ2u1,

∂u2

∂t
− b

∂2u1

∂x2
− a

∂2u2

∂x2
= −ϕ1u1 + ϕ2u2,

where ϕ1 and ϕ2 are arbitrary functions of
√
u2

1 + u2
2, a11 = a22 = a, a21 = −a12 = b.

Symmetry:

X = X0 + µB̂, where B =
(

0 −1
1 0

)
.

Ansatz:

u1 = cos
(µ
α
t
)
ω1(z)− sin

(µ
α
t
)
ω2(z), u2 = sin

(µ
α
t
)
ω1(z) + cos

(µ
α
t
)
ω2(z),

z = βt− αx.

Reduced equations:

−µ
α
ω2 + β(aω̇1 − bω̇2)− α2(aω̈1 − bω̈2) = ϕ1ω2 + ϕ2ω1,

µ

α
ω1 + β(bω̇1 + aω̇2)− α2(bω̈1 + aω̈2) = −ϕ1ω1 + ϕ2ω2,

where ϕ1 and ϕ2 are functions of ω2
1 + ω2

2.
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3. Equations:

∂u1

∂t
− a

∂2u1

∂x2
= u1ϕ1,

∂u2

∂t
− b

∂2u2

∂x2
= u2ϕ2,

where ϕ1 and ϕ2 are arbitrary functions of u2

ud
1
, a11 = a, a12 = a21 = 0, a22 = b.

Symmetry:

X = X0 + µB̂, where B =
(

1 0
0 d

)
.

Ansatz:

u1 = exp
(
µ

β
x

)
ω1(z), u2 = exp

(
µd

β
x

)
ω2(z), z = βt− αx.

Reduced equations:

βω̇1 − a

(
µ

β

)2

ω1 + 2αa
µ

β
ω̇1 − α2aω̈1 = ω1ϕ1,

βω̇2 − b

(
µd

β

)2

ω2 + 2αb
µd

β
ω̇2 − α2bω̈2 = ω2ϕ2,

where ϕ1 and ϕ2 are functions of ω2

ωd
1
.

4. Equation:

∂u1

∂t
− a

∂2u1

∂x2
= ϕ1,

∂u2

∂t
− b

∂2u1

∂x2
− a

∂2u2

∂x2
=
u2

u1
ϕ1 + nu2 + ϕ2,

where ϕ1 and ϕ2 are arbitrary functions of u1, a11 = a22 = a, a12 = 0, a21 = b.
Symmetry:

X = X0 + µ exp(nt)B̂, where B =
(

0 0
1 0

)
.

Ansatz:

u1 = ω1(z), u2 =
µ

αn
ω1(z) exp(nt) + ω2(z), z = βt− αx.

Reduced equations:

βω̇1 − α2aω̈1 = ϕ1,

βω̇2 − α2bω̈1 − αaω̈2 =
ω2

ω1
ϕ1 + nω2 + ϕ2,

where ϕ1 and ϕ2 are functions of ω1.
5. Equation:

∂u1

∂t
− a

∂2u1

∂x2
= ϕ1u

k+1
1 ,

∂u2

∂t
− b

∂2u1

∂x2
− a

∂2u2

∂x2
= (ϕ1 lnu1 + ϕ2)uk+1

1 ,

where ϕ1 and ϕ2 are arbitrary functions of u1 exp
(
−u2
u1

)
, a11 = a22 = a, a12 = 0, a21 = b.

Symmetry:

X = X0 + νD1, where B =
(

1 0
1 1

)
.
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Ansatz:

u1 = (2νt+ α)−
1
kω1(z), u2 = (2νt+ α)−

1
k

(
ω2(z)− 1

k
ln(2νt+ α)ω1(z)

)
,

z =
2(νx+ β)2

2νt+ α
.

Reduced equations:

2ν
k
ω1 + 2νzω̇1 + 8ν2azω̈1 = −ωk+1

1 ϕ1,

2ν
k
ω2 + 2νzω̇2 +

2ν
k
ω1 + 8ν2bzω̈1 + 8ν2azω̈2 = −(ϕ1 lnω1 + ϕ2)ωk+1

1 ,

where ϕ1 and ϕ2 are functions of ω1 exp
(
−ω2
ω1

)
.

3 Conditional symmetry and exact solutions

Thus we presented reductions of equations (1) using their classical symmetry found in [1]. In this
section we present exact solutions of equations (1) found by conditional symmetry reduction.
We use the same scheme of presentation as in Section 2.

1. Equation:

∂u1

∂t
− ∂2u1

∂x2
= u3

1ϕ1,
∂u2

∂t
− ∂2u2

∂x2
= u3

2ϕ2, (4)

where ϕ1 and ϕ2 are arbitrary functions of u2
u1

.
Conditional symmetry:

X =
∂

∂t
− 3
x+ k1

∂

∂x
− 3

(x+ k1)2

(
u1

∂

∂u1
+ u2

∂

∂u2

)
.

The ansatz

u = (x+ k1)ω(z), z =
1
2
x2 + k1x+ 3t

reduces equation (4) to the system:

ω̈1 + ϕ1ω
3
1 = 0, ω̈2 + ϕ2ω

3
2 = 0,

where ϕ1 and ϕ2 are functions of ω2
ω1

.
Depending on the form of the functions ϕ1, ϕ2, we receive different solutions of the system.
1) ϕ1 = a > 0, ϕ2 = b < 0, where a and b are constants:

u1(x, t) =
√

2a
2a

(x+ k1) sd
(

1
2
x2 + k1x+ 3t;

1
2

√
2
)
,

u2(x, t) = −
√
−2b
b

(x+ k1) ds
(

1
2
x2 + k1x+ 3t;

1
2

√
2
)
.

2) ϕ1 = a > 0, ϕ2 = 0:

u1(x, t) =
√

2a
2a

(x+ k1) sd
(

1
2
x2 + k1x+ 3t;

1
2

√
2
)
,

u2(x, t) = (x+ k1)
[(

1
2
x2 + k1x+ 3t

)
C1 + C2

]
.
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2. Equation:

∂u1

∂t
− ∂2u1

∂x2
= u3

1ϕ1 − 2µ2u1,
∂u2

∂t
− ∂2u2

∂x2
= u3

2ϕ2 − 2µ2u2, (5)

where ϕ1 and ϕ2 are arbitrary functions of u2
u1

.
Conditional symmetry:

X =
∂

∂t
+ 3µ tan(µx+ k1)

∂

∂x
− 3µ2 sec2(µx+ k1)

(
u1

∂

∂u1
+ u2

∂

∂u2

)
.

The ansatz

u = cos(µx+ k1) exp
(
−3µ2t

)
ω(z), z = sin(µx+ k1) exp(−3µ2t)

reduces equation (5) to the system:

µ2ω̈1 + ω3
1ϕ1 = 0, µ2ω̈2 + ω3

2ϕ2 = 0,

where ϕ1 and ϕ2 are functions of ω2
ω1

.
Setting more particular form for the functions ϕ1, ϕ2, we get the following solutions of the

reduced system.
1) ϕ1 = a > 0, ϕ2 = b > 0:

u1(x, t) =
µ
√

2a
2a

cos(µx+ k1) exp
(
−3µ2t

)
sd

[
sin(µx+ k1) exp

(
−3µ2t

)
;

1
2

√
2
]
,

u2(x, t) =
µ
√

2b
2b

cos(µx+ k1) exp
(
−3µ2t

)
sd

[
sin(µx+ k1) exp

(
−3µ2t

)
;
1
2

√
2
]
.

2) ϕ1 = a < 0, ϕ2 = b > 0:

u1(x, t) = −µ
√
−2a
a

cos(µx+ k1) exp
(
−3µ2t

)
ds

[
sin(µx+ k1) exp

(
−3µ2t

)
;
1
2

√
2
]
,

u2(x, t) =
µ
√

2b
2b

cos(µx+ k1) exp
(
−3µ2t

)
sd

[
sin(µx+ k1) exp

(
−3µ2t

)
;
1
2

√
2
]
.

3. Equation:

∂u1

∂t
− ∂2u1

∂x2
= u3

1ϕ1 + 2µ2u1,
∂u2

∂t
− ∂2u2

∂x2
= u3

2ϕ2 + 2µ2u2, (6)

where ϕ1 and ϕ2 are arbitrary functions of u2
u1

.
Conditional symmetry:

X =
∂

∂t
− 3µ coth(µx+ k1)

∂

∂x
− 3µ2 csch2(µx+ k1)

(
u1

∂

∂u1
+ u2

∂

∂u2

)
.

The ansatz

u = sinh(µx+ k1) exp
(
3µ2t

)
ω(z), z = cosh(µx+ k1) exp

(
3µ2t

)
reduces equation (6) to the system:

µ2ω̈1 + ω3
1ϕ1 = 0, µ2ω̈2 + ω3

2ϕ2 = 0,

where ϕ1 and ϕ2 are functions of ω2
ω1

.
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We present the obtained results for some functions ϕ1 and ϕ2.
1) ϕ1 = a < 0, ϕ2 = b < 0:

u1(x, t) = −µ
√
−2a
a

sinh(µx+ k1) exp
(
3µ2t

)
ds

[
cosh(µx+ k1) exp

(
3µ2t

)
;

1
2

√
2
]
,

u2(x, t) = −µ
√
−2b
b

sinh(µx+ k1) exp
(
3µ2t

)
ds

[
cosh(µx+ k1) exp

(
3µ2t

)
;
1
2

√
2
]
.

2) ϕ1 = 0, ϕ2 = b > 0:

u1(x, t) = sinh(µx+ k1) exp
(
3µ2t

) [
C1 cosh(µx+ k1) exp

(
3µ2t

)
+ C2

]
,

u2(x, t) =
µ
√

2b
2b

sinh(µx+ k1) exp
(
3µ2t

)
sd

[
cosh(µx+ k1) exp

(
3µ2t

)
;

1
2

√
2
]
.

Besides for equation

ut − uxx = −u2,

we got the following solutions

u =
(48− 12

√
6)x2 + (48− 12

√
6)k1x+ 40(36− 15

√
6)t+ (24− 12

√
6)k2 + 6k2

1

[x2 + k1x+ 2(15− 5
√

6)t+ k2]2
,

and

u =
(48 + 12

√
6)x2 + (48 + 12

√
6)k1x+ 40(36 + 15

√
6)t+ (24 + 12

√
6)k2 + 6k2

1

[x2 + k1x+ 2(15 + 5
√

6)t+ k2]2
.

Thus we presented reduced equations and exact solutions for some of nonlinear reaction-
diffusion equations whose symmetry was studied in [1, 3]. We plan to extend our results to all
systems described in [3].
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We describe a systematic procedure for classifying partial differential equations which are
invariant with respect to low-dimensional Lie algerbas. This procedure is a synthesis of the
infinitesimal Lie method, the technique of equivalence transformations and the theory of
classification of abstract low-dimensional Lie algebras. By way of illustration, we consider
three examples of group classification of partial differential equations in new approach.

1 Introduction

This article is based on two talks (one given by each of the authors) at the Fourth International
Conference “Symmetry in Nonlinear Mathematical Physics” (9–14 July, 2001, Kyiv, Ukraine).
More details can be found in [9] and [16], and a short description is given in [17].

The analysis and classification of differential equations using group theory goes back to So-
phus Lie. The first systematic investigation of the problem of group classification was done by
L.V. Ovsiannikov [1] in 1959 for nonlinear heat equation

ut = [f(u)ux]x,

where f(u) is an arbitrary nonlinearity. His approach is based on the concept of the equivalence
group, which is the Lie transformation group (acting in the space whose local coordinates are
independent variables, the functions and their derivatives) preserving the class of particular
differential equations under study. It is possible to modify Lie’s algorithm in order to make it
applicable for the computation of this group (see, e.g., [2]). Having obtained the equivalence
group one constructs the optimal system of subgroups of the equivalence group. The last step
uses Lie’s algorithm for obtaining specific partial differential equations that (a) belong to the
class under study, and (b) are invariant with respect to these subgroups.

This approach has been applied to a number of equations of mathematical physics. Here we
mention just a few of the papers in which the group classification of nonlinear heat equations
has been studied:

Akhatov, Gazizov, Ibragimov (1987, [3])

ut = G(ux)uxx;

Dorodnitsyn (1982, [4])

ut = G(u)uxx +
dG(u)
du

u2
x + g(u);
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Oron, Rosenau (1986, [5]), Edwards (1994, [6])

ut = G(u)uxx +
dG(u)
du

u2
x + f(u)ux;

Cherniha and Serov (1998, [7])

ut = G(u)uxx +
dG(u)
du

u2
x + f(u)ux + g(u);

Gandarias (1996, [8])

ut = unuxx + nun−1u2
x + g(x)umux + f(x)us.

However, the possibility of implementing Ovsiannikov’s approach in its full generality presup-
poses that we are able to construct the optimal system of subgroups of the equivalence group.
However, even for the case when the equivalence group is finite-parameter, there arise major
algebraic difficulties, since the classification problem for all finite-parameter Lie groups has not
yet been solved (to say nothing about infinite-parameter Lie groups, where this problem is com-
pletely open). Consequently, there is an evident need for Ovsiannikov’s approach to be modified
so as to be applicable to the case of infinite-parameter equivalence groups.

Here we turn out attention to a new approach, proposed by R. Zhdanov and V. Lahno in [9],
that enables us to solve efficiently the symmetry classification problem for partial differential
equations even for the case of infinite-dimensional equivalence groups. It is based mainly on the
following facts:

• If the partial differential equation possesses non-trivial symmetry, then it is invariant
under some finite-dimensional Lie algebra of differential operators. In the event that the
maximal algebra of invariance is infinite-dimensional, then it contains, as a rule, some
finite-dimensional Lie algebra.

• If there are local non-singular changes of variables which transform a given differential
equation into another, then the finite-dimensional Lie algebras of invariance of these equa-
tions are isomorphic, and in the group-theoretic analysis of differential equations such
equations are considered to be equivalent.

• Abstract Lie algebras of up to six dimensions have already been classified [10, 11, 12, 13].
What we have in [9] is a preliminary classification of inequivalent realizations of low-dimensio-

nal Lie algebras within some specific class of first-order linear differential operators. This class
is determined by the structure of the equation under study. Its elements form a representation
space for realizations of Lie algebras of symmetry groups admitted by the equations belonging
to the class of partial differential equations under study. A natural equivalence relation is
introduced on the set of all possible realizations. Namely, two realizations are called equivalent
if they are transformed into each other by the action of the equivalence group. In other words,
solving the problem of symmetry classification of partial differential equations having some
prescribed form, is equivalent to constructing a representation theory of Lie transformation
groups (or Lie algebras of first-order partial differential operators) realized as symmetry groups
(algebras) of the equations in question.

2 Description of the method

The new approach to the classification of partial differential equations is a synthesis of Lie’s
infinitesimal method, the use of equivalence transformations and the theory of classification of
abstract finite-dimensional Lie algebras. It provides a constructive solution of the problem of the
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group classification of partial differential equations possessing arbitrary elements and admitting
non-trivial finite-dimensional invariance algebras.

The group classification in the approach described here is implementation of the following
algorithm:

I. The first step involves finding the form of the infinitesimal operators which generate the
symmetry group of the equation under consideration, and the construction of the equiv-
alence group of this equation. To find the form of the infinitesimal operators one uses
the usual Lie algorithm. In doing this we obtain a system of linear partial differential
equations of first order which connect the coefficients of the infinitesimal operators with
the arbitrary term of the equation. In the following we call this system the characterizing
system of the equation. In order to construct the equivalence group E of the equation one
can use the infinitesimal method as well as the direct method.

II. In the second step one carries out the group classification of those equations of the given
form which admit finite-dimensional Lie algebras of invariance.

For this, one carries out a step-by-step classification of finite-dimensional Lie algebras
within the specified class of infinitesimal operators, up to equivalence under transforma-
tions of the group E . In doing this, one has to check that each algebra obtained in this way
can be an invariance algebra of the equation at hand before proceeding from the realization
of Lie algebras of lower dimension to the realization of Lie algebras of higher dimension.
This eliminates superfluous realizations of Lie algebras. Also, those realizations of Lie
algebras which are invariance algebras of the equation will, as their dimension increases,
correspond to greater fixing of the arbitrary term.

This procedure is continued until the arbitrary term in the equation is completely deter-
mined or until it is no longer possible to extend the realization of Lie algebras beyond a
given dimension within the specified class of infinitesimal operators.

III. The third step is then to exploit the characterizing system or the infinitesimal method of
Lie in order to find, for each of the particular choices of the arbitrary term, the maximal
invariance algebra of the equation under consideration. Moreover, the equivalence of the
equations obtained in this manner is determined. We note that, in as much as equiva-
lent equations have isomorphic invariance algebras, we may test the realizations of the
invariance algebras for equivalence rather than test the equations themselves.

3 Examples of the group classification

Here we give some examples illustrating how the method works.

Example 1 ([14]). Group classification of

utx +A(t, x)ut +B(t, x)ux + C(t, x)u = 0. (1)

Ovsiannikov [15] gave a group classification of (1), using Laplace invariants

h = At +AB − C, k = Bx +AB − C.

His results can be formulated as follows:

Theorem 1. Equation (1) admits a Lie symmetry algebra of dimension greater than 1 if and
only the functions p, q given by

p =
k

h
, q =

1
h
∂x∂y(lnh)
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are constant. In this case, equation (1) is equivalent either to the Euler–Poisson equation

utx −
2ut

q(t+ x)
− 2pux
q(t+ x)

+
4pu

q2(t+ x)2
= 0

when q �= 0, or to the equation

utx + tut + pxux + ptxu = 0

when q = 0.

We have carried out the group classification of equation (1) using our method.
First, we find (by standard methods) that the infinitesimal generator of symmetries is given by

X = f(t)∂t + q(x)∂x + h(t, x)u∂u,

where the functions f , g, h satisfy

ht +Bḟ + fBt + gBx = 0,
hx +Ag′ + gAx + fAt = 0,

htx + Cḟ + fCt + Cg′ + gCx +Aht +Bhx = 0 (2)

(we omit the trivial symmetry X = ω(t, x)∂u, where ω is an arbitrary solution of (1)).
A direct analysis of (2) is not possible. The equivalence group of (1) is given by transfor-

mations of the two following types:

(a) r = α(t), ξ = β(x), v = θ(t, x)u+ ρ(t, x);
(b) r = α(x), ξ = β(t), v = θ(t, x)u+ ρ(t, x),

where α, β are arbitrary smooth functions and θ, ρ satisfy

θtρx + ρtθx − θρtx + ρθtx − 2
ρ

θ
θtθx +A[θtρ− θρt] +B[θxρ− θρx]− Cθρ = 0.

We note that equation (1) is invariant under the operator u∂u and that [X,u∂u] = 0. So,
X and u∂u form a two-dimensional Lie algebra. There are only two canonical forms for a two-
dimensional Lie algebra

A21 = 〈e1, e2〉 with [e1, e2] = 0,
A22 = 〈e1, e2〉 with [e1, e2] = e2,

and we clearly see that only A21 is suitable for our purposes.
We now need to find a canonical form for the operator X. We have the following result:

Proposition 1. Let A21 be the invariance algebra of equation (1). There are two inequivalent
canonical realizations of A21 = 〈u∂u, X〉:

A1
21 = 〈u∂u, ∂t〉, A2

21 = 〈u∂u, ∂t + ∂x〉,

and the corresponding canonical forms for equation (1) are

A1
21 : utx +B(x)ux + u = 0, (3)

A2
21 : utx +B(z)ux + C(z)u = 0 (4)

with z = t− x.
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The system (2) for equation (3) then becomes

ht +Bḟ + gBx = 0, hx = 0, ḟ + g′ = 0, (5)

where B = B(x).
We easily integrate (5) and we find B = mx, where m = const �= 0, and equation (3) takes

on the form

utx +mxux + u = 0.

The invariance algebra of this equation is

〈u∂u, ∂t, t∂t − x∂x, ∂x −mtu∂u〉.

For equation (4) we find (using the same procedure) that the corresponding canonical form for
equation (1) is

utx +
m

z
ux +

k

z2
u = 0,

where m, k are constants with k �= 0, and z = t− x.
The invariance algebra of this equation is

〈u∂u, ∂t + ∂x, t∂t + x∂x +
1
2
mu∂u, t

2∂t + x2∂x +mtu∂u〉.

These results are equivalent to the ones obtained by Ovsiannikov.

Example 2 ([9]). Group classification of nonlinear equation of the form

ut = uxx + F (t, x, u, ux). (6)

First, we find that the infinitesimal generator of symmetries is given by

X = 2a(t)∂t + (ȧ(t)x+ b(t))∂x + f(t, x, u)∂u,

where functions a, b, f , F fulfil relation

ft = ux(äx+ ḃ) + (fu − 2ȧ)F = fxx + 2uxfxu + u2
xfuu + 2aFt

+ (ȧx+ b)Fx + fFu + fxFux + ux(fu − ȧ)Fux . (7)

A direct analysis of (7) is not possible.
Using our approach we have established that there are three classes of equations (6) invariant

with respect to one-parameter groups, seven classes of equations (6) invariant with respect to
two-parameter groups, 28 classes of equations (6) invariant with respect to three-parameter
groups and 11 classes of equation (6) invariant with respect to four-parameter groups.

Here we present all representatives of 11 classes of equations (6) invariant with respect to
four-parameter groups only:

1. ut = uxx +
λεux

4
√
|t|

ln |tu2
x|+

βux√
|t|
,

ε = 1 for t > 0, ε = −1 for t < 0, β ∈ R, λ �= 0;
2. ut = uxx − λux(x+ ln |ux|), λ �= 0;
3. ut = uxx + λ exp(−ux), λ �= 0;
4. ut = uxx + 2 ln |ux|;
5. ut = uxx − ux ln |ux|+ λux, λ ∈ R;
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6. ut = uxx + λu
2k−2
2k−1
x , λ �= 0, k = 0,

1
2
, 1;

7. ut = uxx +
1
4t
u2
x;

8. ut = uxx − uuxx + λ|ux|
3
2 , λ �= 0;

9. ut = uxx + λ−1x+m
√
|ux|, λ > 0, m �= 0;

10. ut = uxx −
1
4
λε(1− q)|t|− 1

2
(1+q)u2

x,

λ �= 0, |q| �= 1, ε = 1 for t > 0, ε = −1 for t < 0;

11. ut = uxx −
1
2
α̇u2

x(λ− α)
(
1 + α2

)−1
, λ ∈ R.

Note that case 8) with λ = 0 gives rise to the Burgers equation

ut = uxx − uux,

which is invariant under a five-parameter group.

Example 3 ([16]). Group classification of nonlinear equations of the form

ut = F (t, x, u, ux)uxx +G(t, x, u, ux). (8)

In [16] we find that the infinitesimal generator of symetries is given by

X = a(t)∂t + b(t, x, u)∂x + c(t, x, u)∂u,

where a, b, c are real-valued functions that satisfy the system of particular differential equations

(2bx + 2uxbu− ȧ)F = aFt + bFx + cFu +
(
cx + uxcu − uxbx − u2

xbu
)
Fux ,

ct − uxbt + (cu − ȧ− uxbu)G+ (uxbxx − cxx − 2uxcxu − u2
xcuu

+ 2u2
xbxu + u3

xbuu)F = aGt + bGx + cGu +
(
cx + uxcu − uxbx − u2

xbu
)
Gux . (9)

A direct analysis of system (9) is also not possible.
The principal result [16] of group classification of equations (8) is the following:

Proposition 2. Equation (8) admits a Lie symmetry algebra of dimension greater than 4 if it
is equivalent to one of the following equations:

1. ut = u−4uxx − 2u−5u2
x;

2. ut = uxx + x−1uux − x−2u2 − 2x−2u;
3. ut = exp(ux)uxx;
4. ut = unxuxx, n ≥ −1, n �= 0;

5. ut = exp(n arctanux)
(
1 + u2

x

)−1
uxx, n ≥ 0.

These equations are invariant under five-dimensional Lie algebras.

Note that equation 1) is equivalent to the equation obtained by Ovsiannikov [1], equation 2)
is equivalent to Burgers equation, and equations 3)–5) was obtained by Akhatov, Gazizov and
Ibragimov [3].
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Continuous groups of transformations acting on the expanded space of variables, which in-
cludes the equation parameters in addition to independent and dependent variables, are
considered. It is shown that the use of the expanded transformations enables one to enrich
the concept of similarity reductions of PDEs. The expanded similarity reductions of diffe-
rential equations may be used as a tool for finding changes of variables, which convert the
original PDE into another (presumably simpler) PDE. A new view on the common simi-
larity reductions as the singular expanded group transformations may be used for defining
reductions of a PDE to a specific target ODE.

1 Introduction

By an expanded Lie group transformation of a partial differential equation (PDE) we mean
a continuous group of transformations acting on the expanded space of variables which includes
the equation parameters in addition to independent and dependent variables. We consider
the transformations that can be found using the Lie infinitesimal criterion with the properly
expanded infinitesimal group generators. In this paper, we are only concerned with groups of
point transformations, leaving aside problems involving generalized (Lie–Bäcklund) symmetry
groups.

An expanded group of transformations represents a particular case of the equivalence group
that preserves the class of PDEs under study – roughly speaking, having the same differential
structure but with arbitrary functions having different forms. The approach to finding these
equivalence transformation groups with the use of the Lie infinitesimal technique was introduced
by Ovsiannikov (see, e.g., [1]) who suggested using the Lie infinitesimal criterion in the properly
extended space of variables including dependent and independent variables, arbitrary functions
and their derivatives. The original Ovsiannikov method was further developed by Akhatov
et al. [2]. Their ideas have also been generalized in several papers (see, e.g., [3] and references
therein). The transformations in the extended space of variables obtained by adding param-
eters to the list of independent variables were also used in the context of the renormalization
group (RG) symmetries [4, 5].

The main purpose of this paper is to show that the use of the Lie groups of transformations
in the expanded space of variables including equation parameters enables one to enrich the
concept of similarity reductions as applied to PDEs. In addition, we wish to draw attention to
a possibility of using these groups for finding changes of variables that remove some terms from
the original equation. Although such a possibility is excluded neither in the framework of the
equivalence group approach nor in the context of the RG symmetries, this aspect is obscure in
those theories.

The rest of this paper is organized as follows. In Section 2 we consider some illustrative
examples of expanded group of transformations that can be used for removing terms from the
original differential equations. A comparison with the RG symmetry approach is made. In
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Sections 3 and 4 we show how the concept of similarity reductions of PDEs can be enriched
in the framework of the expanded transformation groups. Finally, in Section 5 we make some
remarks and suggest possible further work.

2 Examples of application of the expanded groups

2.1 Application to ODEs: a simple linear example

We will start with a simple example that applies the technique to the well known ODE of the
linear damped oscillator. Of course, this example is only of illustrative value but it is interesting
from the methodological point of view since this equation is frequently used to discuss some
aspects of asymptotic methods. The equation of linear oscillations with linear damping is

utt + aut + u = 0 (1)

or

utt + ut + bu = 0, (2)

where the subscripts on u denote derivatives. In the context of perturbation methods, when
the parameter a or b are assumed to be small, equations (1) and (2) acquire somewhat different
physical meanings – an oscillator with a weak resistance for (1) and an overdamped oscillator
for (2). An example of application of the expanded transformations to the ODE (1) of the linear
oscillator appeared first (to the author’s knowledge) in [7]. We will discuss equation (2), which
was used in [5] and [6] to illustrate the approaches to the asymptotic analysis of solutions of
differential equations based on the renormalization group concept.

We consider the one-parameter (ε) Lie group of transformations in (t, u, b):

t̃ = g(t, u, b, ε), ũ = h(t, u, b, ε), b̃ = φ(b, ε) (3)

with an infinitesimal generator of the form

X = τ(t, u, b)
∂

∂t
+ η(t, u, b)

∂

∂u
+ β(b)

∂

∂b

which leaves (2) invariant. The invariance requirement yields the following determining equa-
tions

τuu = 0, ηuu − 2τtu + 2τu = 0, 2ηtu − τtt + τt + 3buτu = 0,
ηtt − buηu + ηt + 2buτt + bη + uβ = 0. (4)

If one is aimed at reducing a given equation to an equation with a known general solution,
there is no need in defining the most general form of the group from the determining equations.
It is sufficient to define a minimal subgroup arising solely due to the presence of the generator β
in the equations. Such a subgroup is found from (4) as

τ =
2βt

1− 4b
, η = − βut

1− 4b
.

The finite transformations (3) are defined by solving the problem

dg

dε
=

2βg
1− 4φ

,
dh

dε
= − βgh

1− 4φ
,

dφ

dε
= β,

g = t, h = u, φ = b at ε = 0. (5)
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Using the third equation of (5) one can go over to derivatives with respect to φ in the first two
equations and obtain solutions in the forms

t̃ = t

(
1− 4b
1− 4b̃

)1/2

, ũ = u exp
{
t− t̃

2

}
, b̃ = b+ ε. (6)

We have set β = 1 in the last equation. It can be checked that applying these transformations
to the equation ũt̃t̃ + ũt̃ + b̃ũ = 0 yields equation (2).

To find the transformations that remove the last term from the equation (2) by converting
it into

ũt̃t̃ + ũt̃ = 0 (7)

we specify the formulae (6) by setting b̃ = 0, which corresponds to the specific choice of the
group parameter ε = −b. Thus, we arrive at the transformations

u = ũ exp
{
t̃− t

2

}
, t̃ = t (1− 4b)1/2 (8)

expressing the solution u of the original equation (2) through the solution ũ of equation (7).
Substituting the general solution of (7) ũ = C1 + C2 exp{−t̃} into (8) yields a general solution
of (2).

Next we will compare our approach, that is based merely on the expanded transformation
group, with the approaches of [5] and [6] using the RG concept. The methods of [5] and [6]
were designed to improve approximate solutions of the boundary value problems for equations
depending on a small parameter. Correspondingly, the initial-value problem for equation (2)
with a small parameter b is considered. In [6] the renormalization technique is developed to
construct the uniformly valid asymptotics using a straightforward naive perturbation expansion
as a starting point. The approach of [5] treats the RG as the Lie group of transformations for
a renormgroup manifold constructed in a special way (including parameters of the equations in
the list of independent variables is considered as one of the possibilities). The authors consider
the initial-value problem for a system of two first order ODEs replacing (2) and find that the
use of the modified RG technique permits to improve a perturbation expansion solution up to
the exact solution. Thus, as a matter of fact, the expanded transformations are applied in [5]
with the same result as that described above in this section. However, in the method of [5],
the issue of the exact transformations, that would reduce the equation to the simpler one by
removing some terms, is obscured by the underlying asymptotic concept, and this may conceal
the possibility of finding such transformations. In addition, use of an approximate solution as
a starting point and embedding the initial conditions in the framework of the method make the
procedure more complicated.

2.2 Application to PDEs: two-dimensional steady-state
nonlinear diffusion equation

This example applies the technique to the nonlinear equation

uxx + uyy + u2
x + u2

y + bux + a
(
1 + pe−u

)
= 0, (9)

where a, b and p are constants. This equation can be obtained from the steady-state nonlinear
diffusion (heat conduction) equation with the source and the gradient term in the case where
the coefficient of thermal conductivity and the source have exponential dependence on the con-
centration (temperature): K(u) = K0e

u and Q(u) = Q0 + Q1e
u. The equation including both
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the source and the gradient terms has been chosen to show how the technique works in the case
when two equation parameters a and b are involved into transformations.

We consider again the one-parameter (ε) Lie group of transformations in (x, y, u, a, b) space:

X = ξ(x, y, u, a, b)
∂

∂x
+ ζ(x, y, u, a, b)

∂

∂y
+ η(x, y, u, a, b)

∂

∂u
+ α(a, b)

∂

∂a
+ β(a, b)

∂

∂b

which leaves equation (9) invariant. Solving the determining equations yields

ξ = C1 +
2α− βb

b2 − 4a
x+ ky, ζ = C2 − kx+

2α− βb

b2 − 4a
y,

η =
(
1 + pe−u

) (
C3 +

2βa− αb

b2 − 4a
x− k

2
by

)
,

where C1, C2, C3 and k are constants. Here considering groups more general than the minimal
subgroup can be useful for constructing different solutions of the initial equation from a special
solution of a simplified equation. We will show the finite transformations for the case of C1 =
C2 = 0, as follows

x̃ = S(ε)
(
x cosA(ε)− y sinA(ε)

)
, ỹ = S(ε)

(
x sinA(ε) + y cosA(ε)

)
,

ũ = ln
{
−p+ (p+ eu) exp

[
C3ε+

bx

2
− b+ εβ

2
S(ε)

(
x cosA(ε)− y sinA(ε)

)]}
,

ã = a+ εα, b̃ = b+ εβ, (10)

where

S =
[

b2 − 4a
b2 − 4a+ ε(2βb− 4α) + ε2β2

]1/2

,

A = −kε, α = 1, b = 1 for β = 0,

A =
k

β


[(

b− 2
α

β

)2

+ ε(2βb− 4α) + ε2β2

]1/2

−
(
b− 2

α

β

) for β �= 0.

These transformations map equation (9) into the equation with parameters ã and b̃ calculated
according to (10). In particular, it is possible to transform (9) into an equation without either
the last source term or the term bux by setting respectively either β = 0 and ε = −a/α or α = 0
and ε = −b/β in the formulae (10).

3 Expanded similarity reductions of PDEs

In this section we will show that the symmetry reduction procedure implemented in the expanded
space can lead to discovering transformations between equations that cannot be obtained by
applying the technique described in the previous section. We will take as an example the
Fokker–Planck equation

ut = uxx + xux + u (11)

which is used in statistical physics to describe the evolution of probability distribution functions
(see, for example, [8]). This equation does not include any parameters – two physical parameters
in the original equation corresponding to the problem of a free particle in Brownian motion can
be removed by the scaling of x and t. Nevertheless, to apply the technique, a parameter may
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be introduced into the equation “artificially”, for example, as the coefficient in front of the last
term of the equation

ut − uxx − xux − au = 0. (12)

This coefficient cannot change as a result of rescaling the time and space coordinates without
appearance of coefficients in front of other terms of the equation. It may seem that introducing
this coefficient spoils the physics of the problem (the last two terms in the equation must have
equal coefficients), but one may always set a = 1 in the final formulae.

We consider the one-parameter (ε) Lie group of infinitesimal transformations in (x, t, u, a)
defined by

X = ξ(x, t, u, a)
∂

∂x
+ τ(x, t, u, a)

∂

∂t
+ η(x, t, u, a)

∂

∂u
+ α(a)

∂

∂a
.

Applying the invariance criterion to equation (12) and solving the determining equations yields

ξ =
(
C1e

2t − C2e
−2t

)
x+ C3e

t + C4e
−t, τ = C0 + C1e

2t + C2e
−2t,

η =
[
−C1e

2tx2 − C3e
tx− C1e

2t + a
(
C0 + C1e

2t + C2e
−2t

)
+ αt+ C5

]
u+ Φ(x, t), (13)

where C0, C1, C2, C3, C4 and C5 are constants and Φ(x, t) satisfies the equation Φxx + xΦx −
Φt + aΦ = 0.

To illustrate the approach we will take the C1-subgroup of the full group (13): C0 = C2 =
C3 = C4 = C5 = Φ = 0. We will start with defining classical (not expanded) similarity
reductions corresponding to this subgroup – one should set α = 0 and a = 1 to obtain a classical
group from (13). With such group generators, from the invariant surface condition

ξux + τut − η = 0

we derive the functional form of the similarity reduction, which being substituted into equa-
tion (11) eventually produces the following

u(x, t) = e−x
2/2w(z), z = xe−t, w′′ = 0. (14)

Now we will apply the same procedure, but for the expanded similarity reductions in (x, t, u, a)
(instead of (x, t, u)) space. The generators of the same subgroup are now given by

ξ = C1xe
2t, τ = C1e

2t, η =
[
−C1x

2e2t + (a− 1)C1e
2t + αt

]
u.

Integrating the characteristic system for the invariant surface condition of the form

ξux + τut + αua − η = 0

yields three similarity variables

z = xe−t, ϕ = −C1

α
a− 1

2
e−2t, w = ue(1−a)t+x

2/2.

We choose w as a new dependent variable and take z and ϕ as new independent variables to
arrive at the following similarity reduction

u(x, t, a) = w(z, ϕ)e(a−1)t−x2/2, z = xe−t, ϕ = −C1

α
a− 1

2
e−2t. (15)

Although in terms of the expanded transformations such a similarity reduction reduces the
number of variables, it seems that we gain nothing for solving the original PDE since, upon
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substituting the reduction into the equation, it will be reduced again to a PDE for a function
w(z, ϕ). However, this new equation will have a different form, which may allow new possibilities
for solution. In particular, substituting (15) into (12) yields

wϕ − wzz = 0. (16)

Thus, the expanded similarity reduction (15) taken for a = 1 (we may also set α = 1 without loss
of generality) provides a transformation of the original equation (11) to the linear heat equation.

Such a transformation cannot arise as the result of application of the classical Lie group
method – it is seen that the similarity solution (14) provided by the classical method corresponds
to taking only a particular solution of (16), namely, w = w0 +w1z where w0 and w1 are arbitrary
constants. The technique described in the previous section can produce it neither. It enables
one to define only the transformations eliminating the last term of (12).

4 Similarity reductions as the singular expanded
group transformations

In this section, we will show that including the equation parameters into the transformations
allows one to treat the classical similarity reductions of a PDE as the expanded group transfor-
mations which are singular in some variables. This can also enable one to define reductions of
the PDE to specific target ODEs.

We will take as an example the Generalized Boussinesq (GBQ) equation

uxxxx + putuxx + quxuxt + ru2
xuxx + utt = 0 (17)

which has a number of equations, arising in different physical applications, as special cases.
Similarity reductions for equation (17) obtained from the classical Lie group method and from
the Clarkson–Kruskal direct method have been considered in [9].

To apply the method we will introduce an artificial coefficient a in front of the last term, as
follows

uxxxx + putuxx + quxuxt + ru2
xuxx + autt = 0 (18)

and consider the one-parameter Lie group of infinitesimal transformations in the expanded
(x, t, u, a, p, q, r) space defined by

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+A

∂

∂a
+ P

∂

∂p
+Q

∂

∂q
+R

∂

∂r
.

Several different families of solutions of the determining equations obtained from the invari-
ance requirement may arise depending on the relations between the coefficients of (18). We will
restrict ourselves to the case

p = q, r =
q2

2a
=⇒ P = Q,

R

r
= 2

Q

q
− A

a
. (19)

Then solving the determining equations yields

ξ = C1xt+ C2x+ C3t+ C4, τ = C1t
2 +

(
2C2 +

A

2a

)
t+ C0,

η =
(
A

2a
− Q

q

)
u+

a

q
C1x

2 +
2a
q
C3x+ C5. (20)
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Here not only the generators A and Q may depend on a and q but also the C0, C1, . . . , C5 are
allowed to be functions of a and q due to the fact that the determining equations do not include
the corresponding derivatives.

To show the idea it is sufficient to consider the subgroup of (20) defined by the conditions
C0 = C2 = C3 = C4 = C5 = 0 and the following

A

2a
=
Q

q
=⇒ R = 0 (r = const), q =

√
2ra1/2, (21)

where (19) has been used. In this special case, the finite group transformations are found by
solving the problem

dx̃

dε
= C1(ã)x̃t̃,

dt̃

dε
= C1(ã)t̃2 +

A(ã)
2ã

t̃,
dũ

dε
=

1√
2r
ã1/2C1(ã)x̃2,

dã

dε
= A(ã),

x̃ = x, t̃ = t, ũ = u, ã = a at ε = 0. (22)

The solutions of the problem (22) may be represented as

t̃ =
t
√
ã√

a[1 + tN(ã, a)]
, x̃ =

x

1 + tN(ã, a)
, ũ = u−

√
a√
2r

[
x2N(ã, a)

1 + tN(ã, a)

]
,

N(ã, a) = − 1√
a

∫ ã

a

C1(ϕ)
√
ϕ

A(ϕ)
dϕ. (23)

In the formulae (23), ã(a, ε) is a solution of the last equation of (22) with the corresponding
initial condition.

We will look for a transformation removing the terms with derivatives with respect to t
from (18) which requires ã = 0, p̃ = 0 and q̃ = 0 – in view of the assumptions (19) and (21), it
is sufficient to set ã = 0. It is immediately seen that the transformation obtained in such a way
is singular in the variable t: setting ã = 0 in (23) yields t̃ = 0. However, since the equation
resulting from this transformation does not include derivatives with respect to t, one can treat it
as an equation for the function ũ(x̃) of one variable, and then it does not matter what happens
with the discarded variable t. The transformation obtained by setting ã = 0 in (23) (having in
mind the original equation (17) we may also set a = 1 now) is

u = ũ(x̃, 0) +
λ√
2r

(
x2

1 + tλ

)
, x̃ =

x

1 + tλ
, λ = N(0, 1). (24)

This transformation reduces (17) to the following equation (it is readily checked by the direct
substitution):

ũx̃x̃x̃x̃ + rũ2
x̃ũx̃x̃ = 0 (25)

in which a number of independent variables is reduced as compared with the original equation.
Thus, the expanded group transformations given by (23) with ã = 0, which are singular in t,
provide the following similarity reduction of the GBQ equation:

u = w(z) +
λ√
2r

(
x2

1 + tλ

)
, z =

x

1 + tλ
, (26)

where w(z) satisfies

w′′′′ + rw′2w′′ = 0. (27)
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The forms of the functions C1(a) and A(a) have not been specified in the process of derivation
of the above formulae. It is evident that any function C1(a), which being substituted into (23)
provides λ = N(0, 1) �= 0 (for example, C1 = const), and any function A(a), which permits
a transformation to ã = 0 (for example, A = 1, ã = a+ ε), are suitable.

To obtain a similarity reduction, which is more general than (26) but reduces (17) to the
same ODE (27), one should consider a more general subgroup of the group (20).

The singular expanded transformations considered above, which remove terms with deriva-
tives with respect to t from the original equation (17), can produce only the reductions to the
ODE (27). To define a reduction of the original equation to another ODE (or, at least, to check
whether such a reduction is possible) we will look for the expanded transformations that remove
some terms from and simultaneously add other terms (desired in the target ODE) to the original
PDE. For example, if we wish to define a reduction from (18) (we consider again the particular
case defined by (19) and (21)) to the equation

w′′′′ + rw′2w′′ + kw′′ = 0, (28)

we have to consider the expanded transformations of the equation

uxxxx + qutuxx + quxuxt + (q2/2a)u2
xuxx + autt + buxx = 0 (29)

in the (x, t, u, a, q, b) space with a requirement for ã = φ(a, q, b), and q̃ = κ(a, q, b) to transform
respectively from a and q to zero values, and for b̃ = µ(a, q, b) to transform from zero to k. We
will take the subgroup which for b = b̃ = 0 would coincide with that defined by (22) and (23).
Omitting the details of calculations we will show only the resulting finite transformations

t̃ =
t
√
ã√

a(1 + tN)
, x̃ =

x

1 + tN
,

ũ = u−
√
a√
2r

(
x2N

1 + tN

)
+

b√
2ra

t− b̃√
2ra

(
t

1 + tN

)
,

ã = a+ ε, q̃ = ã2 q

a2
, b̃ = µ(a, r, b, ã). (30)

The reduction from (17) to (28) is obtained from (30) by setting a = 1, ã = 0, b = 0, b̃ = k, as
follows

u = ũ(x̃, 0) +
λ√
2r

(
x2

1 + tλ

)
+

k√
2ra

(
t

1 + tλ

)
, x̃ =

x

1 + tλ
, λ = N(0, 1)

with a subsequent change of notation x̃→ z, ũ(x̃, 0) → w(z).
Other similarity reductions of equation (17) can be derived in a similar way. It is worth noting

that, within this framework, the reduction to equation (27) (or (25)), which includes only the
terms from the original equation, is singled out from the variety of possible reductions. The fact
that it possesses some special properties was marked in [9] without addressing its special nature.

5 Concluding remarks

In this paper we have demonstrated that some new applications of the Lie group method to
differential equations may arise due to the use of expanded transformation groups.

Simplifying the original equation by means of eliminating some terms from the equation via
expanded symmetry groups, discussed in Section 2, cannot be considered as a quite new method –
as a matter of fact, it represents a particular case of the equivalence group approach. Here our
purpose was to stimulate an interest in the fact that, in this pure form, the approach offers
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considerable promise for applications, so that it would be helpful to introduce the corresponding
options into existing computer algebra packages (it does not require significant modifications).
Even if this approach does not guarantee simplifying the equation it provides a way of checking
whether the simplifications are possible.

The expanded similarity reductions of differential equations considered as a tool for finding
changes of variables, which convert the original PDE into another (presumably simpler) PDE,
represent a new method that may be applied in a promising way. Also a new view on the
common similarity reductions as the singular expanded group transformations may be used for
developing a technique for defining reductions to specific target ODEs.

We will also mention a possible use of the expanded transformations (not discussed here) in
the context of perturbation methods. It may enable one to introduce a small parameter into a
problem in the case when this cannot be done by a rescaling procedure.

The extensions of the formalism to contact and Lie–Bäclund groups are straightforward.
Other generalizations of the described approaches – for example, in the spirit of the non-classical
method – are also possible.
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A class of nonlinear diffusion-convection systems containing two Burgers-type equations is
considered. New results of finding Lie and Q-conditional symmetries are presented. More-
over, examples of Lie and non-Lie ansätze and exact solutions of a diffusion-convection
system are constructed.

1 Introduction

Nonlinear diffusion-convection (DC) equations of the form

Ut = (A(U)Ux)x +B(U)Ux, (1)

where U = U(t, x) is the unknown function, A(U) and B(U) are arbitrary smooth functions and
the indices t and x denote differentiation with respect to these variables, generalizes a number
of the well known nonlinear second-order evolution equations, describing various processes in
physics [1], chemistry [2], biology [3]. The most popular among them is the Burgers equation
(BEq)

Ut = Uxx + λUUx, λ ∈ R (2)

arising in several application [4]. Lie symmetry of BEq was found in [5], while the Q-conditional
symmetry (i.e., non-classical symmetry [6]) was described in [7] and [8].

In the general case a wide list of Lie symmetries for DC equations of the form (1) is presented
in [9]. A complete description of Lie symmetries, i.e., group classification of (1) has been done
in [10]. The Q-conditional symmetry was also investigated in that paper.

A natural generalization of (1) on several components is the following system of DC equations:

Ūt = (A(Ū)Ūx)x +B(Ū)Ūx, (3)

where Ū = (U1, . . . , Un) is the unknown vector function, A(Ū) and B(Ū) are matrixes n × n
with the elements aij(Ū) and bij(Ū), i, j = 1, 2, . . . , n being arbitrary smooth functions. Here
we deal with a particular case of (3) at n = 2, namely:

Ut = λ1Uxx + UUx + F1(U, V )Vx,
Vt = λ2Vxx + V Vx + F2(U, V )Ux, (4)

where U = U(t, x) and V = V (t, x) are unknown functions, while λ1 and λ2 are arbitrary
constants, F1 and F2 are arbitrary smooth functions assumed to be known. It is easily seen that
DC system (1) is a coupled system of two Burgers-type equations.

Having in mind a complete description of the Lie and Q-conditional symmetries of system (1),
which is a very difficult problem in the general case, we now summarize the main results obtained
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for some subclasses of (1). In Section 2, the complete description of the Lie symmetry of
system (1) at λ1 �= λ2 are presented. In the case λ1 = λ2 all possible pairs (F1, F2) are found
when DC system (1) is invariant under the Galilei algebra and its standard extentions. Note
that the relevant results for reaction-diffusion systems were obtained in [11, 12, 13].

In Section 3, the determining equations to find the Q-conditional symmetry of system (1) are
derived. Furthermore those equations are solved under some assumptions. We have established
that system (1) at F1 = U + m1, F2 = V + m2, where m1, m2 are some constants, admits
conditional symmetry operators.

Finally (Section 4), the found symmetries are applied to construct both Lie and non-Lie
ansätze of a particular DC system of the form (1). Examples of exact solutions are also presented.

2 Lie symmetry of DC system (1)

It is easily checked that the system (1) is invariant under the operators of time and space
translations Px = ∂x and Pt = ∂t for arbitrary functions F1 and F2. Following [10], this algebra
is called the trivial Lie algebra of the system (1). Thus, we aim to find all pairs of functions
(F1, F2) that lead to extensions of the trivial Lie algebra of this system. Note that we consider
only nonlinear systems, particularly because linear equations are amenable to numerous classical
methods (the Fourier method, method of Laplace transformation and so on).

Now let us formulate a theorem which gives complete information on the classical, i.e., Lie
symmetry of the system (1).

Theorem 1. All possible maximal algebras of invariance (MAI) of the system (1) for any fixed
pair (F1, F2) and λ1 �= λ2, λ1λ2 �= 0 are presented in Table 1. Any other system of the form (1)
with non-trivial Lie symmetry is reduced by the local substitution

x∗ = x−mt, t∗ = t, U∗ = U +m, V ∗ = V +m, λ ∈ R (5)

to one of those given in Table 1.

Table 1. MAI of the system (1) at λ1 �= λ2, λ1λ2 �= 0.

/ Nonlinearities Restrictions Basic operators of MAI

1. F1 = Uf(ω) ω = U/V Pt, Px
F2 = V g(ω) D = 2tPt + xPx − U∂U − V ∂V

2. F1 = f(ω) ω = U − V Pt, Px
F2 = g(ω) Gx = tPx − (∂U + ∂V )

3. F1 = α1(U − V ) α1 �= 0 Pt, Px, Gx, D
F2 = α2(V − U) or α2 �= 0

4. F1 = 0 Pt, Px, Gx, D
F2 = 0 Π = tD − t2Pt − x(∂U + ∂V )

The proof of Theorem 1 is based on the classical Lie scheme (see, e.g., [15, 14]) and is non-
trivial because the system (1) contains two arbitrary functions of two variables. The proof of
this and following theorems will be published in [16]).

Remark 1. Cases 3 and 4 in Table 1 are natural prolongations of case 2, because the extended
Galilei algebra AG0

1(1, 1) = 〈Pt, Px, G0
x, D〉 and the generalized Galilei algebra AG0

2(1, 1) =
〈Pt, Px, G0

x, D,Π〉 are known to be standard extensions of the Galilei algebra AG0(1, 1) =
〈Pt, Px, G0

x〉 with zero mass (for details see [11, 12, 15]).
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It turns out that the case λ1 = λ2 �= 0 (without losing generality we can put λ1 = 1) is more
complicated than the case considered above and its complete description will be done in [16].
Here the most interesting cases are only presented.

Theorem 2. In the case λ1 = λ2 = 1, DC system (1) for F 1
V �= 0 or F 2

U �= 0 is invariant under
the Galilei algebra if and only if

F k = φ(ω)− (−1)k
U − V

2
, k = 1, 2, ω = (U − V )γ exp(U + V ), 0 �= γ ∈ R,

where φ is an arbitrary function. The corresponding basic operators of the Galilei algebra are

Pt, Px, G0
x = t∂x +

U − V

γ
(∂U − ∂V )− (∂U + ∂V ).

Theorem 3. In the case m1 �= m2 ∈ R, MAI of nonlinear DC system

Ut = Uxx + UUx + (m1 + U)Vx,
Vt = Vxx + V Vx + (m2 + V )Ux (6)

is the generalized Galilei algebra AG0
2(1, 1) with zero mass generated by the basic operators

Pt, Px, G
0
x = tPx +Q0

1, D0 = 2t∂t + x∂x − U∂u − v∂v +Q0
2,

Π0 = tD0 − t2∂t + xQ0
1 +

2
m1 −m2

(∂U − ∂V ). (7)

In the case m1 = m2 = 0, MAI of (6) is infinite-dimensional algebra generated by the operators

Pt, Px, Q1 =
1
2

(U − V )(∂U − ∂V ), Gx = t∂x +
x

2
Q1 −Q2,

D = 2t∂t + x∂x +
1
2
Q1 − (U∂U + V ∂V ), Π = tD1 − t2∂t +

x2

4
Q1 − xQ2, (8)

which form the AG2(1, 1) with non-zero mass, and the operator

X∞ = (MU +MV − 2Mx)(∂U − ∂V ), (9)

where M = M(t, x) is an arbitrary solution of the linear diffusion equation Mt = Mxx.
In formulas (7) and (8) the operators

Q0
1 =

U + V + 2m1

m2 −m1
∂U +

U + V + 2m2

m1 −m2
∂V ,

Q0
2 =

m2U +m1V + 2m1m2

m2 −m1
(∂U − ∂V ) + U∂U + V ∂V , Q2 =

1
2

(∂U + ∂V ).

Remark 2. In the case m1 = m2 �= 0, system (6) is reduced to the same with m1 = m2 = 0 by
the local substitution (5).

3 Q-conditional symmetry of DC system (1)

In this section we study Q-conditional symmetry of nonlinear DC system (1). Nevertheless the
main idea of the notion of Q-conditional symmetry (non-classical symmetry) is very simple and
was introduced by Bluman and Cole more than 30 years ago [6], it is a very non-trivial problem
to find new operators of Q-conditional symmetry for nonlinear equations arising in applications.
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Moreover, to our knowledge there are even no examples of operators of Q-conditional symmetry
in the case of DC systems of the form (3).

We remind the reader that every operator of Lie symmetry is also a Q-conditional symmetry
operator therefore hereinafter we will find only purely conditional symmetry operators. It is
worth also reminding on the following property of such operators: if the operator

Q = ∂t + ξ(t, x, U, V )∂x + η1(t, x, U, V )∂U + η2(t, x, U, V )∂V , (10)

where the ξ, η1 and η2 being the known functions, is one of the Q-conditional symmetry for
DC system (1) then the operator N(t, x, U, V )Q being N an arbitrary nonvanishing function is
also the Q-conditional symmetry operator. Thus we will seek only operators of the canonical
form (10). Of course, one can also find Q-conditional symmetry operators of the canonical form

Q = ∂x + η1(t, x, U, V )∂U + η2(t, x, U, V )∂V ,

however we aim to discuss such possibility elsewhere.
Using the known procedure (see, for example, [15], chapter 5) to construction of the opera-

tors Q of the form (10), where the coefficients ξ, η1 and η2 must be found, we have established
the following theorem.

Theorem 4. DC system (1) is Q-conditional invariant under the operator (10), if and only if
the functions ξ, η1, η2 satisfy the following determining equations:

ξUU = ξV V = ξUV = 0, (11)

λ1ηV V + F 1ξV = 0, λ2η
2
UU + F 2ξU = 0, (12)

λ1η
1
UU − 2λ1ξxU + 2(ξ + U)ξU +

λ1

λ2
F 2ξV = 0,

λ2η
2
V V − 2λ2ξxV + 2(ξ + V )ξV +

λ2

λ1
F 1ξU = 0, (13)

2λ1η
1
UV − 2λ1ξxV +

1
λ2

(λ2U + λ1V + (λ1 + λ2)ξ)ξV + 2F 1ξU = 0,

2λ2η
2
UV − 2λ2ξxU +

1
λ1

(λ2U + λ1V + (λ1 + λ2)ξ)ξU + 2F 2ξV = 0, (14)

λ1η
1
xx − η1

t − 2ξxη1 +
(
λ1

λ2
− 1

)
η2η1

V + Uη1
x + F 1η2

x = 0,

λ2η
2
xx − η2

t − 2ξxη2 +
(
λ2

λ1
− 1

)
η1η2

U + V η2
x + F 2η1

x = 0, (15)

λ1(2η1
xU − ξxx) + (2ξ + U)ξx − 2η1ξU +

(
1− λ1

λ2

)
η2ξV −

λ1

λ2
F 2η1

V

+ F 1η2
U + ξt + η1 = 0,

λ2(2η2
xV − ξxx) + (2ξ + V )ξx − 2η2ξV +

(
1− λ2

λ1

)
η1ξU −

λ2

λ1
F 1η2

U

+ F 2η1
V + ξt + η2 = 0, (16)

2λ1η
1
xV + (ξx − η1

U + η2
V )F 1 − 2η1ξV

+
1
λ2

[(λ2 − λ1)ξ + λ2U − λ1V ]η1
V + η1F 1

U + η2F 1
V = 0,

2λ2η
2
xU + (ξx − η2

V + η1
U )F 2 − 2η2ξU

+
1
λ1

[(λ2 − λ1)ξ + λ2U − λ1V ]η2
U + η2F 2

V + η1F 2
U = 0. (17)
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The overdetermined system of nonlinear equations (11)–(17) is very complicated and we have
not constructed its general solutions. On the other hand, it is possible to construct the general
solution under the additional condition η1

t = η2
t = η1

x = η2
x = 0, i.e., assuming ηk = ηk(U, V ),

k = 1, 2. Under such assumption the subsystem (15) with λ1 = λ2 is reduced to the condition
ξx = 0 therefore other subsystems can be easily solved.

Theorem 5. DC system (1) is Q-conditional invariant under the operator

Q = ∂t + ξ1(t, x, U, V )∂x + η1(U, V )∂U + η2(U, V )∂V , (18)

if and only if

λ1 = λ2 = 1, F 1 = m1 + U, F 2 = m2 + V, m1,m2 ∈ R (19)

and then the coefficients of the operator (18) have the form

ξ1 =
1
2

(U + V ) + α0,

η1 = −1
4

[
U(U + V )2 + 2α0U(U + V )

]
+ β0U + γ1,

η2 = −1
4

[
V (U + V )2 + 2α0V (U + V )

]
+ β0V + γ2, (20)

if m1 = m2 = 0, and

ξ1 =
1
2

(U + V ),

η1 = −1
4

[
(U +m1)(U + V )2 + (m2 −m1)U2

]
+ β0U + γ1,

η2 = −1
4

[
(U +m2)(U + V )2 + (m1 −m2)V 2

]
+ β0V + γ2, (21)

if m1 �= m2. Here α0, β0, γ1, γ2 are arbitrary constants.

One can see that the above listed additional conditions on the form of the operator Q are
very strong because they lead only to the fixed nonlinearity F1 = U + m1, F2 = V + m2. The
next theorem illustrates that the requirement λ1 = λ2 is very important.

Theorem 6. DC system (1) at

λ1 �= λ2, F 1 =
λ1

λ2
(U +m), F 2 =

λ2

λ1
(V −m), m ∈ R (22)

is invariant under the trivial Lie algebra generated by the basic operators Pt and Px while one
admits the operator of the Q-conditional symmetry

Q = ∂t −m
λ1 + λ2

λ1 − λ2
∂x +

U + V

(λ1 − λ2)t
(λ1∂U − λ2∂V ). (23)

4 Ansätze and exact solutions of a DC system

In this section we shall deal with the nonlinear DC system (6). It follows from Theorem 3 that
MAI of (6) for m1 �= m2 is the generalized Galilei algebra AG0

2(1, 1) with the basic operators (7).
It seems reasonable to construct Lie ansätze and to seek exact solutions of system (6) using
operators (7). A full set of non-equivalent (non-conjugate) one-dimensional subalgebras of the
AG2(1, 1) algebra is well-known [14]. Taking into account the similarity of structures of the
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AG2(1, 1) algebra and AG0
2(1, 1) algebra, a full set of non-equivalent one-dimensional subalgebras

of the AG0
2(1, 1) algebra was also constructed, namely:

k1∂t + k2∂x, ∂t + k3G, D, ∂t + Π, (24)

where k1, k2, k3 are arbitrary constants. Let us apply each of them for reduction of system (6)
to systems of ordinary differential equations (ODEs).

a) The operator k1∂t + k2∂x generates the ansatz

U = ϕ(ω), V = ψ(ω), ω = k2t− k1x, (25)

where ϕ, ψ are unknown functions. Substituting (25) into system (6), we arrive at the ODEs
system

k2ϕ̇ = k2
1ϕ̈− k1ϕϕ̇− k1(ϕ+m1)ψ̇,

k2ψ̇ = k2
1ψ̈ − k1(ψ +m2)ϕ̇− k1ψψ̇, (26)

(hereinafter ϕ̇ = dϕ
dω , ϕ̈ = d2ϕ

dω2 ).

b) The operator ∂t + k3G generates the ansatz

U =
(k3t−m1)ϕ(ω) + ψ(ω) + (k3t−m1)2

m1 −m2
−m1,

V =
(k3t−m2)ϕ(ω) + ψ(ω) + (k3t−m2)2

m2 −m1
−m2, ω = x− k3

2
t2, (27)

which reduces system (6) the ODEs system

ϕ̈− ϕϕ̇+ ψ̇ − 2k3 = 0,

ψ̈ − ψϕ̇− k3ϕ = 0. (28)

c) The operator D generates the ansatz

U =
m1t

−1/2ϕ(ω) + t−1ψ(ω) +m1m2

m1 −m2
,

V =
m2t

−1/2ϕ(ω) + t−1ψ(ω) +m1m2

m2 −m1
, ω = t−1/2x. (29)

which reduces system (6) the ODEs system

ϕ̈+ ϕϕ̇+
1
2

(ωϕ̇+ ϕ)− ψ̇ = 0,

ψ̈ + ψϕ̇+
1
2
ωψ̇ + ψ = 0. (30)

d) Finally, the operator ∂0 + Π generates the ansatz

U =
1

m1 −m2

{(
t2 + 1

)−1/2
m1(ϕ(ω)− 2tω)

−
(
t2 + 1

)−1 (ψ(ω) + tωϕ(ω)− 2t) + ω2 +m1m2

}
,

V =
1

m2 −m1

{(
t2 + 1

)−1/2
m2(ϕ(ω)− 2tω)

−
(
t2 + 1

)−1 (ψ(ω) + tωϕ(ω)− 2t) + ω2 +m1m2

}
, ω =

(
t2 + 1

)−1/2
x, (31)
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which reduces system (6) the ODEs system

ϕ̈+ ϕϕ̇+ ψ̇ = 0,

ψ̈ + ψϕ̇ = ω(ωϕ̇+ ϕ). (32)

Having solutions of the ODEs systems (26), (28), (30), (32) and using the relevant ansätze
one easily constructs solutions of the original nonlinear DC system (6). For example, a particular
solution of system (28) leads to the following exact solution of system (6):

U =
1

m1 −m2

(
x2 − 2m1tx− 4t

t2 + 1
+

12
x2

+
6m1

x
+m1m2

)
,

V =
1

m2 −m1

(
x2 − 2m2tx− 4t

t2 + 1
+

12
x2

+
6m2

x
+m1m2

)
. (33)

By means of the known technique (see for details [11, 15]) for the continuous transformations
generated by the basic operators (7), solution (33) can be multiplied to a five-parameter family
of solutions. Such multiplication is possible for any given solution of system (6). In particular
case, using transformations generated by the Galilei operator G0

x, any time-independent (sta-
tionary) solution (U0(x), V0(x)) is converted to the following one-parameter family of solutions
of system (6)

U = U0(x+ εt)− ε
U0(x+ εt) + V0(x+ εt) + 2m1

m2 −m1
,

V = V0(x+ εt) + ε
U0(x+ εt) + V0(x+ εt) + 2m2

m2 −m1
, (34)

where ε is an arbitrary real parameter.

Let us apply the Q-conditional symmetry operators for the construction of ansätze and exact
solutions of system (6). It follows from Theorem 5 that system (6) for m1 �= m2 is Q-conditional
invariant with respect to the operator

Q = ∂t +
U + V

2
∂x −

1
4

{
(U + V )2(U +m1)∂U

+ (U + V )2(V +m2)∂V − (m1 −m2)
(
U2∂U − V 2∂V

) }
. (35)

To construct the relevant solutions of system (6), it is necessary to integrate the Lagrange system

dt

−4
=

dx

−2(U + V )
=

dU

(U +m1)(U + V )2 + (m2 −m1)U2

=
dV

(V +m2)(U + V )2 + (m1 −m2)V 2
. (36)

In contrast to the analogous systems for Lie operators (24), system (36) is nonlinear with respect
to the unknown functions U and V , therefore there is a problem to construct its general solution.
It turns out that this system can be essentially simplified by the substitution

t = t, x = x, w = U + V, z =
m1 −m2

2

(
U + V

U − V
− m1 +m2

m1 −m2

)
. (37)

Indeed, the relevant calculations show that system (36) takes the form

dt

−4
=

dx

−2w
=

dw

w2(w − 2z)
=

dz

w (z2 −m1m2)
. (38)



Nonlinear Diffusion-Convection Systems 109

The first integrals J1, J2, J3 of system (38) depend on the sign of the term m1m2, i.e., there
are three different cases: m1m2 = 0, m1m2 > 0 and m1m2 < 0. Considering the first of them
(other two cases see in [16]), we obtain

J1 = t+
4
wz

− 2
z2
, J2 = x− 2

z
, J3 =

3
wz2

− 1
z3
. (39)

Thus, we construct the non-Lie ansatz (6)

J1 = ϕ(J2), J3 = ψ(J2), (40)

being ϕ and ψ new unknown functions, for finding solutions of the original nonlinear DC sys-
tem (6). Substituting ansatz (40) into (6) in the case m2 = 0, m1 = 1 (this system for m1 �= 1
is reduced to the same with m1 = 1 by the substitution t → m−2

1 t, x → m−1
1 x, U → m1U ,

V → m1V ), we arrive at the ODEs system

ϕ̈+ 1 = 0,

4ψ̈ + ϕ̇ = 0. (41)

Since (41) is the linear system, its general solution can be easily found. Thus, substituting
one into ansatz (39), (40), we obtain the two-parameter family of solutions of system (6) with
m2 = 0, m1 = 1:

U =
2
3x

3 + 2x2 + 4C1(x+ 2) + 4(C2 − t)
W

, V =
4(t− C2)− 2x2

W
, (42)

where W = 1
12x

4 + t2 + C1(x2 − 2t) + 2C2x and C1, C2 are arbitrary parameters.
Some other non-Lie ansätze and exact solutions are presented in [16].

5 Conclusions

In this paper, Theorem 1 is presented that gives a complete description of Lie symmetries of
the nonlinear diffusion-convection system (1) for λ1 �= λ2, λ1λ2 �= 0. In contrast to reaction-
diffusion systems (a complete description of Lie symmetries of those systems was done in [13]),
we have established only four non-equivalent cases when system (1) is invariant with respect to
the non-trivial Lie algebras. Obviously, the nonlinear fixed terms UUx and V Vx (see (1)) play a
role of the strong restrictions of Lie symmetry for system (1).

The nonlinear DC system (6) with unique symmetry properties has been also found. This
system is invariant under the generalized Galilei algebras AG0

2(1, 1) in the case m1 �= m2 and
AG2(1, 1) in the case m1 = m2 (see Theorem 3). On the other hand, system (6) admits the
operators of Q-conditional symmetry with the cubic nonlinearities on the dependent variables U
and V (see Theorem 5). To our knowledge, such operators for system of nonlinear evolution
equations are found for the first time. Analogous operators were found before for single reaction-
diffusion equations [17, 15, 18] and single reaction-diffusion-convection equations [10]. Finally,
it should be stressed that the process of reduction of (6) is very non-trivial if one uses the
Q-conditional symmetry operators (18), (20)–(21). However, the relevant reduction leads to very
simple ODEs systems (see, for example, (41) that were easily solved therefore exact solutions of
the nonlinear DC system (6) were obtained.
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Consider the spatially one-dimensional time dependent system of equations, obtained by Sa-
vage and Hutter, which describes the gravity-driven free surface flow of granular avalanches.
All the similarity solutions of this system are found by means of the group analysis. The
results of computing experiments are reduced and their physical treatment is considered.

1 Introduction

The most general non-dimensional form of the Savage–Hutter theory, which includes both the [1]
and [2] formulations, can be obtained by reducing the theory of Gray et al. [3] to one-dimension.
The time-dependent depth integrated mass and downslope momentum balance equations are

∂h

∂t
+
∂Q

∂x
= 0, (1)

∂Q

∂t
+

∂

∂x

(
Q2h−1

)
+

∂

∂x

(
βh2/2

)
= hs, (2)

where h is the avalanche thickness, Q is the depth averaged downslope volume flux and x is the
curvilinear downslope coordinate. The source term s on the right-hand side of (2) is composed
of the downslope component of gravitational acceleration, the Coulomb sliding friction with
basal angle of friction δ and gradients of the basal topography height, b, above the curvilinear
coordinate system. It takes the form

s = sin ζ −Q|Q|−1 tan δ
(
cos ζ + λκQ2h−2

)
− ε cos ζ

∂b

∂x
, (3)

where ζ is inclination angle of the curvilinear coordinate to the horizontal and κ = −∂ζ/∂x
is the curvature. In a typical avalanche the thickness magnitude H∗ is much smaller than
its length L∗, which is reflected in the small non-dimensional parameter ε = H∗/L∗. The
shallowness assumption also requires that typical avalanche lengths are shorter than the radius
of curvature R∗ of the curvilinear coordinate, which introduces the second non-dimensional
parameter λ = L∗/R∗. The function

β = εK cos ζ, (4)

where the earth pressure coefficient K was proposed to take two limiting states Kact and Kpas

associated with extensive (∂u/∂x ≥ 0) and compressive (∂u/∂x < 0) motions, respectively.
Savage & Hutter [1] showed that

Kact/pas = 2 sec2 φ
(

1∓
{

1− cos2 φ sec2 δ
}1/2

)
− 1, (5)

where φ is the internal angle of friction of the granular material.



112 V. Chugunov, J.M.N.T. Gray and K. Hutter

Recent experiments suggest that the jump in K at ∂u/∂x = 0 is unrealistic and that a slowly
varying function or a constant earth pressure coefficient is more realistic. In this paper it is
therefore assumed that K is constant. It shall also be assumed that the slope is flat, b ≡ 0,
and inclined at a constant angle ζ to the horizontal. This implies that the curvature κ = 0 and
that β is constant. In addition placing the restriction that the volume flux Q > 0 implies that
the source term s = s0 is also constant.

Three exact solutions to the system of equations (1)–(2) are currently known. These are the
parabolic cap similarity solution and the ‘M’-wave solutions, derived by Savage & Hutter [1],
and the travelling shock wave solution [4] on a non-accelerative slope. In this paper we seek to
find further simple solutions of physical interest.

2 Results of the group analysis
and construction of the invariant solutions

Consider a moving coordinate system

η = x− s0t
2/2. (6)

The relative flux Q̂ in the moving coordinate system is then given by

Q̂ = Q− hs0t. (7)

In the new variable the system (1), (2) may be written in the form

∂h

∂t
+
∂Q̂

∂η
= 0, (8)

∂Q̂

∂t
+
∂

(
Q̂2h−1

)
∂η

= −
∂

(
0.5βh2

)
∂η

. (9)

If to introduce the relative rate û by the relation û = Q̂/h then the system (8), (9) takes the
form

∂h

∂t
+
∂ûh

∂η
= 0, (10)

∂û

∂t
+ û

∂û

∂η
+ β

∂h

∂η
= 0. (11)

These equations coincide with the shallow-water equations considered by Ibragimov [5]. The
system (10), (11) admits the symmetry Lie algebra L5

⊕
L∞ [6]. Used this algebra and the

relation û = Q̂/h we find the following basis of Lie algebra for (8), (9)

X1 =
∂

∂t
, X2 =

∂

∂η
, X3 = t

∂

∂t
+ η

∂

∂η
, X4 = η

∂

∂η
+ 2h

∂

∂h
+ 3Q̂

∂

∂Q̂
,

X5 = t
∂

∂η
+ h

∂

∂Q̂
, X∞ = Z(û, h)

∂

∂η
+ T (û, h)

∂

∂t
,

where the functions Z(û, h), T (û, h) are defined by the linear equations

Zû − ûTû + hTh = 0, Zh − ûTh + βTû = 0.
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Here û = Q̂/h. In this paper we will consider only the invariant solutions with respect to the
stretching transformations of η and t. Evidently, the stretching transformations of η and t are
generated by the infinitesimal operator (or generator) X ∈ L5

X = (µ− 1)X3 +X4. (12)

Any invariant function f solves the partial differential equation Xf = 0 [7]. Therefore the basis
of invariants is furnished by

J1 = ηt−µ/(µ−1), J2 = ht−2/(µ−1), J3 = Q̂t−3/(µ−1), µ �= 1,

J1 = t, J2 = hη−2, J3 = Q̂η−3, µ = 1.

Consequently, the invariant solution of the system (8), (9) with respect to the group, generated
by (12), are defined in the form

h = η2F (t), Q̂ = η3Φ(t), µ = 1, (13)

where the functions F (t) and Φ(t) are found by the equations

Φ̇ + 4Φ2F−1 + 2βF 2 = 0, Ḟ + 3Φ = 0, (14)

where the dot denotes differentiation with respect to t, and

h = t2/(µ−1)f(z), Q̂ = t3/(µ−1)q(z), µ �= 1, (15)

where z = J1 = ηt−µ/(µ−1), and the functions f(z), q(z) satisfy the following system

3
µ− 1

q − µ

µ− 1
q′z +

(
q2f−1 + 0.5βf2

)′ = 0, (16)

2
µ− 1

f − µ

µ− 1
zf ′ + q′ = 0. (17)

Here, the stroke denotes differentiation with respect to z. Note that the system (16), (17),
and (14) represent ordinary differential equations, and the relative velocity û = ηΦ(t)/F (t) for
µ = 1 and û = t1/(µ−1)q(z)/f(z) for µ �= 1.

3 Qualitative analysis of the family of the self-similar solution

3.1 The case µ = 1

The system (14) may be solved exactly. It easy to obtain

±t =



3a
2b3/2

ln
[(

θ + 1
θ0 + 1

)(
θ0 − 1
θ − 1

)]
− 3√

b

(
θ

F 1/3
− θ0

F
1/3
0

)
, b > 0,

2√
a

(
F
−1/2
0 − F−1/2

)
, b = 0,

3a
(−b)3/2

(
tan−1 ψ − tan−1 ψ0

)
+

3√
−b

(
ψ

F 1/3
− ψ0

F
1/3
0

)
, b < 0,

(18)

where a = 36β > 0, θ =
((
aF 1/3 + b

)
/b

)1/2
and ψ =

((
aF 1/3 + b

)
/(−b)

)1/2
, and θ0 and ψ0 are

the same functions evaluated at F = F0; b, F0 are the constants of integration. For µ = 1 the
exact solution of equations (1) and (2) is of the form

h =
(
x− s0t

2/2
)2
F (t), Q = hs0t+

(
x− s0t

2/2
)3 Φ(t). (19)
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where Φ(t) = −Ḟ (t)/3, and F is defined by (18). Evidently, the function F (t) has a growing
and decaying branch corresponding to the positive and negative roots in (18). The growing
branches are particularly interesting as they imply that the avalanche thickness can increase
without bound within a finite period of time for all choices of the parameter b. In the case b < 0
the solution degenerates for F < F ∗ = (−b/a)3.

3.2 The case µ = −2

Equation (17) can be integrated directly when µ = −2 to give

q = 2fz/3 + c1, (20)

where c1 is an arbitrary constant. Substituting the volume flux from (20) the momentum
balance (16) reduces to

f ′ = f2(c1/3− 2zf/9)
(
c21 − βf3

)−1
. (21)

In the case c1 = 0 equation (21) can be integrated to give

f(z) = (9β)−1z2 + c2, (22)

where c2 is an arbitrary constant. The exact solution of (1), (2) in this case is

h = t−2/3
[
(9β)−1

(
x− s0t

2/2
)2
t−4/3 + c2

]
, (23)

Q = hs0t+ 2t−1
[
(9β)−1

(
x− s0t

2/2
)3
t−2 + c2

(
x− s0t

2/2
)
t−2/3

]
/3. (24)

Let us now consider more general solutions for the case µ = −2 when c1 �= 0 in equation (21).
It is convenient to introduce new variables y, p and ζ for f , q and z by the scalings

f = c1y(c1β)−1/3, q = c1p, z = 3(c1β)1/3ζ, (25)

which transform (21) into a parameter independent form

∂y

∂ζ
= y2(1− 2ζy)

(
1− y3

)−1
. (26)

The avalanche thickness is non-negative and we therefore restrict attention to the domain y ≥ 0,
−∞ < ζ < ∞. The solutions of equation (26) are illustrated in Fig. 1. On the line y = 1, the
gradient ∂y/∂ζ → ±∞ for all points except one, where 1 − 2ζy = 0. Consequently, the point
ζ = 1/2, y = 1 is a singular point. The asymptotic behaviour of the solution in the vicinity of
the line y = 1 is described by formula, which can be obtain from (26),

y = 1±
√

2[(ζ − ζ0)(ζ + ζ0 − 1)]/3, ζ → ζ0, y → 1. (27)

If ζ0 = 1/2 then

y = 1±
√

2/3 (ζ − 1/2), ζ → 1/2, y → 1. (28)

The singular point (1/2, 1) is a saddle point. On the line y = 1/(2ζ) the gradient ∂y/∂ζ = 0.
Therefore, in the points of this line the function y(ζ) assumes an extremum. In the region y < 1
y(ζ) has maximum and when y > 1, y(ζ) has a minimum. When ζ → ±∞, two asymptotic
formulas emerge, first

ζ →∞, y → 1/ζ; ζ → −∞, y → −1/(2ζ) (29)
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y p
y

ζ ζ

Figure 1. Four classes of asymmetric thickness, y, and velocity, p/y, solutions are illustrated as
a function of ζ and labelled I–IV. The seperatrix between the solution domains is indicated with the
dot-dash curve and the dashed line indicates where the first derivative of the thickness ∂y/∂ζ = 0. There
are no solutions in the hashed region.

for the region y > 1, and second

ζ → ±∞, y → ζ2, (30)

for the region y < 1.
The curves, which pass through the singular point (1/2, 1), divide the domain into the four

parts. Each part has its own family of solutions of (26), which are denoted by I, II, III,
IV (see Fig. 1). The families I–IV together with relations (6), (7), (15), (20), (25) define the
various solutions of the system (1), (2). From a physical point of view family I is interesting for
the motion of avalanches. Using this family we can construct the solution for various concrete
situations.

Let us write the considered invariant solution for µ = −2 and c1 �= 0 in the form

h(x, t) = (t+ t0)−2/3 c1

(c1β)1/3
y

[
x− 0.5s0(t+ t0)2

3(c1β)1/3(t+ t0)2/3

]
, (31)

Q(x, t) = hs0(t+ t0) + (t+ t0)−1[c1 + 2(x− 0.5s0(t+ t0)2)h(x, t)/3], (32)

where y(ζ) ∈ I, II, III, IV and t0, c1 are arbitrary constants.

4 Results of the calculations, physical interpretation

4.1 Example 1. M-waves

The solutions (23), (24) was found using a separable variable approach by Savage & Hutter [1],
who called it an “M”-wave. The name arose from the shape of a truncated solution

h(z, t) =
{
t−2/3f(z), |z| ≤ 1,
0, |z| > 1,

(33)

which connected a finite part of the solution (22) with regions of zero thickness and flux on
either side. At z = ±1 there are jump discontinuities in both the thickness and the flux, which
should satisfy the mass and momentum jump conditions. They are obtained from the system
(1), (2)

x′j [[h]]− [[Q]] = 0, x′j [[Q]]− [[Q2h−1 + βh2/2]] = 0, (34)
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where xj is the position and x′j is the normal velocity of the discontinuity, the jump bracket
[[f ]] = f+ − f− and f± = f(xj ± 0). As we shall now show this is not the case. Assuming
that on the positive side of the discontinuity h+ �= 0 and Q+ �= 0 and that on the negative side
h− = Q− = 0 the jump conditions 34 imply

x′jh
+ −Q+ = 0, x′jQ

+ − (Q+)2/h+ − β(h+)2/2 = 0. (35)

Mass balance therefore requires that x′j = Q+/h+ and if this is substituted in the momentum
jump condition we find that h+ = 0 contradicting our original assumption that h+ �= 0. The
jump conditions are therefore not satisfied by the truncated M-wave solution (33), and expansion
fans develop at the jumps.

a)

h

b)

h

c)

h

η η η

Figure 2. The temporal and spatial evolution of the avalanche thickness for the cases (a) β = 1.0,
(b) β = 0.12 and (c) β = 0.1 are illustrated. The constant c2 = 1 − (9β)−1 to ensure that h(±1) = 1.
The solid line shows the computed solution in the accelerating coordinate system η and the dot-dash line
shows the exact solution. Time is measured relative to initial conditions and the M-wave is evaluated at
a finite time t0 = 1.

To understand the collapse of the truncated M-wave in greater detail a series of numerical sim-
ulations have been performed using a Total Variational Diminishing Lax Friedrich’s scheme [4].
This is a shock capturing method that has been extensively tested against the parabolic cap
solution and the travelling shock solution. Fig. 2 shows the M-wave (33) and the numerical
solutions for the avalanche thickness for various β at a sequence of time-steps in the accelerated
coordinate system, η. The constant c2 = 1− (9β)−1 to ensure that h(±1) = 1. In each case the
M-wave spreads out laterally, diminishing in height, and close to the discontinuities the shock
expands as expected. The overlap domain, where the M-wave (33) and the computed solution
are in close agreement, can either expand or contract in the physical domain. For β = 1 the
overlap region decreases with time and the M-wave is destroyed in finite time. However, for
thin avalanches where the aspect ratio ε 	 1, and hence β 	 1, the overlap domain expands
in the physical domain despite the collapse close to the discontinuities. This is because the
stretching of the solution is faster than the inward propagation speed of the disturbance from
the discontinuities.

For c2 < 0 the M-wave solution (33) contains regions of negative thickness. In this case the
M-wave can be linked to the trivial solution h ≡ 0 using the jump conditions (34). This time,
however, because the thicknesses and fluxes are zero on both sides of the discontinuity, the jump
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conditions are trivially satisfied. Case (c) in Fig. 2 shows the evolution of such an M-wave for
the case β = 0.1.

These numerical simulations demonstrate that for shallow avalanches, in which β 	 1, the
invariant stretching solutions may exist over an expanding region in the physical domain even
though they may not satisfy boundary conditions at the ends.

4.2 Example 2. Evolution of the wave

Let us consider a second example: it assumes that the initial instant the avalanche thickness
distribution is described by the formula

h0 =
s0

2βx0

(
H0

3

)2

y

(
x− x0

H0

)
, (36)

where H0, x0 are know the parameters and the function y(ζ) is one of the family I (Fig. 3). This
profile has a maximum at x = xmax. For example, y(ζ) is a function which has the maximum in
the point ζmax = 1 (ymax = 0.5). Therefore, xmax = x0 +H0 and h0 max = s0H

2
0/(16βx0). h0max

is the initial amplitude of the wave. The mathematical model for this problem is the Cauchy
problem for the system (1), (2) with the initial condition (36).

The solution of this problem is described by the formulas (31), (32) with the constants c1,
t0 and function y(ζ) which are defined by comparison of expression (31) with (36) at t = 0.
Fig. 3 a) shows the evolution of the wave with time; the calculations were performed with the
following values of the parameters: ζ = 45o, δ = 30o, s0 = 0.2989, β = 0.1, x0 = 0.1, H0 = 1.
Fig. 3 b) displays the corresponding behaviour of the mass flux.

Figure 3. Evolution of the wave a) and the mass flux b) for (31), (32) (1− t = 0, 2− t = 2, 3− t = 5,
4− t = 10).

4.3 Example 3. Evolution of the wave during the “time of the life”

Let us consider the situation when the initial wave begins to grow and moves contrary to the
downslope direction. It is possible when the initial profile of the thickness is described by the
expression

h0 = AY

(
x− x0

λ0

)
, Y (ζ) =

1
ymax

y(ζ), y ∈ I, (37)

where A is an amplitude, λ0 is a length of the wave, x0 is a parameter, and the mass flux is
Q∞ = −q∞(t0 − t)−1 < 0 in the right side of the wave when x → ∞, and Q−∞ = 0 when
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x → −∞. In order to construct the solution for this situation we again take the invariant
solution (31), (32). It is easy to check that the system (1), (2) admits the transformations

Q = −Q̄, h = h̄, t = −t̄, x = x̄; (38)
Q = Q̄, h = h̄, t = t̄+ t0, x = x̄. (39)

Consequently, the any solution of the equations (1), (2) which was transformed by the (38), (39)
again is a solution of the system (1), (2). Therefore from (31), (32) we have

h(x, t) = (t0 − t)−2/3 c1

(c1β)1/3
y

(
x− x̂0(t)
λ(t)

)
,

Q(x, t) = −h(x, t)
[
s0(t0 − t) + (t0 − t)−1

(
c1

h(x, t)
+

2
3

(x− x̂0)
)]

, (40)

where x̄0(t) = 0.5s0(t0 − t)2, λ(t) = 3(c1β)1/3(t0 − t)2/3, y ∈ I.
The boundary condition Q∞ = −q∞(t0 − t)−1 define c1: c1 = 1

3q∞. Comparing the first
expression of (40) with (37), we find

ymax =
Aλ0

q∞
< 1, t0 =

1
3

√
λ3

0

q∞β
, ζmax =

1
2ymax

, x0 = 0.5s0t20. (41)

The time t0 can be named “Time of the life of the wave”, because for t > t0 the wave does not
exist. The physical meaning is clear. In the infinity we have the mass sources. The mass of the
avalanche grow and moves contrary to the downslope direction. But we have on the basal surface
the contrary flux that produces the wave which grows. The increase of the mass increases the
capacity of the avalanche to move to the downslope direction. But the power of the mass flux
growed too. The struggle of these factors causes the infinite increase of the amplitude of the
wave. The law of the motion of the wave is obtained from (40)

xmax(t) = 0.5s0(t0 − t)2 + 3ζmax

(
βq∞

3

)1/3

(t0 − t)2/3.

The numerical results are obtained for following values of parameters: s0 = 0.2989, A = 0.083,
β = 0.1, λ0 = 1, q∞ = 0.166 and are illustrated by the Fig. 4. From (41) we found ymax = 0.5,
t0 = 2.587, x0 = 1.

Figure 4. Behaviour of thickness a) and the mass flux b) during the “time of the life”.

4.4 Example 4 (µ = 2 in the general system (16), (17))

Let us consider the situation which is characterised by µ = 2. This situation is interesting,
because it allows us to model realistic case for the avalanches. For example, let us assume that
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Figure 5. Dynamics of the thickness of the avalanche for s0 = 0.2989, h0 = 0.01 (1− t = 0, 2− t = 5,
3− t = 10, 4− t = 15).

at the initial time the thickness of the avalanche is zero in the region x > 0 (there is a wall
at point x = 0). The large mass of the granular material is in the region x < 0. When t > 0
the screen is lifted and suddenly removed, such that the thickness of the orifice is h0t

2. It is
necessary to describe the evolution of free boundary of the avalanche for x > 0. For this purpose
we take the solution (15) where µ = 2

h = t2f(z), Q̂ = t3q(z), z =
(
x− 0.5s0t2

)
t−2. (42)

The expression for z from (42) can be written in the form

z = xt−2 − 0.5s0.

The latter relation shows that the region z ≤ −0.5s0 corresponds to the domain x ≤ 0. Now, in
order to resolve the problem we must find the solution of the system (16), (17) when µ = 2 and
with the boundary conditions

z = −0.5s0, f = h0, (43)
f = 0, q = 0. (44)

Fig. 5 illustrates the dynamics of the thickness of the avalanche for s0 = 0.2989, h0 = 0.01.
Curve 1 corresponds to the moment t = 3; curve 2 is for t = 5; and curves 3, 4 are for t = 10,
t = 15.
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The presence of a (Lie-point) symmetry for a differential equation leads naturally to the
useful notions of symmetric sets of solutions, i.e. of sets which are mapped into themselves
by the symmetry, and of orbits of solutions. We introduce the definition of partial sym-
metry, and show that the above notions may be preserved, although the symmetry is not
exact. We consider the quite exceptional case of the Liouville equation, which admits an
extremely large algebra of symmetries (the conformal symmetry algebra), and we shall see
that any modification of this equation destroys this situation, but leaves the possibility of
the existence of partial symmetries. Other simple examples are also considered, including
a case of generalized (or Lie–Bäcklund) symmetry.

1 Introduction

It is certainly well known that symmetry principles may offer several useful tools and many
different implications in the analysis of differential equations (see, e.g., [1–10] and references
therein), but probably the most obvious and direct consequence is the fact that any symmetry
of a given equation transforms solutions into (generally, different) solutions of the same equation.
In other words, given a differential equation, say ∆ = 0, with a set of solutions S∆, a symmetry T
of this equation is an invertible transformation such that T (S∆) = S∆; in this sense, we can say
that S∆ is a symmetric set of solutions under T .

For the sake of concreteness and simplicity, we will be concerned here only with the case of
partial differential equations, written in the usual form [3]

∆:= ∆
(
x, u(m)

)
= 0, (1)

where ∆ is a smooth function (or possibly a system of � functions) of the p “independent”
variables x := (x1, . . . , xp) ∈ Rp and of the q “dependent” variables u := (u1, . . . , uq) ∈ Rq,
together with the derivatives of the uα with respect to the xi (α = 1, . . . , q; i = 1, . . . , p) up to
some order m. Also, we will consider here mainly continuous Lie-point symmetries, in the usual
sense and under the usual assumptions (see [3]), although our arguments (in Section 3) could
be easily extended e.g. to generalized or Lie–Bäcklund symmetries (as we will briefly show by
means of an example in Section 4), or also to discrete symmetries. Denoting by

X = ξi(x, u)
∂

∂xi
+ ϕα(x, u)

∂

∂uα
(2)

the infinitesimal Lie generator of a symmetry of the given problem (1), we can also say that S∆

is a symmetric set under X.
A strictly related fact to the presence of a symmetry, is that, given any solution u0 of ∆ = 0,

then there is an orbit u[λ] of solutions obtained under the application to u0 of the (finite)
transformations T = T [λ] = exp(λX) generated by X (here λ is the real Lie parameter, and –
as usual – we have generally only a local group of transformations T [λ], i.e. λ runs only in some
interval.) Clearly, orbits provide examples of symmetric sets of solutions under X. Apart from
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the trivial case of solutions u0 invariant under T , any orbit u[λ] can be naturally parametrized
by the Lie parameter λ, and satisfies the differential equation (in “evolutionary form” [3])

Qu[λ] =
du[λ]

dλ
, (3)

where

Q = −ξi(x, u)
∂

∂xi
+ ϕα(x, u)

∂

∂ua
. (4)

Many examples of this situation are well known. In Section 2, we shall consider a rather
exceptional case, which is provided by the Liouville equation (both in the “Galilean” or in
the “Minkowski” case, see below (5), (6)), which has an enormous relevance in mathematical
physics, and which exhibits the quite singular and peculiar (i.e., unique in its class) property of
admitting an extremely large algebra of symmetries, the conformal symmetry algebra.

However, the case of Liouville equation is certainly exceptional. In fact, the examples of
PDE’s admitting nontrivial symmetries (Lie-point or generalized) are relatively rare. Therefore,
one is urged to extend the concept of symmetry. Notions of conditional, nonclassical or similar
notions of symmetries are also well known (see e.g. [2, 6, 11, 12, 13, 14, 15]). In Section 3, we
shall introduce the notion of partial symmetry (see [16]), which is in some sense intermediate
between that of exact and of conditional symmetry; we shall show in particular the existence
also in this case, although the partial symmetry T is not exact, of proper subsets P ⊂ S∆ of
solutions of the given equation, which are symmetric sets, i.e. such that T (P) = P, meaning
that P is a subset of solutions which are transformed into one another by T . Similarly, the notion
of orbit of solutions under the partial symmetry T remains valid, together with its characteristic
property expressed by equations (3), (4).

2 The symmetry properties of the Liouville equation

The equation

uxx + uyy = exp(u), u = u(x, y) (5)

has a long history. It was introduced by Liouville, studied by Poincaré, Picard, and many
others in the past, and reconsidered in recent years. Actually, it enters in many areas of applied
mathematics and physics, including fluid vortex theory, problems concerning electric charge
distribution round a glowing wire, surface singularities, instantons and solitons theory, whereas
the recent interest is concerned mainly with (2 + 1)-dimensional quantum gravity (see e.g. [17,
18, 19]). The modern applications in classical and quantum field theory deal not only with the
“Galilean” version of the Liouville equation (5), but also with its “Minkowski” form

uxx − uyy = exp(u) (6)

but, for simplicity, we will consider only the equation (5) (actually, all our conclusions can be
suitably extended to the case (6)).

We start considering, instead of (5), the following general equation

uxx + uyy = F (u), (7)

where F = F (u) is a (smooth) function, and perform the “group theoretical analysis” of this
equation, i.e. look for its Lie-point symmetries depending on the choice of F (u) (we can exclude
the completely elementary case of “linear” F = a+ bu). According to standard and well known
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procedures [3], one can easily see that, in addition to the obvious translation and rotation
symmetries, and apart from the special case

F (u) = (u+ k)1+r, r, k = const, r �= 0

admitting the symmetry

X =
r

2

(
x
∂

∂x
+ y

∂

∂y

)
− (u+ k)

∂

∂u

the unique case admitting an “interesting” symmetry is just

uxx + uyy = ± exp(±u) (8)

which exhibits the following family of symmetries

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ ϕ(x, y)

∂

∂u
, (9)

where the coefficients ξ(x, y), η(x, y) must satisfy

ξx = ηy, ξy = −ηx (10)

which imply that

∆ξ = 0, ∆η = 0 (11)

(in other words, ξ and η must be harmonic conjugated functions), and where ϕ is given by

ϕ = −(ξx + ηy) = −2ξx. (12)

We shall then say that (8) admits “full conformal symmetry”. This result may be in some sense
reversed and strengthened in the following form (the proof can be obtained by means of direct
calculations)

Proposition 1. A PDE for the function u = u(x, y) of the form ∆:= ∆(u, uxx, uyy) = 0 admits
full conformal symmetry if and only if ∆ depends on u, uxx, uyy only through the combination
ũ := (uxx + uyy) exp(±u).

Starting from any solution of the Liouville equation, and using its symmetries, one can
write down many different orbits of solutions. Precisely, let u0 = u(x0, y0) be any solution,
expressed in terms of the “initial” variables denoted here for convenience by x0, y0; let us
perform a conformal (finite) transformation into the new variables x = x(λ), y = y(λ), with the
infinitesimal generators defined by the harmonic conjugated functions ξ, η, i.e. a transformation
satisfying

∂x

∂λ
= ξ(x, y),

∂y

∂λ
= η(x, y) (13)

with the “initial conditions”

x(0) = x0, y(0) = y0. (14)

Let us denote by

x0 → x ≡ x(λ) = p(x0, y0, λ), y0 → y ≡ y(λ) = q(x0, y0, λ) (15)
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this transformation, and by

x0 = P
(
x(λ), y(λ), λ

)
, y0 = Q

(
x(λ), y(λ), λ

)
(16)

its inverse, then the orbit of new solutions is given by

u[λ] := u0

(
P (x(λ), y(λ), λ), Q(x(λ), y(λ), λ)

)
+ w(x, y;λ), (17)

where

w(x, y;λ) = −
∫ λ

0

(
ξx

(
P (x(λ′), y(λ′), λ′), Q(x(λ′), y(λ′), λ′)

)
+ ηy

(
. . .

))
dλ′

= − ln(∇P · ∇P ) = ln(∇Q · ∇Q). (18)

For instance, an orbit of solutions to the Liouville equation is the following

u[λ]) = − ln

((
1 + 2λx+ λ2

(
x2 + y2

))2

2
sin2

(
x+ λ

(
x2 + y2

)
1 + 2λx+ λ2 (x2 + y2)

))
.

It has been obtained from (18) choosing in (9) ξ = x2 − y2, η = 2xy and starting from a
known solution to the Liouville equation (which can be recognized putting λ = 0 in the above
expression).

3 Partial symmetries

Let us consider a general differential problem, given in the form of a system of � partial differential
equations, and shortly denoted, as usual, as in (1). Let

X = ξi(x, y)
∂

∂xi
+ ϕα(x, y)

∂

∂uα
(19)

be a given vector field, where ξi and ϕα are respectively p and q smooth functions. We will shortly
denote by X∗ the “suitable” prolongation of X, i.e. the prolongation which is needed when one
has to consider its application to the differential problem in consideration. Alternatively, we
may consider X∗ as the infinite prolongation of X, it is clear indeed that only a finite number
of terms are required and will appear in all the actual computations. The vector field X is (the
Lie generator of) an exact symmetry of the differential problem (1) if and only if

X∗∆
∣∣∣
∆=0

= 0, (20)

i.e. if and only if the prolongation X∗ (here obviously, X∗ = pr(m)(X), the m-th prolongation
of X), applied to the differential operator ∆ defined by (1) vanishes once restricted to the set
S(0) := S∆ of the solutions to the problem ∆ = 0.

We now assume that the vector field X is not a symmetry of (1), hence X∗∆
∣∣∣
S(0)

�= 0: let us
then put

∆(1) := X∗∆. (21)

This defines a differential operator ∆(1), of order m′ not greater than the order m of the initial
operator ∆. Assume now that the set of the simultaneous solutions of the two problems ∆ = 0
and ∆(1) = 0 is not empty, and let us denote by S(1) the set of these solutions. It can happen
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that this set is mapped into itself by the transformations generated by X: this situation is
characterized precisely by the property

X∗∆(1)
∣∣∣
S(1)

= 0.

Then, in this case, we can conclude that, although X is not a symmetry for the full problem (1),
it generates anyway a transformation which leaves globally invariant a family of solutions of (1):
this family is precisely S(1).

But it can also happen that X∗∆(1)|S(1) �= 0, we then put

∆(2) := X∗∆(1) (22)

and look for the solutions of the system

∆ = ∆(1) = ∆(2) = 0

and repeat the argument as before: if the set S(2) of the solutions of this system is not empty
and satisfies in addition the condition

X∗∆(2)
∣∣∣
S(2)

= 0

then X is a symmetry for the subset S(2) of solutions of the initial problem (1), exactly as before.
Clearly, the procedure can be iterated, and we can say:

Proposition 2. Given the general differential problem (1) and a vector field (19), define, with
∆(0) := ∆,

∆(r+1) := X∗∆(r). (23)

Denote by S(r) the set of the simultaneous solutions of the system

∆(0) = ∆(1) = · · · = ∆(r) = 0 (24)

and assume that there is an integer s such that S(r) is not empty for r ≤ s, and

X∗∆(r)
∣∣∣
S(r)

�= 0 for r = 0, 1, . . . , s− 1, (25)

X∗∆(s)
∣∣∣
S(s)

= 0. (26)

Then the set S(s) provides a family of solutions to the initial problem (1) which is mapped into
itself by the transformations generated by X.

It is clear that, given a differential problem and a vector field X, it can happen that the
above procedure gives no result, i.e. that at some k-th step the set S(k) turns out to be empty.
Assume instead that a nonempty subset S(s) of solutions has been found according to the above
procedure: we shall then say that X is a partial symmetry for the problem (1), and the subset of
solutions P := S(s) obtained in this way is globally invariant under X and therefore a symmetric
set.

Alternatively, one may also say that this vector field X is an exact symmetry for the system

∆ = 0,

∆(1) = 0, (27)
...

∆(s) = 0.
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It must be emphasized that the solutions in this set are, in general, not invariant under the
action of X: only the set S(s) is globally invariant, while the solutions are transformed into
one another under the X action. As in the case of exact symmetries, the set of solutions
in S(s) will be constituted by one or more orbits under the action of the one-parameter Lie
group T [λ] = exp(λX), and each family u[λ] satisfies the same differential equation (3), (4).
It may happen that the set S(s) contains also solutions u0 which are invariant under T [λ], i.e.
T [λ]u0 = u0, which can be considered as trivial orbits: if this is the case, then the partial
symmetry X is also a conditional symmetry (see [2, 12, 13]) for the problem at hand. In this
sense, we can say that partial symmetries extend the notion of conditional symmetries.

4 Partial symmetries and symmetric sets: examples

We will briefly propose here some quite simple examples of PDE’s admitting partial symmetries
and of symmetric sets of solutions under these symmetries. More elaborate examples, including
e.g. Boussinesq and Korteweg-de Vries equations, can be found in [16]. The idea can be suitably
extended also to ordinary differential equations and to dynamical systems, with an application
to Mel’nikov theory for the appearance of chaotic homoclinic (or heteroclinic) motion [20], or to
discrete symmetries as well [16].

Example 1. It has been shown in Section 2 that the 2-dimensional Laplace equation with
nonlinear additional terms F (u) admits quite exceptionally some symmetry; the same is true
in the presence of terms containing higher order derivatives. But partial symmetries may be
allowed. Consider e.g. equations of the form

uxx + uyy = G(u, uxm), (28)

where uxm stands for the m-th order derivative ∂mu/∂xm, m > 2, and with ∂G/∂uxm �= 0.
Now, the vector field

X = y
∂

∂x
− x

∂

∂y
(29)

generating rotations in the plane x, y is clearly not a symmetry for (28), but it is a partial
symmetry. Indeed, applying our procedure, one gets at the first step

X∗∆ = ∆(1) = m
∂G

∂uxm

∂mu

∂xm−1∂y
= 0. (30)

But applying the convenient prolongation X∗ to this equation, one obtains X∗(uxm−1y) �= 0
(indeed, (30) does not admit rotation symmetry), and therefore other steps are necessary in
order to reach the condition X∗∆(s) = 0, as requested by Proposition 2. One finds finally that
the symmetric set S(s) of solutions must satisfy, together with the initial equation (28), the
system of the m+ 1 equations

∂mu

∂xn∂ym−n
= 0, n = 0, . . . ,m

(i.e., all the m-th order derivatives must vanish). For instance, if G = G(uxxxx), the set S(s) has
the form

S(s) :=
{
u = A0 +

c

4
(
x2 + y2

)
+A1x+B1y

+A2

(
x2 − y2

)
+B2xy +A3

(
x3 − 3xy2

)
+B3

(
3x2y − y3

)}
,



126 G. Cicogna

where c = G(0), and it is easy to recognize that this set contains a set of rotationally invariant
solutions, and different families of orbits of solutions which are transformed into themselves
under rotations. The presence in this set of rotationally invariant solutions shows that the
rotation symmetry is in this example also a conditional symmetry for the equation (28), but
the notion of partial symmetry provides clearly a larger set of solutions. Let us emphasize that
it should be not sufficient to impose only the vanishing of the “symmetry breaking term” in
the initial equation (28), or only the first condition obtained above (30), i.e. one or both of the
conditions

∂mu

∂xm
= 0,

∂mu

∂xm−1∂y
= 0

indeed, a generic solution of these equations and of the initial one would be transformed by
rotations into a v(x, y) which is not a solution!

Example 2. As another example, consider vector fields of the form

X = ϕα(x)
∂

∂uα
. (31)

If this is an exact symmetry of some equation ∆ = 0, one has that — given any solution u0 of
this equation — then u0 + λϕ is also a solution. But if X is only a partial symmetry, then this
is true only for some special u0: this gives rise to a “partial linear superposition principle”. For
instance, for the equation

∆:= u2
x − u2

y − ux − 2uy − u+ x = 0 (32)

one can verify that the vector field

X = exp(−x− y)
∂

∂u
(33)

is a partial (not exact) symmetry, and in fact

u[λ](x, y) = x+ λ exp(−x− y)

is a symmetric set of solutions to (32). Notice that this set contains just a single orbit, and that
there are no invariant solutions under the above (33) in this set: this means that in this example
the partial symmetry X is not a conditional symmetry.

Example 3. Our final example deals with generalized (or Lie–Bäcklund) symmetries, and il-
lustrates that our method is also applicable to these symmetries. We consider an equation for
u = u(t, x) of the form (Burgers, Fisher, Fitzhugh–Nagumo equations are of this form)

ut = uxx +R(u, ux) (34)

and the generalized vector field

X = (uxx − 2u)
∂

∂u
. (35)

It has been shown by Zhdanov [21] that (35) is a conditional Bäcklund symmetry for equations
of the form (34) if and only if the nonlinear term R satisfies a special equation (see [21]). We
now choose

R = u2
x − u2
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which does not satisfy Zhdanov equation. However, repeating word for word our above proce-
dure, it can be seen that (35) is a partial Bäcklund symmetry for this equation, and in fact

u
[λ]
± = exp(t± x+ λ)

are two families of solutions to the above equation. As expected, no invariant solution under (35)
is contained in this set, and therefore (35) is not a conditional Bäcklund symmetry.
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An overview is given of the interplay between symmetries, singularities and integrability and
their uses in nonlinear problems arising in Mathematical Physics and Cosmology. A parti-
cularly important aspect is the role of nonlocal symmetries in deciding about integrability
of complex nonlinear problems which do not apparently admit solutions in closed form. The
need for a new approach to the evolution of symmetries themselves is also discussed.

1 Concepts of integrability

In all the areas of Mathematical Modelling which give rise to differential equations the modelling
process includes the solution of those differential equations, be they (systems of) ordinary differ-
ential equations or partial differential equations. If this be possible in some sense, the system of
differential equations is said to be integrable. (Note that we exclude numerical integration since
this requires merely the existence of a continuous solution and that property can even be found
in chaotic/turbulent systems.) A critical question is the meaning of “in some sense”. There are
four possible ways to prescribe integrability. They are

(i) the ability to display a nonlocal functional equation involving the dependent and indepen-
dent variables; this need not be explicit and, should the equation be implicit, the inversion
by means of the Implicit Function Theorem need be no more than local,

(ii) the existence of a number of functionally independent first integrals/invariants equal to
the order of the system in general and half that for a Lagrangian system as a consequence
of Liouville’s Theorem [1],

(iii) the existence of a sufficient number of Lie symmetries to reduce the differential equation
(or system; unless otherwise obviously the singular implies the plural) to an algebraic
equation and

(iv) the possession of the Painlevé Property.

These concepts are not entirely equivalent. In particular (iv) requires that the solution be
analytic or possess no more than algebraic branch points in the complex plane (planes for more
than one independent variable) and this is not demanded by (i), (ii) and (iii) although, of
course, the idea that a solution must be analytic to be considered as a solution has been with us
since the days of Poincaré. Even (i) and (ii) are not equivalent since it is not always possible to
eliminate nonlocally the derivatives from the functionally independent first integrals/invariants.
Case (iii) differs from (i) and (ii) since the final algebraic equation is in terms of the invariants of
the symmetries used in the reduction of order and the reversal of the process – on the assumption
that a nonlocal solution of the algebraic equation exists – requires a series of quadratures which
one may not be able to perform in closed form. In the case of Lagrangian systems the celebrated
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theorem of Noether [2] allows the identification of (ii) and (iii). The precise nature of the
relationship between (iii) and (iv) has yet to be revealed although some recent work points to
a subtler relation than previously expected [3–7].

2 Evolution of symmetry

When Lie introduced his ideas of symmetry based upon the geometry of infinitesimal transfor-
mations [8], the symmetries were naturally in the variables of the extended configuration space.
With his introduction of contact transformations [9] the variables of the transformation became
those of the extended phase space. For Lie both point and contact symmetries were seen in the
context of the geometry of a space of finite dimensions. The adoption of generalised symmetries
by Noether removed this constraint, particularly in the case of partial differential equations.
(The order of the equation for an ordinary differential equation provides an effective bound in
that case.) The inclusion of nonlocal symmetries was necessitated by the observation of the
so-called “hidden symmetries” in which “regular symmetries” seemed to appear from nowhere
on the lowering or raising of the order of an equation. To take a trivial example, in the change
of order

Y ′′′ = 0 ⇔ y′′ = 0; x = X, y = Y ′

the point symmetries

γ1 = x2∂x + xy∂y, Γ2 = X2∂X + 2XY ∂Y

of the latter and former equations respectively come from the nonlocal symmetries

Γ1 = X2∂X + 3
(
XY −

∫
Y dX

)
∂Y , γ2 = x2∂x + 2

(∫
ydx

)
∂y

of the former and latter respectively.
When one accepts the generality of form implied by a nonlocal symmetry, there is as little

need for the imputed esoterica of ‘hidden’ as there is to distinguish between geometrical and
dynamical symmetries in Mechanics.

A feature of the Lie symmetries of a differential equation is that they constitute an algebra,
a representation of a group, and the algebra is used to place a given differential equation in an
equivalence class. As a trivial example all scalar second order ordinary differential equations
have eight point symmetries with the algebra sl(3,R) and so belong to the equivalence class
of y′′ = 0. In the case of y′′ = 0 not all of those eight symmetries are required to specify it
completely. There is, as it were, an oversupply of symmetry for the specification just as there is
for the integrability, for, if we require the equation

y′′ = f(x, y, y′)

to possess the three symmetries, just three of the eight point symmetries constituting the ele-
ments of sl(3,R),

γ1 = ∂x, γ2 = ∂y, γ3 = x∂y,

the right hand side is constrained to be zero. Any scalar second order ordinary differential
equation is completely specified by three symmetries [11].

When Krause introduced the concept of a complete symmetry group [12], the vehicle for his
exposition was the Kepler problem with the equation of motion

r̈ +
µr̂

r2
= 0, r2 = x2 + y2 + z2 (1)
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which possesses the five Lie point symmetries

Γ1 = y∂z − z∂y, Γ2 = z∂x − x∂z, Γ3 = x∂y − y∂x,

Γ4 = ∂t, Γ5 = 3t∂t + 2r∂r

with the algebra A2⊕so(3). These five symmetries are insufficient to specify completely (1) and
Krause found it necessary to find the three nonlocal symmetries

Γ6 =
(∫

xdt
)
∂t + xr∂r, Γ7 =

(∫
y dt

)
∂t + yr∂r, Γ8 =

(∫
z dt

)
∂t + zr∂r,

a type of generalised conformal symmetry, to complete the task. Subsequently Nucci [13] ob-
tained these nonlocal symmetries by standard local methods. Nucci and Leach [14] added an
additional six nonlocal symmetries obtained by means of a reduction for the Kepler Problem
based on the Ermanno–Bernoulli components of the Laplace–Runge–Lenz vector and showed
that similar results were obtained for other systems possessing a conserved vector analogous to
the Laplace–Runge–Lenz vector.

In the gradual evolution of the concept of a symmetry – a process of over a century – there
have been both gains and losses. The gains have included an increased variety of systems that can
be integrated using symmetries and a greater understanding of the rôle played by symmetry in
integrability. For example the generalisation of the Hénon–Heiles problem [15] with Hamiltonian

H =
1
2

(
ẋ2 + ẏ2 +Ax2 +By2

)
+D2y − 1

3
Cy3

is known to be integrable in the cases that C = −2D, C = −6D and C = −D. Clearly the
existence of one first integral, the Hamiltonian, is due to the symmetry ∂t. The existence of a
second first integral is due to the existence of another point symmetry in the first two cases. For
the third the responsible symmetry is the nonlocal symmetry [16]

Γ = y∂t + ẏ (2x− F ) ∂x + y∂y,

where, in the coefficient function of ∂x, F is the nonlocal term given by

F =
∫
ẋẏ + xy(1 + 2x)

ẏ2
dt.

In the computation using the Lie method of the first integral

I = ẋẏ + xy +
1
3
x3 + xy2

that coefficient is not used.
An even more dramatic example is found in the trivially integrated

yy′′ − y′2 = f ′yn+2 + nfy′yn+1, (2)

which was advanced as an integrable equation devoid of symmetry [17, 18]. By means of the
simple, albeit nonlocal, transformation

X = x, Y = −
∫
nfyn dx+ log

[
−

∫
nfyn dx

]
− log f

(2) becomes

d2Y

dX2
= 0
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which possesses eight Lie point symmetries with the algebra sl(3,R). These Lie point symmetries
find expression as nonlocal symmetries for (2).

There are two areas of loss. In the first instance the ease of calculation of Lie point sym-
metries and its algorithmic implementation in symbolic manipulation codes is lost when one
seeks nonlocal symmetries and somewhat diminished in the cases of contact and generalised
symmetries. This very practical problem is likely to maintain the popularity of point, contact
and generalised symmetries for many years to come. At a more elevated mathematical level is
the problem of deciding between those symmetries which are useful and those which are useless.
How does one decide if a nonlocal symmetry is useful or not? Exponential nonlocal symmetries
are fine for determining invariants [19] but not for reduction of order since the reverse procedure
is not a matter of quadratures [20]. We have instanced above examples in which one would not
credit the nonlocal symmetry as having more than curiosity value and yet integrability results.
The resolution of this question is one of the more difficult theoretical problems in the study of
symmetry. For the nonce one’s choice of the type of symmetry to use is more than likely to be
based upon utilitarianism than generality [21].

3 Putting symmetry to work

We illustrate the uses of symmetry in resolving some classes of problems which arise in Mathe-
matical Physics and Cosmology.

There exist hierarchies of integrable partial differential equations which have attracted con-
siderable attention over the last forty years. One of these of more recent interest is the hierarchy
of evolution equations

ut = Rm[u]
(
u−2ux

)
x
, (3)

where the recursion operator

R[u] = D2
xu
−1D−1

x

generates the hierarchy. This hierarchy has been shown to be linearisable, to possess an infinite
number of symmetries and autohodograph transformations [22, 23]. The class (3) possesses four
Lie point symmetries [24], videlicet

Γ1 = ∂t, Γ2 = ∂x, Γ3 = (m+ 2)t∂t + u∂u, Γ4 = −x∂x + u∂u

and these may be used to reduce the 1+1 evolution equation to a nonlinear ordinary differential
equation. A suitable choice for the reduction is [25]

Γ =
1

m+ 2
Γ3 + (m+ 1)Γ4 = t∂t −

m+ 1
m+ 2

x∂x + u∂u

(Γ1 and Γ2 could be included to allow for translation in t and x, but here we are illustrating
a point and not essaying an exhaustive study.) and, since the reduced equation inherits a scaling
symmetry, a further transformation based on that symmetry leads to the autonomous equation

e−TR[X]meT
[
−

(
1
X

)′
+

1
X

]′
+
m+ 1
m+ 2

Ẋ − 1
m+ 2

X = 0,

where

R[X] = −
(
eT

)2
X−1e−TD−1

T e−T
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and the prime represents differentiation with respect to the new independent variable T , in which
one notes that there is a preservation of the recursion property. The overall transformation is

T = − log xt
m+1
m+2 , X = uxt

2m+3
m+2 .

We conclude an example taken directly from Cosmology [26]. The general Lagrangian leading
to the full Bianchi-scalarfield dynamics (that is Einstein equations for an homogeneous but
anisotropic spacetime with a scalarfield matter source with a self-interacting potential V (φ))
has the form

L = e3λ

[
R∗ + 6λ̇2 − 3

2

(
β̇2

1 + β̇2
2

)
− φ̇2 + 2V (φ)

]
, (4)

where R∗ is the Ricci scalar playing the role of a potential term, β1 and β2 are suitable variables
describing the anisotropy and derivatives are taken with respect to proper time t. The Euler–
Lagrange equations for (4) are

λ̈+
3
2
λ̇2 +

3
8

(
β̇2

1 + β̇2
2

)
+

1
4
φ̇2 − 1

12
e−3λ

(
e3λR∗

)
λ
− 1

2
V (φ) = 0,

β̈1 + 3β̇1λ̇+
1
3
∂R∗

∂β1
= 0,

β̈2 + 3β̇2λ̇+
1
3
∂R∗

∂β20
= 0,

φ̈+ 3φ̇λ̇+ V ′ = 0.

For homogeneous Bianchi Class A models the Ricci scalar R∗ has the explicit form

R∗ = −1
2

e−2λ

[
N2

1 e4β1 + e−2β1

(
N2e

√
3β2 −N3e−

√
3β2

)2

−2N1e2β1

(
N2e

√
3β2 +N3e−

√
3β2

)]
+

1
2
N1N2N3(1 +N1N2N3)

and for Class B universes

R∗ = 2a2e−2λ

(
3− N2N3

a2

)
eβ

with

β =
2

3a2 −N2N3

(
N2N3β1 +

√
−3a2N2N2β2

)
,

where a, N1, N2 and N3 are the usual classification constants. For the symmetry analysis it is
convenient to make the substitutions

u = eλ, v = eβ1 , w = e
√

3β2 .

We illustrate the results for the simplest Bianchi Type I models and for the open Bianchi Type V
family in the case of a constant scalar field potential, i.e. V (φ) = C.

In the case of Bianchi Type I with a constant potential the Noether point symmetries are

∂t, v∂v, w∂w, ∂φ, v logw∂v − 3w log v∂w,

vφ∂v −
3
2

log v∂φ, wφ∂w −
1
2

logw∂φ.
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In addition there are the three Lie point symmetries

u∂u, e
√

3Ct {∂t + u∂u} , e
√

3Ct {∂t − u∂u} .

We find the first integrals/invariants (listed against the corresponding symmetry)

v∂v, I1 = u3v̇/v,

w∂w, I2 = u3ẇ/w,

∂φ, I3 = u3φ̇,

v logw∂v − 3w log v∂w, I4 =
u̇2

uφ̇
− u3v̇

4vφ̇
− φ̇

6
,

I5 = t− α arcsinh
u3 +M

β
,

where

α =
2

3
√
K
, β =

[
2I2

3

3K2

(
K − 6I2

4

)
− C

2K

]1/2

, M =
2I3I4
K

, K =
I2
1 + I2

2

I2
3

.

By inverting the invariant I5 we obtain u(t) and hence v(t), w(t) and φ(t) from the quadrature
of the first three integrals. Thus we have an explicit solution for this model.

For the Bianchi Type V in the case of a constant potential we obtain the Noether point
symmetries

∂t, v∂v, w∂w, ∂φ

and the additional Lie point symmetries

v logw∂v − 3w log v∂w, vφ∂v −
3
2

log v∂φ, wφ∂w −
1
2

logw∂φ.

We obtain the integrals

∂t, I1 = u3v̇/v,

I2 = u3ẇ/w,

I3 = u3φ̇,

v∂v, I4 =
1
2

(log u)3
u̇2

u
− f(u),

where

f(u) =
1

16u2

[
4(log u)3 + 6(log u)2 + 6 log u+ 3

]
+
C

8
(log u)4

1
48u6

(
3I2

1 + I2
2 + 2I2

3

) [
(log u)3 +

1
2

(log u)2 +
1
6

log u+
1
36

]
.

In contrast to Type I one is left with the quadrature of I4 and inversion of the result to ob-
tain u(t). This is not possible in closed form and so we have a system which is integrable but
for which an explicit global solution is not available.
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4 Discussion

In this paper we provided an overview of the interplay between three fundamental notions of
dynamics, namely, symmetry (local and nonlocal) singularities and integrability. There are
many questions that remain open in this field some of which come about from considerations
arising when one tries to apply the results obtained from the calculations of symmetries to decide
about the integrability of the given family of nonlinear systems. For example we know that the
cosmological solutions discussed above evolve to other solutions in the limit of large times. This
evolution is usually one from a complex (for instance anisotropic) early time state to a simpler
late time, isotropic one. It is also true that in such cases an originally nonintegrable system
evolves asymptotically to an integrable one. This fact raises an interesting point regarding
symmetries and integrability: If symmetry is indeed needed as a fundamental ingredient of the
integrability properties of an arbitrary nonlinear system, this has to somehow show in its long
term evolution. How do the calculated symmetries of a system evolve as the system changes
in time? Almost all work on symmetry and integrability to date has been concerned, in some
sense, only with the “statics” of the problem. We believe that only a theory of the dynamical
evolution of the symmetries themselves as a given system evolves in time will be needed to
provide the means to understand and explain why particular systems of differential equations
have the complicated symmetry properties they appear to have. As such a theory is completely
lacking at present, examples that show in a clear way the road to proceed will be most welcome.
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Some new classes of exact solutions of the investigated equation have been found.

The relativistic eikonal equation is fundamental in theoretical and mathematical physics.
Here we consider the equation

∂u

∂xµ

∂u

∂xµ
≡

(
∂u

∂x0

)2

−
(
∂u

∂x1

)2

−
(
∂u

∂x2

)2

−
(
∂u

∂x3

)2

= 1. (1)

In [1] it has been shown that the maximal local invariance group of the equation (1) is the
conformal group C(1, 4) of the 5-dimensional Poincaré–Minkowski space. Using special ansatzes
multiparameter families of exact solutions of the eikonal equation were constructed [1, 2, 3, 4].

It is well known that the conformal group C(1, 4) contains the generalized Poincaré group
P (1, 4) as a subgroup. The group P (1, 4) is the group of rotations and translations of the five-
dimensional Minkowski space M(1, 4). For the investigation of the equation (1) we have used
the continuous subgroups [5, 6, 7, 8, 9] of the group P (1, 4). Earlier using the subgroup structure
of the group P (1, 4), we have constructed ansatzes which reduce the equation (1) to differential
equations with fewer independent variables. The corresponding symmetry reduction has been
done. Among the reduced equations there are one-, two-, and three-dimensional ones. For some
of the reduced equations we have found its exact solutions. On this base some classes of exact
solutions of the eikonal equation have been constructed. The part of the results obtained can
be found in [10, 11, 12].

The present paper is devoted to the construction of new exact solutions of the investigated
equation. In order to find these solutions we have solved some other reduced equations. Using
the solutions of these reduced equations, we have obtained some new classes of exact solutions
of the eikonal equation.

At first, we present some new exact solutions of the investigated equation which have been
obtained on the base of solutions of one-dimensional reduced equations.

1. α ln
((
α2 + x2

0 − x2
1 − x2

2 − u2
)1/2 + εα

)
− ε

(
α2 + x2

0 − x2
1 − x2

2 − u2
)1/2

− x3 − α ln(x0 + u) = 0, ε = ±1;

2. α ln
((
α2 + x2

0 − x2
3 − u2

)
+ εα

)
= ε

(
α2 + x2

0 − x2
3 − u2

)
+ x2

+ α ln(x0 + u) + c, ε = ±1;

3.
1
2

(x0 + u)4 −
(
x0 +

1
2

(β − 1)− c

)
(x0 + u)3 +

[
x2

1

2
+
x2

2

2
+
x2

3

2
+ (β − 1)x0

−
(
c+

1
2

)
β + c

]
(x0 + u)2 +

[
β

(
x0 −

x2
1

2
− x2

2

2

)
+
x2

1

2
+
x2

3

2
− cβ

]
(x0 + u)− β

x2
1

2
= 0;

4.
1
2

(x0 + u)4 −
(
x0 +

1
2

(β + 1)− c

)
(x0 + u)3 +

[
x2

1

2
+
x2

2

2
+
x2

3

2
+ (β + 1)x0

−
(
c− 1

2

)
β − c

]
(x0 + u)2 −

[
β

(
x0 +

x2
1

2
+
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2

2
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+
x2

1

2
+
x2

3

2
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(x0 + u)+ β

x2
1

2
= 0;
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5.
1
2

(x0 + u)3−
(
x0 +

k

2
+ c

)
(x0 + u)2+

(
x2

1

2
+
x2

2

2
+
x2

3

2
+ kx0 + ck

)
(x0 + u)− k

x2
3

2
= 0.

Now, we give some new exact solutions of the eikonal equation which have been constructed
on the base of solutions of two-dimensional reduced equations.

1. u = iε
√
c21 + 1

√
x2

1 + x2
2 + c1x3 + c2, ε = ±1;

2. u = εx0

√
c21 + 1 + c1x3 + c2, ε = ±1;

3. u = εx0

√
c21 + 1 + c1

√
x2

1 + x2
2 + c2, ε = ±1;

4. u = εx0

√
c21 + 1 + c1

√
x2

1 + x2
2 + x2

3 + c2, ε = ±1;

5. u = iεx2

√
c21 + 1 + c1x3 + c2, ε = ±1;

6. u2 = x2
0 −

((
x2

1 + x2
2

)1/2 + c1

)2
− (x3 + c2)2 ;

7. u2 = x2
0 − (x1 + c1)2 − (x2 + c2)2 − x2

3;

8. u2 = (x0 + c1)2 −
((
x2

1 + x2
2

)1/2 + c2

)2
− x2

3;

9. (x0 − u+ c1)(x0 + u) = (x2 + c2)2 + x2
3;

10. (x0 − u+ c1)(x0 + u) = (x3 + c2)2 + x2
1 + x2

2;

11. (x0 − u+ c1)(x0 + u) =
((
x2

1 + x2
2

)1/2 + c2

)2
+ x2

3;

12. arcsin
x2√
x2

1 + x2
2

+
x3

ε(x0 + u)
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+ iε
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( √
x2

1 + x2
2

x0 + u+
√

(x0 + u)2 + x2
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) , ε = ±1,

where f is an arbitrary smooth function;

13.
1
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x3√
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15. arcsin
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where f is an arbitrary smooth function;
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and exact solutions of some nonlinear wave equations, Preprint N 86.27, Kyiv, Institute of Mathematics,
1986.

[11] Fedorchuk V.M. and Fedorchuk I.M., Reduction and exact solutions of five-dimensional nonlinear wave
equation, Preprint N 88.21, Kyiv, Institute of Mathematics, 1988.

[12] Fedorchuk I., Reduction and some exact solutions of the eikonal equation, in Proceedinds of the Second
International Conference “Symmetry in Nonlinear Mathematical Physics, Memorial Prof. W. Fushchych
Conference” (7–13 July, 1997, Kyiv), Editors M. Shkil, A. Nikitin and V. Boyko, Kyiv, Institute of Mathe-
matics of the NAS of Ukraine, 1997, V.1, 241–244.



Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 1, 140–144

On Differential Invariants of First- and Second-Order

of the Splitting Subgroups of the Generalized Poincaré
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Functional bases of differential invariants of the first-order of the splitting subgroups of the
group P (1, 4) have been constructed. For majority of these subgroups functional bases of
differential invariants of the second-order have also been described.

The differential invariants of the local Lie groups of the point transformations play an impor-
tant role in the group-analysis of differential equations (see, for example [1–10]). In particular,
with the help of these invariants we can construct differential equations with non-trivial symme-
try groups. Differential invariants have been studied in many works (see, for example [1–10]).

The present paper is devoted to construction of functional bases of differential invariants
of the first- and second-order for the splitting subgroups of generalized Poincaré group P (1, 4).
The group P (1, 4) is the group of rotations and translations of five-dimensional Minkowski space
M(1, 4). This group has many applications in theoretical and mathematical physics [11, 12, 13].
In order to present some of the results obtained we have to consider the Lie algebra of the
group P (1, 4).

1 The Lie algebra of the group P (1, 4)
and its continuous subalgebras.

The Lie algebra of the group P (1, 4) is given by the 15 basis elements Mµν = −Mνµ and P ′µ
(µ, ν = 0, 1, 2, 3, 4), satisfying the commutation relations[

P ′µ, P
′
ν

]
= 0,

[
M ′µν , P

′
σ

]
= gµσP

′
ν − gνσP

′
µ,[

M ′µν ,M
′
ρσ

]
= gµρM

′
νσ + gνσM

′
µρ − gνρM

′
µσ − gµσM

′
νρ,

where g00 = −g11 = −g22 = −g33 = −g44 = 1, gµν = 0, if µ �= ν. Here, and in what follows,
M ′µν = iMµν .

Further we will use following basis elements:

G = M ′40, L1 = M ′32, L2 = −M ′31, L3 = M ′21,
Pa = M ′4a −M ′a0, Ca = M ′4a +M ′a0 (a = 1, 2, 3),

X0 =
1
2

(
P ′0 − P ′4

)
, Xk = P ′k (k = 1, 2, 3), X4 =

1
2

(
P ′0 + P ′4

)
.

In order to study the subgroup structure of the group P (1, 4) we used the method proposed
in [14]. Continuous subgroups of the group P (1, 4) have been found in [15–19].
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One of the important consequences of the description of the continuous subalgebras of the Lie
algebra of the group P (1, 4) is that the Lie algebra of the group P (1, 4) contains as subalgebras
the Lie algebra of the Poincaré group P (1, 3) and the Lie algebra of the extended Galilei group
G̃(1, 3) [13], i.e. it naturally unites the Lie algebras of the symmetry groups of relativistic and
nonrelativistic quantum mechanics.

2 The differential invariants of the first-order
for splitting subgroups of the group P (1, 4)

For all splitting subgroups of the group P (1, 4) the functional bases of differential invariants of
the first-order have been constructed. Below, we present some of the results obtained.

At first, let us consider the following representation of the Lie algebra of the group P (1, 4):

P ′0 =
∂

∂x0
, P ′1 = − ∂

∂x1
, P ′2 = − ∂

∂x2
, P ′3 = − ∂

∂x3
,

P ′4 = − ∂

∂x4
, M ′µν = −

(
xµP

′
ν − xνP

′
µ

)
. (1)

For this representation of the considered Lie algebra we have obtained the functional bases
of differential invariants of the first-order for all its splitting subalgebras.

Below, for some of the splitting subalgebras of the Lie algebra of the group P (1, 4) we write
its basis elements and corresponding functional basis of differential invariants.

1. 〈L3 + eG,X3, e > 0〉,(
x2

0 − x2
4

)1/2
, (x2

1 + x2
2)1/2, ln(x0 + x4) + e arctan
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x2
, u, x1u2 − x2u1,

(x0 + x4)(u0 + u4), u3, u2
0 − u2

4, u2
1 + u2

2, uµ ≡
∂u

∂xµ
, µ = 0, 1, 2, 3, 4;

2. 〈L3 + dG, P3, X4, d > 0〉,(
x2

1 + x2
2

)1/2
, u, x1u2 − x2u1,

x0 + x4

u0 − u4
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u0 − u4

x0 + x4
x3 + u3,

d arctan
u1

u2
+ ln(x0 + x4), u2

1 + u2
2, u2

0 − u2
3 − u2

4;

3. 〈P1, P2, P3, X4〉,

x0 + x4, u,
x1

x0 + x4
+

u1

u0 − u4
,

x2

x0 + x4
+

u2

u0 − u4
,

x3

x0 + x4
+

u3

u0 − u4
,

u0 − u4, u2
0 − u2

1 − u2
2 − u2

3 − u2
4;

4. 〈G,L1, L2, L3, X4〉,(
x2

1 + x2
2 + x2

3

)1/2
, u, (x0 + x4)(u0 + u4), x1u1 + x2u2 + x3u3,

u2
0 − u2

4, u2
1 + u2

2 + u2
3;

5. 〈G,P1, P2, X1, X2, X4〉,

x3, u,
x0 + x4

u0 − u4
, u3, u2

0 − u2
1 − u2

2 − u2
4;

6. 〈L3, P1, P2, P3, X1, X2, X4〉,

x0 + x4, u,
x3

x0 + x4
+

u3

u0 − u4
, u0 − u4, u2

0 − u2
1 − u2

2 − u2
3 − u2

4;
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7. 〈G,L3, P1, P2, X1, X2, X3, X4〉,

u,
x0 + x4

u0 − u4
, u3, u2

0 − u2
1 − u2

2 − u2
4;

8. 〈L3 + bG, P1, P2, P3, X0, X1, X2, X3, X4, b > 0〉,
u, u2

0 − u2
1 − u2

2 − u2
3 − u2

4.

Now, let us consider an other representation of the Lie algebra of the group P (1, 4)

P ′0 =
∂

∂x0
, P ′1 = − ∂

∂x1
, P ′2 = − ∂

∂x2
, P ′3 = − ∂

∂x3
,

P ′4 = − ∂

∂u
, M ′µν = −

(
xµP

′
ν − xνP

′
µ

)
, x4 ≡ u. (2)

More details about this representation can be found in [20].
Taking into account this representation of the considered Lie algebra we have constructed

the functional bases of differential invariants of the first-order for all its splitting subalgebras.
Here, for some of the splitting subalgebras of the Lie algebra of the group P (1, 4) we give its

basis elements and corresponding functional basis of differential invariants.

1. 〈L3 + εP3, ε = ±1〉,

x0 + u,
(
x2

1 + x2
2

)1/2
,

(
x2

0 − x2
3 − u2

)1/2
,

x3

x0 + u
+

u3

u0 + 1
,

ε arctan
x1

x2
− x3

x0 + u
,

u2
3

(u0 + 1)2
+

2
u0 + 1

,
x1u2 − x2u1

x1u1 + x2u2
,

u2
1 + u2

2

(u0 + 1)2
,

uµ ≡
∂u

∂xµ
, µ = 0, 1, 2, 3;

2. 〈G,L3〉,

x3,
(
x2

1 + x2
2

)1/2
,

(
x2

0 − u2
)1/2

, (x0 + u)2
u0 − 1
u0 + 1

,
x1u2 − x2u1

x1u1 + x2u2
,

u2
0 − 1
u2

3

,
u2

1 + u2
2

u2
3

;

3. 〈G,P1, P2〉,

x3,
(
x2

0 − x2
1 − x2

2 − u2
)1/2

,
x0 + u

u0 + 1
u3, x1 +

x0 + u

u0 + 1
u1, x2 +

x0 + u

u0 + 1
u2,

u2
0 − u2

1 − u2
2 − 1

u2
3

;

4. 〈G,L3, P1, P2〉,

x3,
(
x2

0 − x2
1 − x2

2 − u2
)1/2

,
x0 + u

u0 + 1
u3,

u2
0 − u2

1 − u2
2 − 1

u2
3

,(
x1 +

x0 + u

u0 + 1
u1

)2

+
(
x2 +

x0 + u

u0 + 1
u2

)2

;

5. 〈G,P3, L3, X1, X2〉,(
x2

0 − x2
3 − u2

)1/2
, x3 +

x0 + u

u0 + 1
u3,

(
u2

1 + u2
2

) (
x0 + u

u0 + 1

)2

,
u2

0 − u2
3 − 1

u2
1 + u2

2

;

6. 〈G,L1, L2, L3, X0, X4〉,(
x2

1 + x2
2 + x2

3

)1/2
,

(x1u1 + x2u2 + x3u3)2

u2
0 − 1

,
u2

1 + u2
2 + u2

3

u2
0 − 1

;
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7. 〈G,P1, P2, P3, X1, X2, X4〉,

x3 +
x0 + u

u0 + 1
u3, (u2

0 − u2
1 − u2

2 − u2
3 − 1)

(
x0 + u

u0 + 1

)2

;

8. 〈G,L3, P1, P2, P3, X1, X2, X4〉,

x3 +
x0 + u

u0 + 1
u3,

(
u2

0 − u2
1 − u2

2 − u2
3 − 1

)(
x0 + u

u0 + 1

)2

.

3 On differential invariants of the second-order
for splitting subgroups of the group P (1, 4)

We have constructed functional bases of differential invariants of the second-order for some
splitting subgroups of the group P (1, 4). Now, we present some of the results obtained.

Let us consider the representation (1) of the Lie algebra of the group P (1, 4). For this repre-
sentation of the considered Lie algebra we have constructed the functional bases of differential
invariants of the second-order for some its splitting subalgebras. Below, for some of the splitting
subalgebra of the Lie algebra of the group P (1, 4) we write its basis elements and corresponding
functional basis of differential invariants.

〈L3 + eG, e > 0〉,

x3,
(
x2

0 − x2
4

)1/2
,

(
x2

1 + x2
2

)1/2
, e arctan

x1

x2
+ ln(x0 + x4), u,

(x0 + x4)(u0 + u4), x1u2 − x2u1, u3, u2
0 − u2

4, u2
1 + u2

2,

e arctan
u13

u23
+ 2 ln(x0 + x4), ln(u00 + u44 +

√
2u04)− 2

√
2e arctan

x1

x2
,

arctan
(
u02 + u24

u01 + u14

)
+ 2 arctan

x1

x2
, 4e arctan

u1

u2
− ln

(
(u01 + u14)2 + (u02 + u24)2

)
,

u03 + u34

(u0 + u4)2
, arctan

( √
2u12

u11 − u22

)
+ 2

√
2 arctan

u1

u2
, u33, u00 − u44, u11 + u22,

u2
03 − u2

34, u2
13 + u2

23, u2
11 + u2

12 + u2
22, u2

00 − u2
04 + u2

44, u2
01 + u2

02 − u2
14 − u2

24,

u01u24 − u02u14, uµ ≡
∂u

∂xµ
, uµν ≡

∂2u

∂xµ∂xν
, µ, ν = 0, 1, 2, 3, 4.

Now, let us consider the representation (2) of the Lie algebra of the group P (1, 4). Taking
into account this representation of the considered Lie algebra we have obtained the functional
bases of differential invariants of the second-order for some its splitting subalgebras.

Here, for some of the splitting subalgebra of the Lie algebra of the group P (1, 4) we give its
basis elements and corresponding functional basis of differential invariants.

〈L3〉,

x0, x3,
(
x2

1 + x2
2

)1/2
, u, x1u1 + x2u2, u0, u3, u2

1 + u2
2,(

x2
1 − x2

2

)
u01 + 2x1x2u02, 2

√
2 arctan

x1

x2
− arctan

(
u11 − u22√

2u12

)
, u00, u03, u33,

u11 + u22, u2
01 + u2

02, u2
13 + u2

23, u2
11 + u2

12 + u2
22, u02u13 − u01u23,

uµ ≡
∂u

∂xµ
, uµν ≡

∂2u

∂xµ∂xν
, µ, ν = 0, 1, 2, 3.
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the International Seminar on Group Theoretical Methods in Physics, Moscow, Nauka, V.1, 1980, 61–66.

[19] Fushchich W.I., Barannik A.F., Barannik L.F. and Fedorchuk V.M., Continuous subgroups of the Poincaré
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The differential equations of the first order in the space M(1, 3)×R(u) which are invariant
under splitting subgroups of the group P (1, 4) have been constructed. For majority of these
subgroups the differential equations of the second-order in the same space have also been
described.

The differential equations with nontrivial symmetry groups play an important role in theo-
retical and mathematical physics, mechanics, gas dynamics (see, for example, [1–8]).

In many cases these equations can be written in the following form:

F (J1, J2, . . . , Jt) = 0, (1)

where F is an arbitrary enough smooth function of its arguments, {J1, J2, . . . , Jt} are functional
bases of differential invariants of the corresponding symmetry groups.

Differential invariants of the local Lie groups of the point transformations have been studied
in many works (see, for example, [1, 4, 9–12]).

The present work is devoted to the construction of differential equations of the first- and
second-order in the space M(1, 3)× R(u), which are invariant under splitting subgroups of the
generalized Poincaré group P (1, 4).

In order to give some of the results obtained we must consider the Lie algebra of the
group P (1, 4).

1 The Lie algebra of the group P (1, 4)
and its continuous subalgebras

The Lie algebra of the group P (1, 4) is given by the 15 basis elements Mµν = −Mνµ and P ′µ
(µ, ν = 0, 1, 2, 3, 4), satisfying the commutation relations[

P ′µ, P
′
ν

]
= 0,

[
M ′µν , P

′
σ

]
= gµσP

′
ν − gνσP

′
µ,[

M ′µν ,M
′
ρσ

]
= gµρM

′
νσ + gνσM

′
µρ − gνρM

′
µσ − gµσM

′
νρ,

where g00 = −g11 = −g22 = −g33 = −g44 = 1, gµν = 0, if µ �= ν. Here, and in what follows,
M ′µν = iMµν .

Let us consider following representation of the Lie algebra of the group P (1, 4)

P ′0 =
∂

∂x0
, P ′1 = − ∂

∂x1
, P ′2 = − ∂

∂x2
, P ′3 = − ∂

∂x3
,

P ′4 = − ∂

∂u
, M ′µν = −

(
xµP

′
ν − xνP

′
µ

)
, x4 ≡ u.

More details about this representation can be found in [8].
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Further we will use following basis elements:

G = M ′40, L1 = M ′32, L2 = −M ′31, L3 = M ′21,
Pa = M ′4a −M ′a0, Ca = M ′4a +M ′a0, (a = 1, 2, 3),

X0 =
1
2

(
P ′0 − P ′4

)
, Xk = P ′k (k = 1, 2, 3), X4 =

1
2

(
P ′0 + P ′4

)
.

In order to study the subgroup structure of the group P (1, 4) we used the method proposed
in [13]. Splitting subgroups of the group P (1, 4) have been found in [14, 15].

2 The differential equations of the first-order
in the space M(1, 3) × R(u)

The differential equations of the first-order in the space M(1, 3) × R(u), which are invariant
under splitting subgroups of the group P (1, 4) have been constructed. These equations can be
written in the form (1), where {J1, J2, . . . , Jt} are functional bases of differential invariants of
the first-order of the splitting subgroups of the group P (1, 4).

Below, for some splitting subgroups of the group P (1, 4), we write the basis elements of its
Lie algebras and corresponding arguments J1, J2, . . . , Jt of the function F .

1. 〈L3〉,

J1 = x0, J2 = x3, J3 =
(
x2

1 + x2
2

)1/2
, J4 = u, J5 = x1u2 − x2u1,

J6 = u0, J7 = u3, J8 = u2
1 + u2

2, uµ ≡
∂u

∂xµ
, µ = 0, 1, 2, 3;

2. 〈P3 + C3, L3〉,

J1 = x0, J2 =
(
x2

1 + x2
2

)1/2
, J3 =

(
x2

3 + u2
)1/2

, J4 =
u3u+ x3

u− x3u3
,

J5 =
x1u2 − x2u1

x1u1 + x2u2
, J6 =

u2
1 + u2

2

u2
0

, J7 =
u2

3 + 1
u2

0

;

3. 〈P1, P2, X3〉,

J1 = x0 + u, J2 =
(
x2

0 − x2
1 − x2

2 − u2
)1/2

, J3 =
x1

x0 + u
+

u1

u0 + 1
,

J4 =
x2

x0 + u
+

u2

u0 + 1
, J5 =

u3

u0 + 1
, J6 =

u2
1 + u2

2 + 2(u0 + 1)
(u0 + 1)2

;

4. 〈G,P1, P2, P3〉,

J1 =
(
x2

0 − x2
1 − x2

2 − x2
3 − u2

)1/2
, J2 = x1 +

x0 + u

u0 + 1
u1, J3 = x2 +

x0 + u

u0 + 1
u2,

J4 = x3 +
x0 + u

u0 + 1
u3, J5 =

(
u2

0 − u2
1 − u2

2 − u2
3 − 1

)(
x0 + u

u0 + 1

)2

;

5. 〈L3, P1, P2, P3, X4〉,

J1 = x0 + u, J2 =
x3

x0 + u
+

u3

u0 + 1
,

J3 =
(

x1

x0 + u
+

u1

u0 + 1

)2

+
(

x2

x0 + u
+

u2

u0 + 1

)2

, J4 =
u2

1 + u2
2 + u2

3 + 2(u0 + 1)
(u0 + 1)2

;

6. 〈G,P3, L3, X1, X2, X4〉,

J1 = x3 +
x0 + u

u0 + 1
u3, J2 =

(
u2

1 + u2
2

) (
x0 + u

u0 + 1

)2

, J3 =
u2

0 − u2
3 − 1

u2
1 + u2

2

;
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7. 〈G,L3, P1, P2, P3, X3, X4〉,

J1 =
(
x1 +

x0 + u

u0 + 1
u1

)2

+
(
x2 +

x0 + u

u0 + 1
u2

)2

,

J2 =
(
u2

0 − u2
1 − u2

2 − u2
3 − 1

)(
x0 + u

u0 + 1

)2

;

8. 〈G,L3, P1, P2, X1, X2, X3, X4〉,

J1 =
x0 + u

u0 + 1
u3, J2 =

u2
0 − u2

1 − u2
2 − 1

u2
3

;

9. 〈G,L1, L2, L3, X0, X1, X2, X3, X4〉,

J1 =
u2

1 + u2
2 + u2

3

u2
0 − 1

;

10. 〈L1, L2, L3, P1 − C1, P2 − C2, P3 − C3, X1, X2, X3, X0 +X4〉,
J1 = u, J2 = u2

0 − u2
1 − u2

2 − u2
3;

11. 〈L1, L2, L3, P1 + C1, P2 + C2, P3 + C3, X0, X1, X2, X3, X4〉,

J1 =
u2

1 + u2
2 + u2

3 + 1
u2

0

.

3 On differential equations of the second-order
in the space M(1, 3) × R(u)

Some of the differential equations of the second-order in the space M(1, 3) × R(u), which are
invariant under splitting subgroups of the group P (1, 4) have been described. The equations
obtained have the form (1), where {J1, J2, . . . , Jt} are functional bases of differential invariants
of the second-order of corresponding splitting subgroups of the group P (1, 4).

In the following, for some splitting subgroup of the group P (1, 4), we give the basis elements
of its Lie algebra and corresponding arguments J1, J2, . . . , Jt of the function F .

〈L3, X0〉,

J1 = x3, J2 = x0 − u, J3 =
(
x2

1 + x2
2

)1/2
, J4 =

x1u2 − x2u1

x1u1 + x2u2
, J5 = u0,

J6 = u3, J7 = u2
1 + u2

2, J8 = (x1u1 − x2u2)u01 + (x1u2 + x2u1)u02,

J9 = 2
√

2 arctan
u1

u2
− arctan

(
u11 − u22√

2u12

)
, J10 = u00, J11 = u03, J12 = u33,

J13 = u11 + u22, J14 = u2
01 + u2

02, J15 = u2
13 + u2

23, J16 = u2
11 + u2

12 + u2
22,

J17 = u02u13 − u01u23, uµ ≡
∂u

∂xµ
, uµν ≡

∂2u

∂xµ∂xν
, µ, ν = 0, 1, 2, 3.
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The group classification in the class of nonlinear Schrödinger equations of the form i ψt +
∆ψ + k|x|2ψ − f (|ψ|)ψ = 0 was carried out. The maximal Lie invariance algebra of such
equations was calculated.

The study of nonlinear Schrödinger equations using symmetry methods began in 1972 by
Niederer’s article [1], in which maximal Lie invariance algebra (MIA) of the free Schrödinger
equation was calculated for the first time. In 1973 U. Niederer [2] calculated the MIA of the
linear Schrödinger equation with the harmonic oscillator type potential. In article [4] nonlinear
Schrödinger equations of the form

i ψt + ∆ψ + F (t, x, ψ, ψ∗, ψt, ψ∗t ) = 0

are considered, and classification of one-dimensional equations which admit the MIA of dimen-
sion n (n ≤ 3) is carried out.

In this article the group classification of the nonlinear generalized Schrödinger equations

i ψt + ∆ψ + k|x|2ψ − f (|ψ|)ψ = 0 (1)

in the n-dimensional space is performed. The differentiable function f = f(|ψ|) and the con-
stant k are arbitrary elements. As a particular case of the problem the invariance algebra of
the free Schrödinger equations and the Schrödinger equations with the harmonic oscillator type
potential are found. The linear equation (the case f = 0) was considered in papers [1, 2] and
given here for the completeness of results only. The results of this article for k = 0 coincide
with results of paper [3], which is devoted to group classification of the nonlinear Schrödinger
equations of the form

i ψt + ∆ψ + F (ψ,ψ∗) = 0.

Theorem 1. The Lie algebra of the kernel of principal groups of equation (1) is

Aker = 〈∂t, Jab,M〉.

The Lie algebra of the kernel of principal groups of equation (1) for fixed k is

1) Aker
0 = 〈∂t, ∂a, Jab, G,M〉 in the case k = 0;

2) Aker
− = 〈M,∂t, Jab, e

2κt(∂a + κxaM), e−2κt(∂a − κxaM)〉
in the case k = −κ2, κ > 0;

3) Aker
+ = 〈M,∂t, Jab, sin 2κt ∂a + κxa cos 2κtM, cos 2κt ∂a − κxa sin 2κtM〉

in the case k = κ2, κ > 0.

Here M = i (ψ ∂ψ − ψ∗∂ψ∗), G = t∂a − xa

2 M , Jab = xb∂a − xa∂b.
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Theorem 2. The class of equations (1) admits the following equivalence transformations:

1) t̃ = t, x̃ = x, ψ̃ = eiαtψ, f̃ = f − α, k̃ = k;

2) t̃ = ε2t, x̃ = εx, ψ̃ = ψ, f̃ = ε−2f, k̃ = ε−4k;

3) t̃ = t, x̃ = x, ψ̃ = εψ, f̃ = f, k̃ = k.

(2)

Here α, ε ∈ R, ε �= 0.

The classification of extension of the MIA will be carried out accurate to transformations (2).

Theorem 3. The complete set of nonequivalent cases of extension of the MIA of equations (1)
are exhausted by the following (we adduce only operators from extensions of algebra Aker

0 , Aker− ,
Aker

+ for the cases k = 0, k = −κ2, k = κ2 correspondingly)

1) f = (δ1 + iδ2)|ψ|γ , γ �= 0, 4/n : I − γD;

2) f = (δ1 + iδ2)|ψ|4/n : I − 4
n
D, Π;

3) f = iδ2 ln |ψ| : I + δ2tM ;

4) f = (δ1 + iδ2) ln |ψ|, δ1 �= 0 : eδ1t(δ1I + δ2M);
5) f = 0, k = 0 : I, D, Π;

6) f = 0, k = −κ2, κ > 0 : I, e4κt
(
∂t + 2κxa∂a + 4κ2|x|2M − nκI

)
,

e−4κt
(
∂t − 2κxa∂a + 4κ2|x|2M + nκI

)
;

7) f = 0, k = κ2, κ > 0 : I, cos 4κt
(
∂t + 2κ2|x|2M

)
− sin 4κt (2κxa∂a− κnI) ,

sin 4κt
(
∂t + 2κ2|x|2M

)
+ cos 4κt (2κxa∂a − κnI) .

Here I = ψ∂ψ +ψ∗∂ψ∗, D = 2t∂t +xa∂a− n
2 I, Π = t2∂t + txa∂a + |x|2

4 M − nt
2 I, {δ1, δ2, γ} ⊂ R.

The results of group classification of generalized nonlinear Schrödinger equations obtained
in this article can be used for the construction of exact solutions of these equations. These
results can be considered as the basis for further analysis of generalized nonlinear Schrödinger
equations. We plan to finish complete group classification for the case f = f(ψ,ψ∗) and an
arbitrary potential V = V (t, x) and to construct exact solutions of such generalized nonlinear
Schrödinger equations.

Because of the extensions of the MIA in the cases k = 0 and k �= 0 are equal we hope to build
the equivalence transformations between these classes.

We are going to use the results of present paper for the investigation of Q-conditional (non-
classical) symmetries of Schrödinger equations.
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There exist equations with generalized symmetries that do not have infinitely many genera-
lized symmetries. We explain how to prove such a fact using p-adic numbers and calculate
examples using symbolic calculus.

1 Introduction

The title of this text is the same as the title of the talk I gave at the conference “Symmetry in
Nonlinear Mathematical Physics 2001”. It is a misleading title. P-adic numbers are not used
in calculating symmetries. They are used to prove that certain (infinitely many) symmetries do
not exist. The material presented here is not new, it can be found in [8, 9], but the exposition is.

It was observed and conjectured, cf. [6, 5, 7], that the existence of one (or a few) symmetries
implies the existence of infinitely many symmetries. This turned out not to be the case. The
first equation with finitely many symmetries was found by Bakirov [1]:

ut = 5u4 + v2
0, vt = v4

has a sixth order symmetry

ut = 11u6 + 5v0v2 + 4v2
1, vt = v6,

where the ith x-derivative of v0 is denoted vi. It was shown (with extensive computer algebra
computations) that there are no other symmetries up to order 53. The authors of [2] proved
using p-adic numbers that the system of Bakirov does not possess another symmetry at any
higher order.

Have a look at the following points in the complex plane, see Fig. 1. You see 2745 points
inside the upper half unit circle. Let us associate to every such a point r a new evolution
equation

ut =
(
1 + r4

)
u4 + v2

0, vt = (1 + r)4v4. (1)

We show that all these equations have one higher order generalized symmetry.

2 The symmetry condition

Let K(v), S(v) be polynomials that are quadratic in v0 and its x-derivatives vi. The Lie-bracket,
see [10], between

ut = a1un +K(v), vt = a2vn
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Figure 1. Roots of G-functions that correspond to almost integrable fourth order Bakirov like equations.

and

ut = b1um + S(v), vt = b2vm

vanishes when

a1D
nS(v)− a2DS(v)vn = b1D

mK(v)− b2DK(v)vm, (2)

where total differentiation is done by

D = ∂x +
∞∑
i=0

vi+1∂vi

and the Fréchet derivative is given by the operator

DK(v) =
∞∑
i=0

∂viK(v)Di.

We will solve this equation (2) using the symbolic calculus, which was first developed in [4]. The
Gel’fand–Dikĭı transformation

vivj �→
ξi1ξ

j
2 + ξj1ξ

i
2

2
maps every quadratic polynomial P (v) to P (ξ1, ξ2). It has the properties

• DP (v) �→ (ξ1 + ξ2)P (ξ1, ξ2),
• DP (v)vn �→ (ξn1 + ξn2 )P (ξ1, ξ2).

Therefore equation (2) reads symbolically

Gn[a](ξ1, ξ2)S(ξ1, ξ2) = Gm[b](ξ1, ξ2)K(ξ1, ξ2),

where the so called G-functions are given by the polynomials

Gn[a](ξ1, ξ2) = a1(ξ1 + ξ2)n − a2(ξn1 + ξn2 )

which can easily be solved

S =
Gm[b](ξ1, ξ2)
Gn[a](ξ1, ξ2)

K

if Gn[a](ξ1, ξ2) divides Gm[b](ξ1, ξ2).
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3 Common roots

We call r a root of f(ξ1, ξ2) if (ξ1 − rξ2) divides f(ξ1, ξ2). If r is a root of Gn[a](ξ1, ξ2) then

a1

a2
=

1 + rn

(1 + r)n
=

1 + (1/r)n

(1 + 1/r)n

and hence 1/r is a root as well. A point s is another root if

Un(r, s) = Gn[1 + rn, (1 + r)n](s, 1)

vanishes, i.e.

(1 + r)n + (r + rs)n − (1 + s)n − (s+ rs)n = 0. (3)

The functions Gn[1 + rn, (1 + r)n](ξ1, ξ2) and Gm[1 + rm, (1 + r)m](ξ1, ξ2) have a common set of
roots

{
r, 1
r , s,

1
s

}
if the resultant of Un(r, s) and Um(r, s) with respect to s vanishes. This gives

a very effective way to find equations with symmetries.

Example 1. We tread the Bakirov system. The resultant of U4(r, s) and U6(r, s) is

R = 2r4 + 10r3 + 15r2 + 10r + 2.

The ratio of eigenvalues of the system is

1 + r4

(1 + r)4
modulo R = 5.

The ratio of eigenvalues of the symmetry is

1 + r6

(1 + r)6
modulo R = 11.

The quadratic part of the system is chosen K(v) = v2
0 �→ 1, the quadratic part of the symmetry

is calculated

S =
G6[11, 1](ξ1, ξ2)
G4[5, 1](ξ1, ξ2)

1 = 5
ξ21 + ξ22

2
+ 4ξ1ξ2 �→ 5v2v0 + 4v2

0.

Remark that we could have chosen any function K(v).

We have calculated all resultants between U4(r, s) and Um(r, s), where 4 < m < 155. We
added their degrees and divided by four to obtain 2745, the number of fourth order equations
with a symmetry of order less than 155. All zero points are numerically calculated and plotted
in Fig. 1. The points on the curve throught −1, together with the points on the real line and
the unit circle, are mapped to real values by

r → 1 + r4

(1 + r)4
.

For the other we get complex eigenvalue ratios. The curve throught −1 is the set of zeropoints
of

x4 + 3x3 + 4x2 + 3x+ 1 +
(
3x+ 2x2

)
y2 + y4

which appears as a factor of U4(x + iy, x − iy). A big question here is where the other curve
comes from or at least how to describe it.
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The resultants between U4(r, s) and Um(r, s) with respect to s, where 8 < m < 12,

r4 + 8r3 + 12r2 + 8r + 1,

14r4 + 58r3 + 87r2 + 58r + 14,

3r8 + 22r7 + 69r6 + 130r5 + 159r4 + 130r3 + 69r2 + 22r + 3.

You do not want to see the rest of the list. To indicate the size of the expressions involved, the
resultant between U4(r, s) and U154(r, s) has degree 148 and coefficients that have 63 digets.

4 No more symmetry

We now ask the question whether a given equation has more than one symmetry. A p-adic
method allows us to conclude that there exist only a finite number of symmetries. It is extremely
powerful in our context. The method is based on the fact that if some equation does not have
a solution in some p-adic field then it can not have a solution in C. Moreover the method reduces
the number of orders that need to be checked to a finite number.

P-adic numbers are represented by formal power series in a prime p

a =
∑
n≥0

anp
n

with an ∈ Z/p. The field of p-adic numbers is called Zp. The invertible elements are in Z×p , they
have a0 �= 0.

Not all (complex) numbers are in every p-adic field. The following lemma of Hensel can be
used to check whether for example

√
2i is in Z7.

Lemma 1 (Hensel). A polynomial

f(x) =
n∑
i=0

aix
i with ai ∈ Zp

has a root α in Z×p if ∃α1 ∈ Z/p such that

• f(α1) ≡ 0 mod p,
• f ′(α1) �≡ 0 mod p.

We now formulate the lemma of Skolem that form the basis of the method.

Lemma 2 (Skolem). If xi ∈ Z×p then by the Fermat little theorem

∃ yi ∈ Zp : xp−1
i = 1 + yip.

Let Umn =
∑
i=1

ciy
m
i x

n
i for m = 0, 1.

• If U0
k �≡ 0 mod p then ∀ r U0

k+r(p−1) �= 0,

• If U0
k = 0 and U1

k �≡ 0 mod p then ∀ r > 0 U0
k+r(p−1) �= 0.

Notice that equation (3) has the form U0
n = 0 with i = 4, ci = (−1)i and

x1 = 1 + s, x2 = 1 + r, x3 = s(1 + r), x4 = r(1 + s).
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Example 2. We tread the Bakirov system. With the lemma of Hensel one can show that
2r4 + 10r3 + 15r2 + 10r+ 2 has two roots in Z181. Take r ≡ 66 + 13p, s ≡ 139 + 29p. Calculate
modulo p2

x1 ≡ 140 + 29p, x2 ≡ 67 + 13p, x3 ≡ 82, x4 ≡ 9 + 165p

and modulo p

y1 ≡ 40, y2 ≡ 33, y3 ≡ 46, y4 ≡ 140.

We have that m = 0, 1, 4, 6 are the only values less than p− 1 such that U0
m ≡ 0 modulo p and

that

U1
0 ≡ 78, U1

1 ≡ 173, U1
4 ≡ 169, U1

6 ≡ 162.

With the lemma of Skolem we may now conclude that if there is a symmetry it has be at order 6.

It is verified that all fourth order systems (1) with a symmetry of order less than 155 have
one symmetry. The proof is done automatically by a computer using the lemma of Skolem in
MAPLE [3]. The hard part is finding a good prime p. Once you know p, the conditions are very
easily checked. We list some modulo p solutions of the resultants between U4(r, s) and Um(r, s)
for 8 < m < 12 in the specific fields

71, 72 ∈ Z/293,
79, 175 ∈ Z/491,
26, 44 ∈ Z/53.

5 Conclusion

More results in this direction can be found in [8, 9], as well as the proofs of the relevant lemmas. It
is proven that there exist infinitely many evolution equations with finitely many symmetries. All
systems of order n with 4 < n < 11 with symmetries of order m with n < m < n+150 have been
calculated. Some improvements on the p-adic method have been made. These made it possible
to show that among all the calculated systems there are only 3 equations with 2 symmetries,
counter examples to the conjecture stated in [7, p. 255]. These systems have order 7 and their
symmetries appear at order 11 and 29.
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It is shown that by generalized understanding of symmetry the d’Alembert equation for one
component field is invariant with respect to arbitrary reversible coordinate transformations.

1 Introduction

Symmetries play an important role in particle physics and quantum field theory [1], nuclear
physics [2], mathematical physics [3]. It is proposed some receptions for finding the symmetries,
for example, the method of replacing the variables [4], the Lie algorithm [3], the theoretical-
algebraic approach [5]. The purpose of the present work is the generalization of the method of
replacing the variables. We start from the following Definition of symmetry.

2 Definition of symmetry. Examples

Definition 1. Let some partial differential equation L̂′φ′(x′) = 0 be given. By symmetry of this
equation with respect to the variables replacement x′ = x′(x), φ′ = φ′(Φφ) we shall understand
the compatibility of the engaging equations system Âφ′(Φφ) = 0, L̂φ(x) = 0, where Âφ′(Φφ) = 0
is obtained from the initial equation by replacing the variables, L̂′ = L̂, Φ(x) is some weight
function. If the equation Âφ′(Φφ) = 0 can be transformed into the form L̂(Ψφ) = 0, the
symmetry will be named the standard Lie symmetry, otherwise the generalized symmetry.

Elements of this Definition were used to study the Maxwell equations symmetries [6, 7, 8]. In
the present work we shall apply Definition 1 for investigation of symmetries of the one-component
d’Alembert equation:

�′φ′(x′) =
∂2φ′

∂x1
′2 +

∂2φ′

∂x2
′2 +

∂2φ′

∂x3
′2 +

∂2φ′

∂x4
′2 = 0.

Let us introduce arbitrary reversible coordinate transformations x′ = x′(x) and a transformation
of the field variable φ′ = φ(Φφ), where Φ(x) is some unknown function, as well as take into
account

∂φ′

∂x′i
=

∑
j

∂φ′

∂ξ

∂Φφ
∂xj

∂xj
∂x′i

,

∂2φ′

∂x′i
2 =

∑
j

∂2xj

∂x′i
2

∂φ′

∂ξ

∂Φφ
∂xj

+
∑
jk

∂2Φφ
∂xj∂xk

∂xj
∂x′i

∂xk
∂x′i

∂φ′

∂ξ
+

∑
jk

∂2φ′

∂ξ2
∂Φφ
∂xj

∂Φφ
∂xk

∂xj
∂x′i

∂xk
∂x′i

,

where ξ = Φφ. After replacing the variables we find that the equation �′φ′ = 0 transforms into
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itself, if the system of the engaging equations is fulfilled:

∑
i

∑
j

∂2xj

∂x′i
2

∂φ′

∂ξ

∂Φφ
∂xj

+
∑
i

∑
j=k

(
∂xj
∂x′i

)2 ∂φ′

∂ξ

∂2Φφ
∂xj2

+
∑
i

∑
j<k

∑
k

2
∂xj
∂x′i

∂xk
∂x′i

∂φ′

∂ξ

∂2Φφ
∂xj∂xk

+
∑
i

∑
j=k

(
∂xj
∂xi

)2 ∂2φ′

∂ξ2

(
∂Φφ
∂xj

)2

+
∑
i

∑
j<k

∑
k

2
∂xj
∂x′i

∂xk
∂x′i

∂2φ′

∂ξ2
∂Φφ
∂xj

∂Φφ
∂xk

= 0,

�φ = 0. (1)

Here x = (x1, x2, x3, x4), x4 = ict, c is the speed of light, t is the time. Let us put the solution
of d’Alembert equation φ into the first equation of the set (1). If the obtained equation has
a solution, then the set (1) will be compatible. According to Definition 1 it will mean that the
arbitrary reversible transformations x′ = x′(x) are the symmetry transformations of the initial
equation �′φ′ = 0. Owing to presence of the expressions (∂Φφ/∂xj)2 and (∂Φφ/∂xj)(∂Φφ/∂xk)
in the first equation from the set (1), the latter has non-linear character. Since the analysis of
non-linear systems is difficult we suppose that

∂2φ′

∂ξ2
= 0. (2)

In this case the non-linear components in the set (1) turn to zero and the system will be linear.
As result we find the field transformation law by integrating the equation (2)

φ′ = C1Φφ+ C2 → φ′ = Φφ. (3)

Here we suppose for simplicity that the constants of integration are C1 = 1, C2 = 0. It is this
law of field transformation that was used within the algorithm [7, 8]. It marks the position of the
algorithm in the generalized variables replacement method. Taking into account the formulae (2)
and (3), we find the following form for the system (1):

∂2φ′

∂ξ2
= 0, φ′ = Φφ,

∑
j

�′xj
∂Φφ
∂xj

+
∑
i

∑
j

(
∂xj
∂x′i

)2 ∂2Φφ
∂xj2

+
∑
i

∑
j<k

∑
k

2
∂xj
∂x′i

∂xk
∂x′i

∂2Φφ
∂xj∂xk

= 0,

�φ = 0. (4)

Since here Φ(x) = φ′(x′ → x)/φ(x), where φ′(x′) and φ(x) are the solutions of d’Alembert
equation, the system (4) has a common solution and consequently is compatible. This means that
the arbitrary reversible transformations of coordinates x′ = x′(x) are symmetry transformations
for the one-component d’Alembert equation if the field is transformed with the help of weight
function Φ(x) according to the law (3). The form of this function depends on d’Alembert
equation solutions and the law of the coordinate transformations x′ = x′(x).

Next we shall consider the following examples.
Let the coordinate transformations belong to the Poincaré group P10:

x′j = Ljkxk + aj ,

where Ljk is the matrix of the Lorentz group L6, aj are the parameters of the translation
group T4. In this case we have

�′xj =
∑
k

L′jk�
′x′k = 0,

∑
i

∂xj
∂x′i

∂xk
∂x′i

=
∑
i

L′jiL
′
ki = δjk.
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The last term in the second equation (4) turns to zero. The set reduces to the form

�Φφ = 0, �φ = 0. (5)

According to Definition 1 this is a sign of the Lie symmetry. The weight function belongs to the
set in [8]:

ΦP10(x) =
φ′(x)
φ(x)

∈
{

1;
1

φ(x)
;
Pjφ(x)
φ(x)

;
Mjkφ(x)
φ(x)

;
PjPkφ(x)
φ(x)

;
PjMklφ(x)

φ(x)
; · · ·

}
,

where Pj , Mjk are the generators of Poincaré group, j, k, l = 1, 2, 3, 4. In the space of d’Alembert
equation solutions the set defines a rule of the change from a solution to solution. The weight
function Φ(x) = 1 ∈ ΦP10(x) determines transformational properties of the solutions φ′ = φ,
which means the well-known relativistic symmetry of d’Alembert equation [9, 10].

Let the transformations of coordinates belong to the Weyl group W11:

x′j = ρLjkxk + aj ,

where ρ = const is the parameter of the scale transformations of the group ∆1. In this case we
have

�′xj = ρ′
∑
k

L′jk�
′x′k = 0,

∑
i

∂xj
∂x′i

∂xk
∂x′i

=
∑
i

ρ′2L′jiL
′
ki = ρ′2δjk = ρ−2δjk.

The set (4) reduces to the set (5) and has the solution ΦW11 = CΦP10 , where C = const. The
weight function Φ(x) = C and the law φ′ = Cφ means the well-known Weyl symmetry of
d’Alembert equation [9, 10]. Let here C be equal ρl, where l is the conformal dimension1 of the
field φ(x). Consequently, d’Alembert equation is W11-invariant for the field φ with arbitrary
conformal dimension l. This property is essential for the Voigt [4] and Umov [12] works as will
be shown just below.

Let the coordinate transformations belong to the Inversion group I:

x′j = −xj
x2
, x2 = x1

2 + x2
2 + x3

2 + x4
2, x2x′2 = 1.

In this case we have

�′xj =
4x′j
x′4

= −4xjx2,
∑
i

∂xj
∂x′i

∂xk
∂x′i

= ρ′2(x′)δjk =
1
x′4

δjk = x4δjk.

The set (4) reduces to the set:

−4xj
∂Φφ
∂xj

+ x2�Φφ = 0, �φ = 0. (6)

The substitution of Φ(x) = x2Ψ(x) transforms the equation (6) for Φ(x) into the equation �Ψφ =
0 for Ψ(x). It is a sign of the Lie symmetry. The equation has the solution Ψ = 1. The result is
Φ(x) = x2. Consequently, the field transforms according to the law φ′ = x2φ(x) = ρ−1(x)φ(x).
This means the conformal dimension l = −1 of the field φ(x) in the case of d’Alembert equation
symmetry with respect to the Inversion group I in agreement with [5, 10]. In a general case the
weight function belongs to the set:

ΦI(x) = x2Ψ(x) ∈
{
x2;

x2

φ(x)
;x2Pjφ(x)

φ(x)
;x2Mjkφ(x)

φ(x)
;x2PjPkφ(x)

φ(x)
; · · ·

}
. (7)

1The conformal dimension is the number l characterizing the behavior of the field under scale transformations
x′ = ρx, φ′(x′) = ρlφ(x) [11].



Method of Replacing the Variables for Generalized Symmetry 159

Let the coordinate transformations belong to the Special Conformal Group C4:

x′j =
xj − ajx

2

σ(x)
, σ(x) = 1− 2a · x+ a2x2, σσ′ = 1.

In this case we have

�′xj = 4
(
aj − a2xj

)
σ(x),

∑
i

∂xj
∂x′i

∂xk
∂x′i

= ρ′2(x′)δjk = σ2(x)δjk.

The set (4) reduces to the set:

4σ(x)
(
aj − a2xj

) ∂Φφ
∂xj

+ σ2(x)�Φφ = 0, �φ = 0. (8)

The substitution of Φ(x) = σ(x)Ψ(x) transforms the equation (8) into the equation �Ψφ = 0
which corresponds to the Lie symmetry. From this equation we have Ψ = 1, Φ(x) = σ(x). There-
fore φ′ = σ(x)φ(x) and the conformal dimension of the field is l = −1 as above. Analogously
to (7), the weight function belongs to the set:

ΦC4(x) = σ(x)Ψ(x) ∈
{
σ(x);

σ(x)
φ(x)

;σ(x)
Pjφ(x)
φ(x)

;σ(x)
Mjkφ(x)
φ(x)

; · · ·
}
.

From here we can see that φ(x) = 1/σ(x) is the solution of d’Alembert equation. Com-
bination of W11, I and C4 symmetries means the well-known d’Alembert equation conformal
C15-symmetry [5, 9, 10].

Let the coordinate transformations belong to the Galilei group G1:

x′1 = x1 + iβx4, x′2 = x2, x′3 = x3, x′4 = γx4, c′ = γc,

where β′ = −β/γ, γ′ = 1/γ, β = V/c, γ = (1− 2βnx + β2)1/2. In this case we have

�′xj = 0,
∑
i

(
∂x1

∂x′i

)2

= 1− β′2,
∑
i

(
∂x2

∂x′i

)2

=
∑
i

(
∂x3

∂x′i

)2

= 1,

∑
i

(
∂x4

∂x′i

)2

= γ′2,
∑
i

∂x1

∂x′i

∂x2

∂x′i
=

∑
i

∂x1

∂x′i

∂x3

∂x′i
=

∑
i

∂x2

∂x′i

∂x3

∂x′i
=

∑
i

∂x2

∂x′i

∂x4

∂x′i
= 0,

∑
i

∂x1

∂x′i

∂x4

∂x′i
= iβ′γ′ = −iβ/γ2.

After putting these expressions into the set (4) we find [8]:

�Φφ− ∂2Φφ
∂x4

2
−

(
i
∂

∂x4
+ β

∂

∂x1

)2 Φφ
γ2

=
[

(i∂4 + β∂1)2

γ2
−�

]
Φφ = 0.

In accordance with Definition 1 it means that the Galilei symmetry of d’Alembert equation is
the generalized symmetry. The weight function belongs to the set [7]:

ΦG1(x) =
φ′(x′ → x)

φ(x)
∈

{
φ(x′)
φ(x)

;
1

φ(x)
;
P ′jφ(x′)
φ(x)

;
[�′, H ′1]φ(x′)

φ(x)
; · · ·

}
,

where H ′1 = it′∂x′ is the generator of the Galilei transformations. For plane waves the weight
function Φ(x) is [6, 7, 8]:

ΦG1(x) =
φ(x′ → x)
φ(x)

= exp
{
− i

γ

[
(1− γ)k · x− βω

(
nxt−

x

c

)]}
,
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where k = (k, k4), k = ωn/c is the wave vector, n is the wave front guiding vector, ω is the
wave frequency, k4 = iω/c, k′1 = (k1 + iβk4)/γ, k′2 = k2/γ, k′3 = k3/γ, k′4 = k4, k′2 = k2 - inv.
(For comparison, in the relativistic case we have k′1 = (k1 + iβk4)/(1− β2)1/2, k′2 = k2, k′3 = k3,
k′4 = (k4 − iβk1)/(1− β2)1/2, k′2 + k4

′2 = k2 + k4
2 - inv as is well-known).

The results obtained above we illustrate by means of the Table 1:

Group P10 W11 I C4 G1

WF Φ(x) 1 ρl x2 σ(x) exp{−i[(1− γ)k · x− βω(nxt− x/c)]/γ}

For the different transformations x′ = x′(x), the weight functions Φ(x) may be found in a similar
way.

Let us note that in the symmetry theory of d’Alembert equation, the conditions (4) for
transforming this equation into itself combine the requirements formulated by various authors,
as can be seen in the Table 2:

Author
Coordinates
transform.

Group Conditions of invariance
F ields

transform.

V oigt [4] x′j = Ajkxk L6X∆1 A′jiA
′
ki = ρ′2δjk φ′ = φ

Umov [12] x′j = xj
′(x) W11

∂xj
∂x′i

∂xk
∂x′i

= ρ′2δjk, �′xj = 0 φ′ = φ

Di Jorio [13] x′j = Ljkxk + aj P10 L′jiL
′
ki = δjk,

∂2φ′

∂φα∂φβ
= 0 φ′ = mαφα +m0

α = 1, . . . , n

Kotel′nikov x′j = x′j(x) C4
∂xj
∂x′i

∂xk
∂x′i

= ρ′2(x′)δjk φ′α = ψDαβφβ

[6, 7, 8]
∂2φ′α
∂ξβ∂ξγ

= 0, �′φ′α = 0 → ξα = ψφα

Âφ′α(ψφ1, . . . , ψφ6) = 0 α, β = 1, . . . , 6

�φβ = 0

x′j = x′j(x) G1
∂2φ′α
∂ξβ∂ξγ

= 0, �′φ′α = 0 → φ′α = ψMαβφβ

B̂φ′α(ψφ1, . . . , ψφ6) = 0 ξα = ψφα

�φβ = 0 α, β = 1, . . . , 6

Here mα, m0 are some numbers, Dαβ and Mαβ are the 6× 6 numerical matrices.
According to this Table for the field φ′ = φ with conformal dimension l = 0 and the linear

homogeneous coordinate transformations from the group L6 ×�1 ∈ W11 with ρ = (1− β2)1/2,
the formulae were proposed by Voigt [4, 9]. In the plain waves case they correspond to the
transformations of the 4-vector k = (k, k4) and proper frequency ω0 according to the law k′1 =
(k1 + iβk4)/ρ(1 − β2)1/2, k′2 = k2/ρ, k′3 = k3/ρ, k′4 = (k4 − iβk1)/ρ(1 − β2)1/2, ω′0 = ω0/ρ,
k′x′ = kx - inv. In the case of the W11-coordinate transformations belonging to the set of
arbitrary transformations x′ = x′(x) the requirements for the one component field with l = 0
were found by Umov [12]. The requirement that the second derivative ∂2φ′/∂φα∂φβ = 0 with
Φ = 1 be turned into zero was introduced by Di Jorio [13]. The weight function Φ �= 1 and the
set (4) were proposed by the author of the present work [6, 7, 8].
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By now well-studied have been only the d’Alembert equation symmetries corresponding to
the linear systems of the type (5), (6), (8). These are the well-known relativistic and conformal
symmetry of the equation. The investigations corresponding to the linear conditions (4) are
much more scanty and presented only in the papers [6, 7, 8]. The publications corresponding to
the non-linear conditions (1) are absent completely. The difficulties arising here are connected
with analysis of compatibility of the set (1) containing the non-linear partial differential equation.

3 Conclusion

It is shown that under generalized understanding of the symmetry according to Definition 1,
d’Alembert equation for one component field is invariant with respect to any arbitrary re-
versible coordinate transformations x′ = x′(x). In particular, they contain transformations of
the conformal and Galilei groups realizing the type of standard and generalized symmetry for
Φ(x) = φ′(x′ → x)/φ(x). The concept of partial differential equations symmetry is conventional.
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Using three-parameter subgroups of the extended Poincaré group P̃ (1, 3) we have con-
structed ansatzes reducing the Maxwell equations to systems of ordinary differential equa-
tions. This enables us to construct a number of new exact solutions of the Maxwell equations.

1 Introduction

The electromagnetic field is described by the electric E = E(x0,x) and magnetic H = H(x0,x)
fields. In the absence of charges, we have the system of vacuum Maxwell equations

rot E = −∂H

∂x0
, div H = 0, rot H =

∂E

∂x0
, div E = 0. (1)

As it is well-known [1, 2], the maximal point symmetry group admitted by the Maxwell equa-
tions (1) is the 16-parameter group which is the direct product of the 15-parameter conformal
group C(1, 3) and of the one-parameter Heaviside–Larmor–Rainich group H. It contains as
a subgroup the extended Poincaré group P̃ (1, 3) generated by the following vector fields:

Pµ = ∂xµ , J0a = x0∂xa + xa∂x0 + εabc(Eb∂Hc −Hb∂Ec),
Jab = xb∂xa − xa∂xb

+ Eb∂Ea − Ea∂Eb
+Hb∂Ha −Ha∂Hb

,

D = xµ∂xµ − 2(Ea∂Ea +Ha∂Ha). (2)

Here µ = 0, 1, 2, 3; a, b, c = 1, 2, 3; summation over repeated indices is understood, the index µ
taking the values 0, 1, 2, 3 and the indices a, b taking the values 1, 2, 3; εabc is the totally anti-
symmetric third-order tensor, ∂xµ = ∂

∂xµ
, ∂Ea = ∂

∂Ea
, ∂Ha = ∂

∂Ha
.

The large symmetry group admitted by the Maxwell equations allows one to construct many
exact solutions by the symmetry reduction method [3, 4, 5, 6, 7, 8]. Using three-parameter
subgroups of the Poincaré group P (1, 3) with generators Pµ, Jµν (2) enabled us to obtain in
[9, 10] a number of exact solutions of the system (1).

The aim of the present report is to give an exhaustive description of P̃ (1, 3)-invariant ansatzes
for the Maxwell field (E,H) reducing equations (1) to systems of ordinary differential equations.
Using them we will construct new exact solutions of the Maxwell equations.

Let p̃(1, 3) be the Lie algebra of the Poincaré group with the generators (2) and p̃(1)(1, 3) be
the Lie algebra having as basis elements

P (1)
µ = ∂xµ , J (1)

µν = xµ∂xν − xν∂xµ , D(1)
µ = xµ∂xµ ,

where µ, ν = 0, 1, 2, 3; lowering of the indices µ, ν is performed with the help of the metric tensor
of the Minkowski space-time gµν .

Next, let L be a subalgebra of the algebra p̃(1, 3) having rank r, and let the projection of the
algebra L onto p̃(1)(1, 3) have rank r(1). It follows from the general theory of invariant solutions of



Subgroups of Extended Poincaré Group 163

differential equations ([3]) that subalgebras of the algebra L satisfying the additional condition
r = r(1) = 3 give rise to ansatzes reducing (1) to systems of ordinary differential equations.
It is not difficult to see that in the case dimL = 3 and a basis of functionally independent
invariants of the algebra L consists of seven functions Ωi = Ωi(x0,x,E,H) (i = 1, 2, . . . , 6) and
ω = ω(x0,x). The structure of an invariant ansatz is completely determined by the form of the
functions Ωi.

Let us introduce the notations

V = (E1 E2 E3 H1 H2 H3)T , W =
(
Ẽ1 Ẽ2 Ẽ3 H̃1 H̃2 H̃3

)T
.

Then the general form of the basis elements of the three-dimensoinal Lie algebra L = 〈Xa|a =
1, 2, 3〉 reads as

Xa = ξaµ(x0,x)∂xµ + ρalkVk∂Vl
.

Here, and in the following, m,n, k, l = 1, 2, . . . , 6; µ, ν = 0, 1, 2, 3.
As the basis elements (2) realize a linear representation of the algebra p̃(1, 3) and, the condi-

tion r = r(1) holds, the general form of an ansatz invariant with respect to a three-dimensional
subalgebra L ∈ p̃(1, 3) reads [8, 9, 10]

V = ΛW (ω), (3)

where Λ = Λ(x0,x) is a 6× 6 matrix nonsingular in some domain of the space R0,3 = {(x0,x) :
xµ ∈ R, µ = 0, 1, 2, 3} which, together with a smooth scalar function ω = ω(x), satisfies the
following system of partial differential equations:

ξaµ
∂Λmn
∂xµ

+ fmlρaln = 0, (4)

ξaµ
∂ωmn
∂xµ

= 0. (5)

Here the symbol Λmn stands for the (m,n) entry of the matrix Λ.
Thus, the problem of symmetry reduction of the Maxwell equations by scale-invariant ansat-

zes contains as a subproblem integration of systems of the form (4), (5) for each inequivalent
three-dimensional algebra. Remarkably, there is no need to consider all inequivalent algebras,
since the following results hold:

Lemma 1 ([9]). Let E, H be functions of x1, x2, ξ = 1
2(x0 − x3) only. Then the Maxwell

equations can be integrated, and their general solution is given by

E1 =
1
2

(R+R∗ + T1 + T ∗1 ), E2 =
1
2

(iR− iR∗ + T2 + T ∗2 ), E3 = S + S∗,

H1 =
1
2

(iR− iR∗ − T2 − T ∗2 ), E2 =
1
2

(R+R∗ − T1 − T ∗1 ), E3 = iS − iS∗,

where Ta = ∂2σa
∂ξ2

, a = 1, 2; S = ∂σ1
∂ξ + i∂σ2

∂ξ + λ(z), R = −2
(
∂σ1
∂z + i∂σ2

∂z

)
+ dλ

dz ξ; σ = σa(z, ξ),
z = x1 + ix2 and λ = λ(z) are arbitrary analytic functions.

Lemma 2 ([11]). Let E, H be functions of x0, x3 only. Then the Maxwell equations can be
integrated, and their general solution is given by the formulae below

E1 = f1(ξ) + g1(η), E2 = f2(ξ) + g2(η), E3 = C1,

H1 = f2(ξ)− g2(η), H2 = −f1(ξ) + g1(η), H3 = C2,

where f1, f2, g1, g2 are arbitrary smooth functions, ξ = x0 − x3, η = x0 + x3 and C1, C2 are
arbitrary real constants.
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Consequently, to obtain new solutions of the Maxwell equations it is sufficient to restrict
our considerations to those three-dimensional subalgebras of p̃(1, 3) which are not conjugate to
subalgebras of p(1, 3) and, in addition, fulfill the conditions

1) r = r(1) = 3; 2) 〈P0 ± P3〉 �⊂ L, 〈P0, P3〉 �⊂ L; 3) 〈P1, P2〉 �⊂ L.

Making use of the classification of inequivalent subalgebras of the algebra p̃(1, 3) obtained in
[9, 10] we have checked that the above conditions are satisfied by the following seven subalge-
bras [11]:

L1 = 〈J12, D, P0〉; L2 = 〈J12, D, P3〉; L3 = 〈J03, D, P1〉;
L4 = 〈J03, J12, D〉; L5 = 〈G1, J03 + αD,P2〉 (0 < |α| ≤ 1);
L6 = 〈J03 −D + P0 + P3, G1, P2〉; L7 = 〈J03 + 2D,G1 + P0 − P3, P2〉,

where G1 = J01 − J13.

As direct verification shows, the basis elements of the above algebras satisfy the condition
r = r(1) = 3. Consequently, each of them gives rise to an ansatz of the type given in (3).
Furthermore, these ansatzes can be represented in a unified way, namely

E1 = θ{(Ẽ1 cos θ3 − Ẽ2 sin θ3) cosh θ0 + (H̃1 sin θ3 + H̃2 cos θ3) sinh θ0
+ 2θ1Ẽ3 + 2θ2H̃3 + 4θ1θ2Σ1 + 2(θ2

1 − θ2
2)Σ2},

E2 = θ{(Ẽ2 cos θ3 + Ẽ1 sin θ3) cosh θ0 + (H̃2 sin θ3 − H̃1 cos θ3) sinh θ0
− 2θ1H̃3 + 2θ2Ẽ3 + 4θ1θ2Σ2 − 2(θ2

1 − θ2
2)Σ1},

E3 = θ{Ẽ3 + 2θ1Σ2 + 2θ2Σ1},
H1 = θ{(H̃1 cos θ3 − H̃2 sin θ3) cosh θ0 − (Ẽ1 sin θ3 + Ẽ2 cos θ3) sinh θ0

+ 2θ1H̃3 − 2θ2Ẽ3 − 4θ1θ2Σ2 + 2(θ2
1 − θ2

2)Σ1},
H2 = θ{(H̃2 cos θ3 + H̃1 sin θ3) cosh θ0 + (Ẽ1 cos θ3 − Ẽ2 sin θ3) sinh θ0

+ 2θ1Ẽ3 + 2θ2H̃3 + 4θ1θ2Σ1 + 2(θ2
1 − θ2

2)Σ2},
H3 = θ{H̃3 + 2θ1Σ1 − 2θ2Σ2},

where

Σ1 = [(H̃2 − Ẽ1) sin θ3 − (Ẽ2 + H̃1) cos θ3]e−θ0 ,

Σ1 = [(Ẽ2 + H̃1) sin θ3 + (H̃2 − Ẽ1) cos θ3]e−θ0 ,

and the functions θ = θ(x0,x), θβ = θβ(x0,x) (β = 0, 1, 2), ω = ω(x0,x) are ([11]):

L1 : θ = x2
3, θ1 = arctan

x2

x1
, θ0 = θ2 = 0, ω =

x2
1 + x2

2

x2
3

;

L2 : θ = x2
0, θ1 = arctan

x2

x1
, θ0 = θ2 = 0, ω =

x2
1 + x2

2

x2
0

;

L3 : θ = x2
2, θ0 = ln

∣∣(x0 + x3)x−1
2

∣∣ , θ1 = θ2 = 0, ω =
(
x2

0 − x2
3

)
x−2

2 ;

L4 : θ = x2
0 − x2

3, θ0 =
1
2

ln
∣∣(x0 + x3)(x0 − x3)−1

∣∣ , θ1 = arctan
x2

x1
, θ2 = 0,

ω =
(
x2

1 + x2
2

) (
x2

0 − x2
3

)−1 ;
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L5 : 1) θ = x0 − x3, θ0 = −1
2

ln |x0 − x3|, θ1 = 0, θ2 = −1
2
x1 (x0 − x3)−1 ,

ω = x0 + x3 − x2
1(x0 − x3)−1 for α = −1;

2) θ = x2
0 − x2

1 − x2
3, θ0 =

1
2α

ln
∣∣x2

0 − x2
1 − x2

3

∣∣ , θ1 = 0, θ2 = −1
2
x1(x0 − x3)−1,

ω = 2α ln |x0 − x3|+ (1− α) ln
∣∣x2

0 − x2
1 − x2

3

∣∣ for α �= −1;

L6 : θ = x0 − x3, θ0 = −1
2

ln |x0 − x3|, θ1 = 0, θ2 = − x1

2(x0 − x3)
,

ω = x0 + x3 − x2
1(x0 − x3)−1 + ln |x0 − x3|;

L7 : θ =
(
4x1 − (x0 − x3)2

)2
, θ0 =

1
2

ln
∣∣4x1 − (x0 − x3)2

∣∣ , θ1 = 0,

θ2 = −1
4

(x0 − x3), ω =
[
x0 + x3 − x1(x0 − x3) +

1
6

(x0 − x3)3
]∣∣4x1 − (x0 − x3)2

∣∣− 3
2 .

Substituting the ansatzes obtained in this way into the initial system (1) yields systems of
ordinary differential equations for the unknown functions Ẽa, H̃a (a = 1, 2, 3). If, for example,
we take the ansatz invariant under the algebra L1 and insert it into the Maxwell equations,
then, after some algebraic manipulations, we obtain the following system for Ẽa(ω), H̃a(ω)
(a = 1, 2, 3):

2ω(1 + ω) ¨̃E3 + (7ω + 2) ˙̃E3 + 3Ẽ3 = 0, 2ω(1 + ω) ¨̃H3 + (7ω + 2) ˙̃H3 + 3H̃3 = 0,

f = h = −2
√
ω(Ẽ3 + (1 + ω) ˙̃E3), g = −ρ = 2

√
ω(H̃3 + (1 + ω) ˙̃H3),

where

f = Ẽ1 + H̃2, g = Ẽ2 − H̃1, h = Ẽ1 − H̃2,

ρ = Ẽ2 + H̃1,
˙̃E3 =

dẼ3

dω
, ¨̃E3 =

d2Ẽ2

dω2
.

Taking into account that we have ω ≥ 0, we represent the general solution of the above system
as follows

Ẽ3 = (1 + ω)−
3
2

[
C1

(
ln

∣∣∣∣√1 + ω − 1√
1 + ω + 1

∣∣∣∣ + 2
√

1 + ω

)
+ C2

]
,

H̃3 = (1 + ω)−
3
2

[
C3

(
ln

∣∣∣∣√1 + ω − 1√
1 + ω + 1

∣∣∣∣ + 2
√

1 + ω

)
+ C4

]
,

where C1, C2, C3, C4 are integration constants, and we easily get the corresponding exact
solutions of the Maxwell equations (1):

Ea = − 2C1xa

x3

(
x2

1 + x2
2

) + xaσ
− 3

2A12, E3 = x3σ
− 3

2A12,

Ha = − 2C3xa

x3

(
x2

1 + x2
2

) + xaσ
− 3

2A34, H3 = x3σ
− 3

2A34.

Here Aij = Ci

(
ln

∣∣∣√σ−x3√
σ+x3

∣∣∣ + 2x−1
3

√
σ
)

+ Cj , σ = x2
1 + x2

x + x2
3, a = 1, 2.

Let us note that the systems of ordinary differential equations obtained via reduction of the
Maxwell equations by ansatzes invariant under the remaining algebras L2–L7 are also integrable
in terms of elementary functions.
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We have completely solved the problem of description of quasi-linear hyperbolic differential
equations in two independent variables, that are invariant under three-parameter Lie groups.

The problem of group classification of differential equations is one of the central problems
of modern symmetry analysis of differential equations [1]. One of the important classes are
hyperbolic equations. The problem of group classification of such equations was discussed by
many authors (see for instance [2–6]). In this paper we consider the problem of the group
classification of equations of the form:

utt = uxx + F (t, x, u, ux), (1)

where u = u(t, x) and F is an arbitrary nonlinear differentiable function, with Fux,ux �= 0 is an
arbitrary nonlinear smooth function, which dependent variables u or ux. We use the following
notation ux = ∂u

∂x , uxx = ∂2u
∂x2 , Fux = ∂F

∂ux
, ut = ∂u

∂t , utt = ∂2u
∂t2

. For the group classification of
equation (1) we use the approach proposed in [7]. Here we give three main results (for details,
the reader is referred to [8]).

Theorem 1. The infinitesimal operator of the symmetry group of the equation (1) has the
following form:

X = (λt+ λ1)∂t + (λx+ λ2)∂x + (h(x)u+ r(t, x))∂u, (2)

where λ, λ1, λ2 are arbitrary real constants and h(x), r(t, x) are arbitrary functions which satisfy
the condition

rtt −
d2h

dx2
u− rxx + (h− 2λ)F − (λt+ λ1)Ft − (λx+ λ2)Fx

− (hu+ r)Fu − 2ux
dh

dx
− ux(h− λ)Fux −

dh

dx
uFux − rxFux = 0. (3)

Theorem 2. The equivalence group of the equation (1) is given by transformations of the fol-
lowing form:

t̄ = γt+ γ1, x̄ = εγx+ γ2, v = ρ(x)u+ θ(t, x), (4)

γ �= 0, ρ �= 0, ε = ±1.

Theorem 3. In the class of operators (2), there are no realizations of the algebras so(3) and
sl(2,R).

From this theorem we obtain the following:

Note 1. In the class of operators (2) there are no realizations of any real semi-simple Lie
algebras.
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Note 2. There are no equations (1) which have algebras of invariance, isomorphic by real
semi-simple algebras, or contain those algebras as subalgebras.

The set of three-dimensional solvable Lie algebras consists of the following two decomposable
Lie algebras:

A3.1 = A1 ⊕A1 ⊕A1 = 3A1; A3.2 = A2.2 ⊕A1, [e1, e2] = e2,

and the following seven of non-decomposable Lie algebras:

A3.3 : [e2, e3] = e1;
A3.4 : [e1, e3] = e1, [e2, e3] = e1 + e2;
A3.5 : [e1, e3] = e1, [e2, e3] = e2;
A3.6 : [e1, e3] = e1, [e2, e3] = −e2;
A3.7 : [e1, e3] = e1, [e2, e3] = qe2, (0 < |q| < 1);
A3.8 : [e1, e3] = −e2, [e2, e3] = e1;
A3.9 : [e1, e3] = qe1 − e2, [e2, e3] = e1 + qe2, (q > 0).

We give the realizations of the algebras A3.3, A3.4, A3.5, A3.9 and the corresponding values of
the functions F in the equation (1). Here we find only equations, which are non-equivalent to
equations of the form

utt = uxx − u−1u2
x +A(x)ux +B(x)u ln |u|+ uD(t, x),

and which was classified in [8].

A1
3.3 = 〈u∂u, ∂x, m∂t + xu∂u〉 , m �= 0 : F = −u−1u2

x + uG̃(ω), ω = t−muxu
−1;

A2
3.3 = 〈∂u, ∂x, m∂t + x∂u〉 , m �= 0 : F = G̃(ω), ω = mux − t;

A3
3.3 = 〈∂u, ∂t, ∂x + t∂u〉 : F = G̃(ux);

A4
3.3 =

〈
u∂u, ∂t + k∂x, m∂t +

1
k
xu∂u

〉
, k > 0, m ∈ R :

F = −u−1u2
x + uG̃(ω), ω = x− kt+mku−1ux;

A5
3.3 =

〈
emt∂u, ∂x, ∂t + (mu+ xemt)∂u

〉
, (m > 0) :

F = m2u+ emtG̃(ω), ω = e−mtux − t;

A6
3.3 = 〈∂u, ∂t, t∂u〉 : F = G̃(x, ux);

A7
3.3 =

〈
u∂u, ∂t − β−1xu∂u, ∂t + β∂x

〉
, β > 0 :

F = −u−1u2
x + uG̃(ω), ω = x− βt− β2uxu

−1;

A8
3.3 = 〈u∂u, ∂t − xu∂u, ∂x〉 : F = t2u+ 2tux + uG̃(ω), ω = t+ uxu

−1;

A9
3.3 =

〈
ekt∂u, ∂t + ku∂u, β∂x + tekt∂u

〉
, β > 0, k > 0 :

F = k2u+
2kx
β
ekt + ektG̃(ω), ω = e−ktux;

A10
3.3 =

〈
|t| 12∂u,−|t|

1
2 ln |t|∂u, t∂t + x∂x +

1
2
u∂u

〉
:

F = −u
4
t−2 + u3

xG̃(ω, v), ω = tx−1, v = xu2
x;

A11
3.3 = 〈∂u,−t∂u, ∂t + k∂x〉, k > 0 : F = G̃(ω, ux), ω = x− kt;
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A1
3.4 =

〈
ηm−1∂u, ∂t + k∂x, t∂t + x∂x +

(
mu+ tηm−1

)
∂u

〉
,

η = x− kt, k ≥ 0, m ∈ R, m �= 2 :

F = (k2 − 1)(m− 1)(m− 2)η−2u− 2k(1−m)
2m− 4

ηm−2 + η2−mG̃(ω),

ω = ((1−m)u+ ηux)η3m−4;

A2
3.4 =

〈
ektx

−1
∂u, ∂t + kx−1u∂u, t∂t + x∂x +

(
u+ tektx

−1
)
∂u

〉
, k �= 0 :

F = u
(
k2t2x−4 − 2ktx−3 + k2x−2

)
+ 2ktuxx−2 + ektx

−1
(

2k ln |x|x−1 + x−1G̃(ω)
)
,

ω = e−ktx
−1 (

ux + ktux−2
)

;

A3
3.4 =

〈
kx−1u∂u, ∂t − k ln |x|x−1u∂u, t∂t + x∂x

〉
, k > 0 :

F = k2t2ux−4 − 3ktux−3 + 2ktuxx−2 + 2ktux−3 ln |u|
− 2ux−2 ln |u|+ 2uxx−1 ln |u|+ x−2u ln2 |u|+ ux−2G̃(ω),

ω = xuxu
−1 + ln |u|+ ktx−1;

A4
3.4 =

〈
|t| 12∂u,−|t|

1
2 ln |t|∂u, t∂t + x∂x +

3
2
u∂u

〉
:

F = −u
4
t−2 + u−1

x G̃(ω, v), ω = tx−1, v = x−1u2
x;

A5
3.4 = 〈∂u,−t∂u, ∂t + k∂x + u∂u〉, k > 0 :

F = uxG̃(ω, v), ω = x− kt, v = ln |ux| − t;

A1
3.5 =

〈
ηm−1∂u, ∂t + k∂x, t∂t + x∂x +mu∂u

〉
, η = x− kt, k > 0, m ∈ R :

F =
(
k2 − 1

)
(m− 1)(m− 2)uη−2 + ηm−2G̃(ω), ω = ((1−m)u+ uxη)η−m;

A2
3.5 =

〈
∂x, |t|m−1∂u, t∂t + x∂x +mu∂u

〉
, m ∈ R :

F =
(
2u− 3mu−m2u

)
t−2 + tm−2G̃(ω), ω = uxt

m−1;

A3
3.5 = 〈∂t, ∂x, t∂t + x∂x〉 : F = u2

xG̃(u);

A4
3.5 = 〈∂t, ∂x, t∂t + x∂x +mu∂u〉 , m �= 0, 1, 2 : F = |u|m−2

m G̃(ω), ω = u−1
x |u|m−1

m ;

A5
3.5 = 〈∂t, ∂x, t∂t + x∂x + ∂u〉 , m �= 0 : F = e−2uG̃(ω), ω = euux;

A6
3.5 =

〈
∂t, x

−1u∂u, t∂t + x∂x
〉
, k �= 0 :

F = 2uxx−1 ln |u|+ u ln2 |u|x−2 − 2u ln |u|x−2 + x−2uG̃(ω), ω = uxu
−1x+ ln |u|;

A7
3.5 =

〈
∂t + kx−1u∂u, e

ktx−1
∂u, t∂t + x∂x + u∂u

〉
, k ∈ R :

F = uk
(
kt2 − 2xt+ kx2

)
x−4 + 2ktuxx−2 + ektx

−1
x−1G̃(ω),

ω = e−ktx
−1 (

ux + ktux−2
)

;

A1
3.9 = 〈sin(t)∂u, cos(t)∂u, ∂t + k∂x + qu∂u〉, k ≥ 0, q > 0 :

F = −u+ uxG̃(η, v), η = x− kt, v = e−qtux;

A2
3.9 =

〈
|t| 12 sin

(
ln |t|

2(k − q)

)
∂u, |t|

1
2 cos

(
ln |t|

2(k − q)

)
∂u, 2(k − q)(t∂t + x∂x) + ku∂u

〉
,

k ∈ R, q > 0, k �= q : F = −(k − q)2 + 1
4(k − q)2

t−2u+ |t|
4q−3k
2(k−q) G̃(ω, v),

ω = tx−1, v = |t|k−2q|ux|2(k−q).
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Khokhlov–Zabolotskaya–Kuznetsov equation (φt + φφx − αφxx)x − 1/2(φyy + φzz) = 0 and
its solutions are analyzed. A series of complete exact analytical solutions related to the
one-dimensional and vectorial inhomogeneous Burgers equation are presented. A concrete
example which corresponds to a special form of the inhomogeneous term is analyzed. Re-
duction to the traveling wave solution is considered.

1 Introduction

The Khokhlov–Zabolotskaya–Kuznetsov equation (KhZKE) describes the evolution of the spre-
ading of nonlinear diffraction waves whose cross-section is large compared to their length. This
is one of the basic equations of nonlinear wave processes. As the generalized KhZKE usually
the equation

∂

∂τ

(
∂p

∂z
− λp

∂p

∂τ
+ L̂p

)
=
c

2
∆⊥p (1)

is accepted, where p = p(z, τ) usually means pressure, z, t are space and time coordinates,
λ = ε/c30ρ0 is a parameter characterizing nonlinearity, c is the velocity of sound in the medium;
∆⊥ = ∆(x, y) is a two-dimensional Laplacian according to the parameters in the cross-section
of the wave packet; L̂ in the general case is an integro-differential operator determined by
the frequency dependence of weak dispersion and dissipative properties of the medium. Most
frequently a generalization of KhZKE containing the second derivative

L̂ = −b ∂
2

∂τ2
(2)

is used, which describes dissipation, the finite width of the weak shock wave front in particular.
KhZKE (1) looks rather awkward, nevertheless, it is known to have the exact analytical solu-

tion [1]. The present work contains the whole series of exact KhZKE solutions with the second-
order operator L̂. A concrete solution corresponding to the traveling wave solution is considered.

2 One-dimensional case

Let us divide our search for KhZKE solution into two stages. First of all, we will write the KhZKE
as an inhomogeneous Burgers equation and then try to find its exact complete solutions. For
the sake of further simplification, it is feasible to represent the constant b in the expression for
operator L̂ as

b→ b

2c3ρ
, (3)

where ρ is the density index of the medium.
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Then, through substitution of variables

z → 1
λp0

t, τ → −x, p→ p0φ,
b

2εp0

→ ν, x→ 2λp0

c
x, y → 2λp0

c
y, (4)

KhZKE (1) transforms into

(φt + φφx − αφxx)x −
1
2

(φyy + φzz) = 0. (5)

By integrating equation (5) by x variable, let us represent the KhZKE as an inhomogeneous
Burgers equation (IBE):

φt + φφx − αφxx = βf, (6)

where f = 1/2
∫ x
x0

(φyy +φzz) dx, and β is a certain constant introduced to ensure the possibility
of changing the influence of the inhomogeneous term f = f(x, y, z, t). In a whole series of cases
when the dependence of φ(y, z) solution is negligible, or if we are interested in the asymptotic
solution resulting form the mediumization of the initial equation KhZK (zonal mediumization,
Reynold’s mediumization, etc.), the righthand part can be presented as f(x, t).

The Hopf and Cole transformation [2, 3]

φ = −2α∂x lnw (7)

relates each solution of the diffusion equation (DE)

wt = αwxx (8)

to a corresponding solution φ(x, t) of Burgers equation (BE) [4]:

φt + φφx − αφxx = 0 . (9)

This allows a detail analysis of the formation and evolution of shock waves in a nonlinear
environment.

However, upon introducing into equation (8) even a simplest inhomogenous term, the inter-
relation between BE and DE through Hopf and Cole transformation (7) disappears. DE (8) is
a simplest parabolic equation, therefore, searching for solutions of the inhomogeneous diffusion
equation

wt + αwxx = h(x, t) (10)

and of the corresponding inhomogeneous BE (9) generalization, approximate methods of calcu-
lation (most frequently the method of finite differences) are applied [5, 6].

To obtain a pithy inhomogeneous generalization of BE, let us consider a commutative dia-
gram:

SE
t→−it−−−−→ DE

h−1

< =h
SENT ←−−−−

t←it
IBE

(11)

where SE is Schrödinger equation, DE is diffusion equation, IBE is inhomogeneous Burgers
equation (6) and SENT is Schrödinger equation with a nonlinear term (not to be mixed with
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nonlinear Schrödinger equation). The map h is the Hopf–Cole transformation (7) and h−1 is
the inverse Hopf–Cole transformation

w
h−1

−−→ w0 exp
{
− 1

2α

∫
φ(x, t) dx

}
. (12)

It is important that IBE (6) can be got by the transformation (7) of a linear type diffusion
equation

wt = αwxx −
β

2α
F (x, t)w, (13)

where

F (x, t) =
∫ x

x0

dξ f(ξ, t) + C(t), (14)

with x0 as an arbitrary constant, while C(t) is an arbitrary function of t.

3 The vectorial Khokhlov–Zabolotskaya–Kuznetsov equation

While studying the spread of nonlinear waves in a three-dimensional space not in one, but in
all spatial directions, it is the three-dimensional vectorial Khokhlov–Zabolotskaya–Kuznetsov
equation that suits the purpose best:

∇ [φt + (φ∇)φ− α∇(∇φ)]−∇2φ = 0, (15)

where φ = φ(x, t) ∈ R3, α > 0, and ∇ is the gradient operator. If the influence of the medium
from the right-hand side of the equation can be reduced effectively to a function on space and
time coordinates, then the corresponding vectorial inhomogeneous Burgers equation (VIBE) is

φt + (φ∇)φ− α∇(∇φ) = βf , (16)

where f = f(x, t) is a function only of space–time coordinates.
In hydrodynamics, the VIBE and VBE are obtained by refusing the condition that the pres-

sure gradient disappears in the direction perpendicular to the direction of motion of the nonlinear
wave: ∇⊥p = 0 [7]. Such equation, together with the continuity equation, was proposed to study
the cosmological models of the Early Universe [8, 9]. Only comparatively recently a mathemat-
ically strict notion of the generalized solution of such a system was suggested, and it shows that
the variational representation of the generalized solution in the two-dimensional case essentially
differs from that of the one-dimensional case [10].

Like in the one-dimensional case, the linear type diffusion equation

wt = ∇(∇w)− β

2α
F (r, t)w, (17)

by the vectorial generalization of Hopf–Cole transformation

φ(r, t) = −2α∇ lnw (18)

can be mapped into an VIBE (16), where

F (r, t) =
∫ r

r0

dξ f(ξ, t) + C(t), (19)

with r0 as an arbitrary constant, while C(t) is an arbitrary function of t.
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The solution of linear equation (17) is

w(r, t) =
∫
dr′K(r, t, r′, 0)w(r′, 0), (20)

where the kernel K(r, t, r′, 0) satisfies the heat type kernel equation,

Kt − α∇2K +
β

2α
F (r, t)K = 0, (21)

with the initial condition K(r, 0, r′, 0) = δ(r−r′). The solution of this equation can be expressed
by the Feynman–Kac path integral formula:

K(r, t, r′, 0) =
∫

[Dr] exp
(
− S

2α

)
, (22)

where S is the related action, i.e.,

S[r(t)] =
∫ t

0
dτ

[
1
2
ṙ2 + βF (r, τ)

]
. (23)

In the case of the traveling wave solution the function φ(ξ), where ξ = x − ut, obeys the
equation

[(φ− u)∇] φ = α∇(∇φ) + βf . (24)

According to the Helmholtz theorem, the field φ(ξ) can be split into the sum of the gradient
and vortex fields

φ = φg + φv, (25)

where φg = ∇ψ, i.e. ∇×φg = 0, and φv = ∇×χ, i.e. ∇·φv = 0.
In the same way also the inhomogeneous term βf can be represented: f(ξ) = fg(ξ) + fv(ξ).
From equation (26) it follows that φg(ξ) for φv(ξ)=fv(ξ)=0 must obey the equation

α∇φ =
1
2
φ2 − (uφ)− βϕ+

1
2
C1, (26)

where C1 is the integration constant independent of ξ, and f(ξ) = ∇ϕ.
Let ψ = ψ(ξ) be the solution of the three-dimensional Schrödinger equation

�ψ + (C2 + aϕ)ψ = 0. (27)

Then the gradient part of φ(ξ)

φ(ξ) = φ(x− ut) = −2α∇ lnψ + u (28)

is the solution of equation (26) and, consequently, of the initial VIBE (26) for

C1 = u2 + 4α2C2 and β = −2α2a. (29)

Equation (26) suggests that the vortical constituent φv(ξ) of the field obeys the equation

[(φ− u)∇] φ = βf , (30)

where now f = eifi = ∇×χ. The solution of this equation is

φ = u + ei
√

2βFi, (31)

where ei is the unit basis vector and ∂iFj = fj δij .
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Figure 1. Solution φ(ξ) = −2αψ′
n/ψn + u, where ψn(y) = y(l+1)/2e−

1
2 yL

l+1/2
n (y), y =

√
γ/2ξ2 of the

VIBE (16) in the case, when f(ξ) = γξ/2 −(l + 1)/ξ, integration constant α = β = 1, l = 7/2 and
parameter n changes from n = 4 to n = 6. All solutions are normalized to the amplitude values

Consider another potential. In the case of inhomogeneous term it looks like a three-dimen-
sional oscillator

f(ξ) =
1
2
γξ − l + 1

|ξ| e, ξ = r − ut. (32)

Such choice of the inhomogeneous term corresponds to the potential

ϕ(ξ) =
1
4
γ2ξ2 − l(l + 1)

ξ2 − γ

(
l +

3
2

)
. (33)

Then for the IBE

φt + (φ∇)φ− α∇(∇φ) = β

[
1
2
γ(r − ut)− l + 1

|r − ut|e
]

(34)

the solution is

φ(ξ) = −2α∇ψn/ψn + u, (35)

where ψn(y) = y(l+1)/2e−
1
2
yL

l+1/2
n (y), y =

√
γ/2ξ2. For a graphic representation of solution

φ(|r − ut|), see Fig. 1.
In the case of potential (33) we have an infinite number of constants C2 = 2γn and, conse-

quently, the same infinite number of integration constants

C1 = u2 − 8α2γn. (36)

We can see that the gradient constituent φg (28) of the VIBE qualitatively does not differ from
the one-dimensional case (6) and has the same number of exact complete analytical solutions
with the spatial variable x − ut. However, the presence of the vortical constituent φv in the
multi-dimensional case draws a qualitative difference between the VIBE and the one-dimensional
IBE (6). Note that φ = φg + φv, because of the nonlinearity of the VIBE, is not its solution.

4 Discussion and conclusions

Exact solutions of any evolution equation are known for very limited special cases, therefore new
exact solutions of KhZKE are very interesting in themselves.
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Besides, the KhZKE is a limit case of a lot of mathematical models of more complicated
nonlinear and dissipative systems. Exact analysis of a corresponding KhZKE provides a useful
information about the behavior of such systems.

Using the known relation between the diffusion and Schrödinger equations, which is contained
in diagram (11), we obtain that solution for ∇ϕ(ξ) expresses the solution of the Schrödinger
equation in the presence of nonlinearity.

iφt + φ(∇φ)− α∇(∇φ) = ϕ(x− ut), (37)

Sometimes, when the solutions of initial equations exhibit an exotic behavior, we can speak
only about solutions of the enveloping model in the neighborhood of the solutions of initial
equations. For instance, the one-dimensional equation of motion of ideal gas, as is well known,
has a discontinuity in the gas flow, at the same time viscous gas has no such discontinuities,
and only shock transitions at low meanings of viscosity are obtained. In this sense, the heat
equation

φt − α∇(∇φ) = f(x), (38)

describes the stationary heat distribution in a certain volume, because solutions of Poisson
equation can be obtained from the heat equation in the limit of transition at t → ∞. In this
same sense, an IBE with the time-independent right-hand side is a covering model of a stationary
nonlinear Poisson equation

φ∇φ− α∇(∇φ) = βf(x). (39)

This is especially actual for the sign changing coefficients α and β for so-called equations with
changing parabolicity [11].

The obtained KhZKE solutions, because of their general character, allow a wide range of
applications. As a concrete example, it is quite appropriate to mention the Kardar–Parisi–Zhang
(KPZ) equation in (1+1)-dimension systems and crystal growth [12], the nonlinear dynamics
of a moving line [13], galaxy formations [14, 15, 9], behavior of magnetic flux line in super-
conductor [16], and spin glasses [17]. Numerous examples of the applications are presented
in [18].

Finally, exact solutions can be considered as a test model for the very promising and actively
developing field of computer simulations [19].

Exact solutions of the Schrödinger equation are known to be related to the internal symmetry
of a corresponding Hamiltonian [20]. As follows from the considered above subject, the algebra
of supersymmetry should exist also in nonlinear and inhomogeneous cases of KhZKE, which in
the physical sense is far from obvious.
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The Euler equations describing motion of an incompressible ideal fluid are investigated with
symmetry point of view. We review some results on Lie, partially invariant, and nonclassical
submodels of these equations.

1 Introduction

Hydrodynamics partial differential equations are traditional objects of investigation by means
of methods of group analysis [1]. It is well known [2, 3] that the maximal Lie invariance algebra
of the Euler equations (EEs)

ut + (u · ∇)u+ ∇p = 0, div u = 0, (1)

which describe flows of an ideal incompressible fluid, is the infinite dimensional algebra A(E)
generated by the following basis elements:

∂t, Jab = xa∂b − xb∂a + ua∂ub − ub∂ua (a < b),
Dt = t∂t − ua∂ua − 2p∂p, Dx = xa∂a + ua∂ua + 2p∂p,
R(m) = R(m(t)) = ma(t)∂a +ma

t (t)∂ua −ma
tt(t)xa∂p,

Z(χ) = Z(χ(t)) = χ(t)∂p. (2)

Such anomalously wide Lie invariance is typical for hydrodynamics equations of incompressible
fluids, which are written in the Euler coordinates.

In the following u = {ua(t, x)} denotes the velocity of the fluid, p = p(t, x) denotes the
pressure, x = {xa}, ∂t = ∂/∂t, ∂a = ∂/∂xa, ∇ = {∂a}, � = ∇ · ∇ is the Laplacian, ma = ma(t)
and χ = χ(t) are arbitrary smooth functions of t (for example, from C∞((t0, t1),R)). The
fluid density is set equal to unity. Summation over repeated indices is implied, and we have
a, b = 1, 2, 3. Subscripts of functions denote differentiation with respect to the corresponding
variables.

2 Lie invariant solutions of Euler equations

A number of Lie submodels of (1) have been already constructed. For example, in [4, 5, 6, 7] EEs
are reduced to partial differential equations in two and three independent variables by means of
using the Lie algorithm.

Using well-known Lie symmetry group of EEs, we describe all its possible (inequivalent) Lie
submodels. Namely, we find complete sets of inequivalent one-, two-, and three-dimensional
subalgebras of A(E). Then, we construct the corresponding ansatzes of codimension one, two,
and three as well as reduced systems of partial differential equations in three and two indepen-
dent variables and reduced systems of ordinary differential equations. Lie symmetry properties
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of the reduced systems of partial differential equations are investigated. There exists a number
of reduced systems admitting Lie symmetries which are not induced by Lie symmetries of the
initial Euler equations. (Existence of such symmetries was firstly proved by L.V. Kapitanskiy
[8, 9] just for the axially symmetric Euler equations.) The reduced systems of ordinary differ-
ential equations are integrated or for them partial exact solutions are found. As a result, new
large classes of exact solutions of EEs, which contain, in particular, arbitrary functions, are
constructed. Numbers of investigated objects are the following ones:

5 families of one-dimensional inequivalent subalgebras
5 families of ansatzes of codimension one (all the families of subalgebras can be used to reduce

the EEs by the standard method)
4 classes of reduced systems (two classes of reduced systems can be united)
2 classes of reduced systems that have non-induced Lie symmetries

16 families of two-dimensional inequivalent subalgebras
14 families of ansatzes of codimension two (14 subalgebras can be used to reduce EEs by the

standard method)
11 classes of reduced systems (there exist 3 pairs of classes of reduced systems, which can be

united)
2 classes of reduced systems are completely integrated
1 reduced system is linearized on a subset of solutions

45 families of three-dimensional inequivalent subalgebras
21 families of ansatzes of codimension three (only 21 families of subalgebras can be used to

reduce EEs by the standard method)
10 classes of reduced systems solutions of which are not solutions of completely integrated

reduced systems with two independent variables

Now we consider two stationary Lie submodels of codimension 3, which do not have analogs
in the case of viscous fluids as their construction essentially bases on specific invariance of EEs
with respect the time dilations generated by the operator Dt. Moreover, integrating of these
nonlinear submodels can be reduced to solving of second order linear ODEs. Below we give the
corresponding subalgebras, ansatzes, reduced systems, and their solutions.

1. 〈∂t, J12 + α1D
t, R(0, 0, 1) + α2D

t〉, where (α1, α2) �= (0, 0);

u1 = (x1ϕ
1 − x2ϕ

2)eζ , u2 = (x2ϕ
1 + x1ϕ

2)eζ , u3 = ϕ3eζ , p = he2ζ ,

where ζ = −α2x3 − α1 arctanx2/x1, ω = (x2
1 + x2

2)1/2, and new unknown functions ϕa = ϕa(ω)
and h = h(ω) satisfy the reduced system

ωϕ1ϕ1
ω − (α1ϕ

2 + α2ϕ
3)ϕ1 + (ϕ1)2 − (ϕ2)2 + ω−1hω = 0,

ωϕ1ϕ2
ω − (α1ϕ

2 + α2ϕ
3)ϕ2 + 2ϕ1ϕ2 − 2α1ω

−2h = 0,

ωϕ1ϕ3
ω − (α1ϕ

2 + α2ϕ
3)ϕ3 − 2α2h = 0,

ωϕ1
ω + 2ϕ1 − (α1ϕ

2 + α2ϕ
3) = 0. (3)

If ϕ1 = 0, then h = ϕ2 = α2ϕ
3 = 0 and we obtain a trivial solution of EEs. Let ϕ1 �= 0. It

follows from system (3) that

ϕ2 =
α1(ωϕ1

ω + 2ϕ1) + α2βω
2ϕ1

α2
2ω

2 + α2
1

, ϕ3 =
α2(ωϕ1

ω + 2ϕ1)− α1βω
2ϕ1

α2
2ω

2 + α2
1

,

h =
ω2

2
ω2ϕ1ϕ1

ωω − (ωϕ1
ω)2 − 4(ϕ1)2

α2
2ω

2 + α2
1

+
ω2

2
ϕ1 (α2

1 − α2
2ω

2)ωϕ1
ω + 2α1ϕ

1(α2βω
2 + 2α1)

(α2
2ω

2 + α2
1)2

,
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where ϕ1 = ω−2(α2
2ω

2 + α2
1)1/2ψ(ω), ψ is an arbitrary solution of the second order linear ODE

ψωω +
1
ω
ψω +

(
α2

2

α2
1 − α2

2ω
2

(α2
2ω

2 + α2
1)2

+
(
β +

α1α2

α2
2ω

2 + α2
1

)2

+ (α2
2ω

2 + α2
1)(ω−2 + γ)

)
ψ = 0,

β and γ are arbitrary constants. For some values of parameters the general solution of the last
equation can be expressed via elementary or special functions. So, in the case α2 = 0

ψ = Zν(
√
β2 + α2

1γ ω) if β2 + α2
1γ �= 0, ν = α1

√−γ,
ψ = C1ω

β + C2ω
−β if β2 + α2

1γ = 0, β �= 0,

ψ = C1 lnω + C2 if β = γ = 0.

Here and below Zν is the general Bessel function of order ν, W is the Whittaker functions, C0,
C1, C2, and C3 are arbitrary constants. In the case α1 = 0

ψ = Z1(
√
β2 + α2

2 ω) if γ = 0,

ψ =
1
ω
W

(
β2 + α2

2

4α2
√−γ ;

1
2

; α2
√
−γ ω2

)
if γ �= 0.

2. 〈∂t, Dx + αDt + κJ12 +R(0, 0, µt) + Z(ε1), R(0, 0, 1) + Z(ε2)〉, where α �= 0, µ(α− 1) = 0,
ε1(α− 1) = ε2(2α− 1) = 0;

u1 = r−α(x1ϕ
3 − x2(ϕ1 + κϕ3)), u1 = r−α(x2ϕ

3 + x1(ϕ1 + κϕ3)),

u3 = r1−αϕ2 + µ ln r, p = r2−2αh+ ε1 ln r + ε2x3

where r = (x2
1 + x2

2)1/2, ω = arctanx2/x1 − κ ln r, and new unknown functions ϕa = ϕa(ω) and
h = h(ω) satisfy the reduced system

ϕ1ϕ1
ω + (1− α)ϕ3ϕ1 + ((1+κ2)ϕ3+κϕ1)(ϕ1+κϕ3)− 2(1−α)κh+ (1+κ2)hω = κε1,

ϕ1ϕ2
ω + (1− α)ϕ3ϕ2 + µϕ3 + ε2 = 0,

ϕ1ϕ3
ω + (1− α)ϕ3ϕ3 − (ϕ1 + κϕ3)2 + 2(1− α)h− κhω + ε1 = 0,

ϕ1
ω + (2− α)ϕ3 = 0. (4)

There exist three different cases of integration of system (4). If α = 2 then any solution of (4)
belongs to a family from the following ones

ϕ1 = ϕ2 = 0, ϕ3 = C1, h = −1
2(1 + κ2)C2

1 ;

ϕ1 = ϕ3 = h = 0, ϕ2 = ϕ2(ω);

ϕ1 = C1, ϕ2 = C2, ϕ3 = 0, h = −1
2C

2
1 ;

ϕ1 = C1, ϕ2 = C2(ω + C3)−1, ϕ3 = −C1(ω + C3)−1, h = (κ(ω + C3)−1 − 1
2)C2

1 ;

ϕ1 = C1, ϕ2 = C2 cos−1(C3ω + C4), ϕ3 = C1C3 tan(C3ω + C4),

h = 1
2C

2
1 (C2

3 (1 + κ2)− 1)− κC1ϕ
3;

ϕ1 = C1, ϕ2 =
C2

B1eC3ω +B2e−C3ω
, ϕ3 = −C1C3

B1e
C3ω −B2e

−C3ω

B1eC3ω +B2e−C3ω
,

h = −1
2C

2
1 (C2

3 (1 + κ2) + 1)− κC1ϕ
3.

In the case α = 1 we obtain that ε2 = 0, ϕ2 = µ lnϕ1+C0, ϕ
3 = −ϕ1

ω, hω = κ(ϕ1ϕ1
ωω−(ϕ1

ω)2),
and (1 + κ2)ϕ1

ωω − 2κϕ1
ω + ϕ1 = ε1(ϕ1)−1. If additionally ε1 = 0 then

ϕ1 =
(
C1 cos

ω

1 + κ2
+ C2 sin

ω

1 + κ2

)
exp

κω
1 + κ2

, h = −1
2
C2

1 + C2
2

1 + κ2
exp

2κω
1 + κ2

+ C3.
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Let α �∈ {1; 2}. Then ε1 = µ = 0, ε2(2α− 1) = 0, ϕ3 = −(2− α)−1ϕ1
ω,

h = −1
2

(
−2κ
2− α

ϕ1ϕ1
ω +

1 + κ2

(2− α)2
(ϕ1

ω)2 + (ϕ1)2 − C0

(1− α)(2− α)
(ϕ1)2

1−α
2−α

)
,

ϕ2 = (ϕ1)
1−α
2−α (C3 + ε2

∫
(ϕ1)−

3−2α
2−α dω),

(1 + κ2)ϕ1
ωω − 2κ(2− α)ϕ1

ω + (2− α)2ϕ1 = C0(ϕ1)−
α

2−α .

The last equation is easy solved if C0 = 0.

3 SO(3)-partially invariant solutions of Euler equations

The concept of partially invariant solutions was introduced by Ovsiannikov [1] as a generalization
of invariant solutions, which is possible for systems of partial differential equations (PDEs). The
algorithm for finding partially invariant solutions is very difficult to apply. For this reason it is
used more rarely than the classical Lie algorithm for constructing invariant solutions.

In this section we describe the process of constructing SO(3)-partially invariant solutions of
the minimal defect which is equal to 1 for the given representation of so(3) generated by the
operators Jab from A(E) (2) (see [10] for detail).

A complete set of functionally independent invariants of the group SO(3) in the space of
the variables (t, x, u, p) is exhausted by the functions t, |x|, x · u, |u|, p, so any SO(3)-partially
invariant solution of the minimal defect has the form

uR = v(t, R), uθ = w(t, R) sinψ(t, R, θ, ϕ), uϕ = w(t, R) cosψ(t, R, θ, ϕ), p = p(t, R). (5)

Hereafter for convenience the spherical coordinates are used. Substituting (5) into EEs (1), we
obtain the system of PDEs for the functions v, w, ψ, p :

vt + vvR −R−1w2 + pr = 0, wt + vwR +R−1vw = 0,

w(ψt + vψR +R−1wψθ sinψ +R−1w cosψ(sin θ)−1(ψϕ − cos θ)) = 0,

Rvr + 2v + wψθ cosψ − (sin θ)−1w sinψ(ψϕ − cos θ) = 0. (6)

It follows from (6) if w = 0 that v = ηR−2, p = ηtR
−1 − 1

2η
2R−4 + χ, where η and χ are

arbitrary smooth functions of t. The corresponding solution of EEs

uR =
η

R2
, uθ = uϕ = 0, p =

ηt
R
− η2

2R4
+ χ (7)

is invariant with respect to SO(3). Note that flow (7) is a solution of the Navier–Stokes equations
too, and it is the unique SO(3)-partially invariant solutions of the minimal defect for them.

Below w �= 0. Then two last equations of (6) form an overdetermined system in the function ψ.
This system can be rewritten as follows

ψθ +Rw−1 sinψ(ψt + vψR) = −G cosψ,

ψϕ +Rw−1 cosψ(ψt + vψR) sin θ = G sinψ sin θ + cos θ, (8)

where G = w−1(RvR + 2v). The Frobenius theorem gives the compatibility condition of (8):

Gt + vGR = R−1w
(
1 +G2

)
. (9)

If condition (9) holds, system (8) is integrated implicitly and its general solution has the form

F (Ω1,Ω2,Ω3) = 0, (10)
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where F is an arbitrary function of Ω1, Ω2, and Ω3,

Ω1 =
sin θ sinψ −G cos θ√

1 +G2
, Ω2 = ϕ+ arctan

cosψ
cos θ sinψ +G sin θ

, Ω3 = h(t, r),

h = h(t, R) is a fixed solution of the equation ht + vhR = 0 such that (ht, hR) �= (0, 0). Equa-
tion (10) can be solved with respect to ψ in a number of cases, for example, if either FΩ1 = 0 or
FΩ2 = 0. Equation (9) and two first equation of (6) form the “reduced” system for the invariant
functions v, w, and p. It can be represented as the union of the system

R2ftR + ffRR − (fR)2 = g, R2gt + fgR = 0, f := R2v, g := (Rw)2, (11)

for the functions v and w (this system can be also considered a system for the functions f and
g) and the equation

pR = −vt − vvR −R−1w2 (12)

which is one for the function p if v and w are known. Therefore, to construct solutions for EEs,
we are to carry out the following chain of actions: 1) to solve system (11); 2) to integrate (12)
with respect to p; 3) to find the function ψ from (10).

Theorem 1. The maximal Lie invariance algebra of (11) is the algebra

A = 〈 ∂t, DR = R∂R + v∂v + w∂w, D
t = t∂t − v∂v − w∂w 〉.

A complete set of A-inequivalent one-dimensional subalgebras of A is exhausted by four
algebras 〈 ∂t 〉, 〈DR 〉, 〈 ∂t+DR 〉, 〈Dt+κDR 〉. In [10] we constructed the corresponding ansatzes
for the functions v and w as well as the reduced systems arising after substituting the ansatzes
into (11). Two first reduced systems were integrated completely. We also found all the solutions
of system (11), for which f and g are polynomial with respect to R.

4 Nonclassical symmetries of Euler equations

In this section we give results on Q-conditional symmetry [11, 12] of (1) with respect to single
differential operator Q = ξ0(t, x, u, p)∂t+ξa(t, x, u, p)∂a+ηa(t, x, u, p)∂ua +η0(t, x, u, p)∂p, which
were firstly presented in [13].

Theorem 2. Any operator Q of Q-conditional symmetry of the Euler equations (1) either is
equivalent to a Lie symmetry operator of (1) or is equivalent (modA(E)) to the operator

Q̃ = ∂3 + ζ(t, x3, u
3)∂u3 + χ(t)x3∂p, (13)

where ζu3 �= 0, ζ3 + ζζu3 = 0, ζt + (u3ζ + χx3)ζu3 + (ζ)2 + χ = 0.

It follows from Theorem 2 that there exist two classes of the possible reductions on one
independent variable for EEs, namely, the Lie reductions and the reductions corresponding to
operators of form (13). Lie reductions of EEs (1) to systems in three independent variables were
investigated in [5]. An ansatz constructed with the operator Q̃ has the following form:

u1 = v1, u2 = v2, u3 = x3v
3 + ψ(t, v3), p = q + 1

2χ(t)x2
3,

where va = va(t, x1, x2), q = q(t, x1, x2), the function ψ = ψ(t, v3) is a solution of the equation
ψt − ((v3)2 + χ)ψv3 + v3ψ = 0. Substituting this ansatz into (1), we obtain the corresponding
reduced system (i, j = 1, 2):

vit + vjvij + qi = 0, v3
t + vjv3

j + (v3)2 + χ = 0, vjj + v3 = 0.
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The analogous problem for the Navier–Stokes equations (NSEs)

ut + (u · ∇)u+∇p− ν�u = 0, div u = 0 (ν �= 0) (14)

describing the motion of an incompressible viscous fluid was solved by Ludlow, Clarkson, and
Bassom in [14]. Their result can be reformulated in the following manner: any (real) operator Q
of nonclassical symmetry of (14) is equivalent to a Lie symmetry operator of (14). Therefore, all
the possible reductions of NSEs on one independent variable are exhausted by the Lie reductions.
The maximal Lie invariance algebra of NSEs (14) is similar to one of EEs (see [15, 16]):

A(NS) = 〈∂t, Jab, Dt + 1
2D

x, R(m(t)), Z(ζ(t))〉.

The Lie reductions of NSEs were completely described in [17].
It should be noted that non-classical invariance of hydrodynamics equation (in particular,

the Euler and Navier–Stokes equations) with respect to involutive families of two and three
operators have not been investigated. The complete solving of this complicated problem would
allow to describe all the possible reductions of the equations under considerations to systems of
PDEs in two independent variables and to systems of ODEs.
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We generalize the classical Lie results on a basis of differential invariants for a one-parameter
group of local transformations to the case of arbitrary number of independent and dependent
variables. It is proved that if universal invariant of a one-parameter group is known then
a complete set of functionally independent differential invariants can be constructed via one
quadrature and differentiations. Some applications of first-order differential invariants to
Riccati-type systems are also presented.

1 Introduction

The theory of differential invariants nowadays undergoes active development and is widely used
for integration in quadratures and for order lowering of ordinary differential equations, and also
for description of classes of invariant differential equations [1, 2]. In the theory of differential
invariants a major role is played by various versions of the conjecture on the finite basis of diffe-
rential invariants that could be non-rigorously formulated in the following way: for an arbitrary
group G of local transformations there exists such finite set of differential invariants that every
differential invariant of the group G can be represented as a function of these invariants and
their derivatives. A statement of such type (for one-parameter group of local transformations in
the space of two variables) was proved by S. Lie himself [3] (see also [4, 5]) and soon afterwards
it was essentially generalized by A. Tresse [6]. The recent progress in this direction is due to the
works by L.V. Ovsyannikov [7] and P. Olver [1, 8, 9, 10], where the notions of the operator of
invariant differentiation, differential invariant coframe etc. are introduced, and results on rank
stabilization of the prolonged group action and on the estimates for the number of differential
invariants are obtained. There is also considerable number of papers devoted to the search for
the differential invariants of specific groups (see e.g. [11, 12, 13, 14, 15]).

In the present paper we study the differential invariants for one-parameter group of local
transformations in the space of n independent and m dependent variables (m,n ∈ N). (The
case n = m = 1 was considered in [16, 17] and in our work [18]. The results for the case n = 1
with arbitrary m ∈ N were published in [19].) The importance of this problem stems from its
being a part of the problem of search for differential invariants of a group of arbitrary dimen-
sion [1, 5]. Our generalization of the Lie theorem on differential invariants of a one-parameter
group of local transformations was done not only with respect to the number of independent and
dependent variables, but also with respect to strengthening of its statements. It was proved that
if a differential invariant is known, then a complete set of functionally independent differential
invariants can be constructed through one quadrature and differentiations. As a side product,
we also present some results on the existence of basis of differential invariants rational in higher
jet coordinates. A link between differential invariants and integration of systems of Riccati-type
equations was analyzed. Let us note that results of this paper can be generalized for some classes
of multiparameter groups of local transformations (or Lie algebras of differential operators).
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2 Generalization of Lie theorem on differential invariants

Let Q = ξa(x, u)∂xa + ηi(x, u)∂ui be an infinitesimal operator of a one-parameter group G
of local transformations which act on the set M ⊂ J(0) = X × U , where X � Rn is the
space of independent variables x = (x1, x2, . . . , xn) and U � Rm is the space of dependent
variables u = (u1, u2, . . . , um), G(r) is a prolongation of the action of the group G for the subset
M(r) = M × U (1) × U (2) × · · · × U (r) of the jet space J(r) = X × U(r) of r-th order jets over the
space X ×U (here U(r) = U ×U (1) ×U (2) × · · · ×U (r), r ≥ 1, Q(r) is the r-th prolongation of Q
[1, 5]). A function I:M(r) → R is called a differential invariant of the order r for the group G (or
for the operator Q) if it is an invariant of the prolonged action of G(r) (of Q(r)). A necessary and
sufficient condition for the function I to be an r-th order differential invariant of the group G is
the equality Q(r)I = 0.

Here and below, if not otherwise stated, the indices a, b, c, d run from 1 to n, indices i, j,
k, l run from 1 to m. The summation over the repeated indices is understood.

Let I = I(x, u) =
(
I1(x, u), I2(x, u), . . . , Im+n−1(x, u)

)
be a complete set of functionally

independent invariants (or a universal invariant [7]) for an operator Q, and J(x, u) is a particular
solution of the equation QJ = 1. Then the functions I1(x, u), I2(x, u), . . . , Im+n−1(x, u) and
J(x, u) are functionally independent. Let us make a local change of variables: yc = Ic(x, u), c =
1, n− 1, yn = J(x, u) are new independent variables, and vi = Ii+n−1(x, u) are new dependent
variables. In terms of variables y = (y1, y2, . . . , yn) and v = (v1, v2, . . . , vm) the operator Q
has the form ∂yn . Thus for any r ≥ 1 the form of the prolonged operator Q(r) coincides with
Q = ∂yn , and therefore

ŷ = (y1, y2, . . . , yn−1),

v(r) =

{
viα =

∂|α|vi

∂yα1
1 ∂yα2

2 · · · ∂yαn
n

∣∣∣∣∣ αa ∈ N ∪ {0}, |α| =
n∑
a=1

αa ≤ r

}
(here viα = vi, if |α| = 0) form a complete set of its functionally independent invariants, and
(ŷ, v(r)) is a universal invariant of the group G(r). (Functional independence of the components ŷ
and v(r) is obvious, as (y, v(r)) is a set of variables in the space J(r).) This means that (ŷ, v) is
a fundamental set of differential invariants for the operator Q, i.e. any differential invariant of the
operator Q can be represented as a function of ŷ and v and of the derivatives of v with respect
to operators of G-invariant differentiation. These operator coincide here with the operators
Dya = ∂ya + viya

∂vi + viyayb
∂vi

yb
+ · · · of total derivatives with respect to the variables ya.

Let us go back to the variables x, u. In terms of these variables

Dyc =
(−1)c+a

∆
D(Id, d=1,n−1, d	=c, J )
D(xb, b=1,n, b 	=a)

Dxa , c = 1, n− 1,

Dyn =
(−1)n+a

∆
D(Id, d=1,n−1 )
D(xb, b=1,n, b 	=a)

Dxa , (1)

where Dxa = ∂xa + uixa
∂ui + uixaxb

∂ui
xb

+ · · · is the operator of total derivative with respect to
the variable xa, and

D(Id, d=1,n−1, d	=c, J )
D(xb, b=1,n, b 	=a)

,
D(Id, d=1,n−1 )
D(xb, b=1,n, b 	=a)

, ∆ =
D(Id, d=1,n−1, J )
D(xb, b=1,n)

denote Jacobians (of total derivatives)
of the functions Id, d = 1, n− 1, d �= c, J with respect to the variables xb, b = 1, n, b �= a,
of the functions Id, d = 1, n− 1 with respect to the variables xb, b = 1, n, b �= a,
of the functions Id, d = 1, n− 1, J with respect to the variables xb, b = 1, n,

respectively.
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As a result, we arrive at the following theorem.

Theorem 1. Let I(x, u) =
(
I1(x, u), I2(x, u), . . . , Im+n−1(x, u)

)
be a universal invariant of an

operator Q and J(x, u) be a particular solution of the equation QJ = 1. Then functions

Ic(x, u), Dα1
y1 D

α2
y2 · · ·D

αn
yn
Ii+n−1(x, u),

where c = 1, n− 1, αa ∈ N ∪ {0},
n∑
a=1

αa ≤ r, and operators Dya are determined by the formu-

lae (1), form a complete set of functionally independent r-th order differential invariants (or
a universal differential invariant) for the operator Q.

Corollary 1. For any operator Q there exists a complete set of functionally independent r-th
order differential invariants, where every invariant is a rational function of the variables uiα
(α = (α1, α2, . . . , αn), αa ∈ N ∪ {0}, 0 <

n∑
a=1

αa ≤ r) of the jet space J(r) with coefficients

depending on xa and uj.

Corollary 2. If I = (I1(x, u), I2(x, u), . . . , Im+n−1(x, u)) is a universal invariant for the ope-
rator Q and J = J(x, u) is a particular solution for the equation QJ = 1, then the functions

DycI
i+n−1 =

(−1)c+a

∆
D(Id, d=1,n−1, d	=c, J )
D(xb, b=1,n, b 	=a)

DxaI
i+n−1, c = 1, n− 1,

DynI
i+n−1 =

(−1)n+a

∆
D(Id, d=1,n−1 )
D(xb, b=1,n, b 	=a)

DxaI
i+n−1 (2)

form a complete set of functionally independent differential invariants having exactly order one
for the operator Q.

Note that if a universal invariant I for the operator Q is known, then a particular solution
for the equation QJ = 1 may be easily found via one quadrature. E.g. if for some fixed a ξa �= 0,
we have a particular solution

J(x, u) =
∫
dxa/ξ

a
(
X1 . . . , Xa−1, xa, X

a+1, . . . , Xn, U1, . . . , Um
)
,

where xb = Xb(xa, C), b �= a, uj = U j(x,C) is the solution for the system of algebraic equations
I(x, u) = C := (C1, C2, . . . , Cm+n−1) with respect to the variables xb, b �= a, uj , and after the
integration it is necessary to perform an inverse substitution C = I(x, u) (there is no summation
with respect to a in this case). Likewise, when ηi �= 0 for some fixed i, then we can assume

J(x, u) =
∫
dui/ηi

(
X1, . . . , Xn, U1, . . . , U i−1, ui, U i+1, . . . , Um

)
(there is no summation with respect to i), where xb = Xb(ui, C), uj = U j(ui, C), j �= i, is the
solution of the system of algebraic equations I(x, u) = C with respect to the variables xb, uj ,
j �= i.

Thus, the following theorem holds.

Theorem 2. If a universal invariant is found for the operator Q, then a complete set of func-
tionally independent differential invariants of arbitrary order may be constructed through one
quadrature and differentiations.
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3 Invariant differentials

Let us introduce a notion of an invariant differential that is a particular case of a more general
notion of a first-order contact invariant differential form in the jet space [9].

Definition 1. A differential dW (x, u) will be called invariant with respect to a group G (with
operator Q), if it does not change under action of transformations from the group G.

A criterion for invariance of a differential is an equality dQW (x, u) = 0. Two essentially
different cases are possible:

1) the function W (x, u) is an invariant of the operator Q, i.e. QW (x, u) = 0; than the
differential dW (x, u) is automatically invariant with respect to the operator Q (invariant
differential of the first type);

2) the function W (x, u) is not invariant under Q, while the differential dW (x, u) is (invariant
differential of the second type); then QW (x, u) is a non-zero constant.

If a set of functions I(x, u) = (Iq(x, u))q=1,m+n−1 and J(x, u), that determine a universal
invariant of the operator Q and the invariant differential of the second type is type, then all
such sets may be found according to the formulae

Î(x, u) = F (I(x, u)), Ĵ(x, u) = J(x, u) +H(I(x, u)), (3)

where F =
(
F 1, F 2, . . . , Fm+n−1

)
and H are differentiable functions of their arguments, |∂F/∂I|

�= 0. The formulae (3) determine the equivalence relation Ω on the set M of collections of m+n
smooth functions of m + n variables with a non-zero Jacobian. We denote the corresponding
set of equivalence classes as M/Ω.

Proposition 1. There is a one-to-one correspondence between M/Ω and the set of non-zero
operators {Q} in the space of variables (x, u): the set {(I(x, u);J(x, u))} of solutions of the
system QIq = 0, q = 1,m+ n− 1, QJ = 1, where Iq are functionally independent, is an
element of the set M/Ω, and vice versa, if (I(x, u);J(x, u)) is a representative of an equivalence
class from M/Ω, then the system QIq = 0, q = 1,m+ n− 1, QJ = 1 is a determined system
of linear algebraic equations with respect to the coefficients of the corresponding operator Q.

4 The case n = 1

Let us consider in more detail the case of one independent variable x (n = 1), for which it is
possible to obtain a more compact formulation of Theorem 1 and of its corollaries, and also to
obtain some additional results.

Theorem 1′. Let I = I(x, u) =
(
I1(x, u), I2(x, u), . . . , Im(x, u)

)
be a universal invariant of the

operator Q and J(x, u) be a particular solution of the equation QJ = 1. Then the function

Ij(x, u),
(

1
DxJ

Dx

)s

Ij(x, u), s = 1, r,

where Dx = ∂x + uix∂ui + uixx∂ui
x

+ · · · is the operator of total derivative with respect to the
variable x, form a complete set of r-th order functionally independent differential invariants (or
a universal differential invariant) of the operator Q.

Corollary 1′. For any operator Q there exists a complete set of n-th order functionally inde-
pendent differential invariants, where every invariant is a rational function of the variables uix,
uixx, . . . , (ui)(n) of the jet space with coefficients depending on x and ui.
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Corollary 2′. If I =
(
I1(x, u), I2(x, u), . . . , Im(x, u)

)
is a universal invariant of the operator Q

and J = J(x, u) is a particular solution of the equation QJ = 1, then the functions

Ij(1) = Ij(1)(x, u(1)) =
dIj

dJ
=
DxI

j

DxJ
=

Ijx + Ij
uiu

i
x

Jx + Jui′ui
′
x

(4)

form a complete set of functionally independent differential invariants of exactly first order for
the operator Q.

Corollary 3. The components of universal differential invariants having exactly order one of
the operator Q may be sought for in the form of fractional-linear functions of the variables uix
of the jet space with coefficients depending on x and ui.

Corollary 2′ may be restated using the notion of the invariant differential.

Corollary 4. The ratio of invariant differentials of the operator Q of first and second type is
its differential invariant of exactly first order. If dI1, dI2, . . . , dIm form a complete set of
independent invariant differentials of the first type for the operator Q, then its ratio with its
invariant differential of the second type exhaust functionally independent differential invariants
of exactly first order for the operator Q.

Corollary 5 (Lie Theorem [3, 4, 5]). Let n=m=1, I(x, u) and I(1)(x, u, ux) are differential
invariants of zero and of exactly first order for the operator Q. Then the functions

I, I(1),
dsI(1)

dIs
=

(
1

DxI
Dx

)s

I(1), s = 1, r − 1,

form a complete set of n-th order functionally independent differential invariants for the opera-
tor Q.

The operators of G-invariant differentiation for the case of one independent variable are
traditionally sought for in the form

D =
1

DxI0
Dx,

where I0 is a differential invariant for the group G (see e.g. Corollary 5). Therefore, for the
construction of an arbitrary-order universal differential invariant for a one-parameter group of
local transformations by means of the operator of G-invariant differentiation of this form it is
necessary to know m+ 1 functionally independent differential invariants for the group G of the
possibly minimal, or m functionally independent zero-order differential invariants (or simply
invariants), and one exactly first-order differential invariant. The algorithm suggested in the
Theorem 1′ allows to avoid direct construction of differential invariants.

Example 1. (Cf. [1, 5].) Let n = m = 1 and G = SO(2) be a group of rotations acting on
X × U � R2, with an infinitesimal operator Q = u∂x − x∂u. I =

√
x2 + u2 is an invariant of

the group G (of the operator Q), whence (in notation from the proof of Theorem 2) U(x,C) =
±
√
C2 − x2. Then

J = ±
∫

dx√
C2 − x2

= ± arcsin
x

C
= ± arcsin

x√
x2 + u2

(here we put the integration constant to be zero), whence

I(1) =
Ix + Iuux
Jx + Juux

=
x+ uux
−u+ xux

√
x2 + u2, or Ĩ(1) =

x+ uux
−u+ xux

is a first-order differential invariant for the operator Q.
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5 The standard approach
and integration of Riccati-type systems

Within the framework of direct method the differential invariants having exactly first order are
found as invariants of the first prolongation

Q(1) = ξa∂xa + ηi∂ui +
(
ηkc + ηkuju

j
c − ξbxc

ukb − ξbuju
j
cu
k
b

)
∂uk

c

of the operator Q, or as the first integrals of the corresponding characteristic system of ordinary
differential equations

dxa

ξa
=
dui

ηi
=

dukc
ηkc + ηkuju

j
c − ξbxc

ukb − ξbuju
j
cu
k
b

, (5)

that depend not only on x and u, but also on the other the variables of the space J(1). (Here uia is
a variable of the jet space J(1), which corresponds to the derivative ∂ui/∂xa; lower indices of
functions stand for the derivatives with respect to the corresponding variables; there is no
summation over a, c, i and k in the latter equation). Integration of the system (5) is, as a rule,
a highly cumbersome task. If a universal invariant I(x, u) for the operator Q is known, then it
amounts to integration of Riccati-type systems of the form

dukc
dxa

= −
ξb
uj

ξa
ujcu

k
b +

ηk
uj

ξa
ujc −

ξbxc

ξa
ukb +

ηkxc

ξa

∣∣∣∣ u=U(xa,C)

xd=Xd(xa,C), d	=a
, (6)

if ξa �= 0 for some fixed a, or

dukc
dui

= −
ξb
uj

ηi
ujcu

k
b +

ηk
uj

ηi
ujc −

ξbxc

ηi
ukb +

ηkxc

ηi

∣∣∣∣ x=X(ui,C),

ul=U l(ui,C), l 	=i
, (7)

if ηi �= 0 for some fixed i. Here xd = Xd(xa, C), d �= a, u = U(x,C) and x = X(ui, C), ul =
U l(ui, C), l �= i, are solutions of the system of algebraic equations I(x, u) = C with respect to
the variables xd, d �= a, u and x, ul, l �= i, respectively. The constants C = (C1, C2, . . . , Cm+n−1)
in the systems (6) and (7) are considered as parameters. The case ηi �= 0 could be reduced to
the case ξa �= 0 by means of the locus transformation:

x̃a = ui, x̃d = xd, ũi = xa, ũl = ul, d �= a, l �= i,

ũia =
1
uia
, ũid = −u

i
d

uia
, ũla =

ula
uia
, ũld = uld −

uid
uia
ula.

For this reason we will consider in detail only the case ξa �= 0.
The method we suggested in Corollary 2 for finding differential invariants having exactly

first order, unlike the standard method, allows to avoid direct integration of systems of Riccati
equations (6) or (7) and to find a solution through one quadrature and differentiation. This result
means that in the case of known universal invariant I(x, u) for the operator Q the systems (6)
and (7) are always integrable by means of one quadrature. Really, the general solution for the
system (6) could be given explicitly by m non-linked systems of linear algebraic equations

Dxb
Îj

∣∣∣∣ u=U(xa,C)

xd=Xd(xa,C), d	=a
= 0,



190 R.O. Popovych and V.M. Boyko

where Îj = Ij+n−1 +
n−1∑
d=1

C̃jdI
d + C̃jnJ , C̃ib are arbitrary constants. To write the solution in the

explicit form, we introduce some additional notation:

x̄ = (xd)nd=1, d	=a, X̄ = (Xd)nd=1, d	=a, z = xa,

I x̄ = (Id)n−1
d=1 , Iu = (Ij+n−1)mj=1,

C x̄ = (Cd)n−1
d=1 , Cu = (Cj+n−1)mj=1,

C̃ ′ = (C̃jd)mj=1
n−1
d=1 , C̃ ′′ = (C̃jn)mj=1, Î = Iu + C̃ ′I x̄ + C̃ ′′J.

Then the general solution for the system (6) is given by the formulae

(ujb)
m
j=1

n
b=1 = −Î−1

u Îx

∣∣∣∣ u=U(xa,C)

x̄=X̄(xa,C)

,

or

(uja)
m
j=1 = Uz − UCx̄X̄−1

Cx̄ X̄z +H((C̃ ′ + C̃ ′′JCx̄)X̄−1
Cx̄ X̄z − C̃ ′′JCx̄),

(ujb)
m
j=1

n
b=1, b 	=a = UCx̄X̄−1

Cx̄ −H(C̃ ′ + C̃ ′′JCx̄)X̄−1
Cx̄ ,

where H = (UCu −UCx̄X̄−1
Cx̄ X̄Cu)(E + C̃ ′′JCu − (C̃ ′ + C̃ ′′JCx̄)X̄−1

Cx̄XCu)−1, E is the m×m unit
matrix; the signs of vector-functions with lower indices of the sets of variables designate the
corresponding Jacobi matrices. To ensure the existence in some neighborhood of a fixed point
(x0, u0) of all inverse matrices, that are mentioned above, it is sufficient to consider constants C̃ib
to be small and to perform a (preliminarily determined as non-degenerate) linear change in the
set of invariants for the matrix I(x̄,u)(x0, u0) to be the unit matrix.

If we put C̃ib = 0, then we obtain a particular solution

(uja)
m
j=1 = Uz − UCx̄X̄−1

Cx̄ X̄z, (ujb)
m
j=1

n
b=1, b 	=a = UCx̄X̄−1

Cx̄ .

The solution of the system (6) in explicit form should be written separately for the case n = 1.
As in this case u = U(x,C) is the general solution of the system duj/dx = ηj(x, u)/ξ(x, u), then
it is easy to verify that ux = Ux(x,C) is a particular solution for the system (6) (here, as in (6),
C is a set of parameters). The general solution for the system (6) has the form

ux = −(Iu − C̃ ⊗ Ju)−1(Ix + C̃Jx)
∣∣∣∣
u=U(x,C)

= Uz − UC(E + C̃ ⊗ JC)−1C̃Jz (8)

(in the latter equality the substitution x = z, u = U(z, C) was performed), where E is the unit
matrix of the dimensions m × m, C̃ = (C̃1, C̃2, . . . , C̃m)T is a column of arbitrary constants,
Iu = (Ii

uj ), Ix = (Iix), Uz = (Ukz ), UC = (U iCj
), C̃ ⊗ Ju = (C̃kJul), C̃ ⊗ JC = (C̃kJCl). The

inverse matrices in (8) always exist for sufficiently small C̃i.

Example 2. Let n = m = 1, Q = exp(−x− u)(∂x + u∂u). I(x, u) = u exp(−x) is an invariant
for the operator Q, whence U(x,C) = C exp(x). Then

J =
∫

dx

exp(−x− C exp(x))
=

1
C

exp(C exp(x)) =
exp(x+ u)

u

(here we set the integration constant to be zero). Therefore,

I(1) =
Ix + Iuux
Jx + Juux

=
exp(−2x− u)u2(ux − u)

u+ uux − ux
or Ĩ(1) =

ux − u

u+ uux − ux
exp(−u)
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is a first-order differential invariant for the operator Q. System (6) for the operator Q consists
of one equation which has the form

dux
dx

= u2
x + (2− C exp(x))ux − C exp(x).

The function v = C exp(x) is its particular solution. The general solution of this Riccati equation
is given by the formula

ux = C exp(x)− C2 exp(2x)

C exp(x)− 1 + Ĉ exp(−C exp(x))
,

where Ĉ is an arbitrary constant.

Example 3. Let n = m = 1, Q = xu(x∂x + ku∂u), k ∈ R. I(x, u) = ux−k is an invariant for
the operator Q, whence U(x,C) = Cxk. Then

J =
∫

dx

Cxk+2
=


lnx
C

=
lnx
xu

, if k = −1,

− x−(k+1)

(k + 1)C
= − 1

(k + 1)xu
, if k �= −1

(here we set the integration constant to be zero). The corresponding Riccati equation has the
form

dux
dx

= − 1
Cxk

u2
x +

2(k − 1)
x

ux + kCxk−2.

The function ux = kCxk−1 is its particular solution. The general solution of this Riccati equation
is given by the formulae

ux = − C

x2

(
1 +

1

Ĉ − lnx

)
, if k = −1, or

ux = Cxk−1

(
k − k + 1

1 + Ĉxk+1

)
, if k �= −1,

where Ĉ is an arbitrary constant.

Remark. For well-known transformation groups on the plane (i.e. n = m = 1) integrability
in quadratures of equations (6) and (7) as a rule obviously follows from the form of these
equations. For instance, when ξu = 0 or ηx = 0, they are a linear equation or a Bernoulli
equation respectively. If G is a one-parameter group of conformal transformations, then ξx = ηu
and ξu = −ηx, and therefore in equations (6) and (7) variables are separated:

dv

v2 + 1
=
ηx
ξ
dx

∣∣∣∣
u=U(x,C)

and
dv

v2 + 1
=
ηx
η
du

∣∣∣∣
x=X(u,C)

.

Example 4. Let n = 1, m = 2, Q = exp(−x − u1 − u2)(∂x + u1∂u1 + u2∂u2). I1(x, u1, u2) =
u1 exp(−x) and I2(x, u1, u2)= u2 exp(−x) are invariants for the operatorQ, whence U1(x,C1, C2)
= C1 exp(x) and U1(x,C1, C2) = C2 exp(x). Then

J
(
x,C1, C2

)
=

∫
dx

exp (−x− (C1 + C2) exp(x))
=

exp
((
C1 + C2

)
exp(x)

)
C1 + C2

.
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(here we set the integration constant to be zero). The corresponding Riccati-type system has
the form

du1
x

dx
=

(
u1
x + u2

x

)
u1
x +

(
2− C1 exp(x)

)
u1
x − C1 exp(x)u2

x − C1 exp(x),

du2
x

dx
=

(
u1
x + u2

x

)
u2
x − C2 exp(x)u1

x +
(
2− C2 exp(x)

)
u2
x − C2 exp(x).

According to (8), the general solution of this system is given by the formula(
u1
x

u2
x

)
= exp(x)

(
C1

C2

)
+

+

(
C1 + C2

)
exp(2x)J

(
x,C1, C2

)
1−

(
C̃1 + C̃2

) (
exp(x)− (C1 + C2)−1

)
J (x,C1, C2)

(
C̃1

C̃2

)
,

where C̃1, C̃2 are arbitrary constants.

Example 5. Let n = 1, m = 2, Q = exp(u1 + u2)(∂x + u2∂u1 − u1∂u2). Then,

U1
(
x,C1, C2

)
= C1 cosx+ C2 sinx,

U2
(
x,C1, C2

)
= −C1 sinx+ C2 cosx,

J
(
x,C1, C2

)
=

∫
exp

(
−

(
C1 + C2

)
cosx−

(
C2 − C1

)
sinx

)
dx.

The corresponding Riccati-type system has the form

du1
x

dx
= −

(
u1
x + u2

x

)
u1
x +

(
−C1 sinx+ C2 cosx

)
u1
x +

(
−C1 sinx+ C2 cosx+ 1

)
u2
x,

du2
x

dx
= −

(
u1
x + u2

x

)
u2
x −

(
C1 cosx+ C2 sinx+ 1

)
u1
x −

(
C1 cosx+ C2 sinx

)
u2
x.

It follows from (8) that the general solution of this system is given by the formula(
u1
x

u2
x

)
=

(
−C1 sinx+ C2 cosx
−C1 cosx− C2 sinx

)
+

+
exp

(
−

(
C1 + C2

)
cosx−

(
C2 − C1

)
sinx

)
1− C̃1JC1 − C̃2JC2

(
C̃1 cosx+ C̃2 sinx
−C̃1 sinx+ C̃2 cosx

)
,

where C̃1, C̃2 are an arbitrary constant.
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In [1, 2, 3, 4, 5] there was proposed a method of a factorization of PDE. The method is based
on reduction of complicated systems to more simple ones (for example, due to dimension
decrease). This concept is proposed in general case for the arbitrary PDE systems, and its
concrete investigation is developing for the heat equation case. The category of second order
parabolic equations posed on arbitrary manifolds is considered. In this category, for the given
nonlinear heat equation we could find morphisms from it to other parabolic equations with
the same or a smaller number of independent variables. This allows to receive some classes
of solutions of original equation from the class of all solutions of such a reduced equation.
Classification of morphisms (with the selection from every equivalence class of the simplest
“canonical” representatives) is carried out. Necessary and sufficient conditions for canonical
morphisms of heat equation to the parabolic equation on the other manifold are derived.
These conditions are formulated in the differential geometry language. The comparison with
invariant solutions classes, obtained by the Lie group methods, is carried out. It is proved
that discovered solution classes are richer than invariant solution classes, even if we find any
(including discontinuous) symmetry groups of original equation.

1 General equation category

Definition 1. Task is a pair A = (NA, EA), where NA is a set, EA is a system of equations for
graph Γ ⊂ NA = MA ×KA of a function u : MA → KA.

Let S (A) be a set of all subsets Γ ⊂ NA satisfying EA.

Definition 2. We will say that a (ordered) pair of a tasks A = (NA, EA), B = (NB, EB) admits
a map FAB : NA → NB, if for any Γ ⊂ NB, Γ ∈ S (B) ⇔ F−1

AB (Γ) ∈ S (A).

Of course, these definitions are rather informal, but they will be correct when we define more
exactly the notion “system of equations” and the class of assumed subsets Γ ⊂ NA. Let us
consider the general equation category E , whose objects are tasks (with some refinement of the
sense of the notion “system of equations”), and morphisms Mor (A,B) are admitted by the pair
(A,B) maps with natural composition law.

For the given task A we could define the set Mor (A,A) of all morphisms A in a framework
of some fixed subcategory A of the general equation category (let us call such morphisms and
corresponding tasks B “factorization of A”). The tasks, which factorize A, are naturally divided
into classes of isomorphic tasks, and morphisms Mor (A, ·) are divided into equivalence classes.

The proposed approach is conceptually close to the developed in [6] approach to investigation
of dynamical and controlled systems. In this approach as morphisms of system A to the system B
smooth maps of the phase space of system A to the phase space of system B are considered, which
transform solutions (phase trajectories) of A to the solutions of B. By contrast, in the approach
presented here, for the class of all solutions of reduced system B there is a corresponding class of
such solutions of original system A, whose graphs could be projected onto the space of dependent
and independent variables of B; when we pass to the reduced system, the number of dependent
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variables remains the same, and the number of independent variables does not increase. Thus
the approach proposed is an analog to the sub-object notion (in terminology of [6]) with respect
to information about original system solutions, though it is closed to the factor-object notion
with respect to relations between original and reduced systems.

If G is symmetry group of EA, then natural projection p : N → N/G is admitted by the pair
(A,A/G) in the sense of Definition 2, that is our definition is a generalization of the reduction
by the symmetry group. Instead of this the general notion of the group analysis we base on a
more wide notion “a map admitted by the task”. We need not require from the group preserving
solution of an interesting class (if even such a group should exist) to be continuous admitted by
original system. So we could obtain more general classes of solutions and than classes of invariant
solutions of Lie group analysis (though our approach is more laborious owing to non-linearity
of a system for admissible map). Besides, when we factorize original system, a factorizing map
defined here is a more natural object than the group of transformations operating on space of
independent and dependent variables of the original task.

2 Category of parabolic equations

Let us consider subcategory PE of the general equation category, whose objects are second order
parabolic equations:

E : ut = Lu, M = T ×X, K = R,

where L is differential operator, depending on the time t, defined on the connected manifold X,
which has the following form in any local coordinates

(
xi

)
on X:

Lu = bij (t, x, u)uij + cij (t, x, u)uiuj + bi (t, x, u)ui + q (t, x, u) .

Here a lower index i denotes partial derivative by xi, form bij = bji is positively defined, cij =
cji. Morphisms of PE are all smooth maps admitted by PE task pairs. Let us describe this
morphisms:

Theorem 1. Any morphism of the category PE has the form

(t, x, u) →
(
t′ (t) , x′ (t, x) , u′ (t, x, u)

)
. (1)

Set of isomorphisms of the category PE is the set of all one-to-one maps of kind (1).

Let us consider full subcategory PE ′ of the category PE , whose objects are equations ut = Lu,
where operator L in local coordinates has the following form:

Lu = bij (t, x) (a (t, x, u)uij + c (t, x, u)uiuj) + bi (t, x, u)ui + q (t, x, u) ,

and all morphisms are inherited from PE .

Theorem 2. If set of morphisms MorPE (A,B) is nonempty and A ∈ PE ′, then B ∈ PE ′.

3 Category of autonomous parabolic equations

Let us call the map (1) autonomous, if it has the form

(t, x, u) →
(
t, x′ (x) , u′ (x, u)

)
. (2)

Let us call a parabolic equation from the category PE ′, defined on a Riemann manifold X,
autonomous, if it has the form:

ut = Lu = a (x, u) ∆u+ c (x, u) (∇u)2 + ξ (x, u)∇u+ q (x, u) , ξ (·, u) ∈ T ∗X.



196 M.F. Prokhorova

Theorem 3. Let F : A→ B be a morphism of the category PE, F be an autonomous map, A be
an autonomous equation. Then we could endow with Riemann metric the manifold, on which B
is posed, in such a way, that B becomes an autonomous equation.

Let APE be the subcategory of PE ′, objects of which are autonomous parabolic equations,
and morphisms are autonomous morphisms of the category PE .

4 Classification of morphisms of nonlinear heat equation

Let us consider a nonlinear heat equation A ∈ APE , posed on some Riemann manifold X:

ut = a (u) ∆u+ q(u). (3)

(note that any equation ut = a(u)∆u+ c(u)(∇u)2 + q(u)) is isomorphic to some equation (3) in
APE). We will investigate set of morphisms Mor (A,PE) and classes of solutions of equation A,
corresponding these morphisms.

Note, that two morphisms F : A → B and F ′ : A → B′ are called to be equivalent if there
exists such isomorphism G : B → B′ that F ′ = G ◦ F . From the point of view of classes of
original task solutions obtained from factorization, equivalent morphisms have the same value,
that is solution classes are the same for these morphisms. So it is interesting to select from any
equivalence class of the simplest (in some sense) morphism, or such morphism for which the
factorized equation is the simplest.

When we classify morphisms for the original equation (3), a form of coefficient a (u) is im-
portant. We will distinguish such option:

a(u) is arbitrary function

a(u) = a0(u− u0)λ a(u) = a0e
λu

a(u) = a0

The lower the option is situated on this scheme, the richer a collection of morphisms is. Note,
that similar relation is observed in the group classification of nonlinear heat equation [7].

Theorem 4. If a �= const then for any morphism of equation (3) into the category PE there
exists an equivalent in PE autonomous morphism (that is morphism of the category APE).

Let us give a map p : X → X ′ from the manifold X to the manifold X ′ and a differential
operator D on X. We will say that D is projected on X ′, if such a differential operator D′ on X ′

exists that the following diagram is commutative:

C∞ (X ′) p∗−−−−→ C∞ (X)

D′
< <D

C∞ (X ′) −−−−→
p∗

C∞ (X)
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Theorem 5. Let a �= const. For any morphism of the equation A into the category PE there
exists an equivalent in PE autonomous morphism (t, x, u) → (t, y (x) , v (x, u)) A to B ∈ APE,
for which factorized equation B is vt = a (v)Lv + Q(v), operator L is projection onto Y at
map x → y (x) of the described below operator D (note that this condition is limitation on the
projection y (x)), where:

1) if A is arbitrary (not any of the following special form): D = ∆, v (x, u) = u;
2) if A is ut = a0u

λ (∆u+ q0u) + q1u up to shift u → u − u0, λ �= 0, a0, q0, q1 = const:
Df = βλ−1 (∆ (βf) + q0βf) for some function β : X → R, v (x, u) = β−1 (x)u, Q = q1v;

3) if A is ut = a0e
λu (∆u+ q0) + q1, λ �= 0, a0, q0, q1 = const: Df = eλβ (∆f + ∆β + q0) for

some function β : X → R, v (x, u) = u− β (x), Q = q1.

We will call such morphisms “canonical”. In the category PE the canonical representative
in any class of morphisms is defined uniquely up to diffeomorphism of manifold Y , and in the
category APE it is defined uniquely up to conformal diffeomorphism of Y .

Further we restrict ourselves by the investigation of the canonical maps for the first option,
that is will look for such maps p from the given Riemann manifold X onto arbitrary Riemann
manifolds Y , for which Laplacian on X is projected to some operator on Y (note that this
canonical maps will be canonical for given X in the cases (2), (3) too).

Note that isomorphic autonomous equations B, factorized given A, are distinguished only by
arbitrary transformations v → v′(y, v) and has the same projection p : x→ y(x) up to conformal
diffeomorphism of Y . Therefore to find such projection p : X → Y for canonical morphism is to
find all autonomous morphisms from this equivalence class.

5 Factorizing of heat equation in R3

Let DAPE be full subcategory of APE , whose objects are autonomous parabolic equations of
divergent shape:

ut = c(x, u)−1 div (k(x, u)∇u) + q(x, u),

and morphisms are autonomous morphisms of the category APE .

Theorem 6. Let X be a connected region of R3 with Euclidean metric, Y be a manifold without
boundary, A do not have form (2 or 3) from Theorem 5. Then p define canonical morphism of
A in DAPE iff p is restriction on X of factorization R3 under some (may be discontinuous)
group G of isometries.

6 Factorizing with dimension decrease by 1

Theorem 7. Let A do not have form (2 or 3) from Theorem 5, and (a) p : X → Y is a fibering;
(b) X and Y are oriented; (c) X is an open domain in complete Riemann space X̃; (d) dimY =
dimX − 1. Then p define canonical morphism in DAPE iff the following conditions fulfilled:

a) p is a superposition of maps p1 : X → Y ′ and p0 : Y ′ → Y ;

b) p1 : X → Y ′ is a restriction on X of the projection X̃ → X̃
/
G1, where G1 is some

1-parameter subgroup of group Isom
(
X̃

)
of all isometries of X̃;

c) p0 : Y ′ → Ỹ is isomeric covering (for the metric on Y ′, inherited from X);
d) for the vector field η generating group G1, the function ϑ = 〈η, η〉, defined on Y ′, is

projectible on Y .
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7 Factorizing with dimension decrease by 1:
comparison with group analysis

As it was shown in the Section 5, when we were factorizing heat equation in R3 with Euclidean
metric, the class of correspondent (3D) solutions of A coincides with a class of solutions of A,
which are invariant under some (maybe discontinuous) group of isometries of R3.

But these results about coincidence of factorizing maps for the heat equation in R3 with
Euclidean metric with factormaps by symmetry groups (that is isometries groups) are accidental.

At first, projection p0 : Y ′ → Y from previous section is not necessarily generated by some
group of transformation of Y ′.

At second, let even Y ′ = Y /G0, where G0 is some discrete group of the isometries of Y ′.
The question is: could group G0 be lifted to some group of the isometries of X, which preserves
projection onto Y ?

Let the group G1 be fixed that satisfies conditions of Theorem 7. We consider differential-
geometric connection χ on a fibering p1 : X → Y ′ with the structural group G1, which horizontal
planes are orthogonal to G1 orbits.

Theorem 8. (necessary condition). If a discrete group G0, which operates on Y ′ and satisfies
conditions of the Theorem 7, could be lifted to the subgroup of Isom(X), then curvature form dχ,
projected on Y ′, would be invariant respectively G0.

Lemma 1. χ may be decomposed on a sum χ = p1∗χ′ + dh, where χ′ ∈ T ∗Y ′, h is a function
from X to H, H is fiber of p1 (that is either R, or circle R mod H, where H = const is integral χ
on a vertical cycle).

Theorem 9. (necessary and sufficient condition). A discrete group G0, operating on Y ′ and
satisfying conditions of the Theorem 7, could be lifted to the subgroup of Isom (X), iff ∀g ∈ G0

the form gχ′ − χ′ is:
– exact, if the fiber of p1 is simply connected;
– closed with periods, multiply H, if the fiber of p1 is multiply connected.

Particularly, if X = Rn, and G1 is the rotations group, η =
m∑
i=1

ai∂ϕi , m ≥ 3, or G1 is the

screw motions group, η = ∂z +
m∑
i=1

ai∂ϕi , m ≥ 2, then such groups G0 exist, which does not lift

on X.

8 Factorizing with dimension decrease

Let us equip X with connection generated by planes orthogonal to fibers.

Theorem 10. Let (a) p : X → Y be a fibering; (b) dimY < dimX. Then p defines canonical
morphism to DAPE iff the following conditions fulfilled:

1) the fibers of p are parallel;
2) the transformation of a fiber over an initial point to a fiber over a final point changes

volumes proportionally when we translate along any curve on Y ;
3) the holonomy group preserves volume on a fiber.
Moreover, p define canonical morphism to APE iff conditions 1)–2) fulfilled.

Example 1. (dimX = 4, dimY = 2). Let X = {(x, y, z, w)} with the metric

gij =


1 0 0 0
0 1 + α2 + β2 α β
0 α 1 0
0 β 0 1

 , α = xew, β = xez,
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Y = {(x, y)} with the Euclidean metric, p (x, y, z, w) = (x, y). Then map p and equation
vt = vxx + vyy are factorization of the equation

ut = uxx + uyy − 2αuyz − 2βuyw +
(
1 + α2

)
uzz

+ 2αβuzw +
(
1 + β2

)
uww + (αβ)w uz + (αβ)z uw,

where α = xew and β = xez, by the map p : (x, y, z, w) → (x, y). (The same is true for the
equations vt = a(v)∆v on Y and ut = a(u)∆u on X for arbitrary function a, but for simplicity we
will write linear equations in examples.) However the only transformations X, under which both
the last equation and all it’s solutions projected by p are invariant, are (x, y, z, w) → (x, y, w, z)
and identity. Moreover, another transformation with such properties does not exist even locally
(i.e. it could not be defined in any small neighborhood on X), even if we replace the requirement
“to keep the equation invariant” by the requirement “to be conformal”.

Example 2. (dimX = 3, dimY = 2). Let X̃ = R3 = {(x, y, z)} with the metric

gij =

 1 + z2 z −z
z 2 −1
−z −1 1

 ,

Ỹ = {(x, y)} with the Euclidean metric. Let us consider group H of isometries X̃, generated
by the screw motion (x, y, z) → (x+ 1,−y,−z) (H is projectible on Ỹ ), X = X̃

/
H, Y =

Ỹ
/
H, p (x, y, z) = (x, y). Y is homeomorphic to the Mobius band without a boundary; X is

homeomorphic to the torus without a boundary.
Then map p and equation exvt = (exvx)x + (exvy)y, or vt = vxx + vyy + vx on Y are factori-

zations of the equation

ut = uxx + uyy + ux + 2zuxz + 2uyz +
((

2 + z2
)
uz

)
z

on X. However the only transformation X, under which both the last equation and all projected
by p it’s solutions are invariant, is identity map. Moreover, there does not exist a non-identity
conformal transformation X, under which all projected by p solutions of the last equation are
invariant.

Example 3. (dimX = 3, dimY = 1). Let X = S1 × R2 = {(x, y, z) : x ∈ R mod 1, y, z ∈ R},
equipped with the metric

gij =

 α2 + β2 α β
α 1 0
β 0 1

 , α = −ez, β = 2y,

Ỹ = S1 = {x ∈ R mod 1} equipped with the Euclidean metric, p (x, y, z) = x. Then map p and
equation a−1(v)vt = vxx on Y are factorizations of the equation

ut = uxx +
(
1 + α2

)
uyy +

(
1 + β2

)
uzz + 2αβuyz − 2αuxy − 2βuxz + (αβ)y uz + (αβ)z uy,

on X. However the only transformation X, under which both the last equation and all projected
by p it’s solutions are invariant, is identity map.

Example 4. (dimX = 2, dimY = 1). Let X = R2
/
G with the Euclidean metric, when G is

the group generated by the sliding symmetry respectively the straight line l. The orthogonal
projection of X onto the mean circumference (image of the line l) define equation vt = vyy on l,
factorized the equation ut = uxx + uyy on X. However the only transformation X, under which
both the last equation and all projected by p its solutions are invariant, is reflection with respect
to l.
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9 Factorization without dimension decrease

If dimX = dimY , then p : X → Ỹ projected Laplacian iff it is isometric projection up to some
conformal transformation Y .

Example 5. Let manifold X be a plane without 3 points: A (0, 0), B (1, 0) and C (0, 2). Let’s
consider heat equation on X with metric gij = λ2 (x) δij :

λ2 (x)ut = u11 + u22, (4)

where λ (x) = ρ (x,A) ρ (x,B) ρ (x,C), ρ is the distance function (in usual plane metric). Let
Y = X, and map p : X → Y is given by the formula y = 1

4x
4 − 1+2i

3 x3 + ix2, where x, y are
considered as points at a complex plane.

Because of |yx| = |x (x− 1) (x− 2i)| = λ (x), heat equation ut = u11 + u22 on Y , equipped

by Euclidean metric gij = δij , is factorisation of the equation (4) on the manifold
◦
X, which is

obtained by deleting of pre-images of images of zeroes of λ from X. However, there does not exist
a non-identical transformation of

◦
X, under which all projected by p solutions of equation (4)

are invariant. Moreover, there does not exist a non-identical transformation of any manifold X ′,
under which an equation (4) is invariant, if X ′ is obtained by deleting an arbitrary discrete set
of points from X.

Example 6. Let us consider an equation on X = R2:

ut =
(

1 + |x|2
)2

(u11 + u22) . (5)

Let g be the transformation of R2
/
{0} that maps x ∈ X to the point, obtained from x by

inversion under the unit circle with a center in an origin and consequent reflection under this
center. Equation (5) is invariant with respect to g, but g is not defined at origin. However
the map p : X → Y = P2 onto the projective plane, which past together points x and gx at
x �= 0, is defined on all X and gives smooth projection. Then inducing on Y heat equation is
factorization of original equation on X.
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The notion of a scalar equation describing pseudo-spherical surfaces is reviewed. It is shown
that if an equation admits this structure, the existence of conservation laws, symmetries,
and quadratic pseudo-potentials, can be studied by geometrical means. As an application,
it is pointed out that the important Camassa–Holm and Hunter–Saxton equations possess
features considered to be characteristic of standard “soliton” equations: an infinite number of
local conservation laws, “Miura transformations”, a zero curvature formulation, and nonlocal
symmetries.

1 Introduction

In this contribution we review some recent developments linking differential geometry of surfaces
and integrability of nonlinear partial differential equations. We concentrate on the notion of a
scalar equation describing pseudo-spherical surfaces (or “of pseudo-spherical type”) introduced
by S.S. Chern and Keti Tenenblat [6, 18]: these equations share with the sine–Gordon equation
the property that their (suitably generic) solutions determine two-dimensional surfaces equipped
with metrics of constant Gaussian curvature −1.

Equations of pseudo-spherical type are introduced in Section 2, and we point out that equa-
tions possessing this structure are naturally the integrability condition of an sl(2,R)-valued
linear problem. We then survey in Section 3 two standard aspects of the geometric theory
of differential equations, conservation laws and symmetries: for equations describing pseudo-
spherical surfaces, they can be understood by geometrical means. In Section 4 we consider our
main application, the Camassa–Holm (Camassa and Holm [5]) and Hunter–Saxton (Hunter and
Saxton [8], Hunter and Zheng [9]) equations. We show that for these important examples, the
geometric approach reviewed in Sections 2 and 3 allows us to construct explicitly the following:
quadratic pseudo-potentials, Miura transformations, “modified” equations, local conservation
laws, zero curvature representations, and non-local symmetries.

2 Equations of pseudo-spherical type

This structure was introduced by S.S. Chern and K. Tenenblat in 1986 [6], motivated by the
fact that [17] generic solutions of equations integrable by the Ablowitz, Kaup, Newell and Segur
(AKNS) inverse scattering scheme determine – whenever their associated linear problems are
real – pseudo-spherical surfaces, that is, Riemannian surfaces of constant Gaussian curvature −1.

Definition 1. A scalar differential equation Ξ(x, t, u, ux, . . . , uxntm) = 0 in two independent
variables x, t is of pseudo-spherical type (or, it is said to describe pseudo-spherical surfaces) if
there exist one-forms ωα �= 0,

ωα = fα1(x, t, u, . . . , uxrtp) dx+ fα2(x, t, u, . . . , uxstq) dt, α = 1, 2, 3 (1)
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whose coefficients fαβ are differential functions, such that the one-forms ωα = ωα(u(x, t)) satisfy
the structure equations

dω1 = ω3 ∧ ω2, d ω2 = ω1 ∧ ω3, d ω3 = ω1 ∧ ω2, (2)

whenever u = u(x, t) is a solution to Ξ = 0.

We recall that a differential function is a smooth function which depends on x, t, and a finite
number of derivatives of u [13]. We sometimes use the expression “PSS equation” instead of
“equation of pseudo-spherical type”. Also, we exclude from our considerations the trivial case
when the functions fαβ all depend only on x, t.

Example 1. Burgers’ equation ut = uxx + uux + hx(x), is a PSS equation with

ω1 = ((1/2)u− (β/η))dx+
(
(1/2)ux + (1/4)u2 + (1/2)h(x)

)
dt,

ω2 = −ω3 = η dx+ ((η/2)u+ β)dt,

in which η �= 0 is a parameter, and β is a solution of the equation β2 − ηβx +
(
η2/2

)
h(x) = 0.

The geometric interpretation of Definition 1 is based on the following genericity notions ([15]
and references therein):

Definition 2. Let Ξ = 0 be a PSS equation with associated one-forms ωα, α = 1, 2, 3. A solution
u(x, t) of Ξ = 0 is I-generic if

(
ω3 ∧ ω2

)
(u(x, t)) �= 0, II-generic if

(
ω1 ∧ ω3

)
(u(x, t)) �= 0, and

III-generic if
(
ω1 ∧ ω2)(u(x, t)

)
�= 0.

For instance, u(x, t) = x+t is a I- and III-generic solution of the PSS equation ut = uxx+ux
with associated one-forms ω1 = udx+ uxdt, ω2 = dx, and ω3 = udx+ uxdt.

Proposition 1. Let Ξ = 0 be a PSS equation with associated one–forms ωα.
(a) If u(x, t) is a I–generic solution, ω2 and ω3 determine a Lorentzian metric of Gaussian

curvature K = −1 on the domain of u(x, t), with connection one–form given by ω1.
(b) If u(x, t) is a II–generic solution, ω1 and −ω3 determine a Lorentzian metric of Gaussian

curvature K = −1 on the domain of u(x, t), with connection one–form given by ω2.
(c) If u(x, t) is a III–generic solution, ω1 and ω2 determine a Riemannian metric of Gaussian

curvature K = −1 on the domain of u(x, t), with connection one–form given by ω3.

As pointed out above, the main motivation for formulating Definition 1 is its relation with
integrable equations. The following notion is implicit in [6]:

Definition 3. An equation is geometrically integrable if it describes a non-trivial one-parameter
family of pseudo-spherical surfaces.

Proposition 2. A geometrically integrable equation Ξ = 0 with associated one-forms ωα, α =
1, 2, 3, is the integrability condition of a one-parameter family of sl(2,R)-valued linear problems.

Proof. The linear problem dψ = Ωψ, in which

Ω = Udx+ V dt =
1
2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)
, (3)

is integrable whenever u(x, t) is a solution of Ξ = 0. �
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An important idea in integrable systems is that an equation Ξ = 0 is not just the integrability
condition of a linear problem ψx = Xψ, ψt = Tψ, but that the zero curvature equation Xt −
Tx + [X,T ] = 0 is equivalent to Ξ = 0. It is a crucial problem to formalize this remark within
the context of PSS equations. For evolutionary equations, we proceed thus [10, 15]: if ut =
F (x, t, u, . . . , uxk) is a kth order evolution equation, we consider the differential ideal IF generated
by the two-forms

du ∧ dx+ F (x, t, u, . . . , uxk) dx ∧ dt, duxl ∧ dt− uxl+1 dx ∧ dt, 1 ≤ l ≤ k − 1,

on a manifold J with coordinates x, t, u, ux, . . . , uxk .

Definition 4. An evolution equation ut = F (x, t, u, . . . , uxk) is strictly pseudo-spherical if there
exist one-forms ωα = fα1 dx + fα2 dt, α = 1, 2, 3, whose coefficients fαβ are smooth functions
on J , such that the two-forms

Ω1 = dω1 − ω3 ∧ ω2, Ω2 = dω2 − ω1 ∧ ω3, Ω3 = dω3 − ω1 ∧ ω2, (4)

generate IF .

Note that local solutions of ut = F correspond to integral submanifolds of the exterior
differential system {IF , dx ∧ dt}. It follows that if ut = F is strictly pseudo-spherical, it is
necessary and sufficient for the structure equations Ωα = 0 to hold. The following lemma [14, 15],
used in Section 3 below, allows us to classify strictly pseudo-spherical equations [6, 10, 14]:

Lemma 1. Necessary and sufficient conditions for the kth order equation ut = F to be strictly
pseudo-spherical are the conjunction of (a) The functions fαβ satisfy fα1,uxa = 0; fα2,u

xk
= 0;

f2
11,u + f2

21,u + f2
31,u �= 0, in which a ≥ 1 and α = 1, 2, 3; and (b) F and fαβ satisfy the identities

−fα1,uF +
k−1∑
i=0

uxi+1fα2,uxi + fδ1fγ2 − fγ1fδ2 + fα2,x − fα1,t = 0, (5)

in which (α, δ, γ) is (1, 2, 3), (2, 3, 1), or (3, 2, 1).

3 Conservation laws and symmetries for PSS equations

By local conservation laws of Ξ = 0 we mean one-forms θ = fdx+gdt, f , g differential functions,
such that dHθ := (−Dtf +Dxg)dx ∧ dt = 0 on solutions of Ξ = 0, where Dx and Dt denote the
total derivatives operators with respect to x and t respectively [13]: cohomology questions [12]
are beyond the scope of this paper. Nonlocal conservation laws can be also considered [12], and
in fact, it is natural to study both cases simultaneously [18] when treating PSS equations. We
begin with a purely geometric result [6, 18]:

Proposition 3. Given a coframe
{
ω1, ω2

}
and corresponding connection one-form ω3 on a

surface M , there exists a new coframe
{
θ
1
, θ

2
}

and new connection one-form θ
3 on M satisfying

dθ
1 = 0, dθ

2 = θ
2 ∧ θ1

, and θ
3 + θ

2 = 0, (6)

if and only if the surface M is pseudo-spherical.

Proof. Assume that the orthonormal frames dual to the coframes
{
ω1, ω2

}
and

{
θ
1
, θ

2
}

possess

the same orientation. The one-forms ωα and θ
α are connected by means of

θ
1 = ω1 cos ρ+ ω2 sin ρ, θ

2 = −ω1 sin ρ+ ω2 cos ρ, θ
3 = ω3 + dρ. (7)
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It follows that θ1, θ2, θ3 satisfying (6) exist if and only if the Pfaffian system

ω3 + dρ− ω1 sin ρ+ ω2 cos ρ = 0 (8)

on the space of coordinates (x, t, ρ) is completely integrable for ρ(x, t), and this happens if and
only if M is pseudo-spherical. �

Equations (6) and (8) determine geodesic coordinates on M . Now, if the equation Ξ = 0
describes pseudo-spherical surfaces with associated one-forms ωα = fα1dx + fα2dt, (6) and (8)
imply that

ω3(u(x, t)) + dρ− ω1(u(x, t)) sin ρ+ ω2(u(x, t)) cos ρ = 0 (9)

is completely integrable for ρ(x, t) whenever u(x, t) is a local solution of Ξ = 0. Equations (6)
and (7) then imply that for each solution u(x, t) and a corresponding solution ρ(x, t) of (9), the
one-form θ1 = ω1 cos ρ+ ω2 sin ρ is closed. If the functions fαβ can be expanded as power series
in a parameter η, so can ρ(x, t) and θ1. Thus, in principle, geometrically integrable equations
possess an infinite number of conservation laws. They may well be nonlocal, however, since they
depend on solutions of the Pfaffian system (9), see [18]. The following lemma [14] allows us to
construct them explicitly.

Lemma 2. Let Ξ = 0 be a PSS equation with associated one-forms ωα. Under the changes of
variables Γ = tan(ρ/2) and Γ̂ = cot(ρ/2), equation (9) and the one-form θ1 become,

−2dΓ =
(
ω3 + ω2

)
− 2Γω1 + Γ2

(
ω3 − ω2

)
, (10)

Θ = ω1 − Γ
(
ω3 − ω2

)
, (up to an exact differential form) (11)

and

2dΓ̂ =
(
ω3 − ω2

)
− 2Γ̂ω1 + Γ̂2

(
ω3 + ω2

)
, (12)

Θ̂ = −ω1 + Γ̂
(
ω3 + ω2

)
, (up to an exact differential form). (13)

We now turn to (generalized) symmetries. For ease of exposition, we restrict ourselves to
strictly pseudo-spherical equations. We recall that a differential function G is a generalized
symmetry of ut = F if and only if u(x, t) + τG(u(x, t)) is – to first order in τ – a solution of
ut = F whenever u(x, t) is a solution of ut = F .

Let ut = F be an mth order strictly pseudo-spherical equation with associated one-forms ωα.
Let u(x, t) be a local solution of ut = F , and set G = G(u(x, t)), in which G is a differential
function. We expand ωα(u(x, t) + τG(u(x, t)) about τ = 0, thereby obtaining an infinitesimal
deformation ωα+τΛα, Λα = gα1dx+gα2dt, of the one-forms ωα = ωα(u(x, t)). Lemma 1 implies

that gα1 = fα1,u(u(x, t))G, and gα2 =
m−1∑
i=0

fα2,uxi (u(x, t))
(
∂iG/∂xi

)
.

Theorem 1. Suppose that ut = F (x, t, u, . . . , uxm) is strictly pseudo-spherical with associated
one-forms ωα = fα1dx + fα2dt, α = 1, 2, 3, and let G be a differential function. The deformed
one-forms ωα + τΛα satisfy the structure equations of a pseudo-spherical surface up to terms of
order τ2 if and only if G is a generalized symmetry of ut = F .

Thus, generalized symmetries of strictly pseudo-spherical equations ut = F are identified
with infinitesimal deformations of the pseudo-spherical structures determined by ut = F which
preserve the Gaussian curvature to first order in the deformation parameter. The proof of
Theorem 1 appears in [14, 15]. We note, finally, that nonlocal symmetries (see [4, 12] for
a formal definition and applications of this important concept) can be also included in this
geometrical framework [15], and that Theorem 1 can be used (see [14, 15]) to show the existence
of (generalized, nonlocal) symmetries of evolutionary PSS equations.
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4 The Camassa–Holm and Hunter–Saxton equations

Several facts about the important Camassa–Holm [5] and Hunter–Saxton equations [8] (the
former derivated as a shallow water equation, the later describing weakly nonlinear unidirectional
waves) are already known: for example, their inverse scattering solutions have been found (Beals,
Sattinger and Szmigielski [2, 3]), their bi-Hamiltonian character has been discussed (Camassa
and Holm [5], Hunter and Zheng [9]) and, it has been proven that the Korteweg-de Vries,
Camassa–Holm and Hunter–Saxton equations exhaust (in a precise sense) the bi-Hamiltonian
equations which can be modeled as geodesic flows on homogeneous spaces related to the Virasoro
group (Khesin and Misiolek [11]). It is shown in this section that these three equations are of
pseudo-spherical type, and that therefore they can be studied using the results summarized in
Sections 2 and 3. We begin with the classical KdV:

Example 2. The KdV equation ut = uxxx + 6uux describes pseudo-spherical surfaces [17, 6]
with associated one-forms ωα = fα1dx+ fα2dt, in which

ω1 = (1− u) dx+
(
−uxx + ηux − η2u− 2u2 + η2 + 2u

)
dt, (14)

ω2 = η dx+
(
η3 + 2ηu− 2ux

)
dt, (15)

ω3 = (−1− u) dx+
(
−uxx + ηux − η2u− 2u2 − η2 − 2u

)
dt, (16)

and η is an arbitrary parameter. After rotating the coframe
{
ω1, ω2

}
and changing Γ for −Γ,

we can write the Pfaffian system (10) as

(a) Γx = −u− ηΓ− Γ2, (b) Γt =
(
Γxx − 3Γ2η − 2Γ3

)
x
.

It follows from the fact that KdV is strictly pseudo-spherical that if Γ solves (b), u as given by (a)
solves KdV. We thus recover the Miura transformation and the modified KdV equation. Now
take a solution u(x, t) of KdV and compute Γ(x, t, η) from (a). Equation (b) is invariant under
the transformation (Γ �→ −Γ, η �→ −η), and therefore (a) implies that u(x, t, η) = Γx(x, t, η) −
Γ(x, t, η)η−Γ(x, t, η)2 is a one-parameter family of solutions of KdV. It follows that u(x, t, η) =
u(x, t) + 2Γx(x, t, η), and therefore we also recover the classical Darboux transformation!

We now consider the Camassa–Holm (CH)

m = uxx − u, mt = −mx u− 2mux, (17)

and Hunter–Saxton (HS) equations

m = uxx, mt = −mx u− 2mux. (18)

Below and henceforth, we let ε be equal to 1 for CH and 0 for HS.

Theorem 2. The Camassa–Holm and Hunter–Saxton equations, (17) and (18) respectively,
describe pseudo-spherical surfaces.

Proof. We consider one-forms σα, α = 1, 2, 3, given by

σ1 =
(
m− β + ε η−2(β − 1)

)
dx

+
(
−uxβ η−1 − β η−2 − um− 1 + uβ + ux η

−1 + η−2
)
dt, (19)

σ2 = η dx+
(
−β η−1 − η u+ η−1 + ux

)
dt, (20)

σ3 = (m+ 1) dx+
(
ε u η−2(β − 1)− um+ η−2 +

ux
η
− u− β

η2
− uxβ

η

)
dt, (21)
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in which the parameters η and β are constrained by the relation

η2 + β2 − 1 = ε

[
β − 1
η

]2

. (22)

It is not hard to check that the structure equations (2) are satisfied whenever u(x, t) is a solution
of (17) (if m = uxx − u) and whenever u(x, t) is a solution of (18) (if ε = 1 and m = uxx − u)
and whenever u(x, t) is a solution of (18) (if ε = 0 and m = uxx). �

The fact that the CH equation is of pseudo-spherical type first appeared in [16]. A natural
way to dispense with the constraint (22) is by using a parameterization of the curve η2+β2−1 =
ε [(β − 1)/η]2. We take

η =
√
ε+ 1− s2, β =

ε

s− 1
− s. (23)

It follows that the CH and HS equations are geometrically integrable, and it is not difficult to
write down sl(2,R)-valued linear problems associated to them, simply by applying Proposition 2.

We turn to the quadratic pseudo-potential (12) associated with the CH and HS equations.
After parameterizing the one-forms σα using (23), rotating the resulting forms via (7), applying
the transformation Γ̂ �→ γ+

√
ε+ 1− s2/(1−s), and setting s−1 = 1/λ, we obtain the following

result:

Theorem 3. The CH equation (17) and the HS equation (18) admit quadratic pseudo-poten-
tials γ determined by

m = γx +
1

2λ
γ2 − 1

2
λ ε, γt =

γ2

2

[
1 +

1
λ
u

]
− uxγ − um+ ε

[
1
2
uλ− 1

2
λ2

]
, (24)

in which λ �= 0 is a parameter. Moreover, equations (17) and (18) possess the parameter-
dependent conservation law

γt = λ

(
ux − γ − 1

λ
uγ

)
x

. (25)

In view of Example 2, it is natural to postulate the first equation of (24) as the analog of the
Miura transformation for the CH and HS equations, and (25) as the corresponding “modified”
equation. Note that, in contradistinction with the KdV case, the modified CH and HS equations
are nonlocal equations for γ. We also remark that equations (24) determine very simple linear
problems for the CH and HS equations: setting γ = ψ1/ψ2 and replacing into (24), we find that
the compatibility condition of the linear problem dψ = (Xdx + Tdt)ψ, in which ψ = (ψ1, ψ2)t,
and

X =
1
2

[
0 ε λ+ 2m
λ−1 0

]
, T =

1
2

[
−ux −2um+ ε λu− ε λ2

−1− uλ−1 ux

]
, (26)

is precisely the CH equation (17) (if m = uxx − u) and the HS equation (18) (if m = uxx). It is
not hard to check that this linear problem is related to the one obtained from (3) and (19)–(21)
by a gl(2,R)-valued gauge transformation.

We now use (24) and (25) to construct conservation laws for the CH and HS equations.

Setting γ =
∞∑
n=1

γnλ
n/2 yields the conserved densities

γ1 =
√

2
√
m, γ2 = −1

2
ln(m)x, γ3 =

1
2
√

2
√
m

[
ε− m2

x

4m2
+ ln(m)xx

]
, (27)

γn+1 = − 1
γ1
γn,x −

1
2γ1

n∑
j=2

γj γn+2−j , n ≥ 3, (28)
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while the expansion γ = ε λ+
∞∑
n=0

γnλ
−n implies

γ0,x + ε γ0 = m, γn,x + ε γn = −(1/2)
n−1∑
j=0

γj γn−1−j , n ≥ 1. (29)

It is not hard to see [16] that, in the CH case, the local conserved densities γn determined by (27)
and (28) correspond to the ones found by Fisher and Schiff [7] using an “associated Camassa–
Holm equation”, while (29) yields the local conserved densities u, u2

x + u2, and uu2
x + u3, and a

sequence of nonlocal conservation laws.
We finish with a theorem on nonlocal symmetries for the Camassa–Holm and Hunter–Saxton

equations:

Theorem 4. Let γ, δ and β be defined by the equations

γx = m− (1/2λ) γ2 + ε (1/2)λ, γt = λ (ux − γ − (1/λ)uγ)x; (30)
δx = γ, δt = λ (ux − γ − (1/λ)uγ); (31)

βx = m e(1/λ) δ, βt = e(1/λ) δ
(
−(1/2) γ2 + ε (1/2)λ2 − um

)
; (32)

which are compatible on solutions of (17) and (18). The systems of equations (17), (30)–(32)
and (18), (30)–(32), possess the classical symmetry

W = γ e(1/λ) δ ∂

∂u
+

(
mx +

2
λ
γ m

)
e(1/λ) δ ∂

∂m
+m e(1/λ) δ ∂

∂γ

+ β
∂

∂δ
+

(
m e(2/λ) δ +

1
2λ

β2

)
∂

∂β
. (33)

Thus, in particular, the evolutionary vector field

V = γ e(1/λ) δ ∂

∂u
+

(
mx +

2
λ
γ m

)
e(1/λ) δ ∂

∂m

is a one-parameter family of nonlocal symmetries for (17) and (18).

Theorem 4 can be verified using the MAPLE package VESSIOT developed by I. Anderson
and his coworkers, see [1]. We remark that it is certainly possible (see [16] for the CH case) to
find the flow of W , and therefore Theorem 4 gives us a method to construct solutions to the CH
and HS equations!
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We find the complete set of local generalized symmetries (including x, t-dependent ones) for
the Calogero–Degasperis–Ibragimov–Shabat (CDIS) equation, and investigate the properties
of these symmetries.

1 Introduction

All known today integrable scalar (1+1)-dimensional evolution equations with time-independent
coefficients possess infinite-dimensional Abelian algebras of time-independent higher order sym-
metries (see e.g. [1, 2]). However, the equations of this kind usually do not have local time-
dependent higher order symmetries. The only known exceptions from this rule seem to occur [3]
for linearizable equations like e.g. the Burgers equation, for which the complete set of symmetries
was found in [4]. In the present paper we confirm this for a third order linearizable equation (4),
which is referred below as Calogero–Degasperis–Ibragimov–Shabat equation, and exhibit the
complete set of its time-dependent local generalized symmetries. This equation was discove-
red by Calogero and Degasperis [5] and studied, among others, by Ibragimov and Shabat [6],
Svinolupov and Sokolov [7], Sokolov and Shabat [8], Calogero [9], and by Sanders and Wang [10].

The paper is organized as follows. In Section 2 we recall some well known definitions and
results on the symmetries of evolution equations. In Section 3 we present the main result –
Theorem 1, giving the complete description of the set of all local generalized symmetries for
CDIS equation.

2 Basic definitions and known results

Consider a (1 + 1)-dimensional evolution equation

∂u/∂t = F (x, u, u1, . . . , un), n ≥ 2, ∂F/∂un �= 0, (1)

for a scalar function u, where ul = ∂lu/∂xl, l = 0, 1, 2, . . . , u0 ≡ u, and its (local) generalized
symmetries [1], i.e. the generalized vector fields G = G∂/∂u, where G = G(x, t, u, u1, . . . , uk),
k ∈ N, is such that the evolution equation ∂u/∂τ = G is compatible with (1). Below we shall
identify the symmetry G = G∂/∂u with its characteristics G.

Recall [2, 12] that for any function H = H(x, t, u, u1, . . . , uq) the greatest m such that
∂H/∂um �= 0 is called its order and is denoted as m = ordH. We assume that ordH = 0 for any
H = H(x, t). A function f of x, t, u, u1, . . . is called local (cf. [11, 15]), if it has a finite order.
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Denote by S(k)
F the space of local generalized symmetries of (1) that are of order not higher

than k. Let also

SF =
∞⋃
j=0

S
(j)
F , ΘF = {H(x, t) | H(x, t) ∈ SF }, StF = {G ∈ SF | ∂G/∂t = 0},

SF,k = S
(k)
F /S

(k−1)
F for k ∈ N;SF,0 = S

(0)
F /ΘF .

The set SF is a Lie algebra with respect to the Lie bracket (see e.g. [1, 15])

[H,R] = R∗(H)−H∗(R) = ∇H(R)−∇R(H).

Here for any local Q we set

Q∗ =
ordQ∑
i=0

∂Q

∂ui
Di, ∇Q =

∞∑
i=0

Di(Q)
∂

∂ui
,

and D = ∂/∂x+
∞∑
i=0

ui+1∂/∂ui is the total derivative with respect to x.

Note (see e.g. [1]) that a local function G is a symmetry of (1) if and only if

∂G/∂t = −[F,G]. (2)

Equation (2) implies [1, 11]

∂G∗/∂t ≡ (∂G/∂t)∗ = ∇G(F∗)−∇F (G∗) + [F∗, G∗], (3)

where ∇F (G∗) ≡
ordG∑
j=0

∇F

(
∂G
∂uj

)
Dj and likewise for ∇G(F∗); [· , ·] stands for the usual commu-

tator of linear differential operators.
Consider also (see e.g. [2, 11, 12] for more information) the set FS of formal series in powers

of D, i.e., the expressions of the form H =
m∑

j=−∞
hjD

j , where hj are local functions. The grea-

test k such that hk �= 0 is called the degree of H ∈ FS and is denoted by deg H. Recall that R ∈
FS is called a formal symmetry of infinite rank for (1), if it satisfies the relation (see e.g. [2, 12])

∂R/∂t+∇F (R)− [F∗,R] = 0.

3 Symmetries of the CDIS equation

The Calogero–Degasperis–Ibragimov–Shabat (CDIS) equation has the form [5, 6]

ut = u3 + 3u2u2 + 9uu2
1 + 3u4u1. (4)

Let us mention that this is the only third order (1+1)-dimensional scalar polynomial λ-homoge-
neous evolution equation of the form ut = un + f(u, u1, . . . , un−1) with λ = 1/2 which possesses
infinitely many x, t-independent local generalized symmetries [13]. This equation is linearized
into vt = v3 upon setting v = exp(ω)u, where ω = D−1(u2) [8]. It appears to possess only one
local conserved density ρ = u2 (see e.g. [7, 8] and references therein), but it has a Hamiltonian op-
erator and infinitely many conserved densities explicitly dependent on the nonlocal variable ω [7].

In order to refer to the sets of symmetries of the CDIS equation, we shall use the sub-
script ‘CDIS’ instead of F , i.e., SCDIS will denote the Lie algebra of all generalized symmetries
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of (4), etc. From now on F will stand for the right-hand side of the CDIS equation, that is,
u3 + 3u2u2 + 9uu2

1 + 3u4u1.
Let G be a local generalized symmetry of order k ≥ 1 for (4). Equating to zero the coefficient

at Dk+2 in (3) and solving the arising equation, we obtain (see e.g. [1]) that

∂G/∂uk = ck(t), (5)

where ck(t) is a function of t.
Below we assume without loss of generality that any symmetry G ∈ SCDIS,k, k ≥ 1, vanishes

if the relevant function ck(t) is identically equal to zero.
Equating to zero the coefficients at Dk+1 and Dk in (3), we see that for k ≥ 3 we have

∂2G/∂x∂uk−1 = 0 and

∂2G/∂x∂uk−2 = ċk(t)/3. (6)

Repeatedly using (6) and taking into account that G ∈ SCDIS implies G̃ = ∂rG/∂xr ∈ SCDIS,
we find that ord G̃ ≤ k − 2r and

∂G̃/∂uk−2r = (1/3)rdrck(t)/dtr. (7)

For r = [k/2] we have ord G̃ ≤ 1. As u1 is the only generalized symmetry of CDIS equation from
S

(1)
CDIS, and u1 is time-independent, we see that ck(t) satisfies the equation dmck(t)/dtm = 0 for
m = [k/2] + 1. Therefore, dimSCDIS,k ≤ [k/2] + 1 for k ≥ 1.

As all symmetries from S
(2)
CDIS are exhausted by u1, by Theorem 2 of [17] all generalized

symmetries of the CDIS equation are polynomial in time t.
Now let us turn to the study of time-independent symmetries of CDIS equation. This equation

has infinitely many x, t-independent generalized symmetries, hence [18] a formal symmetry of

infinite rank of the form L = D+
∞∑
j=0

ajD
−j , where aj are some x, t-independent local functions.

Since we have deg∇G(F∗) ≤ 2 for any G, by (3) and Lemma 9 from [15] for any G ∈ StCDIS,

k = ordG ≥ 2, we can represent G∗ in the form G∗ =
k∑
j=1

αjL
j+B, where αj are some constants

and B is some formal series with time-independent coefficients, deg B < 1. We have ∂L/∂x = 0,
so ∂G∗/∂x = ∂B/∂x and deg ∂G∗/∂x < 1.

Thus, any symmetry G ∈ StCDIS, k ≡ ordG ≥ 2, can be represented in the form

G = G0(u, . . . , uk) + Y (x, u). (8)

It is obvious that ∂Y/∂x = ∂G/∂x ∈ StCDIS and ord ∂Y/∂x = 0. But the CDIS equation
has no generalized symmetries of order zero, so ∂Y/∂x = 0, and thus any time-independent
symmetry G of order k ≥ 2 for CDIS equation is x-independent as well. The straightforward
computation shows that the same statement holds true for the symmetries of order lower than 2.
Using the symbolic method, it is possible to show [13] that CDIS equation has no even order t, x-
independent symmetries. Hence, it has no even order time-independent generalized symmetries
at all.

Now let us show that the same is true for time-dependent generalized symmetries as well.
Recall that the CDIS equation is invariant under the scaling symmetry K = 3tF + xu1 + u/2.
Hence, if a symmetry Q contains the terms of weight γ (with respect to the weighting induced
by K, cf. [13, 14]), there exists a homogeneous symmetry Q̃ of the same weight γ. We shall
write this as wt(Q̃) = γ. Note that we have [K, Q̃] = (γ − 1/2)Q̃.

If G ∈ SCDIS,k, k ≥ 1, is a polynomial in t of degree m, then its leading coefficient ∂G/∂uk =

ck(t) also is a polynomial in t of degree m′ ≤ m, i.e., ck(t) =
m′∑
j=0

tjck,j , where ck,m′ �= 0.
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Consider G̃ = ∂m
′
G/∂tm

′ ∈ S(k)
CDIS. We have ∂G̃/∂uk = const �= 0, hence G̃ contains the terms

of the weight k + 1/2. Let P be the sum of all terms of weight k + 1/2 in G̃. Clearly, P is
a homogeneous symmetry of weight k+1/2 by construction, ordP = k and ∂P/∂uk is a nonzero
constant. Next, ∂P/∂t = −[F, P ] ∈ SCDIS, and the symmetry ∂P/∂t is homogeneous of weight
k+7/2. Obviously, ord ∂P/∂t ≤ k−1. By the above, all symmetries in SCDIS are polynomial in t,
and thus for any homogeneous B ∈ SCDIS, b ≡ ordB ≥ 1, we have ∂B/∂ub = trcb, cb = const
for some r ≥ 0. Hence, wt(B) = b − 3r + 1/2 ≤ b + 1/2, and thus for k ≥ 1 the set SCDIS

does not contain homogeneous symmetries B such that wt(B) = k + 7/2 and ordB ≤ k − 1, so
∂P/∂t = 0.

Taking into account the absence of generalized symmeries of order zero for CDIS equation, we
conclude that existence of a time-independent generalized symmetry of order k ≥ 1 is a necessary
condition for the existence of a polynomial-in-time symmetry G ∈ SCDIS of the same order.
Moreover, by the above all symmetries from SCDIS are polynomial in t. Hence, the absence of
time-independent local generalized symmetries of even order for the CDIS equation immediately
implies the absence of any time-dependent local generalized symmetries of even order.

Thus, we have shown that the CDIS equation has no (local) generalized symmetries of even
order and that for any k ≥ 1 dimSCDIS,k ≤ [k/2] + 1. Therefore, if for all odd k = 2l + 1 we
exhibit l+1 symmetries of order k, then these symmetries will span the whole Lie algebra SCDIS

of (local) generalized symmetries for the CDIS equation.
The symmetries in question can be constructed in the following way.
Let τm,0 = xmu1 + mxm−1u/2, m = 0, 1, 2 . . . , and τ1,1 = x(u3 + 3u2u2 + 9uu2

1 + 3u4u1) +
3u2/2 + 5u1u

2 + u5/2. Note that τ1,1 is the first nontrivial master symmetry for the CDIS
equation [10, 13]. It is easy to check that in accordance with Theorem 3.18 from [16] we have

[τm,j , τm′,j′ ] = ((2j′ + 1)m− (2j + 1)m′)τm+m′−1,j+j′ , (9)

where τm,j with j > 0 are defined inductively by means of (9), i.e. [16] τ0,j+1 = 1
2j+1 [τ1,1, τ0,j ],

τm+1,j = 1
2+4j−m [τ2,0, τm,j ].

Thus, the CDIS equation, as well as the Burgers equation, represents a nontrivial example of
a (1+1)-dimensional evolution equation possessing a hereditary algebra (9).

Using (9), it can be shown (cf. [16]) that adm+1
τ0,j

(τm,j′) = 0, i.e. τm,j′ are master symmetries
of degree m for all equations utj = τ0,j , j = 0, 1, 2, . . . . Here adB(G) ≡ [B,G] for any (smooth)
local functions B and G.

Let exp(adB) ≡
∞∑
j=0

adjB /j!. As adm+1
τ0,j

(τm,j′) = 0, it is easy to see (cf. [16]) that

G
(k)
m,j(tk) = exp(−tk adτ0,k

)τm,j =
m∑
i=0

(−tk)i
i!

adiτ0,k
(τm,j) =

m∑
i=0

((2k + 1)tk)im!
i!(m− i)!

τm−i,j+ik

are time-dependent symmetries for the equation utk = τ0,k and ordG(k)
m,j = 2(j +mk) + 1. Note

that G(k)
m,j obey the same commutation relations as τm,j , that is

[G(k)
m,j , G

(k)
m′,j′ ] = ((2j′ + 1)m− (2j + 1)m′)G(k)

m+m′−1,j+j′ . (10)

It is straightforward to verify that τ0,1 = F = u3 + 3u2u2 + 9uu2
1 + 3u4u1 and thus Gm,j ≡

G
(1)
m,j(t) = exp(−t adF )τm,j are time-dependent symmetries for the CDIS equation.
It is easy to see that the number of symmetries Gm,j of given odd order k = 2l + 1 equals

[k/2]+1 = l+1. As dimSCDIS,k ≤ [k/2]+1, these symmetries exhaust the space SCDIS,k. Thus,
we have proved the following theorem.
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Theorem 1. Any local generalized symmetry of the CDIS equation is a linear combination of
the symmetries Gm,j for m = 0, 1, · · · and j = 0, 1, 2 . . . .

Note that the technique of [10], based on the representation theory for the algebra sl(2) gener-
ated by τ0,0 = u1, 2τ1,0 = 2xu1 +u and τ2,0 = x2u1 +xu, enables one to obtain only a part of the
symmetries, described in the above theorem. The reason for this is that 〈τ0,0, τ1,0, τ2,0〉 is a sub-
algebra of the algebra generated by τm,0,m = 0, 1, . . . . This is exactly the same phenomenon as
in the case of Lie algebra of vector fields of the form xm+1 d

dx .
As a final remark, let us mention that, in complete analogy with the above, we can readily

obtain the complete description of the set of local generalized symmetries for any of the equations
utk = τ0,k, k = 2, 3, . . . . In this way we arrive at the following generalization of Theorem 1.

Theorem 2. Any local generalized symmetry of the equation utk = τ0,k, k ∈ N, is a linear
combination of the symmetries G(k)

m,j(tk) for m = 0, 1, . . . and j = 0, 1, 2 . . . .
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Using the heavenly equation as an example, we propose the method of group foliation as
a tool for obtaining non-invariant solutions of PDEs with infinite-dimensional symmetry
groups. The method involves the study of compatibility of the given equations with a dif-
ferential constraint, which is automorphic under a specific symmetry subgroup and there-
fore selects exactly one orbit of solutions. By studying the integrability conditions of this
automorphic system, i.e. the resolving equations, one can provide an explicit foliation of
the entire solution manifold into separate orbits. The new important feature of the method
is extensive use of the operators of invariant differentiation for the derivation of the resol-
ving equations and for obtaining their particular solutions. Applying this method we obtain
exact analytical solutions of the heavenly equation, non-invariant under any subgroup of the
symmetry group of the equation.

1 Introduction

The general standard method for obtaining exact solutions of partial differential equations
(PDEs) by symmetry analysis is symmetry reduction which gives only invariant solutions, i.e.
solutions which are invariant with respect to some subgroup of the symmetry group of the PDE.

To be explicit, we consider as an example the heavenly equation

uzz̄ = κ(eu)tt ⇐⇒ uxx + uyy = κ(eu)tt, κ = ±1, (1)

where u = u(t, z, z̄). This equation is a continuous version of the Toda lattice or SU(∞) Toda
field [1, 2]. It appears in the theory of gravitational instantons [3] where it describes self-dual
Einstein spaces with Euclidean signature having one rotational Killing vector.

For the point symmetry transformations the symmetry algebra of the equation (1) is realized
by vector fields of the form

X = τ∂t + ξ∂z + ξ̄∂z̄ + φ∂u, (2)

where τ , ξ, ξ̄ and φ are functions of t, z, z̄ and u. The condition, which selects invariant solutions
with respect to the generator X, is the first order linear equation

τut + ξuz + ξ̄uz̄ − φ = 0 (3)

which one adds to the studied equation. Solution of the equation (3) depends only on invariants
of the corresponding symmetry subgroup, i.e. only on 2 variables instead of 3 original variables.
Therefore, when this solution is substituted into the equation (1) we obtain the symmetry
reduction, the reduced equation depending only on 2 independent variables since it determines
only invariant solutions of the original equation.



216 M.B. Sheftel

We are proposing the method of group foliation as a tool for obtaining non-invariant solu-
tions of non-linear PDEs with infinite dimensional symmetry groups. The idea of the method,
belonging to Lie and Vessiot [4, 5], is more than a hundred years old being resurrected in a more
modern form by Ovsiannikov 30 years ago (see [6] and references therein).

We have added to this method three important new ideas [7, 8]: the use of invariant cross-
differentiation, involving the operators of invariant differentiation and their commutator alge-
bra, for the derivation of the resolving equations and for obtaining their particular solutions;
the commutator representation of the resolving system in terms of the operators of invariant
differentiation; the concept of invariant integration applied for solving the automorphic system.

In this paper, on the example of the heavenly equation we clarify the main concepts of
the method including these three ideas and consider in detail 10 main steps which should be
performed for obtaining non-invariant solutions.

2 Symmetry algebra

We start with finding the symmetry algebra of generators of the point transformations for the
heavenly equation (1) [9]

T = ∂t, G = t∂t + 2∂u,
Xa = a(z)∂z + ā(z̄)∂z̄ − (a′(z) + ā′(z̄))∂u, (4)

where T is the generator of translations in t, G is the generator of a dilation of time accompanied
by a shift of u: t = t̃eτ , u = ũ+2τ (τ is a group parameter) and Xa is a generator of the conformal
transformations

z = φ(z̃), z̄ = φ̄(˜̄z), u(z, z̄, t) = ũ(z̃, ˜̄z, t)− ln
(
φ′(z̃)φ̄′(˜̄z)

)
, (5)

where a(z) and φ(z) are arbitrary holomorphic functions of z and prime denotes derivative with
respect to argument (see also [10]).

The Lie algebra of symmetry generators (4) is determined by the commutation relations

[T,G] = T, [T,Xa] = 0, [G,Xa] = 0, [Xa, Xb] = Xab′−ba′ . (6)

They show that the generators Xa of conformal transformations form a subalgebra of Lie al-
gebra (6). This subalgebra is infinite dimensional since the generators Xa depend on arbitrary
holomorphic function a(z). The corresponding finite transformations (5) form an infinite dimen-
sional symmetry subgroup of the equation (1) since instead of a group parameter they involve
an arbitrary holomorphic function φ(z̃).

We choose this infinite dimensional conformal group for the group foliation.

3 Differential invariants

Next we find differential invariants of the symmetry subgroup (5) of conformal transformations.
Differential invariants are the invariants of all the generators Xa in the prolongation spaces.
This means that they can depend on independent variables, the unknowns and also on the
partial derivatives of the unknowns allowed by the order of the prolongation. The order of
the differential invariant is defined as the order of the highest derivative which this invariant
depends on. The number N for the highest order invariant must be larger or equal to the order
of the equation (N ≥ 2) and must satisfy the requirement that there should be n functionally
independent invariants with n > p + q where p and q are the number of independent and
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dependent variables, respectively. In our case we have p = 3, q = 1 and n > 4, N ≥ 2. We try
first N = 2 to see if it is sufficient for group foliation.

The determining equation for differential invariants Φ of the order≤ 2 has the form
2
Xa(Φ) = 0

where
2
Xa is the second prolongation of the generator Xa of the conformal group defined by stan-

dard prolongation formulas. The integration of this equation gives 5 functionally independent
differential invariants up to the second order inclusively

t, ut, utt, ρ = e−uuzz̄, η = e−uuztuz̄t (7)

and all of them are real. This allows us to express the heavenly equation (1) solely in terms of
the differential invariants

utt = κρ− u2
t . (8)

Thus, in our case we have N = 2 and n = 5. This is enough for the group foliation, and we do
not need the set of all 3rd-order invariants.

4 Automorphic system

Next we choose the general form of the automorphic system. We choose p = 3 invariants t, ut,
ρ as new invariant independent variables, the same number as in the original equation (1), and
require that the remaining invariants be functions of the chosen ones. This provides us with the
general form of the automorphic system that also contains the studied equation (8) expressed in
terms of invariants (7)

utt = κρ− u2
t ,

η = F (t, ut, ρ). (9)

The real function F in the right-hand side should be determined from the resolving equations
which are compatibility conditions of the system (9). Then the system (9) will have the automor-
phic property, i.e. any of its solutions can be obtained from any other solution by an appropriate
transformation of the conformal group.

5 Operators of invariant differentiation

Our next task is to find operators of invariant differentiation. They are linear combinations of
the operators of total derivatives Dt, Dz, Dz̄ with respect to independent variables t, z, z̄

δ = λ1Dt + λ2Dz + λ3Dz̄ =
3∑
i=1

λiDi

with the coefficients λi which depend on local coordinates of the prolongation space. They
are defined by the special property that, acting on any (differential) invariant, they map it
again into a differential invariant. Being first order differential operators, they raise the order
of a differential invariant by a unit. As a consequence, these differential operators commute

with any infinitely prolonged generator
∞
Xa of the conformal symmetry group. This implies the

determining equation for the coefficients λi [6]

∞
Xa(λi) =

3∑
j=1

λjDj

[
ξi

]
, (10)
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where according to the formula (2) we have ξ1 = τ = 0, ξ2 = ξ = a(z), ξ3 = ξ̄ = ā(z̄). It is
obvious that the total number of independent operators of invariant differentiation is equal to
the number of independent variables, i.e. 3 in our case.

Solving the equation (10) we obtain a basis for the operators of invariant differentiation

δ = Dt, ∆ = e−uuz̄tDz, ∆̄ = e−uuztDz̄. (11)

6 Basis of differential invariants

The next step is to find the basis of differential invariants. The basis of differential invariants
is defined as a minimal finite set of (differential) invariants of a symmetry group from which
any other differential invariant of this group can be obtained by a finite number of invariant
differentiations and operations of taking composite functions. The proof of the existence and
finiteness of the basis was given by Tresse [11] and in a more modern form by Ovsiannikov [6].

In our example the basis of differential invariants is formed by the set of three invariants t,
ut, ρ, while two other invariants utt and η of equation (7) are given by the relations

utt = δ(ut), η ≡ e−uuztuz̄t = ∆(ut) = ∆̄(ut). (12)

All other functionally independent higher order invariants can be obtained by acting with oper-
ators of invariant differentiation on the basis {t, ut, ρ}. In particular, the following third order
invariants generated from the 2nd-order invariant ρ by invariant differentiations will be involved
in our construction

σ = ∆(ρ), σ̄ = ∆̄(ρ), τ = δ(ρ) ≡ ρt. (13)

7 Commutator algebra of operators of invariant differentiation

The operators δ, ∆ and ∆̄ defined by the formulas (11) form the commutator algebra which is
a Lie algebra over the field of invariants of the conformal group [6].

This algebra is simplified by introducing two new operators of invariant differentiation Y
and Ȳ instead of ∆ and ∆̄ and two new variables λ and λ̄ instead of σ and σ̄, defined by

∆ = ηY, ∆̄ = ηȲ , σ = ηλ, σ̄ = ηλ̄. (14)

The resulting algebra becomes[
δ, Y

]
=

(
κλ̄− 3ut −

δ(η)
η

)
Y,

[
δ, Ȳ

]
=

(
κλ− 3ut −

δ(η)
η

)
Ȳ ,

[
Y, Ȳ

]
=

(τ + utρ)
η

(
Y − Ȳ

)
. (15)

With the use of operators δ, Y and Ȳ the general form (9) of the automorphic system becomes

δ(ut) = κρ− u2
t ,

Y (ut) = 1 (Ȳ (ut) = 1), (16)

where the first equation is the heavenly equation and the second equation follows from the second
relation (12). Here we put η = F in the equations (14) and in the commutation relations (15)
according to the 2nd equation in (9). Then we obtain Y = (1/F )∆ and Ȳ = (1/F )∆̄. From the
equation (13) we have

Y (ρ) = λ, Ȳ (ρ) = λ̄. (17)
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8 Derivation of resolving equations

The following step is to derive the resolving equations. This is a set of compatibility conditions
between the studied equation and those that we have added to obtain the automorphic system.
In our case we require compatibility between the two equations (16) which gives restrictions on
the function F (t, ut, ρ) in the right-hand side of the second equation in (9). A new feature in
our modification of the method is that we do this in an explicitly invariant manner by using
the invariant cross-differentiation [7, 8], i.e. cross-differentiation with operators of invariant
differentiation δ, Y and Ȳ .

We start with the integrability condition for the system (16) which we obtain by the invariant
cross-differentiation with δ and Y using their commutation relation from equation (15)

δ(F ) =
[
κ(λ+ λ̄)− 5ut

]
F. (18)

The definitions of λ, λ̄ which appear here are given by two equations (17). The compatibility
condition for the equations (17) is obtained by the invariant cross-differentiation with Ȳ and Y
using their commutation relation from equation (15)

F
(
Y (λ̄)− Ȳ (λ)

)
= (τ + utρ)(λ− λ̄). (19)

The definition of τ which appears here is given in the equation (13)

δ(ρ) = τ. (20)

Using invariant cross-differentiations with δ and Y or Ȳ , we obtain two compatibility condi-
tions of equation (20) with each of the two equations (17)

δ(λ) = Y (τ) + 2utλ− κλ2, (21)

δ(λ̄) = Ȳ (τ) + 2utλ̄− κλ̄2 (22)

which are complex conjugate to each other. One more differential consequence of the obtained re-
solving equations is the compatibility condition of the equation (19) algebraically solved with re-
spect to Y (λ̄) together with the equation (22). It is obtained by the invariant cross-differentiation
of these equations with δ and Y . Using the other resolving equations it can be brought to the
form

F
(
Y (λ̄) + Ȳ (λ)

)
= −(τ + utρ)(λ+ λ̄) + 2κ

[
δ(τ) + 4utτ + 2F + κρ2 + 2u2

tρ
]
, (23)

where no new differential invariants appear.
The resolving equations (18), (19), (21), (22) and (23) form a closed resolving system where

the 2nd-order differential invariant η = F and the 3rd-order differential invariants λ, λ̄ and τ
are functions of t, ut, ρ. They should be regarded as additional unknowns in these equations, so
the resolving system consists of 5 partial differential equations with 4 unknowns F , λ, λ̄ and τ
and 3 independent variables t, ut, ρ.

Next we project the operators of invariant differentiation on the solution manifold of the heav-
enly equation and on the space of differential invariants treated as new independent variables.
We use the properties of these operators

δ(t) = 1, δ(ut) = κρ− u2
t , δ(ρ) = τ

Y (t) = Ȳ (t) = 0, Y (ut) = Ȳ (ut) = 1, Y (ρ) = λ, Ȳ (ρ) = λ̄

following from their definitions and the heavenly equation in (16) to obtain the resulting projected
operators

δ = ∂t +
(
κρ− u2

t

)
∂ut + τ∂ρ, Y = ∂ut + λ∂ρ, Ȳ = ∂ut + λ̄∂ρ. (24)
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When we use these expressions in the resolving equations (18), (19), (21), (22) and (23), we
obtain an explicit form of the resolving system. This system is passive, i.e. it has no further
algebraically independent first order integrability conditions.

The commutator relations (15) were satisfied identically by the operators of invariant differ-
entiation. On the contrary, for the projected operators (24) these commutation relations and
even the Jacobi identity[

δ, [Y, Ȳ ]
]

+
[
Y, [Ȳ , δ]

]
+

[
Ȳ , [δ, Y ]

]
= 0 (25)

are not identically satisfied, but only on account of the resolving equations. It is easy to check
that even a stronger statement is valid.

Theorem 1. The commutator algebra (15) of the operators of invariant differentiation δ, Y ,
Ȳ , together with the Jacobi identity (25), is equivalent to the resolving system for the heavenly
equation and hence provides a commutator representation for this system.

This theorem means that the complete set of the resolving equations is encoded in the com-
mutator algebra of the operators of invariant differentiation and provides the easiest way to
derive the resolving system [7, 8]. Later we shall see how the commutator representation of the
resolving system can lead to a useful Ansatz for finding a particular solution of this system.

9 Criteria for invariant and non-invariant solutions

Since our main goal is to obtain non-invariant solutions, we derive here criteria to distinguish
between invariant and non-invariant solutions.

A general form of the generator of a one-parameter symmetry subgroup of the heavenly
equation is a linear combination of symmetry generators (4)

X = α∂t + β (t∂t + 2∂u) + a(z)∂z + ā(z̄)∂z̄ −
(
a′(z) + ā′(z̄)

)
∂u, (26)

where α and β are arbitrary real constants and a(z) is an arbitrary holomorphic function.
The infinitesimal criterion for the invariance of the solution u = f(t, z, z̄) with respect to the

generator X is X(f − u)|u=f = 0 which for X defined by equation (26) becomes

(α+ βt)ft + a(z)fz + ā(z̄)fz̄ = 2β − a′(z)− ā′(z̄). (27)

The invariance criterion can be summed up as follows.

Proposition 1. If there exists a holomorphic function a(z) and constants α and β, not all equal
to zero, such that the equation (27) is satisfied, then the solution u = f(t, z, z̄) is invariant.
Otherwise this solution is non-invariant.

In particular, if α = β = 0, then the equation (27) is a criterion of the conformal invariance
and the general solution of equation (27) becomes

u = ln f(ξ, t)− ln a(z)− ln ā(z̄),

where ξ = i
(∫
dz/a(z)−

∫
dz̄/ā(z̄)

)
. The invariant ρ defined by equation (7) becomes ρ =(

ffξξ − f2
ξ

)
/f3 and the formulas (13) give

σ̄ = σ ⇐⇒ λ̄ = λ.

This is the necessary condition for the conformal invariance of a solution. The converse
statement gives the criterion of conformal non-invariance of a solution [8].
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Corollary 1. The sufficient condition for a solution of the heavenly equation to be conformally
non-invariant is that the following inequality should be satisfied

σ̄ �= σ ⇐⇒ λ̄ �= λ. (28)

This condition must be satisfied by particular solutions of the resolving equations to guarantee
that we shall not end up with conformally invariant solutions of the heavenly equation.

10 Particular solutions of resolving system

To find particular solutions of the resolving system, we make various simplifying assumptions.
The most obvious ones, like Ȳ = Y or F = 0, lead to invariant solutions. These we already
know, or can obtain by much simpler standard methods. For instance, Ȳ = Y implies λ̄ = λ,
so that the condition (28) of Corollary 1 is not satisfied and we have a good chance to end up
with a conformally invariant solution.

The weaker assumption that leads to non-invariant solutions is that the operators Y and Ȳ
commute

[Y, Ȳ ] = 0 ⇐⇒ τ = −utρ (29)

but Ȳ �= Y , i.e. λ̄ �= λ and also F �= 0. With this Ansatz we find the particular solution of the
resolving system [8]

F = ρ3ϕ(ξ, θ), τ = −utρ, λ = κut + i
√

2κρ− u2
t , λ̄ = κut − i

√
2κρ− u2

t , (30)

where the condition 2κρ− u2
t ≥ 0 is imposed, ϕ is an arbitrary real smooth function and

ξ =
2κρ− u2

t

ρ2
, θ = t− κ

ρ

(
ut +

√
2κρ− u2

t

)
.

11 Reconstruction of non-invariant solutions
of heavenly equation

To reconstruct solutions of the heavenly equation starting from the particular solution (30)
of the resolving system we use the procedure of invariant integration which amounts to the
transformation of equations to the form of exact invariant derivative [8]. Then we drop the
operator of invariant differentiation in such an equation adding the term that is an arbitrary
element of the kernel of this operator. This term plays the role of the integration constant.

To be explicit, we start from our Ansatz (29) in the form Dt(ln ρ) = Dt(−u). We integrate
this equation: ln ρ = −u+ ln γzz̄(z, z̄) where the last term is a function to be determined. This
gives ρ = e−uuzz̄ = e−uγzz̄(z, z̄) and hence uzz̄ = γzz̄(z, z̄). This implies the following form of
solutions

u(t, z, z̄) = γ(z, z̄) + α(t, z) + ᾱ(t, z̄), (31)

where γ, α and ᾱ are arbitrary smooth functions of two variables. Then we substitute the
expression (31) for u into the heavenly equation (1) with the result

eα(z,t)+ᾱ(z̄,t)
[
αtt(z, t) + ᾱtt(z̄, t) +

(
αt(z, t) + ᾱt(z̄, t)

)2
]

= κe−γ(z,z̄)γzz̄(z, z̄).
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Next we rewrite the formulas (30) for λ and λ̄ in the form of exact invariant derivatives

Y

(√
2κρ− u2

t − iκut

)
= 0, Ȳ

(√
2κρ− u2

t + iκut

)
= 0.

These equations are integrated in the form√
2κρ− u2

t + iκut = ψ(t, z),
√

2κρ− u2
t − iκut = ψ̄(t, z̄),

where ψ is an arbitrary smooth function and ψ̄ is complex conjugate to ψ.
We skip further details and present only the final result [8, 12].

1. Solution of the heavenly equation uzz̄ = (eu)tt with κ = 1:

u(t, z, z̄) = ln
(
t+ b(z)

)
+ ln

(
t+ b̄(z̄)

)
+ ln c′(z) + ln c̄′(z̄)− 2 ln

(
c(z) + c̄(z̄)

)
. (32)

2. Solution of the heavenly equation uzz̄ = − (eu)tt with κ = −1:

u(t, z, z̄) = ln
(
t+ b(z)

)
+ ln

(
t+ b̄(z̄)

)
+ ln c′(z) + ln c̄′(z̄)− 2 ln

(
c(z)c̄(z̄) + 1

)
. (33)

Here b(z) and c(z) are arbitrary holomorphic functions. One of them is fundamental and the
choice of it corresponds to a particular orbit of solutions. The other one is induced by a conformal
symmetry transformation and can be transformed away. For example, we can put either c(z) = z,
or b(z) = z.

We have checked that that these solutions are, in general, not invariant under any subgroup
of the symmetry group. They reduce to invariant solutions only for very special choices of
the function b(z) assuming that c(z) = z. The full ‘black list’ of those bad choices of b(z) is
obtained for κ = 1 and κ = −1 [8]. For all other functions b(z) the formulas (32) and (33) give
non-invariant solutions of the heavenly equation.

12 Heavenly metrics with Euclidean signature

Solutions of the heavenly equation (1) with κ = −1 and κ = 1 generate the metrics which are
exact solutions of the Einstein field equations with the Euclidean and ultra-hyperbolic signature,
respectively. For non-invariant solutions of the heavenly equation these metrics admit only one
Killing vector, i.e. only one symmetry. The reason for this symmetry is that the heavenly
equation is obtained by symmetry reduction from the elliptic complex Monge–Ampère equation
(CMA)

u11̄u22̄ − u12̄u21̄ = 1, (34)

where u is a potential of the Kähler metric

ds2 = uik̄ dz
idz̄k (35)

for a two dimensional complex manifold. The metric (35) is Ricci-flat with the self-dual Riemann
curvature [13]. For the solutions of CMA invariant under rotations in the complex z1-plane the
symmetry reduction of the equation (34) together with a Legendre transformation results in the
heavenly equation with κ = −1

wzz̄ + (ew)pp = 0, (36)
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where z = z2 and w and p come from the Legendre transformation. The Kähler metric now
becomes

ds2 = wp
(
4ewdz dz̄ + dp2

)
+

1
wp

[dτ + i(wz dz − wz̄ dz̄)]2 . (37)

If we use non-invariant solutions of equation (36), then the corresponding metrics will still
have only the one Killing vector coming from our choice of rotationally invariant solutions of
CMA. Non-invariant solutions will not acquire any new symmetries, hence the metric (37) will
not acquire any new Killing vectors.

We use for w(p, z, z̄) the non-invariant solutions (33) of the heavenly equation (36) with the
corresponding change of notation

w = ln

∣∣∣∣∣
[
p+ b(z)

]
c′(z)

1 + | c(z)|2

∣∣∣∣∣
2

, (38)

where b and c are arbitrary holomorphic functions, one of which can be removed by a conformal
symmetry transformation and the prime denotes derivative with respect to argument. The
other function is fundamental since a particular choice of it specifies the corresponding orbit
of solutions of equation (36). Substituting the solution (38) into the metric (37) we obtain the
resulting metric

ds2 = (2p+ b+ b̄)
{

4 |c′|2
(1 + |c|2)2

dz dz̄ +
1

|p+ b|2 dp
2

}

+
|p+ b|2

(2p+ b+ b̄)

{
dτ + 2AM + i

(
b′dz
p+ b

− b̄′dz̄
p+ b̄

)}2

,

where

AM = −i
[(

c̄ c′

1 + |c|2 −
c′′

2c′

)
dz −

(
c c̄′

1 + |c|2 −
c̄′′

2c̄′

)
dz̄

]
.

13 Heavenly metrics with ultra-hyperbolic signature

By analytic continuation of the metric (37) we obtain metrics with ultra-hyperbolic signature.
There are 3 inequivalent choices of such analytic continuation which lead to 3 different ultra-
hyperbolic metrics.

One such metric is

ds2 = wp
(
4ewdz dz̄ − dp2

)
− 1
wp

[dt+ i(wz dz − wz̄ dz̄)]2 , (39)

where the only Killing vector is a null boost instead of rotation. In this case the Einstein field
equations are reduced to the hyperbolic version of the heavenly equation corresponding to κ = 1:
wzz̄ − (ew)pp = 0. Its non-invariant solutions are given by

w = ln

∣∣∣∣∣
[
p+ b(z)

]
c′(z)

c(z) + c̄(z̄)

∣∣∣∣∣
2

and the substitution of these into the formula (39) results in the metric with ultra-hyperbolic
signature

ds21 = (2p+ b+ b̄)
[

4|c′|2
(c+ c̄)2

dz dz̄ − 1
|p+ b|2 dp

2

]
− |p+ b|2

(2p+ b+ b̄)

{
dt+ i

[(
2 c̄′

c+ c̄
− c̄′′

c̄′
− b̄′

p+ b̄

)
dz̄ −

(
2 c′

c+ c̄
− c′′

c′
− b′

p+ b

)
dz

]}2

,
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where once again one of the arbitrary holomorphic functions b(z) or c(z) can be removed by
a conformal transformation.

14 Conclusions and outlook

We conclude that, unlike the method of symmetry reduction, group foliation can be applied
for constructing non-invariant solutions of PDEs. A regular approach for solving the resolving
equations in terms of invariant derivatives is now in progress. In [7] we constructed the group
foliation of the complex Monge–Ampère equation. We hope to obtain its non-invariant solutions
generating the metric with no Killing vectors for the gravitational instanton K3.
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[4] Lie S., Über Differentialinvarianten, Math. Ann., 1884, V.24, 52–89.

[5] Vessiot E., Sur l’integration des sistem differentiels qui admittent des groupes continus de transformations,
Acta Math., 1904 , V.28, 307–349.

[6] Ovsiannikov L.V., Group analysis of differential equations, New York, Academic, 1982.

[7] Nutku Y. and Sheftel M.B., Differential invariants and group foliation for the complex Monge–Ampère
equation, J. Phys. A: Math. Gen., 2001, V.34, 137–156.

[8] Martina L., Sheftel M.B. and Winternitz P., Group foliation and non-invariant solutions of the heavenly
equation, J. Phys. A: Math. Gen., 2001, V.34, 9243–9263.

[9] Alfinito E., Soliani G. and Solombrino L., The symmetry structure of the heavenly equation, Lett. Math.
Phys., 1997, V.41, 379–389.

[10] Boyer C.P. and Winternitz P., Symmetries of the self-dual Einstein equations I. The infinite dimensional
symmetry group and its low-dimensional subgroups, J. Math. Phys., 1989, V.30, 1081–1094.

[11] Tresse A., Sur les invariants differentiels des groupes continus de transformations, Acta Math., 1894, V.18,
1–88.

[12] Calderbank D.M.J. and Tod P., Einstein metrics, hypercomplex structures and the Toda field equation,
Differ. Geom. Appl., 2001, V.14, 199–208.

[13] Boyer C.P. and Finley J.D.III, Killing vectors in self-dual, Euclidean Einstein spaces, J. Math. Phys., 1982,
V.23, 1126–1130.



Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 1, 225–228

The Most Symmetric Drift Waves

Volodymyr TARANOV

Institute for Nuclear Research, 47 Prospekt Nauky, 03680, Kyiv-28, Ukraine
E-mail: vbtaranov@netscape.net

Comparative symmetry analysis is done for Korteweg-de Vries and Hasegawa–Mima models,
both continuous Lie symmetries and discrete ones are taken into account. The form of the
most symmetrical smooth solutions is determined for the Hasegawa–Mima model.

1 Introduction

Low frequency drift oscillations play an important role in the transport processes in magnetized
plasmas, so they are intensely studied in recent decades [1]. The main problem in the drift waves
investigations is the presence of nonlinear effects even at relatively small amplitudes. Nonlinear
generation of the high space harmonics and their accumulation in the initial disturbance zone
complicate numerical simulations of the drift waves evolution [2]. Thus some analytical approach
based on symmetry analysis of the model is needed.

In the present work, comparative symmetry analysis is carried out for Hasegava–Mima model
for the drift waves in a plasma and for the well known Korteweg–de Vries (KdV) model. In the
Section 2, symmetries and the most symmetric solutions of the KdV model are reviewed as an
illustrative example. This model has sufficiently large symmetry for the existence of a family of
the most symmetric stable solutions called solitons. In the Section 3, Hasegawa–Mima model
symmetries and solutions are considered, both continuous and discrete symmetries are taken
into account. General form of the most symmetrical solutions of the Hasegawa–Mima model is
determined.

2 Korteweg-de Vries model (an illustrative example)

Korteweg-de Vries model equation for nonlinear waves with potential nonlinearity (see, e.g. [3])

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0

admits the following Lie group of transformations [4]:
a) time and space shifts: t′ = t+ C1, x′ = x+ C2;
b) similarity transform: t′ = t exp(3C3), x′ = x exp(C3), u′ = u exp(−2C3);
c) Galilean transform: x′ = x+ C4t, u′ = u+ C4,

where C1, . . . , C4 are arbitrary constants.
In addition, KdV equation admits the reflection symmetry transform t′ = −t, x′ = −x.
This symmetry group is large enough for the existence of a family of stable solitary wave

solutions called solitons. These solutions are the most symmetric localized smooth solutions of
the KdV equation. Let us review how they can be obtained by the symmetry approach.

When we introduce the homogeneous boundary condition

u→ 0 as |x| → ∞

the Galilean symmetry is lost, so C4 = 0. Similarity transform invariant solutions are un-
bounded, so we must put also C3 = 0. Thus, the initial symmetry is reduced to the time and
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space shifts combined with the reflection transform. As a result, the most symmetric solution
must be an even function of the argument x− vt:

u = u(x− vt), v = const, u(−x) = u(x).

Inserting this into the KdV equation and solving the corresponding ordinary differential
equation, we obtain a family of solutions

u = 12a2sech2
(
ax− 4a3t

)
,

where the similarity group orbit is labelled by an arbitrary constant a. These solutions are the
well known KdV solitons. Similar considerations allow us to obtain space periodic solutions of
the KdV equation known as cnoidal waves.

As for very small amplitude solutions u = ε exp(ikx− iωt), |ε| 	 1, they obey the dispersion
relation ω = −k3 and their phase and group velocities are ω

k = −k2 and ∂ω
∂k = −3k2 respectively.

So shorter waves have higher velocities and leave the initial disturbance domain faster than
longer ones. For the waves with finite but small amplitude this effect compensates the nonlinear
breaking of the waves. This is the physical reason for the existence of the stable soliton solutions
of the KdV model.

3 Hasegawa–Mima model symmetry and solutions

Let us consider an inhomogeneous plasma slab in the external homogeneous magnetic field.
Electrons, unlike ions, are magnetized, smoothing an electrostatic potential Φ along the magnetic
field lines. In this case, Hasegawa–Mima model equations hold [1]:

∂Ψ
∂t

+ J(Φ,Ψ) =
∂Φ
∂y

, Ψ = Φ−∆⊥Φ, (1)

where Ψ ≡ Ψz is the generalized vorticity, J(F,G) ≡ ∂F
∂x

∂G
∂y −

∂G
∂x

∂F
∂y the Jacobian nonlinear

operator and ∆⊥ ≡ ∂2

∂x2 + ∂2

∂y2
.

Note that vortex nonlinearity term J(Φ,Ψ) in (1) is degenerate: zero value of this term
means that there exists some functional dependence between the vorticity Ψ and the electrostatic
potential Φ. As a consequence, monochromatic wave solutions exist

Φ = α exp(ik1x+ ik2y − iωt), Ψ =
(
1 + k2

1 + k2
2

)
Φ (2)

satisfying the dispersion relation

ω = − k2

1 + k2
1 + k2

2

. (3)

The amplitude α can be arbitrary, not necessarily small, because of vanishing of the nonlinear
term in this case. On the other hand, it is clear from (3) that short waves are slower than the
long ones, so dispersion effects cannot balance the nonlinear wave breaking. All these properties
are in a sharp contrast with those of the KdV model.

Now let us try to proceed in the way used for the KdV model and obtain the most symmetric
solutions of the Hasegawa–Mima equations.

First, it is useful to perform the simplifying transformation

Φ = Φ(t, x, y + t)− x, Ψ = Ψ(t, x, y + t)− x. (4)
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The new RHS functions Φ and Ψ of arguments t, x, y + t satisfy the equations (1) without
the dispersion term ∂Φ

∂y , but the boundary conditions become more complicated:

Φ = x, Ψ = x as |r| → ∞, r =
(
x2 + y2

)1/2
. (5)

The symmetry properties of the Hasegawa–Mima model look simpler in these new notations.
The related symmetry group contains four translations

t′ = t+ C1, x′ = x+ C2, y′ = y + C3, Φ′ = Φ + C4, Ψ′ = Ψ + C4

the rotation around the Oz-axis

x′ = x cosC5 − y sinC5, y′ = x sinC5 + y cosC5

and the similarity transform

t′ = t exp(C6), Φ′ = Φ exp(−C6), Ψ′ = Ψ exp(−C6),

where C1, . . . , C6 are arbitrary constants.
There are also three reflection symmetries:

a) x′ = −x, Φ′ = −Φ, Ψ′ = −Ψ;
b) t′ = −t, y′ = −y;
c) t′ = −t, Φ′ = −Φ, Ψ′ = −Ψ.

Now let us return to the most symmetric solution satisfying the homogeneous boundary
conditions which in our new variables have the form (5). Similarity and rotation transforms
are incompatible with these conditions, so we must put C5 = C6 = 0. The only remaining
translations are time shift (C1), y-shift (C3) and the combination of x, Φ, and Ψ (C2) shifts:

t′ = t+ C1, x′ = x+ C2, Φ′ = Φ + C2, Ψ′ = Ψ + C2, y′ = y + C3,

and only (a) and (b) reflections remain.
Returning (by the transformation inverse to (4)) to the initial variables and the initial form (1)

of the Hasegawa–Mima equations, we obtain the following symmetries compatible with homo-
geneous boundary conditions:

t′ = t+ C1, x′ = x+ C2, y′ = y + C3,

a) x′ = −x, Φ′ = −Φ, Ψ′ = −Ψ,
b) t′ = −t, y′ = −y. (6)

The corresponding invariant solutions must have the form

Φ = F (x, y + vt), Ψ = G(x, y + vt). (7)

Here the RHS functions F and G are antisymmetric with respect to their first argument and
symmetric with respect to their second argument:

F (−x, y + vt) = −F (x, y + vt), F (x,−(y + vt)) = F (x, y + vt),
G(−x, y + vt) = −G(x, y + vt), G(x,−(y + vt)) = G(x, y + vt). (8)

In contrast with the KdV model, the value of the constant v in (7) is essential, since no
similarity transform connecting solutions with different v’s exists for the Hasegawa–Mima model.
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Now let us try to obtain the single solution (7) with some definite value of v. Inserting the
form (7) in (1) and taking into account the homogeneous boundary condition

Φ = 0, Ψ = 0 as |r| → ∞ (9)

we readily find that only trivial zero smooth solution of this form exists.
Thus, the most symmetric non-trivial smooth localized solutions for the Hasegawa–Mima

model must contain the finite or infinite sum of terms with different velocities v1, v2, . . .:

Φ = F1(x, y + v1t) + F2(x, y + v2t) + · · · ,
Ψ = G1(x, y + v1t) +G2(x, y + v2t) + · · · , (10)

where Fi, Gi are antisymmetric functions of their first argument and symmetric functions of
their second argument.

Now let us consider the most symmetric periodic in x, y solutions of the Hasegawa–Mima
equations. The simplest solutions of this kind are as follows:

Φ = α sin(k1x) and Φ = β sin(k1x) cos(ωt+ k2y), (11)

where ω satisfies the dispersion relation (3). The first solution represents the shear flow along
the Oy axis, the second one is the standing wave. Both solutions are trivial inasmuch as the
nonlinear term vanishes.

The most symmetric non-trivial periodic solutions for the Hasegawa–Mima equations must
have the form (summation over some integer values of m, n, and l is assumed):

Φ =
∑

Φmnl sin(mk1x)cos(nk2y + ωmnlt). (12)

Here Φmnl and ωmnl are the functions of k1 and k2 to be determined from the equations (1).
In this way periodicity and symmetry property (8) will be guaranteed. Analytical solutions of
this form (except the trivial ones, like (11)) are not known.

Choosing the initial conditions compatible with the symmetry (8), we can proceed in two
ways: to find numerical solutions of the Hasegawa–Mima equations or to build perturbative
solutions treating the amplitudes as small but finite parameters. For example, numerical simu-
lations were performed and perturbative solution was obtained in [2] for the combination of the
shear flow and the standing wave (11). These solutions which keep the symmetric form (12) are
characterized by higher harmonics generation and frequency shifts.
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We obtain sufficient conditions for the solution found with the help of conditional symmetry
operators to be an invariant one in classical Lie sense. Several examples of nonlinear partial
differential equations are considered.

1 Introduction

It is well known that the symmetry reduction method is very efficient for construction of exact
solutions for nonlinear partial differential equations of mathematical physics. With the help
of symmetry operators one can find ansatze which reduce partial differential equation to the
equation with smaller number of independent variables. Application of conditional symmetry
operators essentially widens the class of ansatze reducing initial differential equation [1, 2, 3].
It turns out however that some of these ansatze result in the classical invariant solutions. It
is obvious that the existence of conditional symmetry operator does not guarantee that the
solution obtained with the help of corresponding ansatz is really new that it is not invariant
solution in the classical Lie sense. We have proved theorem allowing us to exclude the operators
that lead to the classical invariant solutions.

2 Basic theorem

Let us consider some partial differential equation

U(x, u, u1, . . . , uk) = 0, (1)

where u ∈ Ck
(
Rn,R1

)
, x ∈ Rn, and uk denotes all partial derivatives of k-th order. Suppose

that the following conditions are fulfilled.
1. Equation (1) is conditionally invariant under involutive family of operators {Qi}, i = 1, p

Qi = ξ′li(x, u)
∂

∂xl
+ η′i(x, u)

∂

∂u
(2)

and corresponding ansatz reduces this equation to ordinary differential equation.
2. There exists the general solution of reduced equation in the following form

u = f(x,C1, . . . , Ct), (3)

where f is arbitrary smooth function of its arguments, C1, . . . , Ct are arbitrary real constants.
The following theorem has been proved.

Theorem 1. Let equation (1) be invariant under the m-dimensional Lie algebra AGm with basis
elements:

Xj = ξ̃′lj(x)
∂

∂xl
+ η̃j(x, u)

∂

∂u
, j = 1, . . . ,m, (4)
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and conditionally invariant with respect to involutive family of operators {Qi} satisfying condi-
tions 1, 2.

If the system

ξ′li
∂u

∂xi
= η′i(x, u) (5)

is invariant under s-dimensional subalgebra AGswith basis elements

Ya = ξla(x)
∂

∂xl
, a = 1, s, (6)

of algebra AGm and s ≥ t+ 1, then conditionally invariant solution of equation (1) with respect
to involutive family of operators {Qi} is an invariant solution in the classical Lie sense.

Proof. From the theorem conditions it follows that the system of equations (1), (5) is invariant
with respect to AGs algebra with basis elements Ya. Consider one parameter subgroup of trans-
formations of space X×U (variables x, u) with infinitesimal operator Yj . These transformations
map any solution from (3) into solution of system (1), (5). Thus the following relations

u− f
(
x′, C1, C2, . . . , Ct

)
= u− f

(
x,C ′1, . . . , C

′
t

)
, (7)

where a ∈ R1, C ′1, . . . C ′t depend on C1, . . . Ct, a, are fulfilled in this case. Equality (7) is true for
arbitrary group parameter a ∈ R1. Considering it in the vicinity of point a = 0 we obtain

ξla(x)
∂f

∂xl
= − ∂f

∂C1
βj1 − · · · − ∂f

∂Ct
βjt, j = 1, s, (8)

where βjk = ∂C′
k

∂a at the point a = 0. As far as the mentioned reasoning is valid for arbitrary
operator Yj then condition (8) is equivalent to the following system of s equations

Yjf = −
t∑

k=1

∂f

∂Ck
βjk, 1 ≤ j ≤ s. (9)

From system (9) it follows that there exist such real constants γp that the the condition

s∑
p=1

γpYpf = 0,

is true since s ≥ t + 1. Therefore the solution u = f(x,C1, . . . , Ct) is invariant with respect to

one-parameter Lie group with infinitesimal operator Q =
s∑

p=1
γpYp. �

Note that theorem can be generalized for infinitesimal operators of the form

Ya = ξla(x)
∂

∂xl
+ ηa(x, u), (10)

where

ηa(x, u) = Fa(x)u+ Φa(x), (11)

and Fa(x) and Φa(x) are arbitrary smooth functions.
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3 Examples

Now consider several examples. We first study nonlinear wave equation

uxt = sinu. (12)

We prove that equation (12) is conditionally invariant with respect to the operator

X =
(
uxx +

1
2

tanuu2
x

)
∂u. (13)

We use the definition of conditional symmetry for arbitrary differential equation given in [4].
Therefore we can use the following differential consequences

Dx(uxt − sinu) = 0, D2
x(uxt − sinu) = 0, Dx(η) = 0, (14)

and

ut = −2 cosu
ux

. (15)

It is easy to verify that the equality

X
2

(uxt − sinu) = 0,

where X
2

is the extended symmetry operator of the second order, is satisfied on the manifold

given by relations (12), (14), (15). Thus equation (12) is conditionally invariant with respect to
the Lie–Bäcklund vector field (13). That is why we can reduce it by means of the ansatz which
is the solution of the following equation

uxx +
1
2

tanuu2
x = 0 (16)

and has an implicit form

H(u) = C(t)x+ α(t), (17)

where

H(u) =
∫

du√
cosu

.

Substituting (17) into (12) we receive the reduced system in the form

C ′(t) = 0,
1
2
C(t)α′(t) + 1 = 0.

Finally by integrating this system we obtain solution of equation (12)

H(u) = C1x−
2
C1
t+ C2. (18)

Both of equations (12) and (16) are invariant with respect to three-dimensional Lie algebra with
basis elements

Q1 = ux∂u, Q2 = ut∂u, Q3 = (tut − xux)∂u.
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And also the solution depends on two constants. So, the theorem conditions are fulfilled. Thus
we conclude that solution (18) is an invariant one in the classical Lie sense as a consequence of
theorem. It is obvious that there exist the linear combination of operators Q1, Q2, Q3 such that
obtained solution is invariant under transformations generated by this operator.

Now consider equation

ut − uxx = λ exp(u)ux + u2
x. (19)

It has been proved that equation (19) is conditionally invariant with respect to operator

Q =
(
uxx + u2

x

) ∂

∂u
.

The corresponding ansatz has the form

u = ln(f(t)x+ φ(t)), (20)

where f , φ are unknown functions. Substitution of (20) in (19) yields the system of two ordinary
differential equations in the form

f ′ = λf2, φ′ = λfφ.

Having integrated this system one can obtain exact solution of equation (19)

u = ln
(
x+ C1

C − λt

)
. (21)

Note, that equation

uxx + u2
x = 0

is invariant with respect to three-dimensional algebra with basis elements

Q1 =
∂

∂t
, Q2 =

∂

∂x
, Q3 = 2t

∂

∂t
+ x

∂

∂x
− ∂

∂u
.

Thus according to theorem the solution (21) is an invariant one.
It can be verified that solution (21) is invariant with respect to one-parameter transformation

group with infinitesimal operator

Q = αQ1 + βQ2 + γQ3

when α = γC1, β = −2γCλ−1.
Finally consider equation

ut − a(u)uxx = u(1− a(u)), (22)

where a(u) is arbitrary smooth function. We have proved that equation (22) is conditionally
invariant with respect to operator

Q = (uxx − u)
∂

∂u
.

The invariance surface condition leads to the following ansatz

u(t, x) = φ1(t) expx+ φ2(t) exp(−x),

which reduces considered equation. It is easy to construct an exact solution of equation (22)
using this approach in the form

u = A exp(t+ x) +B exp(t− x), (23)

where A, B are real constants.
It should be noted that the maximal invariance Lie algebra of point transformations is two-

dimensional algebra with basis operators ∂t, ∂x. But solution (23) depends on two constants.
Therefore the theorem conditions are not satisfied. Really it is easy to prove, that solution (23)
cannot be constructed by means of Lie point group technique.
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4 Conclusion

Thus we obtain a sufficient condition for the solution found with the help of conditional symmet-
ry operators to be an invariant solution in the classical sense. The theorem proved by means of
infinitesimal invariance method allows us to optimize the algorithm for construction of condi-
tional symmetry operators, a priori excluding the operators that lead to the classical invariant
solutions. It is obvious that this theorem can be generalized and applicable to construction of
exact solutions for partial differential equations by using the method of differential constraints,
Lie–Bäcklund symmetry method and the approach suggested in [5].
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There are presented results of the investigations of a modeling system describing long nonli-
near waves propagation in structured media with two relaxing components. A set of traveling
wave invariant solutions is analyzed. We determine the conditions assuring the existence
of quasiperiodic solutions and show that such analysis is helpful in looking for the locali-
zed wave patterns, since the destruction of quasiperiodic regime very often is realized via
the homoclinic bifurcation of saddle-focus, which corresponds to the many-hump soliton
appearance.

1 Introduction

Actually it is well known [1, 2, 3, 4], that continual models of structured and hierarchic media
possess more rich set of solutions than those of structureless media. In this work we analyze
maybe the simplest nonlinear hydrodynamic–type system describing long waves propagation in
structured media with two relaxing processes on microscopic level.

It is rather difficult to make any general statements concerning the whole family of solutions
of a non-linear differential equation, yet, using the group theory and qualitative methods one is
able to analyze a set invariant solutions, providing that equation under consideration possesses
sufficiently large symmetry group. Very often this set contains interesting and physically mean-
ingful solutions, reporting to attract nearby, not necessarily invariant ones [5, 6, 7]. In this work
attention is paid to the problem of extracting localized traveling wave solutions associated with
the homoclinic loops of corresponding dynamical system, being obtained from the initial PDE
system via the group theory reduction. Actually there does not exist any regular analytical
method enabling to predict the appearance of a homoclinic-type solution of a multidimensional
dynamical system, yet some information about the possibility of homoclinic bifurcation could
be obtained through the analysis of Poincaré canonical form (CPF), corresponding to some type
of degeneracy of the linear part of the system. Aside of the case when CPF is Hamiltonian,
or close to Hamiltonian [8], this information is incomplete, therefore answering the question
on whether or not the homoclinic bifurcation does take place one finally should resort to the
numerical simulation.

The contents of this work is following. We consider relatively simple modeling system de-
scribing high-rate processes in structured media with two relaxing components. Using the trivial
symmetry inherent to any evolution system which does not contain independent variables, we
pass to the three-dimensional system of ODE, describing a set of invariant traveling wave so-
lutions. We analyze this system with the help of qualitative theory methods and state the
conditions assuring the existence of quasiperiodic solutions in proximity of some stationary
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point. Since one of the possible scenarios of the quasiperiodic regime destruction is associated
with the homoclinic bifurcation, we use the above results to localize the domain of parame-
ter space where the homoclinic bifurcation could take place. In order to capture a family of
homoclinic-type solutions we finally use the numerical algorithm outlined in [4].

2 Soliton-like invariant solutions
of relaxing hydrodynamics model

The modeling system we are going to analyze is as follows:

∂ ρ

∂ t
+ χρσ−1 ∂ ρ

∂ x
= α1 (ρ− 1) + α2 (ρ− 1)2 − q1κ η

+ q2 [ν η − (σ − 1)ϕ (ρ− 1)− κ (λ− λ0)] ,
∂ λ

∂ t
= −κ η,

∂ η

∂ t
= ν η − ϕ

(
ρσ−1 − 1

)
+ β (λ− λ0)2 − κ (λ− λ0) . (1)

Let us consider ansatz

ρ = R(ω), ω = x−D t, λ = L(ω), η = N(ω), (2)

that describes a family of invariant traveling wave solutions. Inserting (1) into the system (1)
we obtain dynamical system

D
(
χRσ−1 −D

)
Ṙ = D

[
α1 (R− 1) + α2 (R− 1)2

]
− qNκ

+ p [ν N − θ (ρ− 1)− κ (L− L0)] ,

D
(
χRσ−1 −D

)
L̇ = κ

(
χRσ−1 −D

)
N, (3)

D
(
χRσ−1 −D

)
Ṅ =

(
χRσ−1 −D

) (
−

(
Rσ−1 − 1

)
ϕ− ν N

−β (L− L0)2 + κ (L− L0)
)
. (4)

where θ = (σ− 1)ϕ, q = q1D, p = q2D. One easily gets convinced that linear part of system (3)
in reference frame X = R− 1, Y = L−L0, Z = N , centered at the critical point A(1, L0, 0), is
as follows: Ẋ

Ẏ

Ż

 =

 α1D − p θ −p κ p ν − q κ
0 0 κ∆
θ∆ κ∆ −ν∆

  X
Y
Z

 , (5)

where ∆ = χ − D, h = θ/ν. We are going to employ the methods of local nonlinear analysis
to the investigation of quasiperiodic and soliton-like solutions appearance in vicinity of critical
point A(1, L0, 0). In order for such analysis be effective, restrictions on the parameters should
be imposed, assuring that the eigenvalues of the linearization matrix M̂ standing at the RHS of
system (5) have the (0, ±iΩ) degeneracy [9, 4]. This leads to the following conditions:

α1 = 0, D = χ+ p h, Ω2 = −p h2κ (p κ+ ν q) > 0. (6)

In order to avoid considering the case that is obviously unstable [10], we should chose the
parameters in such a way that the nonlinear wave pack velocity D be greater than the acoustic
sound velocity χ. From this requirement we immediately obtain inequality

p h > 0. (7)
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Assuming that conditions (6)–(7) are satisfied, let us construct canonical Poincaré form corre-
sponding to system (3). To do that we first make a transition to new variables x1

x2

x3

 =
p

−Ω3 h

 0 0 κ h2 (q ν + κ p)
−h θΩ −κhΩ θΩ
Ωκ ph3 −q κΩh2 −h2κ pΩ

  X
Y
Z

 ,

chosen in such a way that linear part of the system is written in standard quasi-diagonal form:

x
′
1 = −Ωx2 +

∑
i+j=2i≤j

Aijxixj +
∑

i+j+k=2i≤j≤k
Aijkxixjxk + · · · ,

x
′
2 = Ωx1 +

∑
i+j=2i≤j

Bijxixj +
∑

i+j+k=2i≤j≤k
Bijkxixjxk + · · · ,

x
′
3 =

∑
i+j=2i≤j

Cijxixj +
∑

i+j+k=2i≤j≤k
Cijkxixjxk + · · · , (8)

where (·)′ = D
(
χRσ−1 −D

)
d (·) /dω. Passage from the representation (8) to CPF

r′ = a r z + o
(
r3, |z|3

)
,

z′ = b1r
2 + b2z

2 + f z3 + o
(
r3, |z|3

)
. (9)

is based on standard method that can be found e.g. in [9]. Connections between the coefficients
of the CPF and those of system (8) prove to be as follows [11, 12]:

a =
(A13 +B23)

2
, b1 =

(C11 + C22)
2

, b2 = C33. (10)

CPF (9) is obtained from the initial dynamical system through the series of asymptotic
transformations [9], followed by the passage to the cylindric coordinates (r, ϕ, z) and averaging
over the “fast” angular variable ϕ. Therefore the limit cycle, appearing in (9) corresponds to the
quasiperiodic solution of the initial PDE system, while the homoclinic trajectory corresponds
to the non-classical many-hump solitary wave pack.

As it is shown in [12], stability of the periodic solution of system (9) is determined by the sign
of the coefficient f . General expression on this coefficient, given in [11, 12], is too cumbersome
to be of any use in analytical treatment, but it drastically simplifies when C33 = 0. This is so
when the following expression holds

α2 =
h p ν

(
2hβ ν − κ2

)
2κ2 (h p+ χ)

. (11)

Under this condition

f = C333 +
1
Ω

(A33C23 −B33C13) . (12)

Here and henceforth we put calculation with σ = 3.
We must stress in this place that, although the CPF (9) serves as a basement for the clas-

sification of regimes appearing after the removal of degeneracy, its investigation will not be of
any use until the coefficients (10), (12) remain unknown. This problem is rather cumbersome
unless one uses some tools for symbolic calculus. Below we give the exact expressions on the
CPF coefficients, obtained with the help of the program “Mathematica 4.0”:

a =
2 (ν2h2p β − ν κ2χ)− ν κ2h p

2κ
, b1 = −h

4p2β

2κ
[
p

(
κ2 + ν2

)
− q κ ν

]
,

f =
h4p3ν2β

Ω2

(
κ2 − 2hβ ν

)
. (13)
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In order to remove the degeneracy of the linear part of system (3) two parameter family of
small perturbation is introduced:

F → α1 (R− 1) + α2 (R− 1) , D → χ+ h p + ε.

This induces the following change of the CPF:

r′ = µ1r + a r z + o
(
r3, |z|3, |µi|

)
,

z′ = µ2z + b1r
2 + b2z

2 + f z3 + o
(
r3, |z|3, |µi|

)
, (14)

where

µ1 =
ν

2

(
ε− Dh2p qκ

Ω2
α1

)
, µ2 = −Dh

2p2κ2

Ω2
α1. (15)

As it is shown in our previous work [12], for sufficiently small µ1 µ2 the limit cycle appears in
system (14) along the manifold

µ2 + 3f (µ1/a)2 = 0, (16)

providing that a b1 < 0. Here we have two possibilities:
• f > 0 and µ1 µ2 < 0; stable periodic regime exists if the following inequality holds

µ2 < −3f (µ1/a)2 < 0; (17)

• f < 0 and µ1 µ2 < 0; unstable periodic regime exists if the following inequality holds

µ2 > −3f (µ1/a)2 > 0 (18)

(note that in proximity of the critical point A(1, L0, 0) the factor
(
χRσ−1 −D

)
is negative and

this circumstance has been taken into account when determining the stability type of the limit
cycle).

Numerical simulations show that one of the scenarios of destruction of the limit cycle of
system (14) is associated with the appearance of homoclinic loop (for a = 2 it can be shown
analytically [9]). These regimes correspond to the soliton-like solutions of the initial PDE system.
In the first case, corresponding to formula (17), homoclinic trajectory comes out from the
critical point A(1, L0, 0) (which is a saddle-focus) along the one-dimensional unstable invariant
manifold W u and returns into the critical point along the two-dimensional stable invariant
manifold W s. In the second case, corresponding to formula (18), the direction of movement is
opposite. Analysis based on the equations (13)–(18) shows that both of these cases could be
realized in the system (1). In the first case we obtain a soliton-like solution with oscillating front
while in the second one – a localized pack with oscillating “tail”.

As it was mentioned above, a homoclinic bifurcation is not the only scenario leading to the
destruction of quasiperiodic movement appearing in system (3). We cannot exclude another
scenarios, associated e.g. with a pair of tori appearance (i.e. the case when the Lyapunov indices
cross the unit circle having non-zero imaginary part). In this situation final answer on whether
or not the soliton-like regimes appear in system could give the numerical experiments.

We employed the numerical procedure put forward in [4] (cf. also [13]). The procedure enables
to find out a set of points belonging to parameter plane (χ, α1), for which trajectory going out
of the origin along the one-dimensional unstable invariant manifold W u returns to the origin
along the two-dimensional stable invariant manifold W s. Having fixed the rest of parameters
as follows ϕ = −1, ν = κ = q = 1, p = −0.25, we defined numerically a distance between the



238 V. Vladimirov and S. Skurativskii

Figure 1.

Figure 2. Figure 3.

origin (which coincide with the critical point A(1, L0, 0)) and the point XΓ(ω), Y Γ(ω), ZΓ(ω)
of the phase trajectory Γ(·; χ, α1):

fΓ(χ, α1;ω) =
√

[XΓ(ω]2 + [Y Γ(ω]2 + [ZΓ(ω]2, (19)

starting from the fixed Cauchy data lying on the unstable manifold W u, close to the origin.
Next we determine minimum fΓ

min(χ, α1) of the function (19) for that part of the trajectory
that lies beyond the point at which the distance gains its first local maximum, providing that it
remains all the time inside the ball of a fixed (sufficiently large) radius. The results is presented
on Fig. 1. Here white color marks values of the parameters χ, α1 for which fΓ

min > 1.2, light
grey correspond to the values 0.6 < fΓ

min < 1.2, grey color - to the values 0.3 < fΓ
min < 0.6,

deep grey – to 0.01 < fΓ
min < 0.3, black - to fΓ

min < 0.01. It is seen on Fig. 1, that the points
corresponding to homoclinic loop appearance form a connected set and this is in agreement with
the general statements [14]. Let us note that employment of the same procedure for another
systems gives a Cantor set instead of the connected curve [4, 13].

Solving numerically system (3) for proper values of the parameters, one is able to obtain a
soliton-like solution. Because of the numerical error it is rather impossible to read our form
Fig. 1 exact value of the parameters χ, α1, corresponding to homoclinic loop. Therefore we put
α1 = −0.2 and, using the Bolzano–Weierstrass method, varied χ until the homoclinic trajectory
was attained at χ = 0.619803. This approach proves to be effective because bifurcation values of
the parameters form a smooth curve in the plane (χ, α1). Projection of the homoclinic trajectory
onto the (X, Z) plane is shown on Fig. 2; while the corresponding solution R (ω) = R (x−D t)
is shown on Fig. 3.

So we have get convinced that system (1) possesses invariant soliton-like solutions, that look
like a many-hump wave pack moving with uniform speed D. Let us note in conclusion that till
now we did not touch upon the crucial problem of stability of the soliton-like regimes and their
attractive features, but we hope to face this problem it in the nearest future.
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The paper discusses the application of MathLie in connection with Lie group analysis. The
examined example is the (1 + 1)-dimensional case of the Doebner–Goldin equation after
Madelung transform. The related Lie-algeras are calculated. We present the generators,
commutator tables and adjoint representations from the algebras. Furthermore we discuss
the reduction of an example to ordinary differential equations and solve it explicitly.

1 Derivation of the Doebner–Goldin equations

During the investigation of Borel quantization for S1 Dobrev, Doebner and Twarock [1] derived
a nonlinear Schrödinger equation of the form (here with m = 1, � = 1)

i∂tψ = −1
2

∆ψ + V (x, t)ψ +
i

2
KR2(ψ)ψ +

5∑
j=1

DjRj(ψ)ψ. (1)

This equation is called Doebner–Goldin equation. Here, the Rj(ψ) with j ∈ {1, 2, . . . , 5} are
real–valued functionals of the real–valued density � = �̄ = ψ ψ̄ and the real-valued current
j = ̄j = i�

2m

(
ψ∇ψ̄ − ψ̄∇ψ

)
. They are given by

R1(ψ) =
∇j
�
, R2(ψ) =

∆�
�
, R3(ψ) =

j2

�2
, R4(ψ) =

j∇�
�2

, R5(ψ) =
(∇�)2

�2
. (2)

To apply Lie theory, we have to write equation (1) as a system of real functions. To do this we
use the Madelung transformation [5]

ψ =
√
�(x, t) exp(iS(x, t)), ψ̄ =

√
�(x, t) exp(−iS(x, t)). (3)

Considering the (1 + 1)-dimensional case with the functionals (2) and the Madelung transfor-
mation (3) we get the following system of equations:

−8�2V (x, t) + 4i��t − 8�2St − �2
x − 8D5�

2
x

+ 4i��xSx − 8�D1�xSx − 8�D4�xSx − 4�2S2
x − 8�2D3S

2
x

− 4iK��xx + 2��xx − 8D2��xx + 4i�2Sxx − 8D1�
2Sxx = 0. (4)

After separating equation (4) into real and imaginary part a system of differential equations
in S and � follows:

�t + �xSx −K�xx + �Sxx = 0,

(1 + 8D5)�2
x + 2� (4D1�xSx + 4D4�xSx + (4D2 − 1)�xx)

+ 4�2
(
2V (x, t) + 2St + S2

x + 2D3S
2
x + 2D1Sxx

)
= 0. (5)
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By permutating the six parameters {K,D1, D2, . . . , D5} we receive 63 different model equations
(see Table 1 below) of a nonlinear Schrödinger type equation called Doebner–Goldin–Madelung
equation.

2 Symmetry analysis of the (1 + 1)-dimensional
Doebner–Goldin–Madelung equations

In order to find the symmetry group of equations (5) we apply the algorithms described in a lot
of textbooks (e.g. [2, 3, 4, 6, 7]). We look for an algebra of vector fields of the form

v = ξ[1]∂x ·+ξ[2]∂t ·+φ[1]∂� ·+φ[2]∂S ·,

where ξ[1], ξ[2] are functions of x and t and φ[1] and φ[2] depend on {x, t, �, S}.
These coefficients are determined from the requirement that the second prolongation of v

should annihilate the equation on the solution set of the equation. This was done using the
Mathematica program MathLie [2].

The application of this theory to the system (5) leads to the following result:

Table 1. Permutation of parameters.
Nr. Equations Infinitesimals Operators

1 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
�2

x + 4�2(
2St + S2

x + 2D1Sxx
)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D1Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
2 �t + Sx�x + �Sxx = 0, ξ[1] = k2 + k5t + (k3 + 2k6t)x, ∂S ·, ∂t·, ∂x·,

4�2(
2St + S2

x

)
+ �2

x+ ξ[2] = k1 + 2t(k3 + k6t), 2t∂t · +x∂x·,
2(4D2 − 1)��xx = 0 φ[1] = (k7 − 2k6t)�, x∂S · +t∂x·, �∂�·,

φ[2] = k4 + x(k5 + k6x) x2∂S · +2t2∂t · +2tx∂x · −2t�∂�·
3 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

4�2(
2St + S2

x + 2D3S2
x

)
+ ξ[2] = k2 + 2k4t, ∂t · +x∂x·,

�2
x − 2��xx = 0 φ[1] = k5�, φ[2] = k1 �∂�·

4 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x

)
+ �2

x+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,
2�

(
4D4Sx�x − �xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

5 �t + Sx�x + �Sxx = 0, ξ[1] = k2 + k5t + (k3 + 2k6t)x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x

)
+ (1 + 8D5)�2

x− ξ[2] = k1 + 2t(k3 + k6t), 2t∂t · +x∂x·,
2��xx = 0 φ[1] = (k7 − 2k6t)�, x∂S · +t∂x·, �∂�·,

φ[2] = k4 + x(k5 + k6x) x2∂S · +2t2∂t · +2tx∂x · −2t�∂�·
6 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k2 + k5t + (k3 + 2k6t)x, ∂S ·, ∂t·, ∂x·,

4�2(
2St + S2

x

)
+ �2

x − 2��xx = 0 ξ[2] = k1 + 2t(k3 + k6t), 2∂t · +x∂x·,
φ[1] = (k7 − 2k6t)�, x∂S · +t∂x·, �∂�·,

φ[2] = k4 + x(k5 + k6x) x2∂S · +2t2∂t · +2tx∂x · −2t�∂�·
7 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

�2
x + 4�2(

2St + S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4D1Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

8 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x + 2D3S2

x + 2D1Sxx
)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

�2
x + 2�

(
4D1Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·

9 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
�2

x + 4�2(
2St + S2

x + 2D1Sxx
)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D1 + D4)Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
10 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

(1 + 8D5)�2
x + 4�2(

2St + S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D1Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
11 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

�2
x + 4�2(

2St + S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D1Sx�x − �xx) = 0, φ[1] = k5�, φ[2] = k1 �∂�·
12 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

4�2(
2St + S2

x + 2D3S2
x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

�2
x + 2(4D2 − 1)��xx = 0 φ[1] = k5�, φ[2] = k1 �∂�·

13 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x

)
+ �2

x+ ξ[2] = k2 + 2k4, 2t∂t · +x∂x·,
2�(4D4Sx�x + (4D2 − 1)�xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·

14 �t + Sx�x + �Sxx = 0, ξ[1] = k2 + k5t + (k3 + 2k6t)x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x

)
+ (1 + 8D5)�2

x+ ξ[2] = k1 + 2t(k3 + k6t), 2t∂t · +x∂x·,
2(4D2 − 1)��xx = 0 φ[1] = (k7 − 2k6t)�, x∂S · +t∂x·, �∂�·,

φ[2] = k4 + x(k5 + k6x) x2∂S · +2t2∂t · +2tx∂x · −2t�∂�·
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Nr. Equations Infinitesimals Operators

15 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k2 + k5t + (k3 + 2k6t)x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x

)
+ �2

x+ ξ[2] = k1 + 2t(k3 + k6t), 2t∂t · +x∂x·,
2(4D2 − 1)��xx = 0 φ[1] = (k7 − 2k6t)�, x∂S · +t∂x·, �∂�·,

φ[2] = k4 + x(k5 + k6x) x2∂S · +2t2∂t · +2tx∂x · −2t�∂�·
16 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

4�2(
2St + S2

x + 2D3S2
x

)
+ �2

x+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,
�(4D4Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·

17 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x + 2D3S2

x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

(1 + 8D5)�2
x − 2��xx = 0 φ[1] = k5�, φ[2] = k1 �∂�·

18 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x + 2D3S2

x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

�2
x − 2��xx = 0 φ[1] = k5�, φ[2] = k1 �∂�·

19 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x

)
+ (1 + 8D5)�2

x+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,
2�(4D4Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·

20 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x

)
+ �2

x+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,
2�(4D4Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·

21 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k2 + k5t + (k3 + 2k6t)x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x

)
+ ξ[2] = k1 + 2t(k3 + k6t), 2t∂t · +x∂x·,

(1 + 8D5)�2
x − 2��xx = 0 φ[1] = (k7 − 2k6t)�, ∂S · +t∂x·, �∂�·,

φ[2] = k4 + x(k5 + k6x) x2∂S · +2t2∂t · +2tx∂x · −2t�∂�·
22 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

�2
x + 4�2(

2St + S2
x + 2D3S2

x + 2D1Sxx
)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D1Sx�x + (4D2 − 1)�xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
23 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

�2
x + 4�2(

2St + S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4(D1 + D4)Sx�x + (4D2 − 1)�xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
24 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

(1 + 8D5)�2
x + 4�2(

2St + S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D1Sx�x + (4D2 − 1)�xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
25 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

�2
x + 4�2(

2St + S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D1Sx�x + (4D2 − 1)�xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
26 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

�2
x + 4�2(

2St + S2
x + 2D3S2

x + 2D1Sxx
)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4(D1 + D4)Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
27 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

4�2(
2St + S2

x + 2D3S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

(1 + 8D5)�2
x + 2�(4D1Sx�x − �xx) = 0, φ[1] = k5�, φ[2] = k1 �∂�·

28 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
�2

x + 4�2(
2St + S2

x + 2D3S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D1Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
29 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

(1 + 8D5)�2
x + 4�2(

2St + S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4(D1 + D4)Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
30 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

�2
x + 4�2(

2St + S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4(D1 + D4)Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
31 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

(1 + 8D5)�2
x + 4�2(

2St + S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D1Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
32 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

�2
x + 4�2(

2St + S2
x + 2D3S2

x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D4Sx�x + (4D2 − 1)�xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
33 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

4�2(
2St + S2

x + 2D3S2
x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

(1 + 8D5)�2
x + 2(4D2 − 1)��xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·

34 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
�2

x + 4�2(
2St + S2

x + 2D3S2
x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2(4D2 − 1)��xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
35 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

(1 + 8D5)�2
x + 4�2(

2St + S2
x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D4Sx�x + (4D2 − 1)�xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
36 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

�2
x + 4�2(

2St + S2
x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D4Sx�x + (4D2 − 1)�xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
37 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k2 + k5t + (k3 + 2k6t)x, ∂S ·, ∂t·, ∂x·,

4�2(
2St + S2

x

)
+ (1 + 8D5)�2

x ξ[2] = k1 + 2t(k3 + k6t), 2t∂t · +x∂x·,
2(4D2 − 1)��xx = 0 φ[1] = (k7 − 2k6t)�, ∂S · +t∂x·, �∂�·,

φ[2] = k4 + x(k5 + k6x) x2∂S · +2t2∂t · +2tx∂x · −2t�∂�·
38 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

(1 + 8D5)�2
x + 4�2(

2St + S2
x + 2D3S2

x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D4Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
39 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

�2
x + 4�2(

2St + S2
x + 2D3S2

x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D4Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
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Nr. Equations Infinitesimals Operators

40 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x + 2D3S2

x

)
+ ξ[2] = k2 + 2k4t, 2t∂t + x∂x·,

(1 + 8D5)�2
x − 2��xx = 0 φ[1] = k5�, φ[2] = k1 �∂�·

41 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D4Sx�x − �xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
42 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

�2
x + 4�2(

2St + S2
x + 2D3S2

x + 2D1Sxx
)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4(D1 + D4)Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

43 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
�2

x + 4�2(
2St + S2

x + 2D3S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

8D5�2
x + 2�(4D1Sx�x + (4D2 − 1)�xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·

44 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
�2

x + 4�2(
2St + S2

x + 2D3S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�(4D1Sx�x + (4D2 − 1)�xx) = 0 φ[1] = k5�, φ[2] = k1 �∂�·
45 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

(1 + 8D5)�2
x + 4�2(

2St + S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4(D1 + D4)Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

46 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
�2

x + 4�2(
2St + S2

x + 2D1Sxx
)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4(D1 + D4)Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

47 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x + 2D1Sxx
)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4D1Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

48 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
4�2(

2St + S2
x + 2D3S2

x + 2D1Sxx
)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

(1 + 8D5)�2
x + 2�

(
4(D1 + D4)Sx�x − �xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

49 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
�2

x + 4�2(
2St + S2

x + 2D3S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4(D1 + D4)Sx�x − �xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

50 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x + 2D3S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4D1Sx�x − �xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

51 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + D5)�2

x + 4�2(
2St + S2

x + 2D1Sxx
)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4(D1 + D4)Sx�x − �xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

52 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x + 2D3S2
x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4D4Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

53 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
�2

x + 4�2(
2St + S2

x + 2D3S2
x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4D4Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

54 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x + 2D3S2
x

)
+ 2(4D2 − 1)��xx = 0 ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

φ[1] = k5�, φ[2] = k1 �∂�·
55 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,

(1 + 8D5)�2
x + 4�2(

2St + S2
x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4D4Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

56 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x + 2D3S2
x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4D4Sx�x − �xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

57 �t + Sx�x + �Sxx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x + 2D3S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4(D1 + D4)Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

58 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
�2

x + 4�2(
2St + S2

x + 2D3S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4(D1 + D4)Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

59 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x + 2D3S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4D1Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

60 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x + 2D1Sxx
)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4(D1 + D4)Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

61 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x + 2D3S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4(D1 + D4)Sx�x − �xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

62 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x + 2D3S2
x

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4D4Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

63 �t + Sx�x + �Sxx − K�xx = 0, ξ[1] = k3 + k4x, ∂S ·, ∂t·, ∂x·,
(1 + 8D5)�2

x + 4�2(
2St + S2

x + 2D3S2
x + 2D1Sxx

)
+ ξ[2] = k2 + 2k4t, 2t∂t · +x∂x·,

2�
(
4(D1 + D4)Sx�x + (4D2 − 1)�xx

)
= 0 φ[1] = k5�, φ[2] = k1 �∂�·

We derive from Table 1 the existence of two different algebras A1, A2:

A1 = {∂S ·, ∂t·, ∂x·, 2t∂t ·+x∂x·, �∂�·}.
The dimension of the first algebra A1 is 5.
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The following equations are related to A1: 1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63.

The second algebra A2 has dimension 7 and is represented by

A2 = {∂t·, ∂x·, 2t∂t ·+x∂x·, ∂S ·, ∂S ·+t∂x·, x2∂S ·+2t2∂t ·+2tx∂x · −2t�∂�·, �∂�·}.
The related equations from Table 1 are 2, 5, 6, 14, 15, 21, 37. To calculate the operation of the
group we have to solve the following system of ordinary differential equations:

∂x̃n

∂ε
= ξn

[
x̃i(ε), ũβ(ε)

]
,

∂ũα

∂ε
= φα

[
x̃i(ε), ũβ(ε)

]
, x̃n = xn, ũα = uα for ε = 0.

If we do this for the algebra A1, we find:

k1 �= 0, k2 = k3 = k4 = 0 k1 = 0, k2 �= 0, k3 = k4 = 0

∂t̃

∂ε
= 0 =⇒ t̃ = t,

∂x̃

∂ε
= 0 =⇒ x̃ = x,

∂�̃

∂ε
= 0 =⇒ �̃ = �,

∂S̃

∂ε
= k1 =⇒ S̃ = k1ε+ S;

∂t̃

∂ε
= 0 =⇒ t̃ = t,

∂x̃

∂ε
= k2 =⇒ x̃ = k2ε+ x,

∂�̃

∂ε
= 0 =⇒ �̃ = �,

∂S̃

∂ε
= 0 =⇒ S̃ = S;

k1 = k2 = 0, k3 �= 0, k4 = 0 k1 = k2 = k3 = 0, k4 �= 0

∂t̃

∂ε
= k3 =⇒ t̃ = k3ε+ t,

∂x̃

∂ε
= 0 =⇒ x̃ = x,

∂�̃

∂ε
= 0 =⇒ �̃ = �,

∂S̃

∂ε
= 0 =⇒ S̃ = S;

∂t̃

∂ε
= k4x̃ =⇒ t̃ =

√
2t+ x

2
√

2
e
√

2k4ε − x−
√

2t
2
√

2
e−
√

2k4ε,

∂x̃

∂ε
= 2k4t̃ =⇒ x̃ =

√
2t+ x

2
e
√

2k4ε − x−
√

2t
2

e−
√

2k4ε,

∂�̃

∂ε
= 0 =⇒ �̃ = �,

∂S̃

∂ε
= 0 =⇒ S̃ = S.

The investigation of this algebra using MathLie [3] gives the following results. The commu-
tator table is given by:

[vi, vj ] v1 v2 v3 v4 v5

v1 0 0 0 0 0

v2 0 0 0 2v2 0

v3 0 0 0 v3 0

v4 0 −2v2 −v3 0 0

v5 0 0 0 0 0

The non–trivial algebra elements are {v1, v2, v3, v4, v5} and the algebra generating elements reads
{v1, v2, v3, v4, v5}. Also the Cartan matrix is given by:

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 5 0
0 0 0 0 0
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Furthermore, we see that the algebra is not semisimple and not nilpotent, but it is solvab-
le. We find the following subalgebras: A subalgebra with zero elements:{ }; subalgebras
with one element: {v1}, {v2}, {v3}, {v4}, {v5}; subalgebras with two elements: {v1, v2},
{v1, v3}, {v1, v4}, {v1, v5}, {v2, v3}, {v2, v4}, {v2, v5}, {v3, v4}, {v3, v5}, {v4, v5}; subalgebras
with three elements: {v1, v2, v3}, {v1, v2, v4}, {v1, v2, v5}, {v1, v3, v4}, {v1, v3, v5}, {v1, v4, v5},
{v2, v3, v4}, {v2, v3, v5}, {v2, v4, v5}, {v3, v4, v5}; subalgebras with four elements: {v1, v2, v3, v4},
{v1, v2, v3, v5}, {v1, v2, v4, v5}, {v1, v3, v4, v5}, {v2, v3, v4, v5}; subalgebra with five elements:
{v1, v2, v3, v4, v5}. Ideals of the algebra A1 are: { }, {v1}, {v2}, {v3}, {v5}, {v1, v2}, {v1, v3},
{v1, v5}, {v2, v3}, {v2, v5}, {v3, v5}, {v1, v2, v3}, {v1, v2, v5}, {v1, v3, v5}, {v2, v3, v4}, {v2, v3, v5},
{v1, v2, v3, v4}, {v1, v2, v3, v5}, {v2, v3, v4, v5}, {v1, v2, v3, v4, v5}. The radical is {v1, v2, v3, v4, v5}.
The center of the algebra is {v1, v5}. The adjoint representation in matrix–form is given by

Ad(ε1v1) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , Ad(ε2v2) =


1 0 0 0 0
0 1 0 −2ε2 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

Ad(ε3v3) =


1 0 0 0 0
0 1 0 0 0
0 0 1 −ε3 0
0 0 0 1 0
0 0 0 0 1

 , Ad(ε4v4) =


1 0 0 0 0
0 e2ε4 0 0 0
0 0 eε4 0 0
0 0 0 1 0
0 0 0 0 1

 ,

Ad(ε5v5) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

The second algebra A2 is

v1 = ∂t·, v2 = ∂x·, v3 = 2t∂t ·+x∂x·, v4 = ∂S ·, v5 = x∂S ·+t∂x·,
v6 = x2∂S ·+2t2∂t ·+2tx∂x · −2t�∂�·, v7 = �∂�·

with the commutator table

[vi, vj ] v1 v2 v3 v4 v5 v6 v7

v1 0 0 2v1 0 v2 2v3 − 2v7 0

v2 0 0 v2 0 v4 2v5 0

v3 −2v1 −v2 0 0 v5 2v6 0

v4 0 0 0 0 0 0 0

v5 −v2 −v4 −v5 0 0 0 0

v6 −2v3 + 2v7 −2v5 −2v6 0 0 0 0

v7 0 0 0 0 0 0 0

The non–trivial algebra elements are {v1, v6} and the algebra generating elements read
{v1, v2, v3, v6}, {v1, v2, v6, v7}, {v1, v3, v5, v6}, {v1, v5, v6, v7}, {v1, v2, v3, v4, v6}, {v1, v2, v3, v5, v6},
{v1, v2, v3, v6, v7}, {v1, v2, v4, v6, v7}, {v1, v2, v5, v6, v7}, {v1, v3, v4, v5, v6}, {v1, v3, v5, v6, v7},
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{v1, v4, v5, v6, v7}, {v1, v2, v3, v4, v5, v6}, {v1, v2, v3, v4, v6, v7}, {v1, v2, v3, v5, v6, v7}, {v1, v2, v4, v5,
v6, v7}, {v1, v3, v4, v5, v6, v7}, {v1, v2, v3, v4, v5, v6, v7}. The Cartan matrix can be calculated as

0 0 0 0 0 −10 0
0 0 0 0 0 0 0
0 0 10 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−10 0 0 0 0 0 0

0 0 0 0 0 0 0


.

Furthermore, the algebra A2 is not semisimple, not solvable and not nilpotent. The following
subalgebras can be calculated: A subalgebra with zero element { }; subalgebras with one ele-
ment: {v1}, {v2}, {v3}, {v4}, {v5}, {v6}, {v7}; subalgebras with two elements: {v1, v2}, {v1, v3},
{v1, v4}, {v1, v7}, {v2, v3}, {v2, v4}, {v2, v7}, {v3, v4}, {v3, v5}, {v3, v6}, {v3, v7}, {v4, v5}, {v4, v6},
{v4, v7}, {v5, v6}, {v5, v7}, {v6, v7}; subalgebras with three elements: {v1, v2, v3}, {v1, v2, v4},
{v1, v2, v7}, {v1, v3, v4}, {v1, v3, v7}, {v1, v4, v7}, {v2, v3, v4}, {v2, v3, v7}, {v2, v4, v5}, {v2, v4, v7},
{v3, v4, v5}, {v3, v4, v6}, {v3, v4, v7}, {v3, v5, v6}, {v3, v5, v7}, {v3, v6, v7}, {v4, v5, v6}, {v4, v5, v7},
{v4, v6, v7}, {v5, v6, v7}; subalgebras with four elements: {v1, v2, v3, v4}, {v1, v2, v3, v7}, {v1, v2, v4,
v5}, {v1, v2, v4, v7}, {v1, v3, v4, v7}, {v1, v3, v6, v7}, {v2, v3, v4, v5}, {v2, v3, v4, v7}, {v2, v4, v5, v6},
{v2, v4, v5, v7}, {v3, v4, v5, v6}, {v3, v4, v5, v7}, {v3, v4, v6, v7}, {v3, v5, v6, v7}, {v4, v5, v6, v7}; sub-
algebras with five elements: {v1, v2, v3, v4, v5}, {v1, v2, v3, v4, v7}, {v1, v2, v4, v5, v7}, {v1, v3, v4, v6,
v7}, {v2, v3, v4, v5, v6}, {v2, v3, v4, v5, v7}, {v2, v4, v5, v6, v7}, {v3, v4, v5, v6, v7}; subalgebras with
six elements: {v1, v2, v3, v4, v5, v7}, {v2, v3, v4, v5, v6, v7}; subalgebra with seven elements: {v1, v2,
v3, v4, v5, v6, v7}.

The algebra–ideals are { }, {v4}, {v7}, {v4, v7}, {v2, v4, v5}, {v2, v4, v5, v7}, {v1, v2, v3, v4, v5, v6,
v7} and the algebra–radical is {v2, v4, v5, v7}. The algebra–center reads {v4, v7}. The adjoint
representation of the algebra is

Ad(ε1v1) =



1 0 −2ε1 0 0 2ε21 0
0 1 0 0 −ε1 0 0
0 0 1 0 0 −2ε1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 2ε1 1


,

Ad(ε2v2) =



1 0 0 0 0 0 0
0 1 −ε2 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 −ε2 ε22 0
0 0 0 0 1 −2ε2 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

Ad(ε3v3) =



e2ε3 0 0 0 0 0 0
0 eε3 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 e−ε3 0 0
0 0 0 0 0 e−2ε3 0
0 0 0 0 0 0 1


,
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Ad(ε4v4) =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, Ad(ε5v5) =



1 0 0 0 0 0 0
ε5 1 0 0 0 0 0
0 0 1 0 0 0 0

1
2ε

2
5 ε5 0 1 0 0 0

0 0 ε5 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

Ad(ε6v6) =



1 0 0 0 0 0 0
0 1 0 0 0 0 0

2ε6 0 1 0 0 0 0
0 0 0 1 0 0 0
0 2ε6 0 0 1 0 0

2ε26 0 2ε6 0 0 1 0
2ε6 0 0 0 0 0 1


, Ad(ε7v7) =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

3 Optimal systems

We consider a system of differential equations with a r-parametric symmetry group

F
(
x, u, u(r)

)
=

(
F1

(
x, u, u(r)

)
, . . . , Fm

(
x, u, u(r)

))
.

For every s-paramteric subgroup H we can find under the assumption that s < min(r, n′)−
n′ = number of the independent variables − a family of similarity solutions. It is impossible to
calculate all kinds of similarity solutions because there are infinitely many such subgroups.

In this set of similarity solutions there are such solutions, which can be calculated by transfor-
mation of the symmetry group from other similarity solutions. The aim is to calculate a minimal
set of similarity solutions from which one can gain all the other similarity solutions by transfor-
mation. Such a list is called optimal system and the elements are essentially different similarity
solutions [7, 8, 9]. With group theoretical and algebraical considerations we can transform this
problem to that of classifying the Lie subalgebras [9, 10]. The tools to do this are the Campbell–
Baker–Hausdorff formula and the adjoint representation of the Lie algebra. These tools are now
applied to the algebra A1. The general adjoint representation which can be calculated by the
matrix product of all adjoint representations of A1 is

Adg =


1 0 0 0 0
0 e2ε4 0 −2ε2e2ε4 0
0 0 eε4 −3ε3eε4 0
0 0 0 1 0
0 0 0 0 1

 .

We have to simplify the following system of equations:

1
a

Adg · α = β with α = (α1, . . . , α5)T and β = (β1, . . . , β5)T .

This is the system

1
a
α1 = β1, (6)

1
a

(
e2ε4α2 − 2ε2e2ε4α4

)
= β2, (7)

1
a

(eε4α3 − 3ε3eε4α4) = β3, (8)
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1
a
α4 = β4, (9)

1
a
α5 = β5. (10)

Special cases:

• α4 �= 0. From equation (7), (8) follows that ε2 = α2
2α4

, ε3 = α3
3α4

. Therefore we have
β = (1, 0, 0, 1, 1);

• α4 = 0, α2 �= 0. From equation (7) and (8) we have 1
a

(
e2ε4α2

)
= ±1. It follows that eε4 =√

1
|α2| . Furthermore it is 1

a (eε4α3) = ±1 from which we get ± 1
a

√
1
|α2| = ±1. Therefore

β is β = (1,±1,±1, 0, 1). This gives four linearly independent vectors: β1 = (1, 1, 1, 0, 1),
β2 = (1, 1,−1, 0, 1), β3 = (1,−1, 1, 0, 1), β4 = (1,−1,−1, 0, 1);

• α4 = 0, α2 = 0, α3 �= 0. From equation (8) we have 1
a (eε4α3) = ±1 from which follows

eε4 = ± 1
α3

. In this case β = (1, 0,±1, 0, 1). This gives two linearly independent vectors:
β1 = (1, 0, 1, 0, 1), β2 = (1, 0,−1, 0, 1);

• α4 = 0, α2 = 0, α3 = 0. Therefore β is β = (1, 0, 0, 0, 1);

• α4 = 0, α2 = 0, α3 = 0, α1 = 0. Therefore β is β = (0, 0, 0, 0, 1).

4 Solutions of the Doebner–Goldin–Madelung equations

During the last part of this paper we want to show how to construct solutions for special
subalgebras. To do this we choose for example the algebra A2. Here we consider the generators v5
and v6 which generates an Abelian group. The algorithm for calculating solutions is represented
in the literature [3, 11]. Because of the fact that the choosen subalgebra is Abelian we have to
solve the following equations:

v5I = 0, v6I = 0,

where I are the invariants. We start with the second equation containing v6. The connected
system of characteristics results:

∂x

∂s
= 2t(s)x(s),

∂t

∂s
= 2t(s)2,

∂�

∂s
= −2t(s)�(s),

∂S

∂s
= x(s)2. (11)

This system can be solved by repeated isolation of s from the other variables of the system (11).
The solution is

t =
1

−2s− C1
, x =

C2

2s+ C1
, � = (2s+ C1)C3, S =

−C2
2

2(2s+ C1)
+ C4. (12)

Here C1, C2, C3, C4 are constants of integration. They play the role of the invariants. To
eliminate the parameter s we solve the first equation of (12) with respect to the parameter s
and put the result into the other equations. We then get

s =
1 + tC1

−2t
, x = −tC2, � = −C3

t
, S =

1
2
x2

t
+ C4.

Therefore the invariants are received by isolating the constants:

I1 =
x

t
= −C2, I2 = t� = −C3, I3 = S − 1

2
x2

t
= C4.
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The next step is to transform the generator v5 into the basis of the invariants. This means that
it is of the form

v5 = (v5I1)
∂·
∂I1

+ (v5I2)
∂·
∂I2

+ (v5I3)
∂·
∂I3

.

Here, the result simply is v5 = ∂·
∂I1

. Now we have to calculate the invariants from this generator.
The system of characteristic equations is

∂I1
∂s

= 1,
∂I2
∂s

= 0,
∂I3
∂s

= 0,

with the solution

I1 = s+ C1, J2 = I2 = t�, J3 = I3 = S − 1
2
x2

t
,

where C1 = J1, J2 and J3 are the invariants of this generator. Now it is

J2 = φ(J1), J3 = ψ(J1).

With s = 0 this leads to

� =
φ(α)
t
, S = ψ(α) +

x2

2t
, α =

x

t
. (13)

In this case we can put s = 0 because of the fact that we freely can choose the origin of
the coordinate system. For calculating the solution we choose equation 2 from Table 1. By
introducing the expressions for � and S from the equations (13) we find the following ordinary
differential equations:

φα(α)ψα(α) + φ(α)ψαα(α) = 0,

φα(α)2 + 2φ(α)
(
2φ(α)ψα(α)2 + (4D2 − 1)φαα(α)

)
= 0.

It is easy to integrate the first equation to ψα(α) = A
φ(α) . By introducing this into the second

equation we find

4A2 + φα(α)2 + 2(4D2 − 1)φ(α)φαα(α) = 0.

To solve this equation, we first divide by the coefficient in front of the second derivative. This
provides

φαα(α) +
φα(α)2

2(4D2 − 1)φ(α)
+

4A2

2(4D2 − 1)φ(α)
= 0.

Now we substitute p(φ) = φα(α). The result is

ppφ +
p2

2(4D2 − 1)φ
+

4A2

2(4D2 − 1)φ
= 0

with the solution:

p = ±
√
C[1]2φ(α)

1
1−4D2 − 4A2.

In the next step we have to calculate p(φ) = φα(α). With D2 = 1
8 this leads to the solution:

φ(α) =
4A2e±αC[1]−C[2]

C[1]
+
e∓αC[1]+C[2]

4C[1]
.
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For the other function we find :

ψ(α) = B + arctan
(

(4A)±1eαC[1]∓C[2]
)
.

This leads to

�(x, t) =
4A2e±

x
t
C[1]−C[2]

C[1]t
+
e∓

x
t
C[1]+C[2]

4C[1]t
,

S(x, t) = B +
x2

2t
+ arctan

(
(4A)±1e

x
t
C[1]∓C[2]

)
. (14)

To prove that these are solutions of the original equations we put these expressions into sys-
tem 2 of Table 1. The result is valid with D2 = 1

8 . The original form of the Doebner–Goldin
equation then can be solved by a ψ(x, t) according to the Madelung transformation (3) in 1 + 1
dimensions. Especially when discussing a time–independent potential V (x, t) = δ(x − a) with
natural boundary conditions, the results (14) can be useful.

Another special case is given with D2 = 1
4 leading to the following differential equation:

4A2 + φα(α)2 = 0.

To get a real–valued density �(x, t) out of this system, A = iℵ is an imaginary integration
constant leading to the following result which is valid formally for any D2, but for A = ℵ = 0
and no imaginary rest in the original Schrödinger context only:

�(x, t) =
C[1]
t

− 2ℵx
t2

, S(x, t) = B +
x2

2t
− i

2
ln

(
2ℵx
t

− C[1]
)
.

The next case is A = 0. The connected differential equation simply is

φ2
α + 2(4D2 − 1)φφαα = 0

with the obvious solution

φ(α) =
(

(±αC[1]− C[2]) (8D2 − 1)
8D2 − 2

) 8D2−2
8D2−1

.

Therefore the solution of the original system is

�(x, t) =

(
(±x

t
C[1]−C[2])(8D2−1)

8D2−2

) 8D2−2
8D2−1

t
, S(x, t) = B +

x2

2t
,

where B, C[1], C[2] are constants. We note that the special case D2 = 1
8 leads to a different

solution of type (14).

5 Conclusion

This paper demonstrates the solution of the system of the Doebner–Goldin–Madelung equations.
The main tool for solving this system was the computer algebra package MathLie written in
Mathematica. By applying this tool to equation (5) we have derived analytical solutions. We
demonstrated that MathLie is also able to examine the Lie group and the related Lie algebra.
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The paper presents an outline for introduction of symmetry ideas and techniques for solution
of partial differential equations into the curriculum for training of teachers of mathematics.
The main goal of such special course would be integration of the previously gained knowledge
in calculus, algebra and ordinary differential equations together with showing students some
developments in modern mathematical science.

1 Introduction

Physical or mathematical theory as the most developed form of scientific knowledge cannot be
transferred into a learning process completely, as the system of knowledge used in learning and
the scope of scientific knowledge are not identical. The scientific system of knowledge is based
on research process directly, and learning system is based on research only indirectly.

In this respect the following questions arise: 1) Whether the system of scientific knowledge
that is being studied, is a theory in a strictly logical sense? 2) Whether this system of scientific
knowledge would enable formation of theoretical thinking of students and give them compre-
hensive image of the learning object?

The same learning material can be structured in different ways depending on aims and tech-
niques of learning. In the process of advanced studying physics and mathematics the main at-
tention is concentrated on presentation of the core of fundamental physical theories and enabling
students to master their deep essence. In this way the teaching system that employs scientific
system of knowledge develops productive forms of reasoning, provides theoretical knowledge for
understanding of the physical picture of the world by means of a mathematical model.

Real physical processes are mostly described by nonlinear partial differential equations. The
search for exact solutions of such equations is one of the most important stages for mathema-
tical description of nature. At present many efficient methods for solving PDEs: separation of
variables, Poisson method, decomposition into Fourier series, inverse problem and others. All
these methods are based on the ideas of symmetry and are efficiently employed for solving those
problems that have implicit or explicit symmetry.

Mathematical foundation for the theory of symmetry of differential equations was created by
prominent Norwegian mathematician Sophus Lie as far as in 1881–1885. Modern development for
this theory was provided, in particular, by Ovsiannikov [1], Olver [2], Bluman and Kumei [3],
Fushchych and his collaborators [4]. These books together with numerous manuals targeted
towards post-graduate students may provide a basis for development of courses on application
of symmetry methods to partial differential equations. There is some advancement in Ukraine
as to introduction of symmetry methods into university courses, mostly as special courses for
graduate students. However, basic calculus and algebra courses, especially for mathematical
education students, underwent little changes through the recent half a century.
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All that stimulated the author into development of a course “Group Theoretical Techniques
for Investigation and Solution of Partial Differential Equations”. The main goal of the course
is formation of modern perception of symmetry and ensuring fundamental mathematical back-
ground for future teachers of mathematics. The curriculum for this course determines the scope
of knowledge needed for professional formation at Specialist’s and Master’s degrees in Mathe-
matics and Mathematical Education. Added value of the course is integration of knowledge and
skills gained in other mathematical courses – calculus, algebra, ordinary and partial differential
equations, together with being a good foundation for preparation of degree theses.

2 Plan for the course on group theoretical techniques
for investigation and solution of partial differential equations

The course is targeted at mathematical education students that are interested in gaining ad-
vanced knowledge in mathematics. It is assumed that students’ background includes calculus,
algebra and ordinary differential equations. As a preparation to studying symmetry techniques,
the course includes also basics of partial differential equations. The curriculum for the course
includes 16 hours of lectures and 16 hours of practical seminars. Evaluation of the course results
is planned on the basis of the individual written paper. Layout of the course is suggested as
follows:

Topic of the lecture No.
of hours

1. Partial differential equations. Main Definitions. Examples. 2
Cauchy problem and boundary problem.
First order uniform linear partial differential equations.
First order quasilinear equations. Examples.

2. Classification of second order PDEs. Reduction of an equation 2
to the canonical form. Survey of methods for solution
of differential equations: d’Alembert method and Fourier method
for separation of variables.

3. Introduction to the theory of Lie groups. 2
Historical survey of development of the symmetry theory.
One-parameter transformation groups. Definitions, examples.
The problem of construction of a group. Lie theorem.
Operators of translation, rotation, scale transformation.

4. Infinitesimal operator. Prolongation of an operator. Invariance 2
criterion. Lie algorithm for investigation of symmetry of PDEs.

5. Symmetry of the d’Alembert equation. The conformal group C(1, 3). 2
Basis operators and invariance transformations.

6. Group analysis of a nonlinear wave equation. Euler–Lagrange 2
system. Construction of a maximal invariance algebra.

7. Reduction and exact solutions of nonlinear wave equation. 2
Derivation of new solutions.

8. Symmetry of a first-order nonlinear equation. Symmetry 2
properties and exact solutions for the eikonal equation.
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The course accounts for the fact that partial differential equations are not included into
basis courses for graduate students in Mathematical Education. First two lectures of the course
present to the students main concepts of partial differential equations. Core part or the course is
example-based explanation of the main concepts and techniques of the group analysis of PDEs
with special consideration given to application and strengthening of the skills obtained in the
previous basic courses.

3 A practical problem with solution

Here we show an example that may be presented to students with the reference to the needed
basic skills. The task is to show that the the heat equation

ut − uxx = 0 (1)

is invariant under the Galilei transformations

t′ = t, x′ = x+ 2at, u′ = ue−(ax+a2t). (2)

Invariance of the equation (1) can be checked by the formulae of substitution of variables in the
partial derivatives:

u′t′ =
(
ut + a2u− 2aux

)
e−(ax+a2t), u′x′ = (ux − au)e−(ax+a2t),

u′x′x′ =
(
uxx + a2u− 2aux

)
e−(ax+a2t).

From here we derive an equality

u′t′ − u′x′x′ = (ut − uxx)e−(ax+a2t)

showing that under the action of the transformations (2) the equation (1) is transformed into
the same equation in the transformed variables, so the invariance in proved.

The next task is to find an infinitesimal operator corresponding to the transformations (2).
This task requires differentiation of the expressions for the transformations (2) and substitution
of the condition a = 0:

X =
(
dt′

da

∂

∂t
+
dx′

da

∂

∂x
+
du′

da

∂

∂u

) ∣∣∣
a=0

=
(

0 · ∂
∂t

+ 2t
∂

∂x
+ ue−(ax+a2t)(−(x+ 2at))

∂

∂u

) ∣∣∣
a=0

= 2t
∂

∂x
− xu

∂

∂u
.

We see that appropriate breaking of the group analysis techniques into steps makes them ac-
cessible for mathematical education students with reasonable basic background in mathematics,
providing them with practice in their calculation skills together with understanding of the value
of this skills for practical problem solving and research.

4 Conclusions

Such special course contributes to widening of scientific horizons of students who are mainly
future teachers of mathematics, deeper understanding of the role of modern mathematics and
gives insight to development of modern Ukrainian mathematical school of thought.

The author also used simplified version of the course with more links to school geometry
and physics in the optional secondary school course, with student research papers prepared as
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a result. One of these papers by Julia Lashkevych received a 2nd award at the 1998 Ukrainian
Competition of Secondary School Student Research Papers.

Another aspect that provides particular benefits of introduction of the course into advanced
mathematics teachers’ training curriculum is wide use of symmetry in the secondary school
courses, mainly in geometry and physics. School courses deal mostly with discrete symmetries
in the Euclidean space (translation, rotation, mirror and central symmetries), and widening of
the notion of symmetry seems appropriate for teachers’ training. Further development of the
course, if more hours could be used, may be towards introduction of the notions of conservation
laws and the relevant links with the course of physics.

[1] Ovsyannikov L.V., Group analysis of differential equations, New York, Academic Press, 1982.

[2] Olver P., Application of Lie groups to differential equations, New York, Springer Verlag, 1987.

[3] Bluman G.W. and Kumei S., Symmetries and differential equations, New York, Springer Verlag, 1989.

[4] Fushchych W.I., Shtelen W.M. and Serov N.I., Symmetry analysis and exact solutions of nonlinear equations
of mathematical physics, Kyiv, Naukova Dumka, 1989 (in Russian); Kluwer Publishers, 1993 (in English).
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Differential Invariants and Construction

of Conditionally Invariant Equations
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Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str., Kyiv 4, Ukraine
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New concept of conditional differential invariant is discussed that would allow description
of equations invariant with respect to an operator under a certain condition. Example of
conditional invariants of the projective operator is presented.

1 Introduction

Importance of investigation of symmetry properties of differential equations is well-established in
mathematical physics. Classical methods for studying symmetry properties and their utilisation
for finding solutions of partial differential equations were originated in the papers by S. Lie, and
developed by modern authors (see e.g. [1, 2, 3, 4]).

We start our consideration from some symmetry properties and solutions of the nonlinear
wave equation

�u = F (u, u∗) (1)

for the complex-valued function u = u(x0, x1, . . . , xn), x0 = t is the time variable, x1, . . . , xn are
n space variables. F is some function. �u is the d’Alembert operator

�u = −∂
2u

∂x2
0

+
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

. (2)

It is well-known that the equation (1) may be reduced to a nonlinear Schrödinger equation
with the number of space dimensions smaller by 1, when the nonlinearity F has a special form
F = uf(|u|), where |u| = (uu∗)1/2, an asterisk designates complex conjugation.

Further we are trying to generalise this relation between the nonlinear wave equation and the
nonlinear Schrödinger equation into a relation between differential invariants of the respective
invariance algebrae, and introduce new concepts of the reduction of fundamental sets of differen-
tial invariants and of conditional differential invariants. Conditional differential invariants may
be utilised to describe conditionally invariant equations under certain operators and with the
certain conditions, in the same manner as absolute differential invariants of a Lie algebra may
be utilised for description of all equations invariant under this algebra.

The concept of non-classical, or conditional symmetry, originated in its various facets in the
papers [5, 6, 7, 8, 9, 10] and later by numerous authors was developed into the theory and a
number of algorithms for studying symmetry properties of equations of mathematical physics
and for construction of their exact solutions. Here we will use the following definition of the
conditional symmetry:

Definition 1. The equation F (x, u, u
1
, . . . , u

l
) = 0 where u

k
is the set of all k th-order partial

derivatives of the function u = (u1, u2, . . . , um), is called conditionally invariant under the ope-
rator

Q = ξi(x, u)∂xi + ηr(x, u)∂ur (3)
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if there is an additional condition

G(x, u, u
1
, . . . , u

l1
) = 0, (4)

such that the system of two equations F = 0, G = O is invariant under the operator Q.
If (4) has the form G = Qu, then the equation F = 0 is called Q-conditionally invariant

under the operator Q.

2 Differential invariants and description of invariant equations

Differential invariants of Lie algebrae present a powerful tool for studying partial differential
equations and construction of their solutions [21, 22, 23].

Now we will present some basic definitions that we will further generalise. For the purpose
of these definitions we deal with Lie algebrae consisting of the infinitesimal operators

X = ξi(x, u)∂xi + ηr(x, u)∂ur . (5)

Here x = (x1, x2, . . . , xn), u = (u1, u2, . . . , um).

Definition 2. The function F = F (x, u, u
1
, . . . , u

l
), is called a differential invariant for the Lie

algebra L with basis elements Xi of the form (5) (L = 〈Xi〉) if it is an invariant of the l th
prolongation of this algebra:

X
l
sF (x, u, u

1
, . . . , u

l
) = λs(x, u, u

1
, . . . , u

l
)F, (6)

where the λs are some functions; when λi = 0, F is called an absolute invariant; when λi �= 0,
it is a relative invariant.

Further when writing “differential invariant” we would imply “absolute differential invariant”.

Definition 3. A maximal set of functionally independent invariants of order r ≤ l of the Lie
algebra L is called a functional basis of the l th-order differential invariants for the algebra L.

While writing out lists of invariants we shall use the following designations

ua ≡
∂u

∂xa
, uab ≡

∂2u

∂xa∂xb
, Sk(uab) ≡ ua1a2ua2a3 · · ·uak−1ak

uaka1 ,

Sjk(uab, vab) ≡ ua1a2 · · ·uaj−1ajvajaj+1 · · · vaka1 ,

Rk(ua, uab) ≡ ua1uak
ua1a2ua2a3 · · ·uak−1ak

. (7)

In all the lists of invariants j takes the values from 0 to k. We shall not discern the upper
and lower indices with respect to summation: for all Latin indices xaxa ≡ xax

a ≡ xaxa =
x2

1 + x2
2 + · · ·+ x2

n.
Fundamental bases of differential invariants for the standard scalar representations of the

Poincaré and Galilei algebra of the types (17), (12) were found in [24]. Fundamental bases of
differential invariants allow describing all equations invariant under the respective Lie algebrae.

Construction of conditional differential invariants would allow describing all equations, con-
ditionally invariant with respect to certain operators under certain conditions.

Definition 4. F = F (x, u, u
1
, . . . , u

l
) is called a conditional differential invariant for the operator

with X of the form (5) if under the condition

G(x, u, u
1
, . . . , u

l1
) = 0, (8)

X
lmax

F (x, u, u
1
, . . . , u

l
) = 0, X

lmax

G(x, u, u
1
, . . . , u

l1
) = 0, (9)
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X
lmax

being the lmax th prolongation of the operator X. The order of the prolongation lmax =

max(l, l1).

3 Nonlinear wave equation, nonlinear Schrödinger equation
and relation between their symmetries

The Galilei algebra for n−1 space dimensions is a subalgebra of the Poincaré algebra for n space
dimensions (see e.g. [11]) and references therein), and this fact allows reduction of the nonlinear
wave equation (1) to the Schrödinger equation. We will consider the nonlinear wave equations
for three space variables, and its symmetry properties in relation to the symmetry properties
of the nonlinear Schrödinger equation for two space variables. However, all the results can be
easily generalised for arbitrary number of space dimensions.

Reduction of the nonlinear wave equation (1) to the Schrödinger equation can be performed
by means of the ansatz

u = exp((−im/2)(x0 + x3))Φ(x0 − x3, x1, x2). (10)

Substitution of the expression (10) into (1) gives the equation exp((−im/2)(x0+x3))(2imΦτ+
Φ11 + Φ22) = F (u, u∗). Here we adopted the following notations: τ = x0 + x3 is the new time
variable, Φτ = ∂Φ

∂τ , Φa = ∂Φ
∂xa

, Φab = ∂2Φ
∂xa∂xb

.
Further on we adopt the convention that summation is implied over the repeated indices. If

not stated otherwise, small Latin indices run from 1 to 2.
If the nonlinearity in the equation (1) has the form F = uf(|u|), then it reduces to the

Schrödinger equation

2imΦτ + Φ11 + Φ22 = Φf(|Φ|). (11)

Such reduction allowed construction of numerous new solutions for the nonlinear wave equa-
tion by means of the solutions of a nonlinear Schrödinger equation [12, 13]. We show that this
reduction allowed also to describe additional symmetry properties for the equation (1), related
to the symmetry properties of the equation (11).

Lie symmetry of the equation (11) was described in [14, 16]. With an arbitrary function f it
is invariant under the Galilei algebra with basis operators

∂τ =
∂

∂τ
, ∂a =

∂

∂xa
, J12 = x1∂2 − x2∂1,

Ga = t∂a + ixa(Φ∂Φ − Φ∗∂Φ∗) (a = 1, 2), J = (Φ∂Φ − Φ∗∂Φ∗). (12)

When f = λ|u|2, where λ is an arbitrary constant, the equation (11) is invariant under the
extended Galilei algebra that contains besides the operators (12) also the dilation operator

D = 2τ∂τ + xa∂a − I, (13)

where I = Φ∂Φ + Φ∗∂Φ∗ , and the projective operator

A = τ2∂τ + τxa∂a +
im

2
xaxaJ − τI. (14)

Lie reductions and families of exact solutions for multidimensional nonlinear Schrödinger equa-
tions were found at [15, 16, 17, 18, 19, 20]. Note that the ansatz (10) is the general solution of
the equation

u0 + u3 + imu = 0. (15)
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We can regard the equation (15) as the additional condition imposed on the nonlinear wave
equation with the nonlinearity F = λu|u|2. Solution of the resulting system

�u = λu|u|2, (16)

with the equation (15) would allow to reduce number of independent variables by one, and obtain
the same reduced equation, invariant under the extended Galilei algebra with the projective
operator. This allows establishing conditional invariance of the nonlinear wave equation (16)
under the projective operator. It is well-known that it is not invariant under this operator in
the Lie sense.

The maximal invariance algebra of the equation (1) that may be found according to the Lie
algorithm (see e.g. [1, 2, 3, 4]) is defined by the following basis operators:

pµ = igµν
∂

∂xν
, Jµν = xµpν − xνpµ, (17)

where µ, ν take the values 0, 1, . . . , 3; the summation is implied over the repeated indices (if
they are small Greek letters) in the following way: xνxν ≡ xνx

ν ≡ xνxν = x2
0 − x2

1 − · · · − x2
n,

gµν = diag (1,−1, . . . ,−1).
However, summation for all derivatives of the function u is assumed as follows: uνuν ≡

uνu
ν ≡ uνuν = −u2

0 + u2
1 + · · ·+ u2

n.
Unlike the standard convention on summation of the repeated upper and lower indices we

consider xν and xν equal with respect to summation not to mix signs of derivatives and numbers
of functions.

Theorem 1. The nonlinear wave equation (16) is conditionally invariant with the condition (15)
under the projective operator

A1 =
1
2

(x0 − x3)2(∂0 − ∂3) + (x0 − x3)(x1∂1 + x2∂2)

+
imx2

2
(u∂u − u∗∂u∗) +

n− 1
2

(x0 − x3)(u∂u + u∗∂u∗). (18)

To prove Theorem 1 it is sufficient to show that the system (16), (15) is invariant under the
operator (18) by means of the classical Lie algorithm.

Our further study aims at construction of other Poincaré-invariant equations possessing the
same conditional invariance property.

4 Example: construction of conditional differential invariants

Now we adduce fundamental bases of differential invariants that will be utilised for construction
of our example of conditional differential invariants.

First we present a functional basis of differential invariants for the Poincaré algebra (17) of
the second order for the complex-valued scalar function u = u(x0, x1, . . . , x3). It consists of 24
invariants

ur, Rk
(
urµ, u

1
µν

)
, Sjk

(
urµν , u

1
µν

)
. (19)

In (19) everywhere k = 1, . . . , 4; j = 0, . . . , k. A functional basis of differential invariants for
the Galilei algebra (12), mass m �= 0, of the second order for the complex-valued scalar function
Φ = Φ(τ, x1, . . . , x2) consists of 16 invariants.
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For simplification of the expressions for differential invariants we introduced the following
notations:

Φ = expφ, Im Φ = arctan
Reφ
Imφ

.

The elements of the functional basis may be chosen as follows:

φ+ φ∗, M1 = 2imφt + φaφa, M∗1 , M2 = −m2φtt + 2imφaφat + φaφbφab, M∗2 ,

Sjk(φab, φ∗ab), R1
j = Rj(θa, φab), R2

j = Rj(θ∗a, φab), R3
j = Rj(φa + φ∗a, φab) (20)

Here θa = imφat + φaφab, φab are covariant tensors for the Galilei algebra.
A functional basis of differential invariants for the Galilei algebra (12) extended by the dilation

operator (13) and the projective operator (14) may be chosen as follows:

N1e
−2(φ+φ∗),

N1

N∗1
,

N2

N2
1

,
N∗2

(N∗1 )2
, Sjk(ρab, ρ∗ab), Rj(ρa, ρab),

Rj(ρ∗a, ρab), Rj(φa + φ∗a, ρab)N
−1
1 , (φaa + φ∗aa)N

−1
1 , (21)

where

N1 = M1 + φaa = 2imφt + φaa + φaφa, N2 =
1
n
φaaN1 +

φ2
aa

2n
+M2 (22)

and the covariant tensors have the form

ρa = θaN
−3/2
1 , ρab =

(
φab −

δab
n
φcc

)
N−1

1 .

An algorithm for construction of conditional differential invariants may be derived directly
from the Definition 4. Such invariants may be found by means of the solution of the sys-
tem (9), (8).

We can construct conditional differential invariants of the Poincaré algebra (17) and the
projective operator (18) solving the system

A1
2
F (InvP ) = 0, u0 + u3 + imu = 0,

where InvP are all differential invariants (19) of the Poincaré algebra (17). Using the fact that
the ansatz (10) is the general solution of the additional condition (15), we can directly substitute
this ansatz into differential invariants (19). To avoid cumbersome formulae here we did not list
expressions for all differential invariants from (19).

The expression �u transforms into the following:

�u = u(2imφτ + φaa + φaφa),

where N1 is an expression entering into expression for differential invariants (20). Further we
get

uµuµ = u2(2imφt + φaφa),

uµuνuµν = u3(φaφbφab + (φaφa)2 −m2(φtt + 4φ2
t ) + φaφbφab + (φaφa)2

−m2(φtt + 4φ2
t ) + 2imφaφat + 4imφtφaφa), (23)

Substituting the ansatz (10) to all elements of the fundamental basis (19) of second-order dif-
ferential invariants of the Poincaré algebra similarly to (23), we can obtain reduced basis of
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differential invariants, that may be used for construction of all equations reducible by means of
this ansatz. We can give the following representation of the Poincaré invariants using expressions
Mk (20) and Nk (21), where in the expressions for Mk, Nk (k = 1, 2) time variable is τ = x0−x3:

�u = uN1, uµuµ = u2M1, uµuνuµν = u3
(
M2 +M2

1

)
,

uµνuµν = u2
(
2M2 +M2

1 + φabφab
)
,

uµu
∗
µ =

uu∗

2
(M1 +M∗1 − (φa + φ∗a) (φa + φ∗a)) . (24)

Here a, b take values from 1 to 2.
Whence

M1 = uµuµu
−2, φaa = N1 −M1 =

u�u− uµuµ
u2

,

M2 = uµuνuµνu
−3 − (uµuµ)2u−4, N1 =

�u

u
,

N2 =
1
n
φaaN1 +

φ2
aa

2n
+M2 = uµuνuµνu

−3 − (uµuµ)2u−4

+
1
n

�u

u

u�u− uµuµ
u2

+
1

2n
(u�u− uµuµ)2

u4
,

R1(φa + φ∗a, ρab)N
−1
1 = (φa + φ∗a)(φa + φ∗a)N

−1
1

=
(
N1 +N∗1 −

2
uu∗

uµu
∗
µ

)
N−1

1 =
u∗�u+ u�u∗ − 2uµu∗µ

u∗�u
. (25)

We construct Poincaré-invariant conditional differential invariants of the projective opera-
tor (18) under the condition (15) using differential invariants (20)

I1 = N1e
−2(φ+φ∗) =

�u

u(uu∗)2
, I2 =

N1

N∗1
=
u∗�u
u�u∗

,

I3 =
N2

N2
1

=
(
uuµuνuµν +

3
2n
u2(�u)2 +

(
1

2n
− 1

)
(uµuµ)2 − 2

n
u�u(uµuµ)

)(
u2(�u)2

)−1
,

I4 = R1(φa + φ∗a, ρab)N
−1
1 =

u∗�u+ u�u∗ − 2uµu∗µ
u∗�u

. (26)

Whence, we may state that all equations of the form F (I1, I2, I3, I4) = 0 are conditionally
invariant with respect to the operator A1 (18) with the additional condition (15).

Finding similar representations for all elements of the functional basis (20) of the second-
order differential invariants of the Galilei algebra (12) extended by the dilation operator (13)
and the projective operator (14), we can construct functional basis of conditional differential
operators. Such basis would allow to describe all Poincaré-invariant equations for the scalar
complex-valued functions that are conditionally invariant under the operator A1 (18).

5 Conclusion

The procedure for finding conditional differential invariants outlined above may be used for other
cases when the additional condition (8) has the general solution that may be used as ansatz,
and when a functional basis of the operator (9) in the variables involved in such reduction is
already known.

Besides finding new conditionally invariant equations, further developments of the ideas pre-
sented in this paper may be description of all equations reducible by means of a certain ansatz,
and search of methods for restoration of original equations from the reduced equations.
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[11] Gomis J., Poch A. and Pons J.M., Poincaré wave equations as Fourier transforms of Galilei wave equations,
J. Math. Phys., 1980, V.21, 2682–2685.

[12] Basarab-Horwath P., Barannyk L. and Fushchych W.I., New solutions of the wave equation by reduction to
the heat equation, J. Phys. A, 1995, V.28, 5291–5304.

[13] Basarab-Horwath P., Fushchych W.I. and Barannyk L.F., Solutions of the relativistic nonlinear wave equa-
tion by solutions of the nonlinear Schrödinger equation, Rep. Math. Phys., 1997, V.39, 353–374.

[14] Fushchych W.I. and Moskaluik S.S., On some exact solutions of the nonlinear Schrödinger equations in three
spatial dimensions, Lett. Nuovo Cim., 1981, V.31, 571–576.

[15] Fushchych W.I. and Serov N.I., The symmetry and some exact solutions of the nonlinear many-dimensional
Liouville, d’Alembert and eikonal equations, J. Phys. A, 1983, V.16, 3645–3658.

[16] Gagnon L. and Winternitz P., Lie symmetries of a generalised nonlinear Schrödinger equation. I. The
symmetry group and its subgroups, J. Phys. A, 1988, V.21, 1493–1511.

[17] Gagnon L., Grammaticos B., Ramani A. and Winternitz P., Lie symmetries of a generalised nonlinear
Schrödinger equation. III. Reductions to third-order ordinary differential equations, J. Phys. A, 1989, V.22,
499–509.

[18] Gagnon L. and Winternitz P., Lie symmetries of a generalised nonlinear Schrödinger equation. II. Exact
solutions, J. Phys. A, 1989, V.22, 469–497.

[19] Gagnon L. and Winternitz P., Exact solutions of the spherical quintic nonlinear Schrödinger equation, Phys.
Lett. A, 1989, V.134, 276–281.

[20] Gagnon L. and Winternitz P., Exact solutions of the cubic and quintic nonlinear Schrödinger equation for
a cylindrical geometry, Phys. Rev. A, 1989, V.39, 296–306.
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Symmetries of Integro-Differential Equations
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The Ovsiannikov method of finding Lie symmetries is generalized to the case of point trans-
formations of integro-differential equations. The new method is direct and applicable to
practical cases, for instance to Vlasov–Maxwell equations of plasmas.

1 Introduction

We present a general and direct method of determination of symmetry groups of point trans-
formations for integro-differential equations. The method is a natural generalization of the
Ovsiannikov method for differential equations [1, 2, 3, 4, 5, 6].

We consider a system of integro-differential equations (IDE’s) of the form

W

(
F (x, y, y

1
, . . . , y

m
),

∫
X
dx1 · · · dxlf(x, y, y

1
, . . . , y

k
)
)

= 0, (1)

where n, m, k, l are arbitrary natural numbers (l ≤ n), x = (x1, . . . , xn), functions W , F
and f are arbitrary but sufficiently regular to secure the existence of solutions to (1), limits of
integrations (region X) are also arbitrary. The symbol y

m
denotes the set of all partial derivatives

of m-order:

y
m

=
{

∂my

∂xi1· · · ∂xim ≡ ∂xi1 · · · ∂ximy ≡ yi1···im

}
.

The equation (1) reduces to a differential equation for f = 0, thus our method contains the
Ovsiannikov method as a particular case.

Earlier approaches to investigations of symmetries of IDE’s can be found in [7], in CRC
Handbook [8], and in references therein. The lack of a general and universal method has led
to many attempts using various methods which often constitute ad hoc means adapted for each
case. For example, specific kinds of IDE’s were chosen so that certain methods could be used
effectively. In [9] the integral term of the IDE has the form of a square root of a differential
operator. The method used there consists in finding a partial differential equation (PDE) with
the space of solutions containing the solutions of the considered IDE. After finding symmetries
of the auxiliary PDE by standard method the symmetries of IDE are found by inspection. In [10]
the IDE with the integral in the form of a Fourier transform is considered. In this case the Lie
derivative is found effectively and used for the determination of symmetries.

Methods called indirect methods form a separate class. They are based on a transformation
of a given set of IDE’s to an equivalent set of auxiliary equations for which symmetries are
known or can be found by known methods. Then symmetries of the initial system of IDE’s
can be reconstructed. Usually, this auxiliary set of equations consists of PDE’s as, for example,
in Taranov’s method [11]. He transformed the Vlasov–Maxwell equations for one-component
plasma into an infinite chain of differential equations for the moments of a distribution function.
Another indirect approach is based on an extension of the Harrison and Estabrook method [12]
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to the case of IDE’s. A given set of equations is transformed to an equivalent set of differential
forms. This method was used in [13] for IDE’s invariant with respect to Galilei, Poincaré,
Schrödinger and conformal groups, in [14] for the Boltzmann equation and in [15, 16] for IDE’s
of Hartree type. These methods are encumbered with the usual burden of indirect methods.
They involve the necessary movement there and back with the crucial problem of equivalence
and an interpretation of results. Moreover, quite often an auxiliary problem is more complicated
than the initial one when our direct method is applied.

A direct method is presented in [5] and in Chapter 5 of Vol.3 of CRC Handbook [8]. It consists
in assuming equal to zero the derivative with respect to the group parameter of a transformed
IDE (depending on the parameter) at zero value of this parameter. When this condition is
properly evaluated, that is when the dependence of limits of an integral on the group parameter
is taken into account, then it leads to our criterion of symmetry of IDE’s (8). However, this
evaluation must be done every time when this condition is used. This may be suitable for a
computer (see [17]) but not for a man. The dependence of limits of an integral (even constant
limits!) on the group parameter is sometimes overlooked in certain papers. Moreover, it is more
appropriate to consider a region of integration since the expression of the n-dimensional integral
by the n-fold integral is not invariant with respect to point transformations. The problem
disappears for Bäcklund symmetries in the form of vertical transformations because there is no
transformation of independent variables in this case. The method was used in [18, 19] for finding
symmetries of the Boltzmann equation of a special kind.

The general and sophisticated method of Vinogradov and Krasilshchik [20, 21] has arisen
from a simple idea of elimination of integrals from IDE’s by virtue of the fundamental theorem
of calculus by further prolongation to nonlocal variables: the primitive functions of dependent
variables. This is natural in the case of IDE’s with variable limits of integrals, for example for
the Volterra type of IDE’s. However, the most important IDE’s in physics, such as equations
of kinetic theory, contain integrals with constant limits. Then, this construction is somewhat
artificial and complicated. The method becomes indirect since it leads to the so called boundary-
differential equations [21]. The method requires advanced and sophisticated mathematics, for
example the theory of coverings of a system of differential equations and the prolongation proce-
dure for boundary–differential equations. The method was used in [22, 23] for finding symmetries
of the coagulation kinetic equation.

Since, in general, an integral structure of equations cannot be transformed into an algebraic
one by admitting nonlocal variables, we stay in a jet space to deal with derivatives, as in the
Ovsiannikov method, and find a new infinitesimal criterion of symmetry in our case of IDE’s.
This criterion is the essence of our direct method.

2 Extension of a group

We look for a Lie symmetry group of point transformations

x̃i = eεGxi = xi + εξi(x, y) +O
(
ε2

)
, ỹ = eεGy = y + εη(x, y) +O

(
ε2

)
, (2)

with the infinitesimal generator (summation over repeated indices is assumed)

G = ξi(x, y)∂xi + η(x, y)∂y, (3)

admitted by the system of IDE’s (1). As in the Ovsiannikov method we extend the group of
point transformations (2) to a jet space of independent and dependent variables and derivatives
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of dependent variables in the usual way [1, 2, 3, 4, 5, 6]

x̃i = eεG
(m)
xi = xi + εξi(x, y) +O

(
ε2

)
,

ỹ = eεG
(m)
y = y + εη(x, y) +O

(
ε2

)
,

ỹi = eεG
(m)
yi = yi + εηi(x, y, y

1
) +O

(
ε2

)
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ỹi1···im = eεG

(m)
yi1···im = yi1···im + εηi1···im(x, y, y

1
, . . . , y

m
) +O

(
ε2

)
, (4)

where the extended generator is of the form

G(m) = G+ ηi∂yi + · · ·+ ηi1···im∂yi1···im . (5)

The coefficients ηi, . . . , ηi1···im , defining the extended group, are given by the recursion relations:

ηi = Diη − yjDiξ
j ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ηi1···im = Dimηi1···im−1 − yi1···im−1jDimξ

j (6)

and the total derivative Di is defined as follows

Di = ∂i + yi∂y + yij∂(yj) + · · ·+ yii1···in∂(yi1···in ) + · · · .

3 Criterion of invariance of integro-differential equations

Invariance of an equation means invariance of the space of its solutions. Thus, point transforma-
tion (2) maps any solution y(x) of the equation (1) into another solution ỹ(x̃) of the equation.
In our geometric language, where solutions y(x) are represented by their graphs in a jet space,
it means that the following implication holds

W (F, I) = 0 =⇒ W (F̃ , Ĩ) = 0, (7)

where I means integral term in (1), F̃ ≡ F (̃·) and Ĩ are obtained by extended transformations (4).
According to the definition (7), we act on the integro-differential equation (1) by extended

transformations (4) writing down explicitly only terms that are linear with respect to the parame-
ter ε. Next, by expanding functions W , F and f in their Taylor series and changing variables
in the integral, we express the change of (1) in terms of the extended generator (5). From the
definition of symmetry (7), this change must be equal to zero for all values of ε. Thus, we obtain
an infinitesimal criterion of invariance of the equation (1).

We restrict our considerations to the one scalar equation of the type (1) for the sake of
simplicity of notation. For a system of equations with p dependent variables y = (y1, . . . , yp)
some minor changes are evident and the resulting criterion is to be applied to each equation of
the system. Expanding the function W in a Taylor series, we obtain

W (F̃ , Ĩ ) = W (F, I) +
∂W

∂F
∆F +

∂W

∂I
∆I + · · · .
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The change ∆F of the differential term of (1) is calculated by expanding the function F in
a Taylor series

∆F = F (x̃, ỹ, ỹ
1
, . . . , ỹ

m
)− F (x, y, y

1
, . . . , y

m
)

= F
(
x1 + εξ1 +O

(
ε2

)
, . . . , xn + εξn +O

(
ε2

)
, y + εη +O

(
ε2

)
, y1 + εη1 +O

(
ε2

)
,

. . . , yn + εηn +O
(
ε2

)
, yi1...im + εηi1···im +O

(
ε2

) )
− F (x, y, y

1
, . . . , y

m
)

= ε
[
ξi∂xiF + η∂yF + ηi∂yiF + · · ·+ ηi1···im∂yi1

· · · ∂yim
F

]
+O

(
ε2

)
.

Due to the definition of the extended generator (5) we can rewrite the above result in the form

∆F = εG(m)F (x, y, y
1
, . . . , y

m
) +O

(
ε2

)
.

Thus, the condition ∆F = 0 leads to the Ovsiannikov infinitesimal criterion of invariance of
differential equation G(m)F (x, y, y

1
, . . . , y

m
) = 0.

Let us consider the change of an integral term in the equation (1)

∆I =
∫
X̃
dx̃1· · · dx̃lf(x̃, ỹ, ỹ

1
, . . . , ỹ

k
)−

∫
X
dx1· · · dxlf(x, y, y

1
, . . . , y

k
)

under the extended transformations (4). To this end, we change variables in the first integral
according to the transformations (4):{

x̃1, . . . , x̃l
}
�→

{
x1, . . . , xl

}
.

By virtue of (4) the elements of Jacobi’s matrix are equal

∂x̃i

∂xj
= δij + ε

∂ξi

∂xj
+O

(
ε2

)
, i, j = 1, . . . , l.

Because the off-diagonal elements of the matrix are of the order O
(
ε2

)
, thus the linear contri-

bution to the Jacobian comes only from the product of the diagonal elements:

∂
(
x̃1 · · · x̃l

)
∂ (x1 · · ·xl) =

(
1 + ε

∂ξ1

∂x1

)
· · ·

(
1 + ε

∂ξl

∂xl

)
+O

(
ε2

)
= 1 + ε

l∑
i=1

∂ξi

∂xi
+O

(
ε2

)
.

We do not use the summation convention when summation goes over the range 1, . . . , l ≤ n only.
Consequently, the change ∆I of the integral term is equal∫

X
dx1· · · dxl

[ (
1 + ε

l∑
i=1

∂ξi

∂xi

)
f
(
x1 + εξ1 +O

(
ε2

)
, . . . , xn + εξn +O

(
ε2

)
,

y + εη +O(ε2), y1 + εη1 +O
(
ε2

)
, . . . , yn + εηn +O

(
ε2

)
, . . . ,

yi1···ik + εηi1···ik +O
(
ε2

) )
− f(x, y, y

1
, . . . , y

k
)

]
+O

(
ε2

)
.

Expanding the function f into a Taylor series we obtain

∆I = ε

∫
X
dx1· · · dxl

[
ξi∂xif + η∂yf + ηi∂yif + · · ·+ ηi1···ik∂yi1

· · · ∂yik
f + f

l∑
i=1

∂ξi

∂xi

]
+O

(
ε2

)
.
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In view of the definition of the extended generator (5) we can rewrite the above result as follows

∆I = ε

∫
X
dx1· · · dxl

[
G(k)f(x, y, y

1
, . . . , y

k
) + f(x, y, y

1
, . . . , y

k
)

l∑
i=1

∂ξi

∂xi

]
+O

(
ε2

)
.

From the calculations performed above we see that the implication (7) leads to the following
infinitesimal criterion of invariance of integro-differential equations of the type (1) under the
point transformations (2):

∂W

∂F
G(m)F +

∂W

∂I

∫
X
dx1 · · · dxl

[
G(k)f + f

l∑
i=1

∂ξi

∂xi

]
= 0 on solutions of (1). (8)

For a system of equations of the type (1) we apply the criterion (8) to each equation of the
system as was mentioned earlier. Generalization to the case of more than one integral term

I1 =
∫
X1

dx1 · · · dxlf( · ), I2 =
∫
X2

dx1 · · · dxpg( · ), . . .

in the equation (1) is simple. Then, in the resulting criterion we get the following summation

∂W

∂I1

∫
X1

dx1 · · · dxl
[
G(k)f + f

l∑
i=1

∂ξi

∂xi

]
+
∂W

∂I2

∫
X2

dx1 · · · dxp
[
G(k)g + g

p∑
i=1

∂ξi

∂xi

]
+ · · · .

In the case of W = F + I, which corresponds to our example of the Vlasov–Maxwell equations,
the criterion (8) takes the form

G(m)F +
∫
X
dx1 · · · dxl

[
G(k)f + f

l∑
i=1

∂ξi

∂xi

]
= 0 on solutions of (1).

According to the criterion (8) we have to take into account the equation (1), which is now
a constraint on extended variables. Using this equation we can eliminate some of them. Re-
maining variables are essentially independent, thus the equation (8) must be satisfied identically
with respect to them. It means that the coefficients at independent expressions, involving these
variables, must be equal to zero. This leads to the system of the so called determining equations
for the integro-differential equation (1). They are homogeneous and linear integro-differential
equations for coefficients ξi, η determining the generator (3) and the point transformations (2).
In applications, we have additional information in each particular case. Often, this informa-
tion enables us to go to the integrands in integral determining equations by using the Lagrange
lemma of variational calculus [24]. This leads to differential determining equations.

The criterion (8) is a necessary condition for symmetry of the equation (1), so it allows us
to find all possible symmetry transformations of (1). The difficult task to obtain is to find
a sufficient condition of symmetry. To this end we need a theorem on global existence and
uniqueness of the solutions of the equation (1). The latter problem is far from being solved,
see [25]. From a practical point of view the necessary condition is more important and useful than
the sufficient one as the main task is to find symmetry transformations. A possible symmetry
transformation of the equation (1) can be easily verified by inspection and this should be done
anyway.
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4 Symmetries of Vlasov–Maxwell equations

Let us consider the Vlasov–Maxwell system of equations for collisionless, multicomponent, one-
dimensional plasmas with no magnetic field:

∂tfα + u∂xfα +
qα
mα

E∂ufα = 0,

∂tE +
∑
α

qα
ε0

∫ ∞
−∞
du ufα = 0, ∂xE −

∑
α

qα
ε0

∫ ∞
−∞
dufα = 0, (9)

where E = E(t, x) is the x-component of electric vector field E = (E, 0, 0), u is the x-component
of vector velocity v = (u, 0, 0), fα = fα(t, x, u) is the distribution function of α-plasma compo-
nent, qα, mα are charge and mass of α-particles, respectively and ε0 is electric permittivity of
free space.

In this case, the generators (3) of point transformations (2) take the form

G = τ∂t + ξ∂x + ρ∂u +
∑
α

ηα∂fα + ζ∂E . (10)

Using the criterion (8) we obtain

0 = ∂fατ = ∂fαξ = ∂fαρ = ∂Eτ = ∂Eξ = ∂Eρ,

and the following determining equations (limits ±∞ of integrals are dropped):

0 = ∂tζ = ∂xζ = ∂fαζ, 0 = u∂uτ − ∂uξ,

0 = ∂tηα + u∂xηα +
qα
mα

E∂uηα, 0 = u∂tτ − ∂tξ + ρ+ u2∂xτ − u∂xξ,

0 =
∑
β

E

(
qα
mα

− qβ
mβ

)
(∂ufβ)∂fβ

ηα, 0 =
∑
β

qβ
ε0

(
u

∫
dufβ −

∫
du ufβ

)
∂Eηα,

0 =
qα
mα

(
∂tτ + u∂xτ +

qα
mα

E∂uτ − ∂uρ

)
E +

qα
mα

ζ − ∂tρ− u∂xρ,

0 = (∂tτ − ∂Eζ)
∑
β

qβ
ε0

∫
du ufβ − (∂tξ)

∑
β

qβ
ε0

∫
dufβ +

∑
β

qβ
ε0

∫
du(ρfβ + uηβ + ufβ∂uρ),

0 = (∂Eζ − ∂xξ)
∑
β

qβ
ε0

∫
dufβ + (∂xτ)

∑
β

qβ
ε0

∫
du ufβ −

∑
β

qβ
ε0

∫
du(ηβ + fβ∂uρ).

Except for the nonphysical case of a constant charge to mass ratio qα/mα = const we easily
find from the differential determining equations that

0 = ∂uτ = ∂uξ = ∂tηα = ∂xηα = ∂uηα = ∂Eηα = ∂fβ
ηα for α �= β, ζ = λ1E.

Then, the last two integro-differential lead to

0 =
∫
du [fα(u∂uτ −λ1u+ ρ+u∂uρ) +uηα], 0 =

∫
du[fα(λ1− ∂xξ+u∂xτ − ∂uρ) + ηα].

for every α. We assume that the point transformations (2) are analytic functions of the point
(t, x, u, fα). In general, analyticity with respect to the parameter ε and infinite differentiability
with respect to the point is assumed for Lie groups. However, the latter dependence is in fact
also analytic due to a physical interpretation. Expanding ηα(fα) in the Taylor series, using
the generalized mean value theorem and well known special solutions of the Vlasov–Maxwell



Symmetries of Integro-Differential Equations 269

equations (9), that is the stationary solutions depending only on velocity and BGK solutions,
we find that the coefficients ηα can depend on fα only linearly ηα = λ2fα. Thus, we can apply
the Lagrange lemma calculus of variations [24] and obtain differential equations for integrands.

Solutions of the determining equations are given by

τ = −1
3

(λ1 + λ2)t+ λ3, ξ =
1
3

(λ1 − 2λ2)x+ λ4t+ λ5, ρ =
1
3

(2λ1 − λ2)u+ λ4,

ηα = λ2fα, ζ = λ1E,

where λ1, . . . , λ5 are arbitrary parameters. Substituting the solutions into (10) and choosing all
parameters equal to zero except one, which is assumed to be equal to 1, in each case, we derive
the following five generators

G1 = ∂t, G2 = ∂x, G3 = t∂x + ∂u,

G4 = −t∂t + x∂x + 2u∂u + 3E∂E , G5 = −t∂t − 2x∂x − u∂u + 3
∑
α

fα∂fα , (11)

which span the Lie algebra of the group of point symmetry transformations of the Vlasov–
Maxwell equations (9). Non-vanishing commutators between these generators are given by

[G1, G3] = G2, [G1, G4] = −G1, [G1, G5] = −G1, [G2, G4] = G2,

[G2, G5] = −2G2, [G3, G4] = 2G3, [G3, G5] = −G3.

The algebra is solvable.
Summing up the Lie series we obtain one-parameter subgroups of the symmetry group of

transformations corresponding to the generators (11). For G1 and G2 we have translations
in time and translations in space respectively. These symmetries follow from the fact, that
coefficients of equation (9) do not depend on time and space variables, and lead to the conser-
vation laws of energy and momentum respectively. For G3 we have Galilean transformations.
The above three kinetic symmetries are obvious as they express the geometric properties of
space-time in nonrelativistic theory. The dynamical symmetries, which depend on details of
interaction, are more interesting. In the case of the Vlasov–Maxwell equations they are gener-
ated by G4 and G5 and have the form of scaling transformations. We can construct a general
symmetry transformation of the Vlasov–Maxwell equation (9) from the above one-parameter
transformations.

Other approaches to the problem of finding symmetries of Vlasov–Maxwell equations can be
found in papers [26, 27, 28] and in Chapter 16 of Vol.2 of CRC Handbook [8].

5 Conclusions

It has been shown that there is no need for a nonlocal extension of a symmetry group in the
case of integro-differential equations. It is sufficient to stay in a jet space as in the case of
differential equations. The generalization of the Ovsiannikov method consists in the change of
the infinitesimal criterion of symmetry. The method has been successfully applied to significant
integro-differential equations. In addition to the Vlasov–Maxwell equations we have also de-
termined the symmetry group of the nonlocal NLS equation for modulated Langmuir waves in
plasmas. In this last case a further generalization of the Ovsiannikov method to equations with
delayed arguments is needed.
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The report presents results of studies of spectral properties of the Schrödinger operators
with finite-gap potentials along with their applications to problems of physics of solids. As
an example of these applications we consider the Peierls problem.

1 Introduction

Recently a deep connection of spectral properties of the Schrödinger operators with periodic
finite- and infinite-gap potentials was discovered, and also their relations with the theory of
integrable systems were established. Last property allows to describe effectively the spectrum,
eigenvalues, eigenfunctions and also matrix elements of any observable analytically. Application
of these results to physics of solids appears to be very successful for explanation and quantitative
description of many phenomena and properties of solids. Construction of the separable many-
dimensional generalization of the one-dimensional finite-gap potentials is very interesting since
it which allows to solve a number of 3-dimensional practical problems of solid state physics.

2 The Schrödinger operator with finite-gap potential

2.1 The one-gap potential

Let us consider the Schrödinger equation with the Weierstrass function ℘(z) as the potential,

−∂2
xψ(x) + u(x)ψ(x) = εψ(x), u(x) = −2℘(ıx+ ω), x ∈ R.

We use here and further the traditional notations of the theory of elliptic functions. An average
value of the potential is

〈u(x)〉 = −2〈℘(ıx+ ω)〉 = 2η′/ω′.

Here and further

〈g〉 = lim
l→∞

L−1

∫ L

0
g(x)dx.

The following statements are simple consequences of the formulae from the elliptic functions
theory.

The potential u(x) = −2℘(ıx + ω) has a real period T = −ı2ω′ and an imaginary period
T ′ = ı2ω. The potential u(x) is a linear superposition of solitons,

u(x) = 2
η

ω
− 2

( π

2ω

)2
+∞∑

n=−∞
cosh−2

[ ıπ
2ω

(ıx− n2ω′)
]
.
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We can present the eigenfunction of the Schrödinger operator with the one-gap potential in
terms of the σ-functions

ψ±(x) =
σ(ıx+ ω ± z)
σ(ıx+ ω)σ(z)

e∓ıxζ(z),

or in terms of the potential u(x), or ℘-function,

ψ(x, ε) = [〈χ−1(x, ε)〉χ(x, ε)]−1/2 exp
(
ı

∫ x

dxχ(x, ε)
)
,

χ(x, ε) = [P (ε)]1/2
(
ε− γ(x)

)−1
, P (ε) = (ε− ε1)(ε− ε2)(ε− ε3),

γ(x) = (1/2)
(
ε1 + ε2 + ε3 − u(x)

)
.

In the last form the wave function is normalized by a condition 〈|ψ|2〉 = 1.
The wave function is defined on the two sheets of a Riemann surface given by the equation

µ2 = P (ε) = (ε− ε1)(ε− ε2)(ε− ε3).
The spectrum Σ of the Schrödinger operator with the one-gap potential is

ε = ℘(z),
z = ω′ + tω, 0 ≤ t ≤ 1, or
z = ω + tω′, 0 ≤ t ≤ 1.

Therefore the spectrum Σ has one finite energy band e3 ≤ ε ≤ e2 when z = ω′ + tω,
0 ≤ t ≤ 1, the energy gap e2 ≤ ε ≤ e1 when z = ω+ tω′, 0 ≤ t ≤ 1, and one infinite energy band
e1 ≤ ε < +∞ when z = ω + tω, 0 ≤ t ≤ 1.

The eigenfunctions ψ±(x) satisfy the Floquet equality ψ(x + T ) = eıkTψ(x) and have the
Bloch form ψ(x) = A(x)eıkx where A(x) is the periodic amplitude, A(x + T ) = A(x), and k is
the wave vector

k = ζ(z)− z(η′/ω′), z = ω′ + tω, 0 ≤ t ≤ 1;
k = −[ζ(z)− z(η′/ω′)], z = ω + tω, 0 ≤ t ≤ 1.

Due to the oscillation theorem the density of states n = k/π.
A number of states over a unit of length with the energy less than ε is

n(u(·), ε) =
1
π
〈χ(x, ε)〉 =

1
π

√
(ε− ε1)(ε− ε2)(ε− ε3)〈(ε− γ(x))−1〉.

Here ε1, ε2, ε3, ε1 ≤ ε2 ≤ ε3 are the boundaries of the spectrum.
This quantity satisfies important relations:

dn
dε

(u(·), E) =
1

2π
〈χ−1(x, ε)〉, δn

δu(x)
(u(·), ε) = − 1

2π
χ−1(x, ε).

Here (δn/δu(x))(u(·), ε) is a variational derivative of the number of states n with respect to such
variations of the potential which do not change its periods.

3 The finite-gap potentials

3.1 One-dimensional finite-gap potentials

A one-gap potential u(z) = 2℘(z) is a special case of the Lame potentials

u(z) = n(n+ 1)℘(z), n ∈ N.
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The Schrödinger operator with the Lamé potential has the n-gap spectrum and the following
two linearly independent eigenfunctions:

Ψ±(x; z) =
n∏
r=1

{
σ(ar + x)
σ(ar)σ(x)

}
exp

{
±x

n∑
r=1

ζ(ar)

}
.

The Lame potentials present a particular case of the Darboux potentials which are linear
superpositions of the Weierstrass functions with shifts of the following form

u(x) = n0(n0 + 1)℘(x) +
3∑
i=1

ni(ni + 1)℘(x+ ωi),

where ωi, i = 1, 2, 3 are half-periods. If ni = 0, i = 1, 2, 3 we have the Lame potential.
The Darboux potential is characterized completely by the four integers n0, n1, n2, n3 ∈ Z+.

If the Darboux potential is associated with the hyperelliptic curve w2 = P2g+1(E) then its genus
is equal to g. This curve covers N -sheetedly an elliptic curve and

N =
1
2

{
n0(n0 + 1) +

3∑
i=1

ni(ni + 1)

}
.

A list of some Darboux potentials [15].

• 0,0,0,0, g = 0, N = 0.
u(x) = 0; w2 = µ.

• 1,0,0,0, g = 1, N = 1.
u(x) = 2℘(x); w2 = (µ− e1)(µ− e2)(µ− e3).

• 1,1,0,0, g = 1, N = 2.
u(x) = −2e1 + 2℘(x) + 2℘(x+ ω1);
w2 = (µ+ 2e1)(µ2 − 2e1µ− 11e21 + g2).

• 1,1,1,0, g = 2, N = 3.
u(x) = 2℘(x) + 2℘(x+ ω1) + 2℘(x+ ω2);
w2 = (µ+ 3e1)(µ+ 3e2)(µ+ 3e3)(µ2 − 3g2).

• 1,1,1,1, g = 1, N = 4.
u(x) = 2℘(x) + 2℘(x+ ω1) + 2℘(x+ ω2) + 2℘(x+ ω3);
w2 = (µ− 4e1)(µ− 4e2)(µ− 4e3).

The periodic elliptic finite-gap potentials are a very special case of the general finite-gap
potentials which are described in terms of the hyperelliptic functions and in generic situation
are the quasi-periodic functions.

Definition 1. The almost-periodic function u(x) is called a finite-band potential if the spectrum
of the Schrödinger operator L(u) = −∂2

x + u(x) is a union of the finite set of segments of
a Lebesgue (double absolutely continuous) spectrum.

Starting directly from this definition we can derive an explicit expression of a finite-band
potential.

Theorem 1 ([13]). The potential u(x) of the Schrödinger operator L(u) = −∂2
x +u(x) with the

g-gap Lebesgue spectrum

Σ = [E1, E2] ∪ · · · ∪ [E2g+1,∞)
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has the form

u(x) = −2∂2
x ln θ

(
ıUx− A(D) + K,B

)
.

Here B is the matrix of the periods of normalized holomorphic differentials ω on the hyperelliptic
Riemann surface X, defined by the equation

µ2 =
2g+1∏
i=1

(λ− Ei),

K is the vector of Riemann constants, U is the vector of the periods of the normalized Abelian
differential Ω of the second kind, which at infinity has a second-order pole with zero residue,
D is a non-special divisor, A(D) =

∫ P
∞ ω is an Abelian mapping.

By means of the Weierstrass–Poincaré theory of the Abelian function reduction we can point
out conditions when these general finite-gap potentials become elliptic and fulfill this reduction
effectively [7, 8].

3.2 Separable many-dimensional finite-gap potential

In the framework of the complex analysis there are no many-dimensional generalizations of
the finite-gap potentials besides only trivial (i.e. separable) many-dimensional finite-gap poten-
tials [11].

Let us consider a d-dimensional Schrödinger operator

H = −∆ + U(x1, x2, . . . , xd) (1)

with a periodic separable finite-gap potential of the form

U(x1, x2, . . . , xd) =
d∑
i=1

u(xi), (2)

where u(xi), i = 1, 2, . . . , d are some 1-dimensional finite-gap potentials (e.g. the Lamé potentials,
the Darboux potentials etc.). In spite of triviality of this Hamiltonian it appears to be successful
in applications. As an example we apply it to the quantum theory of solids with d = 3.

A limit case U(x1, x2, x3) → 0 of the operator (1) has been used with success in theory of
solids in order to describe the electron energy spectra and classify all possible Fermi surfaces of
metals [12]. Harrison’s method is in fact a theory of almost free electrons when the potential
is considered as a perturbation. Usage of the separable finite-gap potentials (2) is an essential
step ahead with respect to Harrison’s method since it allows consider limit cases of the free and
strongly bound electrons in frame of the same model.

We have used the separable finite-gap potentials to describe many phenomena and properties
of solids: the electron energy spectra of solids and Fermi surfaces of metals, the scattering
and absorption of electromagnetic and other waves by finite-gap solids, the electron-phonon
interaction, the Peierls transition and Fröhlich conductivity, the classification of the quasi-one-
dimensional conductors, the oscillations in solids due to isospectral deformations of finite-gap
potentials etc. Results of these studies are presented in recent publications [1, 2, 6].



Spectra of the Schrödinger Operators and Integrable Systems 277

4 The Peierls problem

The Peierls problem is to find eigenstates and eigenvalues of the electron-phonon Hamiltonian,
defined on a segment [0, L],

H =
∑
k,σ

εka
+
k,σak,σ +

∑
q

ωqb
+
q bq + L−1/2

∑
q

(λqLqb+q + λ∗qL
+
q bq),

Lq =
∑
k,σ

a+
k,σak+q,σ.

Here a+
k,σ, ak,σ are electron operators; b+q , bq are phonon operators; L+

q , Lq are operators for
charge density waves; εk, ωq are the energies of electrons and phonons appropriately, λq is the
electron-phonon interaction constant.

The exact solution of the Peierls problem was found recently [3, 4, 5].
When the mean field approximation is valid then we have in thermodynamic limit the con-

densation of phonons and charge density waves,

L−1/2b#q = ξ#q + (L−1/2b#q − ξ#q ), ξ#q = L−1/2〈b#q 〉,
L−1L#

q = η#
q + (L−1L#

q − η#
q ), η#

q = L−1〈L#
q 〉.

Here 〈F 〉 stands for the statistical average of the operator F and therefore ξ#q , η#
q are statistical

averages of the operators b#q , L#
q . The operators L−1/2b#q − ξ#q , L−1L#

q − η#
q describe the

quantum fluctuations with respect to mean values.
Thus we can represent the Fröhlich Hamiltonian in the following form

H = HA + V = (H0 +He +Hph) + V,

where

H0 = −L
∑
q

( |λq|2|ηq|2
ωq

+ λqηqξ
∗
q + λ∗qη

∗
qξq

)
,

He =
∑
k,σ

εka
+
k,σak,σ +

∑
q

(Lqλqξ∗q + L+
q λ
∗
qξq),

Hph = L
∑
q

ωq

(
b+q

L1/2
+
λ∗qη∗q
ωq

)(
bq

L1/2
+
λqηq
ωq

)
,

V =
∑
q

[
λq

(
Lq
L
− ηq

) (
b+q

L1/2
− ξ∗q

)
+ λ∗q

(
L+
q

L
− η∗q

) (
bq

L1/2
− ξq

)]
.

The electron Hamiltonian He describes a motion of the electrons in the classical field, which
appears as a result of the condensation of phonons, the phonon Hamiltonian Hph describes
quantum fluctuations of phonons with respect to their classical average values and the interaction
part of the Hamiltonian V describes the interaction of the quantum fluctuation of phonons and
the charge density waves.

Let us assume that the self-consistency condition is satisfied,

L−1/2〈bq〉 = ξq = −(λq/ωq)ηq = −(λq/ωq)L−1〈Lq〉.

Under this condition in the thermodynamic limit we can neglect the interaction V and as a
result of that the Fröhlich Hamiltonian H appears to be thermodynamically equivalent to the
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quadratic approximating Hamiltonian HA. It means that the densities of the thermodynamic
potentials for both Hamiltonians are equal.

We assume further that

εk = k2, ωq ∼ q, λq ∼ q1/2.

The last two equalities are valid for acoustic phonons. With this assumption we have

ωq/|λq|2 = κ,

and therefore the self-consistency condition attains the form

ηq = −κλ∗qξq.

Multiplying the self-consistency condition by exp(ıqx) and summing up over q we present
this condition in the form∑

σ

〈ψ+(x, σ)ψ(x, σ)〉 = −κu(x).

Here we have introduced notations

ψ(x, σ) = L−1/2
∑
k,σ

ak,σ exp(ıkx), u(x) =
∑
q

λqξq exp(ıqx),

where ψ(x, σ) is the electron field operator and u(x) is the classical potential, in which the
non-interacting electrons move, according to the electron Hamiltonian He.

Diagonalizing the Hamiltonian He we can present the electron field operator in the form

ψ(x, σ) =
∑
E,σ

aE,σφ(x,E).

Here eigenfunctions φ(x,E) are solutions of the Schrödinger equation

∂2
xφ(x,E) + (E − u(x))φ(x,E) = 0,

and the operators a#
E,σ satisfy the relations

[a+
E,σ, aE′,σ′ ] = δE,E′δσ,σ′ , 〈a+

E,σaE′,σ′〉 = δE,E′δσ,σ′f(E),

where f(E) is the Fermi distribution function. Using this form of the electron field operator we
can present the self-consistency condition as follows,∑

E,σ

f(E)|φ(x,E)|2 = −κu(x).

The function |φ(x,E)|2 as a product of two solutions of the Schrödinger equation satisfy the
equation(

∂3
x − 4u(x)∂x − 2∂xu(x)

)
|φ(x,E)|2 = −4E|φ(x,E)|2.

Let us multiply this equation by the Fermi–Dirac function f(E), sum it up over E and take in
account the self-consistency condition. Then we get

uxxx − 6uux = 4κ−1∂x
∑
E,σ

Ef(E)|φ(x,E)|2.
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The sum in the r.h.s. of this equation is the energy of electrons and in equilibrium must not
depend on a point x (otherwise the electrons will move from one point to another). Therefore

uxxx − 6uux = 0.

Integrating this equation twice we get

(ux)2 = 2u3 − 2g2u− g3.

Since the Weierstrass elliptic function satisfy the equation[
℘(z)′

]2 = 4℘3(z)− g2℘(z)− g3,

we can express the potential u(x) in terms of this function [9, 10]

u(x) = −2℘(ıx+ ω).

If we put in the self-consistency condition∑
ε,σ

f(ε)|φ(x, ε)|2 = κu(x)

the expression

|φ(x, ε)|2 =
[
〈χ−1(x, ε)〉χ(x, ε)

]−1 =
ε− γ(x)
ε− 〈γ(x)〉 ,

we can present this condition in the form

1
2π

∫
ε∈Σ

dεf(ε)
ε− γ(x)√

(ε− ε1)(ε− ε2)(ε− ε3)
= −κu(x).

Equating coefficients at the constant term and u(x) at both sides of the last equality we get
two equations

1
2π

∫
ε∈Σ

dεf(ε)
ε− (1/2)(ε1 + ε2 + ε3)√
(ε− ε1)(ε− ε2)(ε− ε3)

= 0,

1
4π

∫
ε∈Σ

dεf(ε)
1√

(ε− ε1)(ε− ε2)(ε− ε3)
= −κ.

Solving these equations we can define two parameters that characterize the potential u(x), i.e.
g2, g3, or ω, ω′.

We can solve these equations easily for the absolute zero of temperature when

f(ε) = θ(µ− ε).

In such a way we obtain the Peierls equation

ω′ = ı/2N ,

and the Fröhlich equation

ω = 2πκ.

Here N is the number of states in the finite energy band.



280 E.D. Belokolos

5 Conclusion

Algebraic finite-gap potentials have deep connections to many areas of mathematics and physics,
e.g. to complex analysis, integrable systems etc. They have proved also to be useful in different
applications. For example, since we can approximate any smooth periodic potential by the finite-
gap one with any desired accuracy [14] we obtain possibility to describe spectral properties of
the Schrödinger operator with periodic potential of general form. Although the separable many-
dimensional generalizations of the one-dimensional finite-gap are simple they appears also to be
effective for solution of a number problems of 3-dimensional physics of solids due to their tight
relation to the well known Harrison method. We believe that these potentials will have a lot of
interesting applications in future.

[1] Baryakhtar V.G., Belokolos E.D. and Korostyl A.M., Analytical method for calculating Fermi surfaces of
high-temperature superconductors, Phys. Metals, 1993, V.13, N 1, 1–11.

[2] Baryakhtar V.G., Belokolos E.D. and Korostyl A.M., Method of separable finite-band potentials: a new
method for calculating electron energy structure, Phys. Metals, 1993, V.12, N 8, 829–838.
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Motions of plane curves in Klein geometry is studied. It is shown that the KdV, Harry–Dym,
Sawada–Kotera, Burgers, the defocusing mKdV hierarchies and the Kaup–Kupershmidt
equation naturally arise from motions of plane curves in affine, centro-affine and similarity
geometries. These local and nonlocal dynamics conserve global geometric quantities of curves
such as perimeter and enclosed area.

1 Introduction

The connection between motion of space or plane curves and integrable equations has drawn
wide interest in the past and many results have been obtained. The pioneering work is due to
Hasimoto where he showed in [1] that the nonlinear Schrödinger equation describes the motion
of an isolated non-stretching thin vortex filament. Lamb [2] used the Hasimoto transformation
to connect other motions of curves to the mKdV and sine-Gordon equations. Lakshmanan [3]
related the Heisenberg spin model to the motion of space curves in the Euclidean space. Langer
and Perline [4] obtained the Schrödinger heirarchy from motions of the non-stretching thin
vortex filament. Motions of curves in S2 and S3 were considered by Doliwa and Santini [5].
Nakayama [6, 7] investigated motions of curves in Minkowski space and obtained the Regge–
Lund equation, a couple of systems of the KdV equations and their hyperbolic type. In contrast
to the motions of curves in space, only two types of integrable equations have been shown to
be associated to motions of plane curves. In fact, Goldstein and Petrich [8] discovered that the
dynamics of a non-stretching string on the plane produces the recursion operator of the mKdV
hierarchy. Nakayama, Segur and Wadati [9] obtained the sine-Gordon equation by considering
a nonlocal motion. They also pointed out that the Serret–Frenet equations for curves in E2

and E3 are equivalent to the AKNS-ZS spectral problem without spectral parameter [10, 11]. It
is commonly believed that the KdV equation does not occur in the motion of plane curves.

The purpose of this paper is to study motions of plane curves in Klein geometries. These
geometries are characterized by their associated Lie algebras of vector fields in E2. We shall
see that the KdV, Harry–Dym and Sawada–Kotera hierarchies and the Kaup–Kupershmidt
equation naturally arise from the motions of plane curves in affine, centro-affine and similarity
geometries. The outline of this paper is as follows. In Section 2, we give a brief discussion on the
Klein geometry. In Sections 3, 4, and 5, we discuss motion laws of plane curves respectively in
affine, centro-affine and similarity geometries. Section 7 is concluding remarks about this work.

2 Klein geometry

In this section, we give an extremely brief account of the Klein geometry. Our basic reference
is [12].
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Let G be a Lie transformation group acts locally and effectively on the plane. Its Lie algebra g

can be identified with a subalgebra of the Lie algebra of all smooth vector fields in E2 under
the usual Poisson bracket. According to the Erlanger Programme, every G or g determines
a Klein geometry for plane curves via its invariants. To describe the invariants, let us assume
a curve γ and its image γ′ under a typical element g in G are represented locally as graphs
(x, u(x)) and (y, v(y)) over some intervals I and J respectively. A differential invariant of g

is a n-th smooth function Φ defined on the n-jet space X × U (n) for some n ≥ 1 satisfying
Φ

(
x, u(x), . . . , u(n)(x)

)
= Φ

(
y, v(y), . . . , v(n)(y)

)
for all g ∈ G. An invariant one-form, or, more

precisely, a horizontal contact-invariant form, is a one-form defined in the n-jet space X ×U (n),
locally in the form dσ = P

(
x, u(x), . . . , u(n)(x)

)
dx, satisfying∫

I
P

(
x, u(x), . . . , u(n)(x)

)
dx =

∫
J
P

(
y, v(y), . . . , v(n)(y)

)
dy,

for all g in G. Let

v = ξ(x, u)
∂

∂x
+ φ(x, u)

∂

∂u

be an arbitrary vector field in g. We denote its n-th prolongation vector field on X × U (n) by
pr(n)v. The infinitesimal criterion for the invariance of Φ and dσ are given respectively by

pr(n)v(Φ) = 0,

and

pr(n)v(P ) + Pdivξ = 0,

where div ξ = ξx + ξuux. A basic result is

Theorem 1 ([12]). For any Lie transformation group acting locally and effectively on the
plane, there exist an invariant one-form dσ = Pdx and a differential invariant Φ, both of lowest
order such that every differential invariant can be written as a function of Φ and its derivatives
DΦ, D2Φ, . . ., where

D =
1
P

d

dx
.

Moreover, every invariant one-form is of the form Idσ where I is a differential invariant.

Here “order” refers to the highest number of derivatives involved in the local expression for P
and Φ.

Definition 1. Invariant one-forms and differential invariant of lowest order of the Lie group are
respectively called the group arclength and the group curvature.

Example 1. We look at the Euclidean geometry which is the Klein geometry associated to the
Lie algebra by {∂x, ∂u, x∂u − u∂x}. It is readily verified that one can choose its group arclength
to be

ds =
√

1 + u2
xdx

and group curvature to be

κ =
(
1 + u2

x

)− 3
2 uxx.
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Example 2. Consider the affine geometry which is associated to SA(2) by {∂x, ∂u, x∂x −
u∂u, x∂u, u∂x}. Its group arclength and group curvature are

dρ = κ
1
3ds, µ = κ

4
3 +

1
3

(
κ−

5
3κs

)
s
. (1)

One may consult [13] for a discussion on affine geometry.
In the following we shall consider motions of plane curves in affine, centro-affine and similarity

geometries. For any parametrized curve γ, we define its group tangent and group normal to be
T = γσ and N = γσσ respectively, where σ is the group arc-length. A group invariant motion is
of the form

∂γ

∂t
= fN + gT, (2)

where f and g are functions of the group curvature. With a given motion law, the equation for
its curvature can be obtained in the following four steps. First, we determine the Serret–Frenet
formulas for each geometry. It is of the form(

T
N

)
σ

=
(
A B
C D

)(
T
N

)
. (3)

In some occasions this system is the AKNS system without spectral parameter. Second, we
compute the first variation for the group perimeter

L =
∮
γ
dσ,

for a closed curve driven under (2) to obtain

dL

dt
=

∮
γ
Fdσ, (4)

where F depends on f and g in (2). By choosing f and g such that F vanishes pointwisely
we ensure that [∂/∂t, ∂/∂σ] = 0, i.e. ∂/∂t and ∂/∂σ commute. Third, we compute the time
evolution of T and N to get(

T
N

)
t

=
(
A′ B′

C ′ D′

)(
T
N

)
. (5)

Finally, the compatibility condition between (3) and (5)(
T
N

)
tσ

=
(

T
N

)
σt

gives the general equation for the curvature. By choosing f and g suitably we obtain integrable
equations. This procedure has been used in [8, 9] to obtain the mKdV and sine-Gordon equations
in the Euclidean geometry. Similarly, some other mKdV equations are obtained by Doliwa–
Santini [5] in the “restricted conformal” SO(3)-geometry.

3 Motion of curves in affine geometry

This is the classical geometry invariant under the unimodular transformations(
x′

u′

)
= A

(
x
u

)
+B,



284 K.S. Chou and C.Z. Qu

where A ∈ SL(2,R), B ∈ R2. The affine arc-length dρ and curvature µ are given in terms of
the Euclidean arc-length and curvature by (1), where and hereafter κ and ds always denote the
Euclidean curvature and arclength.

The affine Serret–Frenet formulas are given by(
T
N

)
ρ

=
(

0 1
−µ 0

) (
T
N

)
. (6)

The affine tangent and normal are related to the Euclidean tangent t and normal n via

t = k
1
3 T, n =

1
3
k−

5
3ksT + k−

1
3 N.

We relate the motion (2) with the motion in Euclidean geometry

γt = f̃n + g̃t, (7)

where

f̃ = k
1
3 f, g̃ = k−

1
3 g − 1

3
k−

5
3ksf.

By a direct computation

f̃ss =
1
3

(
k−

2
3ks

)
s
f + k−

1
3ksfρ + kfρρ,

g̃s − kf̃ = gρ −
1
3
k−

4
3ks(g + fρ)− µf.

Substituting these equations into the evolution equations for s and k [8, 9], we have

st = s

[
gρ −

1
3
k−

4
3ks(g + fρ)− µf

]
,

kt = k
[
fρρ + k−

4
3ks(fρ + g) + µf

]
.

Hence, the first variation of the affine perimeter satisfies

dL

dt
=

∮
γ

(
kt
3k

+
st
s

)
dρ,

=
∮ (

1
3
fρρ −

2
3
µf + gρ

)
dρ.

We impose∮
µfdρ = 0, (8)

and

g = −1
3
fρ +

2
3
∂−1
ρ (µf). (9)

On the other hand, we have(
T
N

)
t

=
(
gρ − µf fρ + g
H1 H2

)(
T
N

)
, (10)
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where H1 = gρρ−2µfρ−µρf−µg and H2 = fρρ+2gρ−µf . Under (8) and (9), [∂/∂ρ, ∂/∂t] = 0,
and so the compatibility condition between (6) and (10) implies

µt =
1
3

(
D4
ρ + 5µD2

ρ + 4µρDρ + µρρ + 4µ2 + 2µρ∂−1
ρ µ

)
f, (11)

after using (9).
If we take f = −3µρ in (11), we get the Sawada–Kotera equation [14, 15]

µt + µ5 + 5µµ3 + 5µ1µ2 + 5µ2µ1 = 0. (12)

If we take f = −3(µ3 + 2µµ1), we obtain a seventh-order Sawada–Kotera equation

µt + µ7 + 7µµ5 + 14µ1µ4 + 21µ2µ3 + 14µ2µ3 + 42µµ1µ2 + 7µ3
1 +

28
3
µ3µ1 + aµ1 = 0.

In general, we take f = −3
(
D2
ρ + µ+ µρ∂

−1
ρ

)
u, u = Ωn−1(µ)µρ, where

Ω(µ) =
(
D3
ρ + 2µDρ + 2Dρµ

) (
D3
ρ +D2

ρµ∂
−1
ρ + ∂−1

ρ µD2
ρ +

1
2

(
µ2∂−1

ρ + ∂−1
ρ µ2

))
,

is the recursion operator of the Sawada–Kotera equation [16]. By a direct computation, the
following identity holds(

D4
ρ + 5µD2

ρ + 4µρDρ + µρρ + 4µ2 + 2µρ∂−1
ρ µ

) (
D2
ρ + µ+ µρ∂

−1
ρ

)
=

(
D3
ρ + 2µDρ + 2Dρµ

) (
D3
ρ +D2

ρµ∂
−1
ρ + ∂−1

ρ µD2
ρ +

1
2

(
µ2∂−1

ρ + ∂−1
ρ µ2

))
.

Using this identity we see that µ satisfies the Sawada–Kotera hierarchy

µt = −Ωn(µ)µρ. (13)

4 Motion of plane curves in centro-affine geometry

The geometrical quantities in centro-affine geometry are invariant under the transformations(
x′

u′

)
= A

(
x
u

)
,

where A ∈ SL(2,R). Let γ(p) = (γ1(p), γ2(p)) be a parametrized curve in E2. We define its
centro-affine arclength ds̃ as

ds̃ = (γ1γ
′
2 − γ′1γ2)dp = hds,

where h = −γ · n is the support function of γ [17]. The centro-affine curvature φ is given by

φ = κh−3.

The centro-affine tangent and normal vectors are given by T = γs̃ and N = γs̃s̃ respectively.
They are related to the Euclidean tangent and normal by

T = h−1t, N = κh−2n− h−3hst.

Notice that this frame is centro-affine invariant in the sense that T′ = AT and N′ = AN. Using
the Serret–Frenet formulas in E2

ts = κn, ns = −κt,
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and the following identities

κ−1h2
(
h−3κs − 3h−4κhs

)
=
φs̃
φ
,

hss = κ−1κshs + κ− κ2h,

we obtain the centro-affine Serret–Frenet formulas

Ts̃ = N, Ns̃ =
φs̃
φ

N− φT. (14)

Now we first compute the first variation of the centro-affine perimeter L =
∮
ds̃. To this

purpose, we express (2) in the form (7), where now

f̃ = κh−2f, g̃ = h−1g − h−3hsf.

By the formulas in E2 [8, 9]

st = s
(
g̃s − κf̃

)
, κt = f̃ss + κsg̃ + κ2f̃ ,

and

ht = −f̃ +
(
f̃s + κg̃

)
γ · t,

we have

Lt =
∮ (

h−1ht + s−1st
)
ds̃,

=
∮

(gs̃ − 2φf) ds̃.

As parallel to the affine case, we require f to satisfy∮
φfds̃ = 0, (15)

and choose

g = 2∂−1
s̃ (φf), (16)

so that [ ∂∂t ,
∂
∂s̃ ] = 0. By (14) and (7) we obtain the time evolution for tangent and normal

vectors:(
T
N

)
t

=
(
A C
B D

)(
T
N

)
, (17)

where

A = gs̃ − φf, B = fs̃ + g +
φs̃
φ
f, C = As̃ − φB, D = Bs̃ +A+

φs̃
φ
B.

The compatibility condition between (14) and (17) gives the equation for the curvature

φt = φfs̃s̃ + 2φs̃fs̃ + (φs̃s̃ + 4φ2)f + 2φs̃∂−1
s̃ (φf), (18)

after using (16), where we always assume (15) holds. We now consider several cases:
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Case 1. f = u/φ. In this case, (18) becomes

φt =
(
D2
s̃ + 4φ+ 2φs̃∂−1

s̃

)
u.

Setting u = −Ωn−1
1 φs̃. We get the KdV hierarchy

φt = −Ωn
1φs̃, n ≥ 1,

where Ω1 = D2
s̃ + 4φ+ 2φs̃∂−1

s̃ is the recursion operator of the KdV equation

φt + φs̃s̃s̃ + 6φφs̃ = 0. (19)

Setting u = −φ−3/2φs̃∂
−1
s̃ (φq) + 2φ1/2q, ψ = φ−1/2, ψ satisfies

ψt = −
[
ψ

(
ψD2

s̃ − ψs̃Ds̃ + ψs̃s̃ + ψ2ψs̃s̃s̃∂
−1
s̃ ψ−2

)
+ 4

]
q. (20)

Taking q = 0 in (20), we get the Harry Dym equation

ψt + ψ3ψs̃s̃s̃ = 0.

Setting q = Ωn−1
2

(
ψ3ψs̃s̃s̃

)
, we get the Harry Dym hierarchy

ψt = −Ωn
2

(
ψ3ψs̃s̃s̃

)
,

where

Ω2 = ψ2D2
s̃ − ψψs̃Ds̃ + ψψs̃s̃ + ψ3ψs̃s̃s̃∂

−1
s̃ ψ−2 + 4,

is a recursion operator of the Harry Dym equation [18].

Case 2. f = us̃s̃s̃/φ+ us̃. In this case, (18) becomes

φt =
[
D5
s̃ + 5φD3

s̃ + 4φs̃D2
s̃ +

(
φs̃s̃ + 4φ2

)
Ds̃ + 2φs̃∂−1

s̃ φDs̃

]
u.

Taking u = −φ, we get the Sawada–Kotera equation (12). Next, we take u = −∂−1
s̃

(
D2
s̃ + φ+

φs̃∂
−1
s̃

)
q, q = Ωn−1(φ)φs̃, where Ω(φ) is the recursion operator of the Sawada–Kotera equation,

we obtain the Sawada–Kotera hierarchy (13).

Case 3. f = −(φs̃s̃s̃/φ + 16φs̃). The resulting equation is the Kaup–Kupershmidt equation
[19, 20]

φt + φ5 + 20φφ3 + 50φ1φ2 + 80φ2φ1 = 0.

Case 4. f = φ−4φs̃. We have

φt =
1
2

(
φ−2

)
s̃s̃s̃

+ 3
(
φ−1

)
s̃
,

which is an integrable equation [21].

It is easy to see that in these four cases the motions also conserve the enclosed area of the
curves. Notice that the area does not change under centro-affine action and so it makes sense
in the centro-affine geometry. A fuller discussion on the integrable equations can be found in
Chou–Qu [22].
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5 Motions of curves in similarity geometry

The similarity algebra is obtained by adding the dilatation to E2. The Sim(2) arc-length is given
by dθ, where θ is the angle between the tangent and the x-axis. The curvature in similarity
geometry is related to the Euclidean curvature by the Cole–Hopf transformation

χ = (ln k)θ = k−2ks.

Using T = k−1t and N = k−1n− k−3kst, the Serret–Frenet formulas in similarity geometry are
given by

Tθ = N, Nθ = −2χN−
(
χθ + χ2 + 1

)
T. (21)

We express the motion (2) in the form (7), where now f̃ = k−1f and g̃ = k−1(g−χf). The first
variation of the similarity perimeter is given by

dL

dt
=

∮
(kts+ kst)dp =

∮ [
f̃ss + (χg)s

]
ds.

Hence dL/dt always vanishes for any closed curve. However, it still makes sense to set

g = −fθ + 2χf + a, a = const, (22)

so that [∂/∂θ, ∂/∂t] = 0 for any f and g related by (22). The evolution of the similarity tangent
and normal are given respectively by

Tt = −k−2ktt + k−1tt = −k−1(Lf + aχ)t + ak−1n = −LfT + aN,

Nt = k−1(n− χt)t − k−2kt(n− χt)
= −(Lf + 2aχ)(N + χT)− [(Lf + aχ)θ − χ(LF + aχ) + a]T

= −(Lf + 2aχ)N− [(Lf + aχ)θ + a(χ2 + 1)]T.

Hence(
T
N

)
t

=
(
−Lf a
Q P

) (
T
N

)
, (23)

where Q = −(Lf+aχ)θ−a(χ2 +1), P = −(Lf+2aχ) and L = (∂θ−χ)2 +1 is a linear operator.
The compatibility condition between (21) and (23) yields the following equation for the

Sim(2)-curvature χ after using (22),

χt =
[
D3
θ − 2χD2

θ −
(
3χθ − χ2 − 1

)
Dθ − (χθθ − 2χχθ)

]
f + aχθ, (24)

where f is an arbitrary function.
The simplest choice is f = −1. Then (24) becomes the Burgers equation

χt = χθθ − 2χχθ + aχθ.

The next choice is f = χ, which yields the third order Burgers equation

χt = χθθθ − 3χχθθ − 3χ2
θ + 3χ2χθ + (a+ 1)χθ.

In general, setting f = ∂−1
θ u, the equation becomes

χt =
[(
Dθ − χ− χθ∂

−1
θ

)2 + 1
]
u+ aχθ.
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Setting u = Ωn−2
3 χθ, we obtain the Burgers hierarchy

χt =
(
Ωn

3 + Ωn−2
3 + a

)
χθ,

where Ω3 = Dθ − χ− χθ∂−1
θ is the recursion operator of the Burgers equation. These equations

can be linearized by the Cole–Hopf transformation χ = (ln η)θ, where η is the reciprocal of the
Euclidean curvature η = 1/k. Indeed, the hierarchy is transformed to

ηt = Dn
θ η +Dn−2

θ η + aη.

It is noted that the motion conserves enclosed area of the curve only when n is odd.

6 Concluding remarks

We have shown that many well-known integrable equations including KdV, Sawada–Kotera,
Harry Dym, Burgers hierarchies and Kaup–Kupershmidt equation naturally arise from motions
of plane curves in affine, centro-affine and similarity geometries. The mKdV equation in the
Euclidean space E2, the KdV equation in the centro-affine geometry and the Sawada–Kotera
equation in the affine geometry, are all obtained by choosing the normal velocity to be the
derivative of the curvature with respect to the arclength. A further analysis shows that the
N -soliton of the mKdV and the Sawada–Kotera equation gives N -loop curves respectively in
Euclidean and affine geometries and the N -soliton of the KdV equation gives N − 1-loop curve
in centro-affine geometry [22]. Similar properties also hold for space curves [23]. These analogies
suggest that the KdV equation and Sawada–Kotera equation are respectively the centro-affine
version and affine version of the mKdV equation.

The vector fields of Lie algebras acting on the plane have been completely classified [12].
Recently we have investigated motions of curves in these geometries and found many associated
integrable hierarchies. The reader is referred to as [24] for all details.

Finally we point out that the equivalence between integrable equations for the curvature and
invariant motion leads to some new integrable equations. For example, in the Euclidean case,
suppose the mKdV flow can be expressed as the graph of (x, u(x, t)) of some function u over
x-axix, one finds that u satisfies the well-known WKI equation [25]

ut =

[
uxx

(1 + u2
x)

3
2

]
x

, (25)

which can be solved by the inverse scattering method. Similarly in the affine geometry, Sawada–
Kotera flow can be expressed by the following integrable equation

ut = −
[
u
− 5

3
xx uxxxx −

5
3
u
− 8

3
xx u

2
xxx

]
x

. (26)

The WKI equation (25) and equation (26) have many similarities, such as they are derived in
the same manner, can be solved by the inverse scattering method and have N -loop solitons.
A detail analysis to (26) is presented in [24].
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We determine a subset of R2 and a measure on this set which allow to construct coupled
non-localized solutions u+(x, y, t) and u−(x, y, t) of the modified KP-I equation, which are
connected by the relation u−(x, y, t) = −u+(−x, y,−t), and split into asymptotic solitons as
t→∞ in the neighbourhood of the leading edge of the solutions. The solitons corresponding
to each of the solutions have different amplitudes and lines of constant phase, and are not
connected by the above relation.

1 Introduction

In 1974 V.E. Zakharov and A.B. Shabat [1] proposed a very effective scheme of the inverse
scattering method for the integration of nonlinear evolution equations with one and two spatial
variables, so called dressing method. It turns out very convenient to obtain wide classes of
solutions avoiding the difficult stage of the solving of the inverse scattering problem for the
corresponding differential operator.

We consider the modified Kadomtsev–Petviashvili (mKP) equation [2]

ut +
1
4
uxxx −

3
2
α2

(
u2ux −

1
2α
D̂±[uyy] + uxD̂

±[uy]
)

= 0, (1)

with u = u(x, y, t), α = i for the mKP-I equation, α = 1 for the mKP-II equation, and
operators D̂± choosen as D̂−[u(x, y, t)] =

∫ x
−∞ u(s, y, t)ds or D̂+[u(x, y, t)] = −

∫∞
x u(s, y, t)ds

simultaneously in both of the summands. These equations plays an important role in the
understanding of the various properties of the Kadomtsev–Petviashvili equation and generalized
Miura transformation. In both cases (α2 = ±1) (1) has exact solutions in the form of plane
solitons

u(x, y, t) = ± 2q2

p+
√
p2 + q2 cosh [2q(x− 2py − (q2 − 3p2)t− β)]

,

(β = const, (p, q) ∈ R+ – upper half-plane of R) the lines of constant phase of which x =
2py +

(
q2 − 3p2

)
t+ β are straight lines in (x, y)-plane.

In 1986, V.E. Zakharov constructed some solutions of the KP-II equation that were inter-
preted as curved solitons [3]. In 1994, using the dressing method, there were constructed KP-II
non-localized solutions vanishing as x → ∞, which split in the neighbourhood of the leading
edge into infinite series of curved solitons for t → ∞ [4]. These solitons are represented in the
form of plane solitons, but their lines of constant phase are curves in the (x, y)-plane, and the
depend on the parameter Y = y/t. Analogous solutions of the KP-I, mKP-I and Johnson equa-
tion (also called cylindrical KP) were constructed in [5, 6, 7], and their long-time asymptotic
behaviour was investigated.

In this note we use the scheme of the dressing method for the mKP equation introduced in [5],
and the fact that each constructed solution u+(x, y, t) of the mKP-I with operator D̂+ generates
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another solution u−(x, y, t) = −u+(−x, y,−t) of the mKP-I with operator D̂−. So each solution
u+(x, y, t) vanishing as x → +∞ [5, 7] generates u−(x, y, t), which vanishes as x → −∞. Such
pair of solutions we call coupled solutions. However, direct application of the change of variables
to the asymptotic formulae is not correct, and the investigation of the asymptotics of the new
constructed solution requires special consideration.

We determine some subset in R2 and a measure on this set which allow to construct real
coupled solutions of the mKP-1 equation, which split into asymptotic solitons as t→∞ in the
neighbourhood of the leading edge of the solutions. The asymptotic solitons corresponding to
each of both solutions have a different form and are not connected by the above transformation.

2 Construction of the mKP-I equation solution

According to the scheme of the dressing method [5] the mKP solution can be represented as
follows:

u(x, y, t) =
1
α

d

dx

(
1∓ D̂±[K(x, s, y, t)]

)
, (2)

where K(x, z, y, t) is a solution of Marchenko integral equation

K(x, z, y, t) + F (x, z, y, t)∓ D̂±[K(x, s, y, t)F (s, z, y, t)] = 0, (3)

and D̂± are operators with respect to the argument s. The kernel F (x, z, y, t) of (3) satisfies the
system of linear differential equations

Ft + Fxxx + Fzzz = 0,
αFy + Fxx − Fzz = 0. (4)

We start from the solution u+(x, y, t) corresponding to the operator D̂+ in (1)–(3). A wide class
of solutions of (4) for α = i in this case can be found by the Fourier method in the form:

F (x, z, y, t) =
∫∫

Ω
exp

[
ip(x− z)− q(x+ z) + 4pqy + 2q

(
q2 − 3p2

)
t
]
dµ(p, q), (5)

where Ω ⊂ R2 and dµ(p, q) is some measure on Ω.
To construct a mKP-I solution by the scheme (2)–(5) we must define the set Ω in (5) and

the measure dµ(p, q) over this set. For this goal we introduce the functions C±(s) and g(s)
which play an important role in the construction of the solution and in the investigation of its
asymptotic behaviour. For the sake of simplicity we restrict ourselves by a special choice of
these functions in this note.

Let b = const > 0. The functions C+(s) : R → R+ and C−(s) : R → R+ are defined by

C+(s) = s2 + b2, C−(s) = (|s|+ b)2.

We denote

f±(p, q, s) = 2ps±
(
q2 − 3p2

)
.

The curve q = h+(p) =
√

2p2 + b2 is envelope of the family of hyperbolas

E+(p, q; s) =
{

(p, q) ∈ R2 | f+(p, q, s) = C+(s)
}
s∈R
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with a contact at (p+
0 (s), q+0 (s)) defined by

p+
0 (s) =

C+
s (s)
2

= s,

q+0 (s) =
√
C+(s) + (3/4)(C+

s (s))2 − sC+(s) =
√

2s2 + b2. (6)

The curve q = h−(p) =
√

4p2 − 2|p| b (|p| ≥ b/2) is envelope of the family of hyperbolas

E−(p, q; s) =
{

(p, q) ∈ R2 | f−(p, q, s) = C−(s)
}
s∈R

,

with a contact at (p−0 (s), q−0 (s)) defined by

p−0 (s) =
C+
s (s)
2

= sign s(|s|+ b),

q−0 (s) =

√
3
4

(C−s (s))2 + sC−(s)− C−(s) =
√

2(|s|+ b)(2|s|+ b). (7)

We consider a subset Ω ⊂ R2 of the form

Ω =
{

(p, q) ∈ R2 | −∞ < p <∞, q ∈ Q
}
, (8)

where

Q =
{
q | q ≥ δ > 0} ∩ {q | q ≥ h−(p)} ∩ {q | q ≤ h+(p)

}
and δ < b. It is easy to show that this choice of Ω implies

C+(s) = max
(p,q)∈Ω

f+(p, q, s), C−(s) = max
(p,q)∈Ω

f−(p, q, s). (9)

Moreover, the maximum value of f±(p, q, s) is attained at the unique point (p±0 (s), q±0 (s)) re-
spectively.

About the function g(s) and the measure dµ we assume that

g(s) : R → R+ is C∞, g̃ : Ω → R+ is C∞,

g̃(p0(κ), q0(κ)) = g(κ), dµ(p, q) =

√
p− iq

p+ iq
g̃(p, q)dpdq. (10)

Lemma 1. Assume that Ω has the form (8) and dµ satisfies (9). Then the scheme (2)–(5) de-
termines smooth real coupled solutions of the mKP-I equation vanishing as x→ ±∞ respectively,
and bounded for all fixed x, y, t.

Proof. The proof is based on the fact that the function F (x, z, y, t) (5) generates a self-adjoint
positive compact operator F̂ [z] : L2([x,∞)) → L2([x,∞)). Then, by Fredholm theory [8] (4)
has a unique solution K(x, z, y, t), which is C∞ with respect to all variables. Moreover, the self-
adjointness of F and the special choice of the measure dµ (10) leads to the reality of u(x, y, t).
Thus the solution of the mKP-I equation constructed by (2) has all properties of the Lemma.
We denote this solution u+(x, y, t).

This solution u+(x, y, t) of the mKP-I equation generates a new solution u−(x, y, t) by the
change u−(x, y, t) = −u+(−x, y,−t). This solution has the same properties as u+(x, y, t), bound-
edness, smoothness and reality, but it vanishes as x→ −∞. �

In Section 3 we describe the long time asymptotic behaviour of these solutions.
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3 Theorem about soliton asymptotics of u±(x, y, t)

The asymptotic behaviour of u±(x, y, t) for t → ∞ is investigated in the following domains of
the leading edge of the solutions (M > 2):

G±(M) =
{

(x, y, t) ∈ R3
∣∣∣ t > t0(M), Y =

y

t
∈ I±, x ≷ C±(Y )t∓ M + 1

2q±0 (Y )
ln t

}
, (11)

where I+ =
[
−1+

√
3

2 b+ ε, 1+
√

3
2 b− ε

]
, I− =

[
−
√

3−1
2 b+ ε, −ε

] ⋃ [
ε,
√

3−1
2 b− ε

]
, ε > 0, and

t0(M) is large enough.
It is described by the following theorem.

Theorem 1. The solution u±(x, y, t) of the mKP-I equation constructed in Lemma 1 have the
following asymptotics in the domains G±M (t) as t→∞:

u±(x, y, t) = ∓
[M−1]∑
n=1

u±n (x, y, t) +O

(
1

t1/2−ε1

)
, (0 < ε1 < 1/2), (12)

u±n (x, y, t) =
2q±0 (Y )2

p±0 (Y ) +
√

(p±0 (Y ))2 + (q±0 (Y ))2 cosh
[
2q±0 (Y )κ±n (x, y, t)

] , (13)

where

κn(x, y, t) = x∓ C±(Y )t± 1
2q±0 (Y )

(
ln tn+1/2 − ln g(Y )φ±n (Y )

)
,

φ±n (Y ) =
(C±Y Y (Y ))n−1/2((q±0 (Y ))2 + (3p±0 (Y )− Y )2)n−1Ω(n)I(n)

24n+1(q±0 (Y ))5n−3/2[(n− 1)!]2Ω(n−1)I(n−1)
,

p±0 (Y ), q±0 (Y ) are defined in (6), (7), C±Y Y = d2C±(Y )
dY 2 , and Γ(n), Q(n) > 0 are determinants of

n× n matrices with entries (0 ≤ i, k ≤ n− 1)

Γ(n)
i+1,k+1 = Γ

(
i+ k + 1

2

) (
1 + (−1)i+k

)
, Q

(n)
i+1,k+1 = Γ(i+ k + 1).

Here the asymptotic representation (12) is uniform with respect to x and y in G±M (t) for any
fixed M > 2.

Proof. The statement of the theorem concerning the solution u+(x, y, t) was proved in [5, 7].
We present here a scheme of the proof for the case of u−(x, y, t). First of all we apply the
transformation (x, t) �→ (−x,−t) to (2)–(5) with Ω (8) and dµ (10), and obtain the corresponding
formulas for the solution u−(x, y, t). (3) is transformed into the equation containing integration
from −∞ to x with the kernel

F−(x, z, y, t) =
∫∫

Ω
exp

[
−ip(x− z) + q(x+ z) + 4pqy + 2q

(
3p2 − q2

)
t
]
dµ(p, q). (14)

On the next stage we study the asymptotics of (14) as t → ∞. After change of variables
x = −C−(Y )t− ξ, z = −C−(Y )t− ζ (14) acquires the form:

F̃−(ξ, ζ, y, t) = F−(C−(Y )t+ ξ, C−(Y )t+ ζ, y, t)

=
∫∫

Ω
exp

[
−ip(ξ − ζ) + q(ξ + ζ)− 2q(C−(Y )− f−(p, q, Y ))t

]
dµ(p, q). (15)
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Using property (9), we apply Laplace method to (15) and prove that

F̃−(ξ, ζ, y, t) = FN (ξ, ζ, y, t) + G̃(ξ, ζ, y, t),

in the domains

ζ > ξ < − 1
2q−0 (Y )

ln tM , Y =
y

t
, t→∞, (16)

where FN (ξ, ζ, y, t) is a degenerate kernel (N = [2M − 3], M > 2 is an arbitrary integer), and
‖G̃(ξ, ζ, y, t)‖L2([x,∞)) = O (1/tε1), 0 < ε1 < 1/2.

On the third stage we prove that the degenerate kernel FN (ξ, ζ, y, t) brings the main contribu-
tion into the asymptotics of Marchenko’s equation in (16). After the solving of the equation and
analysis of the corresponding determinant formulae we obtain the statement of the theorem. �

Thus we have constructed non-localized coupled solutions u±(x, y, t) of the mKP-I equation,
which split into infinite series of the curved asymptotic solitons in the domains of the leading edge
of the solutions as t→∞. These asymptotic solitons are generated by the neighbourhoods of the
curves q = h±(p) respectively. Both of them have the varying amplitude, width, and are diverged
as t increases, but they are not connected by the transformation u+(x, y, t) �→ u−(x, y, t).
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Exact solutions of a matrix generalization of nonlinear Yajima–Oikawa model are built in
an explicit form. The Melnikov-like system was also integrated.

1 Introduction

The hierarchy of Kadomtsev–Petviashvili equations can be given as an infinite sequence of the
Sato–Wilson operator equations [1, 2]

αnWtn = −
(
WDnW−1

)
−W, n ∈ N, αn ∈ C, (1)

where W = 1+w1D−1 +w2D−2 + · · · is a microdifferential operator (MDO) with coefficients wi,
i ∈ N, depending on the variables t = (t1, t2, . . .), t1 := x and D := ∂

∂x , DD−1 = 1. Differential
and integral parts of the microdifferential operator WDnW−1 are denoted by

(
WDnW−1

)
+

and(
WDnW−1

)
− respectively. In the algebra MDO ζ:

ζ =


n(L)∑
i=−∞

aiDi : ai = ai(t) ∈ A; i, n(L) ∈ Z

 ,

the operation of multiplication is induced by the generalized Leibnitz rule

Dnf :=
∞∑
j=0

(
n

j

)
f (j)Dn−j , n ∈ Z, Dm(f) :=

∂mf

∂xm
= f (m), m ∈ Z+,

where DnDm := DmDn := Dn+m, n,m ∈ Z, and f is the operator of multiplication by a func-
tion f(t), which belongs to the same functional space A that the coefficients of microdifferential
operators L ∈ ζ.

With the aid of the MDO L is defined by formula L := WDW−1 = D+UD−1 +U2D−2 + · · ·
system (1) can be rewritten in the form of the Lax representation

αnLtn = [Bn, L] := BnL− LBn, (2)

where Bn = (Ln)+ = (WDnW−1)+, n ∈ N.
Nonlocal reduced hierarchy of Kadomtsev–Petviashvili is the system of operator equations (2)

with the additional restriction so-called k-constraint of the form [3, 4, 5, 6, 7] (see also [8])

Lk := (Lr)k = Bk +
l∑

i=1
qiD−1r�i , where “"” denotes transposition which is in accordance with

dynamics of system (2), if field-variables qi, ri satisfy the system of the following equations:

αnqitn = Bn(qi), αnritn = −Bτ
n(ri),

the symbol “τ” denotes the transposition of differential operator.
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Equations from k–reduced hierarchy of Kadomtsev–Petviashvili allow the Lax representation

[
Bk + qD−1r�, αn∂tn −Bn

]
= 0, n ∈ N. (3)

2 Exact solutions of a matrix generalization
of Yajima–Oikawa model

In the present paper we consider the matrix case of (3): k = 2, n = 2 and U1 := U,U2, U3, . . . ∈
MatN×N (C), q, r ∈ MatN×N ′(C) and obtain the system:

α2qt2 = qxx + 2Uq, α2Ut2 = (qr�)x, α2rt2 = −rxx − 2rU. (4)

Introduce the additional reductions of complex conjugation α2 = i, t2 = t, U = U∗ := Ū�,
r = iq̄M�, where M ∈ MatN ′×N ′(C),M = M∗. System (4) can be represented as:

iqt = qxx + 2Uq, Ut = (qMq∗)x. (5)

System (5) is a matrix generalization of Yajima–Oikawa model [9]. Operators of this system
in the Lax representation ([L,A] = 0) have the form:

L = D2 + 2U + iqMD−1q∗, A = i∂t −D2 − 2U.

Proposition 1 ([2, 10]). Let B = B+ be a differential operator; fD−1g, f̃D−1g̃ ∈ ζ. Then
the following relations hold:

BfD−1g� =
(
BfD−1g�

)
+

+B(f)D−1g�,

fD−1g�B =
(
fD−1g�B

)
+

+ fD−1
(
Bτg

)�
,

fD−1g�f̃D−1g̃� = f

(∫
g�f̃

)
D−1g̃� − fD−1

(∫
g�f̃

)
g̃�. (6)

In formulas (6) the symbol
∫

g�f̃ stands for an arbitrary fixed primitive of
(
g�f̃

)
(x, t2) as

a function of x.
Let ϕ, ψ be smooth complex matrix (N × K) functions of real variables x, t2 ∈ R, C =

(Cmn) = const ∈ MatK×K(C), and also:
1) the improper integral

∫ x
−∞ ψ

�ϕds :=
∫ x
−∞ψ

�(s, t2)ϕ(s, t2) ds converges absolutely ∀ (x, t2)
∈ R× R+ and admits differentiation by the parameter t2 ∈ R+;

2) the matrix-function Ω(x, t2) := C +
∫ x
−∞ ψ

�ϕds is nondegenerate in (x, t2) ∈ σ ⊂ R×R+.
Define the functions Φ = Φ(x, t2), Ψ = Ψ(x, t2) and MDO W by the following way:

Φ = ϕΩ−1, Ψ� = Ω−1ψ�, W = 1− ΦD−1ψ�. (7)

Lemma 1. The components Φij, Ψij, i = 1, N , j = 1,K, of matrix functions Φ, Ψ (7) can be
given as:

Φij =
(
ϕΩ−1

)
ij

= (−1)K+j

∣∣∣∣Ω(j)

ϕi

∣∣∣∣
|Ω| , (8)

Ψij =
(
ψΩ�−1

)
ij

= (−1)K+j

∣∣∣∣Ω�(j)ψi

∣∣∣∣
|Ω| . (9)

Here Ω(j) is obtained from Ω by deletion of j-line; ϕi, ψi are i-lines of matrixes ϕ, ψ.
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Proof. In order to prove (8), (9) we use a well-known algebraic equality for framed determinant:

det
(

Ω ψ�j
ϕi α

)
:=

∣∣∣∣Ω ψ�j
ϕi α

∣∣∣∣ = α det Ω− ϕiΩCψ�j ,

where ΩC is the matrix of cofactors.

Φij =
(
ϕΩ−1

)
ij

= ϕiΩ−1e�j = (−1)K+j

∣∣∣∣Ω(j)

ϕi

∣∣∣∣
|Ω| .

Here ei = (ei1 , . . . , eiK ), eii = 1, eij = 0 for i, j = 1,K, i �= j.
By the similar reasoning, formula (9) can be proved. �

Theorem 1 ([10]). MDO W has an inverse operator W−1 and:

W−1 = 1 + ϕD−1Ψ�.

Proposition 2. For MDO W (7) the equalities are true:

WD2W−1 =
(
I − ΦD−1ψ�

)
D2

(
I + ϕD−1Ψ�

)
= D2 + 2

(
ϕΩ−1ψ�

)
x

− ΦD−1

(
ψ�xx −

∫ x

−∞
ψ�ssϕdsΨ�

)
+

(
ϕxx − Φ

∫ x

−∞
ψ�ϕss ds

)
D−1Ψ�,

W
(
i∂t −D2

)
W−1 = i∂t −D2 − 2

(
ϕΩ−1ψ�

)
x

+ ΦD−1

{(
iψ�t + ψ�xx

)
−

∫ x

−∞

(
iψ�t + ψ�ss

)
ϕdsΨ�

}
+

{
(iϕt − ϕxx)− Φ

∫ x

−∞
ψ�(iϕt − ϕss) ds

}
D−1Ψ�.

The proof of the Proposition 2 is based on the using of formulas (6) and the generalized
Leibnitz rule.

Consider operators L0 = D2, A0 = i∂t −D2, L̂ = WL0W
−1, Â = WA0W

−1.

Theorem 2. Let:
a) ϕ be a solution of the equation iϕt = ϕxx;
b) ϕxx = ϕΛ, where Λ = diag

(
λ2

1, λ
2
2, . . . , λ

2
K

)
= const ∈ MatK×K(C);

c) ψ = ϕ̄;
d) C = C∗.
Then
1) Ψ = Φ̄;
2) L̂ = D2 + 2

(
ϕΩ−1ϕ∗

)
x

+ ΦJD−1Φ̄�, where J = CΛ− Λ∗C;
3) Â = i∂t −D2 − 2

(
ϕΩ−1ϕ∗

)
x
.

Proof. 1) From definitions (7) and condition d we have:

Φ̄ = ϕ

(
C +

∫ x

−∞
ϕ∗ϕds

)−1

= ϕ̄

(
C̄ +

∫ x

−∞
ϕ�ϕ̄ ds

)−1

= ψ

(
C� +

∫ x

−∞
ϕ�ψ ds

)−1

= Ψ.

2) From Proposition 2, condition b and properties:

Φ
∫ x

−∞
ψ�ϕds = ϕ− ΦC and

∫ x

−∞
ψ�ϕdsΨ� = ψ� − CΨ�,
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it follows that:

L̂ = D2 + 2
(
ϕΩ−1ϕ∗

)
x
− ΦD−1Λ∗ψ� + ΦD−1Λ∗

∫ x

−∞
ψ�ϕdsΨ�

+ ϕΛD−1Ψ� − Φ
∫ x

−∞
ψ�ϕdsΛD−1Ψ� = D2 + 2

(
ϕΩ−1ϕ∗

)
x

+ Φ (CΛ− Λ∗C)D−1Ψ�.

3) The validity of this item follows from Proposition 2 and conditions a), c). �

Proposition 3. The matrix J = (Jmn), m,n = 1,K has the following properties:
1) J = −J∗;
2) Jmn = Cmn

(
λ2
m − λ2

n

)
;

3) if the matrix C is diagonal, then: J = diag
(
2ic1 Imλ2

1, 2ic2 Imλ2
2, . . . , 2icK Imλ2

K

)
.

Proof. 1) J∗ = (CΛ− Λ∗C)∗ = Λ∗C∗ − C∗Λ = Λ∗C − CΛ = −J .
The proof of the 2), 3) is based on the using of formulas of operations with matrices. �

Corollary 1. Let the matrix J be defined by the following condition: ΦJΦ∗ = iqMq∗, then the
functions q = (qij) and U = (ukl), i, k, l = 1, N , j = 1,K, where

qij = (−1)j+K

∣∣∣∣Ω(j)

ϕi

∣∣∣∣
|Ω| , ukl =

(∣∣∣∣ Ω ϕ̄�l
ϕk 0

∣∣∣∣ |Ω|−1

)
x

are solutions of system (5).

The proof of corollary is based on the using of formula (8), equality for framed determinant
and Theorem 2.

Consider the simplest case of matrix equation (5): N = 2, K = 1. Then ϕ1 = ĉeλx−iλ2t,
ϕ2 = ĉe−λx−iλ2t, M = µ ∈ R and under conditions Reλ > 0, µ = 4 Reλ Imλ · C solutions have
the form:

q1 := q11 =
4ĉReλ Imλ eλx−iλ2t

µ+ 4|ĉ|2 Imλ sinh (2 Reλ · x) e4Reλ Imλ t
,

q2 := q21 =
4ĉReλ Imλ e−λx−iλ2t

µ+ 4|ĉ|2 Imλ sinh(2 Reλ · x)e4Reλ Imλ t
,

u11 =
4|ĉ|2 Reλ Imλ e2Reλx+4Reλ Imλ t

µ+ 4|ĉ|2 Imλ sinh(2 Reλ · x)e4Reλ Imλ t
,

u12 = ū21 =
4|ĉ|2 Reλ Imλ e4 Reλ Imλ t+2iReλx

µ+ 4|ĉ|2 Imλ sinh(2 Reλ · x)e4 Reλ Imλ t
,

u22 =
4|ĉ|2 Reλ Imλ e−2 Reλx+4Reλ Imλ t

µ+ 4|ĉ|2 Imλ sinh(2 Reλ · x)e4Reλ Imλ t
.

3 Exact solutions of higher equation
from matrix hierarchy of Yajima–Oikawa

Let us consider the following operators:

L = D2 + 2U + iqMD−1q∗, A = ∂t −D3 − 3UD − 3
2
Ux −

3
2
iqMq∗.
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The result of equation [L,A] = 0 will be the system:

qt = qxxx + 3Uqx +
3
2
Uxq +

3
2
iµqq∗q, (10)

Ut =
1
4
Uxxx + 3UUx +

3
4
iµ(qxxq

∗ − qq∗xx). (11)

This system is a matrix generalization of Melnikov model [7, 11].

Proposition 4. For MDO W the equality is true:

W
(
∂t −D3

)
W−1 = ∂t −D3 − 3

(
ϕΩ−1ψ�

)
x
D

− 3
2

(
ϕxxΩ−1ψ� − ϕΩ−1ψ�xx + ϕΩ−1ψ�x − ϕΩ−1ψ�ϕxΩ−1ψ�

)
+ ΦD−1

{(
ψ�t − ψ�xxx

)
−

∫ x

−∞

(
ψ�t − ψ�sss

)
ϕdsΨ�

}
+

{
(ϕt − ϕxxx)− Φ

∫ x

−∞
ψ�(ϕt − ϕsss) ds

}
D−1Ψ�.

The proof of the proposition is based on the formulas (6).
Consider operators L0 = D2, A0 = ∂t −D3, L̂ = WL0W

−1, Â = WA0W
−1.

Theorem 3. Let:
a) ϕ be a solution of the equation ϕt = ϕxxx;
b) ϕxx = ϕΛ, where Λ = diag

(
λ2

1, λ
2
2, . . . , λ

2
K

)
= const ∈ MatK×K(C);

c) ψ = ϕ̄;
d) C = C∗.
Then
1) L̂ = D2 + 2

(
ϕΩ−1ϕ∗

)
x

+ ΦJD−1Φ̄�, where J = CΛ− Λ∗C;
2) Â = ∂t−D3−3

(
ϕΩ−1ϕ∗

)
x
D− 3

2

(
ϕxxΩ−1ϕ∗ − ϕΩ−1ϕ∗xx + ϕΩ−1ϕ∗x − ϕΩ−1ϕ∗ϕxΩ−1ϕ∗

)
.

Proof. 2) The validity of this item follows from Proposition 4 and conditions a), c). �

Remark 1. For system (10) the corollary of the previous part is true (see above).

Consider the case N = 2, K = 1. Then ϕ1 = ĉeλx+λ
3t, ϕ2 = ĉe−λx−λ3t, M = µ ∈ R and

under conditions Reλ > 0, µ = 4 Reλ Imλ · C solutions will be of the form:

q1 := q11 =
4ĉReλ Imλ eλx+λ

3t

µ+ 4|ĉ|2 Imλ · sinh
(
2 Reλ · x+ 2

(
Re3λ− 3 Reλ Im2λ

)
t
) ,

q2 := q21 =
4ĉReλ Imλ e−λx−λ3t

µ+ 4|ĉ|2 Imλ · sinh
(
2 Reλ · x+ 2

(
Re3λ− 3 Reλ Im2λ

)
t
) ,

u11 =
4|ĉ|2 Reλ Imλ e2(Reλ·x+(Re3λ−3Reλ Im2λ)t)

µ+ 4|ĉ|2 Imλ · sinh
(
2 Reλ · x+ 2

(
Re3λ · x− 3 Reλ Im2λ

)
t
) ,

u12 = ū21 =
4|ĉ|2 Reλ Imλ e2i(Imλ·x+(3Re2λ Imλ−Im3λ)t)

µ+ 4|ĉ|2 Imλ · sinh
(
2 Reλ · x+ 2

(
Re3λ · x− 3 Reλ Im2λ

)
t
) ,

u22 =
4|ĉ|2 Reλ Imλ e−2(Reλ·x+(Re3λ−3Reλ Im2λ)t)

µ+ 4|ĉ|2 Imλ · sinh
(
2Reλ · x+ 2

(
Re3λ · x− 3 Reλ Im2λ

)
t
) .
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Recently obtained via ∂-dressing method new exact solutions of some (2 + 1)-dimensional
integrable nonlinear evolution equations such as Nizhnik–Veselov–Novikov (NVN), genera-
lized Kaup–Kuperschmidt (2DKK) and generalized Savada–Kotera (2DSK) equations are
discussed.

1 Introduction

In the last two decades the Inverse Spectral Transform (IST) method has been generalized
and successfully applied to various (2 + 1)-dimensional nonlinear evolution equations such
as Kadomtsev–Petviashvili, Davey–Stewardson, Nizhnik–Veselov–Novikov, Zakharov–Manakov
system, Ishimory, two dimensional integrable sine-Gordon and others (see books [1, 2, 3, 4]
and references therein). The nonlocal Riemann–Hilbert [5], ∂-problem [6] and more general
∂-dressing method of Zakharov and Manakov [7, 8] are now basic tools for solving (2 + 1)-
dimensional integrable nonlinear equations (see also the reviews [10, 11, 12] and books [1, 2, 3, 4]).

In the present short paper new exact solutions calculated via ∂-dressing method of some
two-dimensional integrable nonlinear equations such as Nizhnik–Veselov–Novikov (NVN) [13,
14], generalized Kaup–Kuperschmidt (2DKK) [16, 17] and generalized Savada–Kotera (2DSK)
[16, 17] equations are reviewed.

It is well known that ∂-dressing method is very powerful method for the solution of integrable
nonlinear evolution equations. This method has been discovered by Zakharov and Manakov
[7, 8] (see also the books [3, 4]) and applies now successfully as to (1 + 1)-dimensional and
also to (2 + 1)-dimensional integrable nonlinear evolution equations. The ∂-dressing method
allows to construct Lax pairs (auxiliary linear problems); to solve initial and boundary value
problems, to calculate the broad classes of exact solutions of integrable nonlinear equations. By
the use of ∂-dressing method one can construct simultaneously broad classes of exactly solvable
potentials (variable coefficients of linear PDE’s) and corresponding wave functions of auxiliary
linear problems.

Let us remind following to [7, 8] basic ingredients of ∂-dressing method for (2+1)-dimensional
case. At first one postulates nonlocal ∂-problem:

∂χ(λ, λ)
∂λ

= (χ ∗R) (λ, λ) =
∫∫

C
dλ′ ∧ dλ′χ(λ′.λ′)R(λ′, λ′;λ, λ). (1)

For the sake of definiteness we restrict the attention to the case of the scalar complex-valued
functions χ and R with the canonical normalization (χ → χ0 = 1, as λ → ∞). We assume

1Permanent address of the author to whom correspondence should be send: Novosibirsk State Technical
University, 630092, Novosibirsk, Russia, E-mail: dubrovsky@online.nsk.su
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also that the problem (1) is uniquely solvable. The equation (1) defines behavior of the wave
function χ in the spectral or momentum space.

Then one introduces dependence of kernel R and consequently the function χ on space and
time variables ξ, η, t:

∂R

∂ξ
= I1(λ′)R(λ′, λ′;λ, λ; ξ, η, t)−R(λ′, λ′;λ, λ; ξ, η, t)I1(λ),

∂R

∂η
= I2(λ′)R(λ′, λ′;λ, λ; ξ, η, t)−R(λ′, λ′;λ, λ; ξ, η, t)I2(λ),

∂R

∂t
= I3(λ′)R(λ′, λ′;λ, λ; ξ, η, t)−R(λ′, λ′;λ, λ; ξ, η, t)I3(λ), (2)

i.e.

R(λ′, λ′;λ, λ; ξ, η, t) = R0(λ′, λ′;λ, λ) exp(F (λ′)− F (λ)), (3)

where

F (λ) := I1(λ)ξ + I2(λ)η + I3(λ)t. (4)

Here Ii(λ) (i = 1, 2, 3) are some polynomial or rational functions of λ, the choice of these
functions depends on concrete integrable equation. The role of the variables ξ, η, t will be
played by the usual space and time variables x, y, t or their combinations ξ = x+σy, η = x−σy
with σ2 = ±1. By introducing the “long” derivatives

Dξ = ∂ξ + I1(λ), Dη = ∂η + I2(λ), Dt = ∂t + I3(λ) (5)

dependence of R on ξ, η, t can be expressed in the form

[Dξ, R] = 0, [Dη, R] = 0, [Dt, R] = 0. (6)

By use of derivatives (5) one constructs then linear operators

L =
∑

ulmn(ξ, η, t)Dl
ξD

m
η D

n
t (7)

which satisfy to the condition
[
∂
∂λ
, L

]
= 0 of absence of singularities on λ. For such operators L

the function Lχ obeys the same ∂-equation as the function χ. If there are several operators Li
of this type then by virtue of the unique solvability of (1) one has: Liχ = 0.

The solution of ∂-problem (1) with the canonical normalization χ0 = 1 is equivalent to the
solution of the following singular integral equation:

χ(λ) = 1 +
∫∫

C

dλ′ ∧ dλ′
2πi(λ′ − λ)

∫∫
C
dµ ∧ dµχ(µ, µ)R0(µ, µ;λ′, λ′)eF (µ)−F (λ′). (8)

From (8) one obtains for the coefficients χ̃0, χ−1 and χ−2 of series expansion of χ near the
points λ = 0 and λ = ∞ (χ = χ̃0 + χ1λ+ · · · and χ = χ0 + χ−1

λ + · · · ):

χ̃0 = 1 +
∫∫

C

dλ ∧ dλ
2πiλ

∫∫
C
dµ ∧ dµχ(µ, µ)R0(µ, µ;λ, λ)eF (µ)−F (λ), (9)

χ−1 = −
∫∫

C

dλ ∧ dλ
2πi

∫∫
C
dµ ∧ dµχ(µ, µ)R0(µ, µ;λ, λ)eF (µ)−F (λ),

χ−2 = −
∫∫

C

dλ ∧ dλ
2πi

λ

∫∫
C
dµ ∧ dµχ(µ, µ)R0(µ, µ;λ, λ)eF (µ)−F (λ), (10)
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where F (λ) is given by the formula (4). Through the coefficients χ̃0 and χ−1 usually the
reconstructions formulas for the potentials are defined. In order to calculate via ∂-dressing
method exact solutions of integrable nonlinear equations and auxiliary linear problems one
must to solve for given kernel R of ∂-problem (3) (usually one chooses the degenerate kernels)
singular integral equation (8) for wave function χ. Then by some reconstruction formulas one
calculates exact solutions. Going by this way one must to satisfy important reality, potentiality
or another conditions for the solutions.

In conclusion of this section let us obtain some useful general formulas for calculations of soli-
ton and rational solutions of integrable nonlinear equations. Soliton solutions can be generated
by the following delta-kernel R0(µ, µ;λ, λ) (3) of ∂-problem (1):

R0(µ, µ;λ, λ) =
π

2

N∑
p=1

Apδ(µ− Λp)δ(λ− Σp) (11)

which has nonzero values at the set of points

Λ := (Λ1, . . . ,ΛN ), Σ := (Σ1, . . . ,ΣN ) (12)

of complex plane, where Ap are arbitrary complex constants; here and below δ(µ − Λp) and
δ(λ−Σp) are complex δ-functions. Using (11) one obtains from (8) the following linear algebraic
system of equations for calculating the quantities χ(Λp)eF (Λp):

N∑
q=1

Apqχ(Λq)eF (Λq) = eF (Λp), Apq := δpq +
iAqe

F (Λp)−F (Σq)

Λp − Σq
, (p, q = 1, . . . , N). (13)

Coefficients χ−1 and χ−2 due to (10) are given by expressions:

χ−1 = −i
N∑
p=1

Apχ(Λp)eF (Λp)−F (Σp), χ−2 = −i
N∑
p=1

Apχ(Λp)Σpe
F (Λp)−F (Σp). (14)

Here as supposed all denominators in the formula (13) have nonzero values.
Rational solutions of integrable nonlinear equations can be generated by another delta-kernel

R0(µ, µ;λ, λ) (3) of ∂-problem (1):

R0(µ, µ;λ, λ) =
π

2

N∑
p=1

Ap δ(µ− Λp) δ(λ− Λp) (15)

which has nonzero values at the set of isolated points

Λ := (Λ1,Λ2, . . . ,ΛN ) (16)

of complex plane, where for simplicity we choose Ap as some complex constants. Using (15)
in (9) and (10) one obtains for χ̃0 and χ−1, χ−2 the expressions:

χ̃0 = 1 +
N∑
p=1

Ap
Λp

χ(Λp), χ−1 = −i
N∑
p=1

Ap χ(Λp), χ−2 = −i
N∑
p=1

ApΛpχ(Λp). (17)

For the quantities χ(Λp) from integral equation (8) a simple algebraic system of equations follows:

N∑
q=1

Apq χ(Λq) = 1, Apq = δpq(1 + i ApF
′(Λp)) +

i Aq(1− δpq)
Λp − Λq

, (p, q = 1, . . . , N). (18)

The main problem in constructing soliton and rational solutions is the problem of choice of the
sets of points Λ and Σ (12), (16) and constants Ap in (11), (15) in order to satisfy the conditions
of reality, potentiality and so on.
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2 Exact rational solutions of NVN equations

In this section we present some new rational solutions with constant asymptotic values at infinity
of the famous (2+1)-dimensional Nizhnik–Veselov–Novikov (NVN) integrable equations [13, 14]:

ut + κ1uξξξ + κ2uηηη + 3κ1

(
u∂−1

ξ uη

)
η

+ 3κ2

(
u∂−1

η uξ
)
ξ

= 0 (19)

where u(ξ, η, t) is a scalar function; κ1, κ2 are arbitrary constants, ∂ξ = ∂x +σ∂y, ∂η = ∂x−σ∂y
and σ2 = ±1. Equation (19) was first introduced by Nizhnik [13] for σ = 1 and independently
by Veselov and Novikov [14] for σ = i, κ1 = κ2 = 1. Here and below ∂−1

ξ , ∂−1
η denote operators

inverse to ∂ξ, ∂η: ∂−1
ξ ∂ξ = ∂−1

η ∂η = 1.
The integrability of (19) by IST and by another means is based on the representation of this

equation as the compatibility condition for two linear auxiliary problems

L1ψ = (∂2
ξη + U)ψ = 0,

L2ψ = (∂t + κ1∂
3
ξ + κ2∂

3
η + 3κ1(∂−1

ξ uη)∂ξ + 3κ2(∂−1
η uξ)∂η)ψ = 0 (20)

in the form of Manakov’s triad

[L1, L2] = BL1, B := 3(κ1∂
−1
ξ Uηη + κ2∂

−1
η Uξξ). (21)

Integration of NVN equation (19) has remarkable history. In the work of Nizhnik [13] the
equation (19) with σ = 1 has been integrated by the technique of inverse problems for hyperbolic
systems on the plane. In the paper of Veselov and Novikov [14] for the construction of the
periodic finite-zone exact solutions of (19) with σ = i algebraic geometric methods have been
used. There exist several other beautiful works of Grinevich and Manakov, Grinevich and
S. Novikov, Grinevich and R. Novikov, Grinevich in which the problem of construction of exact
solutions of Veselov–Novikov (VN) equation [14] and transparent potentials for 2D stationary
Schrödinger equations via ∂-problem combined with nonlocal Riemann–Hilbert problem and so
on have been discussed (see [18, 19] and references therein).

Here we present some rational solutions of NVN equations (19) obtained recently in the
paper [20]. In the paper [20] the ∂-dressing method is applied to bare operators of linear
auxiliary problems (20) with constant asymptotic value of U at infinity

U(ξ, η, t) −→
x2+y2−→∞

−ε �= 0. (22)

In this case the first linear auxiliary problem (20) has the form:

(∂2
ξη + Ũ)ψ = εψ. (23)

For σ = 1 (23) can be interpreted (ξ ⇒ t − x, η ⇒ t + y) as one-dimensional Klein–Gordon or
perturbed telegraph equation; for σ = i (23) is nothing but the two-dimensional 2D stationary
Schrödinger equation. Construction of exact solutions of (19) with constant asymptotic values
at infinity means simultaneously calculation of exact wave function ψ and exactly solvable cor-
responding potentials for above mentioned classical linear equations; here we present also new
exact rational potentials for two-dimensional stationary Schrödinger equation which correspond
to two-pole wave functions. Our results partially interplay in the case σ = i with that obtained
by different methods in the papers of Grinevich and his co-authors (see [18, 19] and references
therein). The use of the celebrated ∂-method of Zakharov and Manakov for the construction of
new exact solutions for NVN equations (19) by our opinion is very instructive and useful.



306 V.G. Dubrovsky, I.B. Formusatik and Ya.V. Lisitsyn

The long derivatives (5) in the case of NVN equations (19) have the form:

D1 = ∂ξ + iλ, D2 = ∂η − iε/λ, D3 = ∂t + i
(
κ1λ

3 − κ2ε
3/

(
λ3

))
. (24)

One can construct in this case two linear auxiliary problems of the type (7):

L1χ = (D1D2 + V1D1 + V2D2 + U)χ = 0,

L2χ =
(
D3 + κ1D

3
1 + κ2D

3
2 +W1D

2
1 +W2D

2
2 +W3D1 +W4D2 +W

)
χ = 0 (25)

satisfying to the condition of absence of singularities in λ. Reconstruction formulae for V1, V2,
U in the considered case have the form [20]:

V1 = −χ0η/χ0, V2 = −χ̃0ξ/χ̃0, U = −ε− iχ−1η = −ε+ iχ1ξ. (26)

Due to canonical normalization of χ, χ0 = 1 and V1 = 0. Potentiality condition for the opera-
tor L1 in (25) means V2 = 0 or due to (26) χ̃0 = const, say χ̃0 = 1, and according to (9) has the
form: ∫∫

C

dλ ∧ dλ
λ

∫∫
C
dµ ∧ dµ χ(µ, µ)R0(µ, µ;λ, λ)eF (µ)−F (λ) = 0, (27)

where due to (4) and (24)

F (λ) := i
(
λξ − ε

λ
η
)
− i

(
κ1λ

3 − κ2
ε3

λ3

)
t. (28)

The conditions of reality U and of potentiality of the operator L1 give some restrictions on the
kernel R0 of ∂-problem (1). In Nizhnik case (σ = 1) of NVN equations (19) with real ξ = x+ y,
η = x − y space variables and κ1 = κ1, κ2 = κ2 in the limit of weak fields from (10) and (26)
one can easily obtain the following restriction on the kernel R0 (3) of ∂-problem:

R0(µ, µ;λ, λ) = R0(−µ,−µ; −λ,−λ). (29)

To the Veselov–Novikov case (σ = i, κ1 = κ2 = κ) of NVN equations (19) with z = ξ = x+ iy,
z = η = x− iy the condition of reality of U leads from (10) and (26) in the limit of weak fields
to another restriction on the kernel R0 of ∂-problem:

R0(µ, µ;λ, λ) =
ε

|µ|2|λ|2µλ
R0

(
− ε
λ
− ε

λ
;− ε

µ
,− ε

µ

)
. (30)

Various choices for the kernel R of ∂-problem (1) satisfying to restrictions (27), (29) and (30)
lead to various classes of exact solutions of integrable nonlinear NVN equations (19).

In conclusion of this section let us cite several simplest exact rational solutions of NVN
equations (19) calculated in the paper [20].

Nizhnik equation, σ = 1. 1. The kernel R0 has the form (15) with N = 2, A2 = A1, with
the set (16) Λ = (λ1,−λ1), λ1 = λ1; the potentiality condition (27) is satisfied for 1

A1
− 1

A1
= i

λ1
.

The solution U of Nizhnik version of equations (19) has the form:

U = −ε− 2ε(
ξλ1 + ε

λ1
η + 3

(
κ1λ3

1 + κ2
ε3

λ3
1

)
t− a1λ1

)2 (31)

with the wave function of equation (23) of the following form [20]:

ψ =
exp

[
±i

(
λ1ξ −

(
ε/λ2

1

)
η +

(
κ1λ

3
1 − κ2ε

3/λ3
1

)
t
)]

ξ +
(
ε/λ2

1

)
η + 3

(
κ1λ2

1 + κ2ε3/λ4
1

)
t− a1

. (32)
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2. The kernel R0 has the form (15) with N = 2 and the set (16) Λ = (iα1,−iα1), α1 = α1;
the potentiality condition (27) is satisfied for 1

A2
− 1

A1
= i

λ1
. The solution U of Nizhnik version

of equations (19) has the form:

U = −ε− 2ε(
ξα1 − ε

α1
η − 3

(
κ1α3 − κ2

ε3

α3
1

)
t− a1α1

)2 (33)

with the wave function of equation (23) of the following form [20]:

ψ =
exp

[
±

(
α1ξ +

(
ε/α2

1

)
η −

(
κ1α

3
1 − κ2ε

3/α3
1

)
t
)]

ξ −
(
ε/α2

1

)
η − 3

(
κ1α2

1 − κ2ε3/α4
1

)
t− a1

. (34)

The solutions (31), (33) and wave functions (32), (34) evidently are singular.
3. The kernel R0 has the form (15) with N = 4, A2 = A1, A4 = A3, with the set (16)

Λ = (λ1,−λ1,−λ1, λ1), the potentiality condition (27) is satisfied for 1
A3

− 1
A1

= i
λ1

. The
solution U of Nizhnik version of equations (19) has the form:

U(ξ, η, t) = −ε− 2ε
(λ1X(λ1))2 +

(
λ1X(λ1)

)2 − 1/2
(
λ2

1I − λ2
1R

)2
/

(
λ2

1Iλ
2
1R

)(
|λ1X(λ1)|2 + |λ1|2

4

(
1
λ2
1I
− 1

λ2
1R

))2 (35)

with X(λ1) = ξ+ ε
λ2
1
η+3

(
κ1λ

2
1 + κ2

ε3

λ4
1

)
t−a1 and λ1 = λ1R+ iλ2I . The solution (35) evidently

nonsingular for |λ1I | < |λ1R|.
Quite analogously one calculates rational solutions of Veselov–Novikov version of equations

(19) [20].
Veselov–Novikov equation, σ = i. 1. The kernel R0 has the form (15) with N = 2,

A2 = A1λ1/λ1, with the set (16) Λ = (λ1,−λ1), |λ1|2 = ε; the potentiality condition (27) is
satisfied for λ1

A1λ1
− 1

A1
= i

λ1
. The solution U of Veselov–Novikov version of equations (19) has

the form:

U(z, z, t) = −ε− 2ε(
λ1z + λ1z + 3

(
κλ3

1 + κλ1
3
)
t− ã1λ1

)2 (36)

with the wave function of equation (23) (in this case of 2D stationary Schrödinger equation) of
the following form [20]:

ψ =
exp

[
±i

(
λ1z − λ1z + 3

(
κλ3

1 − κλ1
3
)
t
)]

λ1z + λ1z + 3
(
κλ3

1 + κλ1
3
)
t− ã1λ1

. (37)

2. The kernel R0 has the form (15) with N = 2, Akλk/λk = −Ak, k = 1, 2; with the set (16)
Λ = (λ1,−λ1), |λ1|2 = −ε; the potentiality condition (27) is satisfied for 1

A2
− 1

A1
= i

λ1
. The

solution U of Veselov–Novikov version of equations (19) has the form:

U(z, z, t) = −ε− 2ε(
λ1z + λ1z + 3

(
κλ3

1 + κλ1
3
)
t− ã1λ1

)2 (38)

with the wave function of equation (23) (in this case of 2D stationary Schrödinger equation) of
the following form [20]:

ψ =
exp

[
±i

(
λ1z − λ1z + 3

(
κλ3

1 − κλ1
3
)
t
)]

λ1z + λ1z + 3
(
κλ3

1 + κλ1
3
)
t− ã1λ1

. (39)

The solutions (36), (38) and wave functions (37), (39) evidently are singular.
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3. The kernel R0 has the form (15) with N = 4, A2k = εA2k−1/λk
2, k = 1, 2; with the

set (16) Λ = (λ1,−ε/λ1,−λ1, ε/λ1), |λ1|2 = −ε; the potentiality condition (27) is satisfied for
1
A2
− 1

A1
= i

λ1
. The solution U of Veselov–Novikov version of equations (19) has the form:

U(z, z, t) = −ε− 2ε
λ2

1X(λ1)2 + λ1
2
X(λ1)2 + 2

[(
ε2 + |λ1|4

)2
/

(
ε2 − |λ1|4

)2
]

(
|λ1X(λ1)|2 −

[
2ε|λ1|2 (ε2 + |λ1|4) / (ε2 − |λ1|4)2

])2 . (40)

The solution (40) evidently nonsingular for ε < 0 and have been obtained earlier (see [18, 19]
and references therein) by another method.

Let us mention that one can consider also the kernels R0 (3) of ∂-problem (1) with products
of delta-functions with derivatives, for example the kernel R0

R0(µ, µ;λ, λ) =
π

2

N∑
k=1

[
Ak δµ(µ− λk)δλ(λ− λk) +

ε3Ak

|µ|2|λ|2µλ
δε/λ

( ε
λ

+ λk

)
δε/µ

(
ε

µ
+ λk

)

+Bk δµ(µ+ λk) δλ(λ+ λk) +
ε3Bk

|µ|2|λ|2µλ
δε/λ

( ε
λ
− λk

)
δε/µ

(
ε

µ
− λk

) ]
(41)

in the form of products of derivatives of the first order of complex delta functions which have
non-zero values on the set Λ of complex plane consisting N quartets of complex isolated points
Λ :=

⋃N
k=1(λk,−ε/λk,−λk, ε/λk) arranged symmetrically near the origin and going to each other

by inversion relative to the origin and/or to the circle of radius
√
|ε|; Ak, Bk (k = 1, . . . , N) are

some complex constants. Such kernels correspond in the case σ = i to so called multiple-pole (to
pole of order two in considered case) wave functions of 2D stationary Schrödinger equation (23).
Recently following to the paper [21] new exact rational potentials of equation (23) by Dubrovsky
and Formusatik have been calculated. For the case |λ1|2 = ε > 0 and one quartet of the points the
potentiality condition (27) satisfies for the following choice of parameters 1/B1−1/A1 = i/

(
2λ3

1

)
,

λ3
1/A1 = −λ3

1/A1, λ3
1/B1 = −λ3

1/B1 and the corresponding exact potential has the form:

U = −2ε
4(x̃− ỹ)6 − 9

(
x̃2 − ỹ2

)2

[2(x̃− ỹ)4 + 3 (x̃2 + ỹ2)]2
, x̃ := λR(x− x̃0), ỹ := λI(y − ỹ0), (42)

where

x̃0 := −α1λI
|λ|2 + x0, ỹ0 := −α1λR

|λ|2 + y0, λ1 := λR + iλI . (43)

For another case | λ1 |2= −ε > 0 and one quartet of the points the potentiality condition (27)
satisfies for the choice of parameters 1/B1 − 1/A1 = i/

(
2λ3

1

)
, λ3

1/A1 = λ3
1/B1 and the corre-

sponding exact potential has the form:

U = 2ε
4(x̃+ ỹ)6 + 9

(
x̃2 − ỹ2

)2

[2(x̃+ ỹ)4 − 3 (x̃2 + ỹ2)]2
, x̃ := λI(x− x̃0), ỹ := λR(y − ỹ0), (44)

where

x̃0 := −r1λR|λ|2 + x0, ỹ0 :=
r1λI
|λ|2 + y0, λ1 := λR + iλI . (45)

In the formulas (42)–(45) x0, y0, α1, r1 are some real parameters. It occurs that the main
problem in calculating rational solutions corresponding to multiple pole wave functions of 2D
stationary Schrödinger equation (23) as in the case of wave functions with simple poles is the
fulfillment to the potentiality condition (27), in order to achieve this goal one must to choose
in (41) appropriately the constants Ak, Bk and the set Λ.
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3 Exact solutions of 2DKK and 2DSK equations

In this section following to the work [22] exact solutions of two-dimensional generalizations of
Sawada–Kotera and Kaup–Kuppershmidt equations [16, 17] are considered. The ∂-dressing
method can be applied also to the study of (2 + 1)-dimensional integrable generalizations of
Kaup–Kuperschmidt (2DKK)

Ut = Uxxxxx +
25
2
UxUxx + 5UUxxx + 5U2

x + 5Uxxy − 5∂−1
x Uyy + 5UUy + 5Ux∂−1

x Uy (46)

and Sawada–Kotera (2DSK)

Ut = Uxxxxx + 2UxUxx + 5UUxxx + 5U2
x + 5Uxxy − 5∂−1

x Uyy + 5UUy + 5Ux∂−1
x Uy (47)

equations. These equations were discovered in papers [16, 17], now they are known also as
a members of the so called CKP hierarchy [16] and can be represented as the compatibility
conditions in the Lax form [L1, L2] = 0; for the 2DKK equation – of the following two linear
auxiliary problems [17]:

L1Ψ =
(
∂3
x + U∂x +

1
2
Ux + ∂y

)
Ψ = 0,

L2Ψ =
[
∂t − 9∂5

x − 15U2∂3
x −

45
2
Ux∂

2
x

−
(

35
2
Uxx + 5U2 − 5∂−1

x Uy

)
∂x −

(
5UUx −

5
2
Uy + 5Uxxx

)]
Ψ = 0 (48)

and for 2DSK equation – of another two linear auxiliary problems [17]:

L1Ψ =
(
∂3
x + U∂x + ∂y

)
Ψ = 0,

L2Ψ =
[
∂t − 9∂5

x − 15U2∂3
x − 15Ux∂2

x −
(
10Uxx + 5U2 − 5∂−1

x Uy
)
∂x

]
Ψ = 0. (49)

Here and bellow ∂x ≡ ∂/∂x, ∂y ≡ ∂/∂y, ∂t ≡ ∂/∂t and ∂−1
x is an operator inverse to ∂x. The

first linear auxiliary differential problems in (48) and (49) are of the third order on ∂x, such
problems in general position have several fields as the coefficients at the various degrees of ∂x,
the 2DKK equation (46) and 2DSK equation (47) arise as special reductions of some integrable
nonlinear systems for these fields. It is well known that study of special reductions requires more
attention and may be more difficult than the consideration of nonlinear equations integrable by
auxiliary linear problems in general position. By our opinion application of ∂-dressing method in
nonstandard situations of special reductions may be very instructive and useful (in our case some
nonlinear constraint on the wave functions of the linear auxiliary problems must be satisfied).

The long derivatives (5) in the considered case have the form:

D1 = ∂x + iλ, D2 = ∂y + iλ3, D3 = ∂t + 9iλ5. (50)

By the use of these derivatives one can construct two linear operators (7):

L1χ =
(
D2 +D3

1 + UD1 + V
)
χ = 0, (51)

L2χ =
(
D3 − 9D5

1 + w3D
3
1 + w2D

2
1 + w1D1 + w0

)
χ = 0 (52)

satisfying to the condition of absence of singularities on λ. After simple calculations the following
reconstruction formulas for the potentials U and V :

U = −3iχ−1x, V = −3iχ−1xx + 3χ−2x − 3χ−1χ−1x (53)

and some formulas for potentials w0, w1, w2 can be obtained [22].
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It was shown in the paper [17] that to the (2 + 1)-dimensional integrable generalizations of
nonlinear Kaup–Kuperschmidt (46) and Sawada–Kotera (47) equations correspond the reduc-
tions:

(2DKK) : V =
1
2
Ux, (2DSK) : V = 0. (54)

In terms of the wave function χ = χ0+χ−1/λ+χ−2/λ
2+· · · the reductions (54) can be expressed

as the nonlinear constraint on the coefficients χ−1 and χ−2 (10):

(2DKK) : χ−2x −
i

2
χ−1xx − χ−1χ−1x = 0, (55)

(2DSK) : χ−2x − iχ−1xx − χ−1χ−1x = 0. (56)

As usual the solution of the ∂-problem (1) with canonical normalization χ0 = 1 is equivalent to
the solution of the singular integral equation (8) with F (λ) (4) given due to (4), (5) and (50)
by the expression:

F (λ) := i
(
9λx+ λ3y + 9λ5t

)
. (57)

The coefficients χ−1 and χ−2 of Taylor expansion of χ(λ) near the point λ = ∞ by the formu-
las (10) are given.

One can easily obtain the restrictions following from reality U = U of U on the kernel R0 of
∂-problem (1), one has in the limit of weak fields from (10) and (53):

R0(µ, µ;λ, λ) = R0(−µ,−µ;−λ,−λ), R0(µ, µ;λ, λ) = R0(λ, λ;µ, µ). (58)

It is evident that the conditions (58) are the same for both 2DKK and 2DSK equations (46)
and (47) but the nonlinear constraint (55) and (56) for these equations have different forms. So
in order to calculate the exact solutions of 2DKK (46) and 2DSK (47) equations via ∂-dressing
method one must satisfy the conditions of reality (58) and the nonlinear constraint (55) and (56).

Let us consider some new solutions of 2DKK (46) and 2DSK (47) equations obtained recently
in the work [22]

Exact solutions of 2DKK equation. 1. In the case of line soliton solutions to the
conditions of reality for U (58) the following delta-kernel R0 of ∂-problem (1) satisfies:

R0(µ, µ;λ, λ) =
π

2

N∑
k=1

Akδ(µ− iαk)δ(λ+ iαk) (59)

with nonzero values at the sets (12) of pure imaginary points Λ := (iα1, . . . , iαN ), Σ :=
(−iα1, . . . ,−iαN ) of the complex plane; Ap (p = 1, . . . , N) are arbitrary real constants; αp are
chosen so that |α1| < |α2| < · · · < |αN | and consequently αp + αq �= 0 for all p, q.

As was shown recently [22] the nonlinear constraint (55) for such kernel (59) in the case of
2DKK (46) equation is satisfied and for the N -soliton solution of 2DKK equation one obtains
simple determinant formula:

U(x, y, t) = 3
∂2

∂x2
ln detA (60)

with matrix A given by (13). In the simplest case N = 1 of the kernel R0 (59) with one term in
the sum using (13) and (60) one obtains one-soliton solution of 2DKK equation (46):

U(x, y, t) =
3α2

1

cosh2[α1x− α3
1y + 9α5

1t− a1]
, (61)
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where on the constants A1 and α1 additional condition 0 < A1
2α1

:= e2a1 is imposed. The general
formula (60) represents the superposition of N line soliton solutions of the type (61) interacting
with each other elastically. The solutions corresponding to the kernel R0 of the type (59) have
been obtained recently [23] for N = 1, 2 via the direct Hirota method by adjusting parame-
ters of solutions using symbolic calculations with well known software package Mathematica.
The application of ∂-dressing method leads immediately to general (N -arbitrary) determinant
formula (60).

2. By ∂-dressing method one can also effectively calculate rational solutions of integrable
nonlinear equations. To the rational solutions of 2DKK equation leads for example the following
delta-kernel R0 of ∂-problem (1):

R0(µ, µ;λ, λ) =
π

2

N∑
k=1

[Akδ(µ− iαk)δ(λ− iαk) +Akδ(µ+ iαk)δ(λ+ iαk)] (62)

which has nonzero values at the following set (16) Λ of pure imaginary points of complex plane
Λ := (Λ1, . . . ,Λ2N ) = (iα1,−iα1, . . . , iαN ,−iαN ). Constants Ak in (62) are arbitrary real con-
stants. It is evident that such kernel satisfies the conditions of reality for U (58). One can
show [22] that for such kernel the constraint (55) is also satisfied. For the rational solutions of
2DKK equation (46) corresponding to the kernel (62) one obtains again the simple determinant
formula (60) with the matrix A given by (18). In the simplest N = 1 case of two terms in
the sum (62) one has from (60) using (18) the following nonsingular rational solution of 2DKK
equation:

U(x, y, t) = 6
1

4α2
1
−

(
X(iα1)− 1

A1

)2

[
1

4α2
1

+
(
X(iα1)− 1

A1

)2
]2 , X(iα1) = x− 3α2

1y + 45α4
1t. (63)

The expression (63) represents nonsingular line lump solution of 2DKK equation (46). The
general formula (60) with matrix A (18) gives the superposition of N line nonsingular lumps of
the type (63) interacting with each other elastically.

3. Quite analogously to previous case one can show that to reality condition (58) and to the
constraint (55) also satisfies the following kernel R0 of ∂-problem (1):

R0(µ, µ;λ, λ) =
π

2

N∑
k=1

[Akδ(µ− λk)δ(λ− λk) +Akδ(µ+ λk)δ(λ+ λk)] (64)

which has nonzero values at the set Λ (16) with N pairs (λk,−λk), k = 1, . . . , N of real points
of complex plane; here Ak are arbitrary real constants. The calculations at the present case are
the same as at the previous one [22]. By the general formulas (15)–(18) and (53) one obtains
the solution of 2DKK equation in the simple determinant form (60) with some matrix A of the
form (18). In the simplest case N = 1 of two terms in the sum (64) due to (18) and (60) the
solution U(x, y, t)

U(x, y, t) = −6

(
X(λ1)− 1

A1

)2
+ 1

4λ2
1[(

X(λ1)− 1
λ1

)2
− 1

4λ2
1

]2 , X(λ1) = x− 3λ2
1y + 45λ4

1t (65)

of 2DKK equation (46) represents singular line lump. The general formula (60) gives the su-
perposition of N singular line lumps of the type (65) and also is the singular solution of 2DKK
equation (46).
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Exact solutions of 2DSK equation. (2 + 1)-dimensional integrable generalization of
Sawada–Kotera (2DSK) equation (47) differs from 2DKK equation (46) only by the constant
coefficient under the term UxUxx. These equations are different reductions (54) (V = 1/2Ux and
V = 0) of some integrable (2 + 1)-dimensional nonlinear system of equations for the fields U
and V . Due to this fact these equations have different linear auxiliary problems (48), (49) and
as consequence they have different constraints (55) and (56). The main problem in calculations
of exact solution of 2DSK equation (47) (as also for 2DKK equation (46)) is the choice of the
kernel R0 of ∂-problem (1) in the way that the reality conditions (58) and constraint (56) should
be satisfied.

1. In order to calculate line soliton solutions of 2DSK equation (47) let us start from the
delta-kernel R0 of the type (11):

R0(µ, µ;λ, λ) =
π

2

N∑
k=1

[Akδ(µ− iαk)δ(λ− iβk) +Bkδ(µ+ iβk)δ(λ+ iαk)] (66)

with nonzero values at the sets (12) Λ = (iα1,−iβ1, . . ., iαN ,−iβN ) and Σ = (iα1,−iβ1, . . ., iαN ,
−iβN ); here Ak, Bk, αk, βk (k = 1, . . . , N) are arbitrary real constants. Analogously to the
calculations in the case of 2DKK equation (46) one can show [22] that constraint (56) with
the kernel R0 (66) is satisfied if the following relation between constants Ak and Bk is fulfilled:
Akαk = Bkβk. The general formulas (11)–(14) and (60) are valid in the present case and the
N -soliton solution U(x, y, t) of 2DSK equation is given by the simple determinant formula (60)
with some matrix A of the type (13) [22]. In the simplest case N = 1 of two terms in the sum (66)
using (11)–(14) and (60) one obtains typical line-soliton solution of 2DSK equation (47):

U(x, y, t) =
3(α1 − β1)2

2 cosh2 1
2 [(α1 − β1)x− (α3

1 − β3
1)y + 9(α5

1 − β5
1)t− 2a1]

, (67)

where on constants A1, α1, β1 the condition 0 < A1(α1+β1)
2β1(α1−β1) := e2a1 is imposed. The general

formula (60) with matrix (13) represents the superposition of N line soliton solutions of the
type (67) which interact with each other elastically.

2. As the second example let us calculate rational solutions of 2DSK equation (47) which
correspond to the delta-kernel R0 of the type (15):

R0(µ, µ;λ, λ) =
π

2

N∑
k=1

[Akδ(µ− iαk)δ(λ− iαk) +Akδ(µ+ iαk)δ(λ+ iαk)] (68)

with nonzero values at the set (16) Λ = (iα1,−iα1, . . . , iαN ,−iαN ); here Ak, Bk, αk (k =
1, . . . , N) are arbitrary real constants. Analogously to the calculations in the case of 2DKK
equation one can show [22] that constraint (56) with the kernel R0 (68) is satisfied if the following
relation between constants Ak and Bk is fulfilled: 1

Bk
− 1

Ak
= 1

αk
; from the last relation follows

the parameterizations: 1
Bk

= ak + 1
2αk

, 1
Ak

= ak − 1
2αk

with ak (k = 1, . . . , N) – arbitrary real
constants. The general formulas (15)–(18) are valid in the present case and the rational solution
of 2DSK equation (47) corresponding to the kernel R0 (68) is given by the simple determinant
formula (60) with some matrix A of the type (18). In the simplest case N = 1 of two terms
in the sum (68) using (18), (60) and (68) one obtains [22] singular rational solution of 2DSK
equation (47):

U(x, y, t) =
6

(x− 3α2
1y + 45α4

1t− a1)2
. (69)

The general formula (60) represents the superposition of N line lump solutions of the type (69)
interacting with each other elastically, these solutions are also singular.
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The complete set of commuting invariants for integrable systems arising in the framework
of the Krall–Sheffer problem is derived using the classical R-matrix approach, based on the
loop algebra s̃l(2)R. The separating coordinates are also deduced from this framework.

1 Introduction

Krall and Sheffer studied the problem of finding all polynomial eigenfunctions of second order
linear differential operators in two variables having polynomial coefficients of degree equal to
the order of derivative under certain further restrictions relating to its symmetrizability and the
orthogonality of its eigenfunctions (for details see [2]). They classified all possible normal forms
of the operators satisfying the required properties. It was shown in [3] that all the operators in
the Krall–Sheffer list are reducible by gauge transformations to the form of a Laplace–Beltrami
operator on a space of constant curvature plus some potential, the magnetic field being absent.
Moreover, they all are related to two-dimensional superintegrable systems on spaces of constant
curvature [2].

In this paper we show how to construct a complete set of commuting invariants to the
integrable systems arising in the Krall–Sheffer framework using the classical R-matrix approach,
based on the loop algebra s̃l(2)R. We give both the quantum and classical formulations in
terms of Lax matrices depending on a loop parameter. The main construction is based on the
well-known procedure of symmetry reduction from a free system in a higher dimension space
(in particular, quadrics in R6 or C6). Classically this corresponds to reduction of geodesic flow,
while quantum mechanically it involves reduction of the Laplacian. The reduction process leaves
a residue of the original system, providing a complete set of commuting integrals.

2 General construction scheme

We begin with a phase space M of dim M = 12, with canonical variables (xi, yi)i=1,...,6 which
form the components of a pair (X,Y ) of (either real or complex) column vector.

From these we form a Lax matrix N(λ), depending on a spectral parameter λ ∈ C as follows:

N(λ) :=
1
2

(
Y T ,−XTJ

)
(λ−A)−1(X, JY ) =

n∑
i=1

mi∑
a=1

Na
i

(λ− αi)a
,
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where A, J are fixed 6 × 6 matrices with A having either n = 1, 2 or 3 distinct eigenvalues
{αi}i=1,...,n and minimal polynomial

n∏
i=1

(λ− αi)mi

and J is a symmetric real matrix with antidiagonal blocks of the form
0 0 . . . 1
0 . . . 1 0
. . .
1 . . .


for each Jordan block of A.

The dynamics is generated by Hamiltonians chosen from the algebra of spectral invariants
of N(λ). Classically, these Poisson commute and hence generate isospectral flows satisfying
a Lax equation:

dN

dt
= [B,N ] .

It is easily verified that N(λ) satisfies the standard rational R-matrix Poisson bracket rela-
tions:

{N(λ)⊗N(µ)} = [r(λ), N(λ)⊗ I + I⊗N(µ)],

where both sides are viewed, for fixed λ �= µ as elements of End
(
C6 ⊗ C6

)
and

r(λ) =
P1,2

(λ− µ)
, P1,2(u⊗ v) = v ⊗ u.

In the cases considered below, we only study Hamiltonians that are O(6, J) invariant and
restrict to the quadric defined by

XTJX = 1.

Quotienting by the stabilizer GA ⊂ O(6, J) of A we reduce to a 2-dimensional configuration
space, however the reduced system is no longer free.

In this case the algebra of spectral invariants is generated by the coefficients of:

−1
2

TrN(λ)2 =
n∑
i=1

2mi∑
d=1

Hi

(λ− αi)d

with 2mi ≤ ni. The numerators Hi of this partial fraction expansion all Poisson commute and
generate the algebra of spectral invariants. They are not all independent, however, since:

n∑
i=1

Hid = 0

and Hid with mi < d ≤ 2mi are Casimir invariants.
The connection between configuration space coordinates in 6-dimensional space and the sepa-

rating coordinates λ1, λ2 in the reduced 2-dimensional space is given by

XTJ(λ−A)−1X =
(λ− λ1)(λ− λ2)

a(λ)
,

where a(λ) is the minimal polynomial of the matrix A.
The quantum version of this approach is simply obtained through canonical quantization

with conjugate (momentum) variables yj replaced by the partial derivatives i ∂/∂xj . The relation
between the quantum integrals and the ones in the corresponding Krall–Sheffer cases is obtained
applying a suitable gauge transformation.
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3 Case 1. Sphere. Neuman–Rosochatius system

In the case of a sphere in R6, the matrices A and J are just:

A =



α 0 0 0 0 0
0 α 0 0 0 0
0 0 β 0 0 0
0 0 0 β 0 0
0 0 0 0 γ 0
0 0 0 0 0 γ

 , J = id

with α �= β �= γ. The symmetry algebra gA corresponding to the stabilizer GA ⊂ O(6,R) is
a maximal torus with generators

{x1y2 − x2y1, x3y4 − x4y3, x5y6 − x6y5}

and the Lax matrix has the form:

N(λ) =
N1

(λ− α)
+

N2

(λ− β)
+

N3

(λ− γ)
=

(
h(λ) f(λ)
e(λ) −h(λ)

)
,

where the Ni are elements of sl(2)

N1 =
1
2

(
x1y1 + x2y2 y2

1 + y2
2

−x2
1 − x2

2 −x1y1 − x2y2

)
,

N2 =
1
2

(
x3y3 + x4y4 y2

3 + y2
4

−x2
3 − x2

4 −x3y3 − x4y4

)
,

N3 =
1
2

(
x5y5 + x6y6 y2

5 + y2
6

−x2
5 − x2

6 −x5y5 − x6y6

)
.

The invariants are the coefficients of:

−1
2

TrN(λ)2 =
H1

(λ− α)
+

H2

(λ− β)
+

H3

(λ− γ)
+

µ2
1

(λ− α)2
+

µ2
2

(λ− β)2
+

µ2
3

(λ− γ)2
.

Here µ1, µ2 and µ3 are constants defining the restriction to level sets of invariants of motion
under the reduction procedure (the components of the moment map generating the torus action),
namely:

µ1 = x1y2 − x2y1, µ2 = x3y4 − x4y3, µ3 = x5y6 − x6y5.

Integrals H1, H2 and H3 are not all independent, since their sum is equal to zero. The
Hamiltonian of the problem is given by the linear combination:

H = αH1 + βH2 + γH3.

The constraint to a sphere S5 ⊂ R6 is given by XTJX = 1:

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 = 1.

The reduced ambient coordinates are given by the radial distance in three planes (X1, X2),
(X3, X4) and (X5, X6):

s21 = x2
1 + x2

2, s22 = x2
3 + x2

4, s23 = x2
5 + x2

6.
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The reduction of the constraint gives

s21 + s22 + s23 = 1.

The reduced Hamiltonian is:

H =
1
2

(
p2
1 + p2

2 + p2
3

)
+
µ2

1

s21
+
µ2

2

s22
+
µ2

3

s23
.

which is the kinetic energy on the sphere in R3 plus Rosochatius potential. Here (p1, p2, p3) are
canonical conjugate to (s1, s2, s3).

The reduced separating coordinates (λ1, λ2) in this case are sphero-conical coordinates related
to (s1, s2, s3) by:

s21 =
(α− λ1)(α− λ2)
(α− β)(α− γ)

, s22 =
(β − λ1)(β − λ2)
(β − α)(β − γ)

, s23 =
(γ − λ1)(γ − λ2)
(γ − α)(γ − β)

.

In terms of the reduced ambient space coordinates the integrals H1, H2 and H3 are:

H1 = −1
2
L2

13 + µ2
3s

2
1/s

2
3 + µ2

1s
2
3/s

2
1

α− γ
− 1

2
L2

12 + µ2
1s

2
2/s

2
1 + µ2

2s
2
1/s

2
2

α− β
,

H2 = −1
2
L2

23 + µ2
3s

2
2/s

2
3 + µ2

2s
2
3/s

2
2

β − γ
+

1
2
L2

12 + µ2
1s

2
2/s

2
1 + µ2

2s
2
1/s

2
2

α− β
,

H3 =
1
2
L2

23 + µ2
3s

2
2/s

2
3 + µ2

2s
2
3/s

2
2

β − γ
+

1
2
L2

13 + µ2
3s

2
1/s

2
3 + µ2

1s
2
3/s

2
1

α− γ
,

where Lij = s1p2 − s2p1. The quantum versions of these integrals are denoted by (Ĥ1, Ĥ2, Ĥ3)
and are obtained by replacing the matrix elements of N(λ) by the corresponding differential
operators. This leads to replacing Lij by their quantum version:

L̂ij =
√
−1(si∂/∂sj − sj∂/∂si).

Note that whereas the Hamiltonian H is independent of the parameters (α, β, γ), which only
serve to determine the separating coordinate system, the invariants H1, H2 individually do
depend on those. Therefore, different choices for these parameters give distinct integrals that
commute with H, but do not commute with each other. This provides an explanation for the
superintegrability of this system.

To relate the invariants to the ones obtained in [2] for the corresponding Krall–Sheffer case
we apply the gauge transformation consisting of conjugation by the function:

Φ = xd1yd2(1− x− y)d3 ,

where

d1 =
1
2

(d00 + 1/2), d2 =
1
2

(e00 + 1/2), d3 =
1
2

(1/2− d00 − e00 −B)

and d00, e00, B are the parameters appearing in Krall–Sheffer setting (see [2]).
The following are the relations between the integrals constructed in these two approaches:

H̃1 = 4
α1 − γ1

β1 − γ1
Îx + 4Îy − 4L̂− c0, H̃2 = 4

γ1 − β1

γ1 − α1
Îy + 4Îx − 4L̂− c1,

where H̃i = ΦĤΦ−1 and L̂ is the Krall–Sheffer operator corresponding to case I, c0 and c1
depend on α, β, γ, d00, e00, B.
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4 Case 2. Hyperboloid

For the case of a hyperboloid embedded in R6, matrices (A, J) may be taken as

A =



α 1 0 0 0 0
0 α 1 0 0 0
0 0 α 1 0 0
0 0 0 α 0 0
0 0 0 0 β 0
0 0 0 0 0 β

 , J =



0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Note that J has an antidiagonal block corresponding to each Jordan block of A and a diagonal
block corresponding to the diagonal part of A.

The symmetry algebra gA again has three generators

{x1y1 + x2y2 − x3y3 − x4y4, x2y1 − x4y3, x5y6 − x6y5}

but the Lax matrix now has a second order pole at λ = α:

N(λ) =
N1

(λ− α)
+

N2

(λ− α)2
+

N3

(λ− β)
,

where

N1 =
1
2

(
x1y1 + x2y2 + x3y3 + x4y4 2y1y4 + 2y2y3

−2x1x4 − 2x2x3 −x1y1 − x2y21x3y3 − x4y4

)
,

N2 =
1
2

(
−x4y3 + x2y1 −2y3y1

2x2x4 −x2y1 + x4y3

)
,

N3 =
1
2

(
x5y5 + x6y6 y2

5 + y2
6

−x2
5 − x2

6 −x5y5 − x6y6

)
.

Here (N1, N2) should be viewed as an element of the jet extension sl(2)(1)∗ while N3 ∈ sl(2).
The invariants again give us only two independent H1 and H2

−1
2

TrN(λ)2 =
H1

(λ− α)
+

H2

(λ− α)2
− µ1µ2

(λ− α)3
+

µ2
2

2(λ− α)4
+

H3

(λ− β)
− µ2

3

2(λ− β)2
,

where

H1 +H3 = 0.

The Hamiltonian is now defined by:

H = (α− β)H1 +H2 −
1
2
µ2

3.

The reduced ambient space coordinates (s1, s2, s3) are now defined by:

s21 =
(x1x4 + x2x3)2

2x2x4
, s22 = 2x2x4, s23 = x2

5 + x2
6.

The constraint to the quadric XTJX = 1 reduces to define a hyperboloid in R3

2s1s2 + s23 = 1.
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In these coordinates the integrals H1 and H2 are

H1 =
(s1p3 − s3p2)(s3p1 − s2p3)− µ2

3s1s2/s
2
3 + µ1µ2s

2
3/s

2
2 − µ2

2s1s
2
3/s

2
2

α− β

− (s3p1 − s2p3)2 + µ2
3s

2
2/s

2
3 − µ2

2s
2
3/s

2
2

2(α− β)2
,

H2 =
1
2

(s1p1 − s2p2)2 − 2
µ2

2s
2
1

s22
+ 2

µ1µ2s1
s2

+
(s3p1 − s2p3)2 + µ2

3s
2
2/s

2
3 − µ2

2s
2
3/s

2
2

2(α− β)
.

The quantized operators Ĥ1, Ĥ2, Ĥ3 are obtained as before by replacing all conjugate variables
by corresponding differential operators. And again, whereas Hamiltonian H does depend on
the parameters (α, β) the integrals H1, H2 do, thereby again providing an explanation for the
superintegrability in this case.

5 Case 3. Pseudoeuclidean plane

Matrix A in this case has only one degenerate eigenvalue:

A =



α 1 0 0 0 0
0 α 1 0 0 0
0 0 α 0 0 0
0 0 0 α 1 0
0 0 0 0 α 1
0 0 0 0 0 α

 , J =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 ,

J is antidiagonal.
The symmetry algebra gA is generated by

{−x1y4 − x2y5 − x3y6 + x4y1 + x5y2 + x6y3, x6y1 − x3y4, −x2y4 − x3y5 + x5y1 + x6y2}

and the Lax matrix is of the form:

N(λ) =
N1

(λ− α)
+

N2

(λ− α)2
+

N3

(λ− α)3
,

where

N1 =
1
2


x1y1 + x2y2 + x3y3

+ x4y4 + x5y5 + x6y6
2y1y3 + y2

2 + 2y4y6 + y2
5

−2x1x3 − x2
2 − 2x4x6 − x2

5
−x1y1 − x2y2 − x3y3

− x4y4 − x5y5 − x6y6

 ,

N2 =
1
2

(
−x3y2 − x2y1 − x6y5 − x5y4 −2y2y1 − 2y4y5

2x2x3 + 2x5x6 x3y2 + x2y1 + x6y5 + x5y4

)
,

N3 =
1
2

(
x3y1 + x6y4 y2

1 + y2
4

−x2
3 − x2

5 −x3y1 − x6y4

)
.

The trace formula again gives only two independent integrals H1 and H2

−1
2

TrN(λ)2 =
H1

(λ− α)2
+

H2

(λ− α)3
− 2µ1µ2 − µ2

3

2(λ− α)4
+

µ2µ3

2(λ− α)5
− µ2

2

2(λ− α)6
.
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The Hamiltonian of the problem is:

H = −2p1p3 − p2
2 + 2γ1γ3 + γ2

2 ,

γ1 =
µ1

s1
− µ2s2

s21
− µ3s

2
2

s21
− µ3s3

s21
, γ2 =

µ2

s1
− µ3s2

s21
, γ3 =

µ3

s1
.

In this case the parameter α may be absorbed in the definition of λ and therefore no parameter
dependence appears in the integrals H1 and H2:

H1 = (p2s3 − s2p1)(s1p1 − s3p3)− 2s2s3
(
p2
2 + 2p1p3

)
− µ1µ2

s21
− 3µ3µ2s3

s31

− µ3µ2s1
s22

− 4s3µ3µ1(1− 2s1s2)
s41

− µ3s
2
2

s21
− (µ2

2 + µ3µ1)s2
s31

,

H2 =
(
p2
2 + 2p1p3

) (
s22 + 2s1s3

)
+

2µ2
3s1
s22

+
4µ2

3s
2
3

s21

+
4µ3µ2s2
s31

− µ2
2 − 2µ3µ1

s21
+
µ2

3

(
1− 2s22

)
s41

.

Reduced coordinates in R3

s21 = −(x1x3 + x4x6)2

x2
3 + x2

6

, s22 = x2
2 + x2

5, s23 = −
(
x2

3 + x2
6

)
.

The constraint to the quadric XTJX = 1 reduces to 2s1s3 + s22 = 1.

6 Conclusions

The approach based on Lax matrices satisfying the rationalR-matrix structure gives a systematic
way to derive the Hamiltonians and commuting invariants for these three cases corresponding
to Krall–Sheffer operators on quadrics. This also provides a prescription for the separating co-
ordinates, both in the classical and quantum cases. The presence of the additional parameters
(α, β, γ) in the Case I, and (α, β) in the case II provides an explanation for their superintegra-
bility.

A similar analysis may be made for the cases of Euclidean space arised in the Krall–Sheffer
problem, they may be obtained as limiting cases of the above, providing an R-matrix approach to
the remaining Krall–Sheffer operators. The details for all these cases will be provided elsewhere.
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In this paper a new integrable nonlinear Hamiltonian system in (1 + 1)-dimension is intro-
duced. Nontrivial connection with well-known multicomponent nonlinear Schrödinger model
is found.

Let us consider a non-linear Hamiltonian system

ψt = {ψ,H} (1)

in the Schwarz space of smooth fast decreasing on the ±∞ complex value l-component vector-
functions ψ = (ψ1, . . . , ψl) (x), l ∈ N of the variable x ∈ R with the Hamiltonian

H =
∫ +∞

−∞
|ψx|2dx, (2)

and local brackets of Poisson for dynamic variables ψm, ψn, m,n = 1, l:{
ψn(x), ψ̄m(y)

}
:= iδmn

(
c+ |ψ|2(x)

)2
δ(x− y), (3)

where δmn is the Kronecker symbol, δ(z) is the Dirac function, c ∈ R.
System (1)is non-linear evolutionary system of differential equations with variable separant

(coefficient at higher derivative) and has the next form:

iψt = −
(
c+ |ψ|2

)2 δH

δψ∗
=

(
c+ |ψ|2

)2
ψxx, (4)

where δ
δψ∗ is the Euler operator of variative derivative over the vector-function ψ∗ := ψ̄�.

Proposition 1. Hamiltonian system (1)–(4) is formally integrable (by Lax) and assumes in-
finitive hierarchy non-trivial local laws of motion.

Proof. For simplicity we restrict ourselves with Lax commutative representation discovered by
us [L,M ] := LM −ML = 0 in algebra of integro-differential operators [1, 2] which is equivalent
to system (4), where

L =
(
c+ |ψ|2

)
D + ψxψ

∗ − ψxD−1ψ∗x, (5)

M = i∂t −
(
c+ |ψ|2

)2D2 − 2
(
c+ |ψ|2

)
|ψ|2xD = i∂t −

(
L2

)
>0
, (6)

and, as consequence of operators commutativity in (5)–(6), known [1] procedure for finding
density ρk of first integrals Hk :=

∫ +∞
−∞ ρkdx:

ρk = Res
(
Lk

)
, k ∈ Z. (7)

�
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Remark 1. Obviously, k = 1 corresponds to Hamiltonian H(2), and one of the simplest first
integrals (k = −1) in the formula (7) has the form:

H−1 =
∫ +∞

−∞
|ψ|2

c+ |ψ|2dx, c ∈ R \ {0}.

Remark 2. In the formula (5) integral item ψxD−1ψ∗x is a symbol of skew-Hermitian operator
of Volterra V̂ with the degenerated kernel V (x, s) := ∂ψ(x)

∂x
∂ψ∗(s)
∂s(

V̂ f
)

(x) =
1
2

{∫ x

−∞

l∑
i=1

∂ψi(x)
∂x

∂ψ̄i(s)
∂s

f(s)ds−
∫ +∞

x

l∑
i=1

∂ψi(x)
∂x

∂ψ̄i(s)
∂s

f(s)ds

}
.

The symbol
(
Lk

)
>0

strands for the differential part without free term (multiplier operator
by function) of an integro-differential operator Lk.

Proposition 2. The followng non-local replacement of variables (t, x, ψ) → (τ, y, ϕ) :

τ = t, y′x =
1

c+ |ψ|2 , ϕ(τ, y) =
ψy

c+ |ψ|2 exp
∫ y

−∞

ψyψ
∗

c+ |ψ|2dy (8)

transforms non-linear system (4) into the multicomponent non-linear equation of Schrödinger [3]

iϕτ = ϕxx + 2|ϕ|2ϕ. (9)

Proof. The proof is conducted by direct calculation. We restrict ourselves by the Lax opera-
tor (5). Making replacement (8) we get

L =
(
c+ |ψ|2

)
Dx + ψxψ

∗ − ψxD−1
x ψ∗ → L̃ = Dy +

ψyψ
∗

c+ |ψ|2 −
ψy

c+ |ψ|2D
−1
y ψ∗y ,

and after gauge trasformation L̃ → ΦL̃Φ−1 with the function Φ = exp
∫ y
−∞

ψyψ∗
c+|ψ|2dy the opera-

tor L to pass into the Lax operator LNS [2, 4, 5] for the model (9):

LNS = ΦL̃Φ−1 = Dy − ϕD−1ϕ∗,

where the dynamic variable ϕ = ϕ(τ, y) is defined by substitution (8). �
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As a prototype of powerful non-Abelian symmetry in an Integrable System, I will show the
appearance of a Witt algebra of vector fields in the SG theory. This symmetry does not
share anything with the well-known Virasoro algebra of the conformal c = 1 unperturbed
limit. Although it is quasi-local in the SG field theory, nevertheless it gives rise to a local
action on N -soliton solution variables. I will explicitly write the action on special variables,
which possess a beautiful geometrical meaning and enter the Form Factor expressions of
quantum theory. At the end, I will also give some preliminary hints about the quantisation.

1 Introduction

Nowadays the very peculiar rôle of symmetries is clearly recognised in all the areas of Mathe-
matical Physics also thanks to the recent developments of Quantum Physics. In fact, it was in
the context of Classical Physics that Liuoville defined as integrable a system having a number
of local integrals of motion in involution (LIMI’s) equal to the degrees of freedom and proposed
a theorem (Liouville–Arnold theorem [1]) to solve the motion up to quadratures – in the case
of finite number of degrees of freedom. Nevertheless, there is no equivalent theorem when the
degrees of freedom become infinite as well as the number of Abelian symmetries: the classical
field theories represent an important example which attracted more and more interest. The sit-
uation is even more complicated when the system is a quantum field theory: in this case we may
be interested, for instance, in the energy spectrum [2, 3] or in the spectrum of fields or in the
correlation functions of those fields [4], as the usual meaning of motion is definitely lost. In fact,
in systems with infinite degrees of freedom non-Abelian symmetries revealed to be more useful:
let us think of Classical Inverse Scattering Method [5] and Bethe Ansatz [2, 3] as two illustra-
tive examples among the others. Moreover, the Virasoro algebra in two Dimensional Conformal
Field Theories (CFT’s) represents perhaps the most successful example of how a non-Abelian
symmetry can solve a quantum field theory and in this case a theory realising a physical system
at the very important critical point [6].

Unfortunately, this Virasoro algebra does not exist any longer if the system is pushed out
of the critical point, still preserving Liouville integrability [6]. For instance, the Sine-Gordon
(SG) theory is one of the simplest massive Integrable Field Theories (IFT’s), although it is the
first theory in a series of structure richer theories, the Affine Toda Field Theories (ATFT’s) [7]
and possesses all the features peculiar to the more general IFT’s [8]. Actually, non-Abelian
infinite-dimensional symmetries were found in all Toda theories and they are called dressing
symmetries at classical level [9] and become (level 0) affine quantum algebras after quantisa-
tion [10]. Nevetheless, because of their affine and highly non-local characters those symmetries
are not of large use.

In this talk I present the appearance of infinitesimal symmetry transformations (vector fields)
acting on the boson field of the classical Sine-Gordon theory. These vector fields turn out to
close a Witt (centerless Virasoro) algebra. Since the only ingredient of the recipe is the Lax
pair formulation of SG equation, it is clear how to generalise the construction to more general
field theories like, for instance, ATFT’s. Nevertheless, I rather would like to focus my attention
on the origin and form of the infinitesimal transformations in the particular case of SG theory.
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Specifically, I will show how to introduce the SG theory starting from the simpler Korteweg-de
Vries (KdV) theory and how to frame this symmetry inside the KdV theory. Actually, I will not
give a complete proof of all the statements I will formulate, leaving this part to a more systematic
publication [11]. On the contrary, the restriction of these vector fields on the variables of the
N -soliton solutions was described and analysed in [12]: in this talk I sketch only how to derive
this action on a more intuitive ground. In the soliton phase space the infinitesimal transforma-
tions are realised in a much simpler form and in particular they become local contrary to the
field theory case (in which these are quasi-local). At the end, I will deliver few comments about
how much easier quantisation of the soliton phase space might appear.

2 The action of the Witt symmetry on fields

Let me recall the construction of the Witt symmetry in the context of (m)KdV theory [13, 14].
It was shown in [14], following the so-called matrix approach, that it appears as a generalisation
of the ordinary dressing transformations of integrable models. As integrable system the mKdV
equation enjoys a zero-curvature representation

[∂t −At, ∂x −Ax] = 0, (1)

where the Lax connections Ax, At belong to a finite dimensional representation of some loop al-
gebra and contain the fields and their derivatives. In this particular case the first Lax operator L
is given by

Ax =
(
φ′ λ
λ −φ′

)
, (2)

where I have denoted with φ′ the mKdV field (prime means derivative with respect to the space
variable x), with λ the A(1)

1 loop algebra parameter (spectral parameter) and At can be found
using the dressing procedure I am going to describe [15]. The KdV variable u(x) is connected
to the mKdV field φ′ by the Miura transformation:

u = −(φ′)2 − φ′′. (3)

Key objects in the following construction are solutions T (x, λ) of the so-called associated linear
problem

(∂x −Ax(x, λ))T (x, λ) = 0, (4)

which may be called monodromy matrices. A formal (suitably normalised) solution of (4) can
be formally expressed by

Treg(x, λ) = eHφ(x)P exp
(
λ

∫ x

0
dy

(
e−2φ(y)E + e2φ(y)F

))
. (5)

Of course, this solution is just an infinite series in positive powers of λ ∈ C with an infinite
radius of convergence. I shall often refer to (5) as regular expansion. It is also clear from (5)
that any solution T (x, λ) possesses an essential singularity at λ = ∞ where it is governed by the
corresponding asymptotic expansion. In consequence, an asymptotic expansion has been derived
in detail in [15]

Tasy(x, λ) = KG(x, λ)e−
∫ x
0 dyD(y), (6)
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where K and G and D are written explicitly in [15]. In particular the matrix

D(x, λ) =
∞∑

i=−1

λ−idi(x)H i, H =
(

1 0
0 −1

)
(7)

contains the local conserved densities d2n+2(x).
Obviously, a gauge transformation for Ax

δAx(x, λ) = [θ(x, λ),L] (8)

preserves the zero-curvature form (1) if an analogous one applies to At: the vector field δ defines
a symmetry of the equation of motion (1) in the usual sense, mapping a solution into another
solution. Moreover, to build up a consistent gauge connection θ(x, λ) for the previous infinites-
imal transformation, I must pay attention to the fact that the r.h.s. needs to be independent
of λ since the l.h.s. is, as consequence of (2). Hence, a suitable choice for the gauge connection
goes through the construction of the following object

ZX(x, λ) = T (x, λ)XT (x, λ)−1, (9)

where X is such that

[∂x, X] = 0. (10)

Indeed, it is obvious from the previous definition that it satisfies the resolvent condition[
L, ZX(x, λ)

]
= 0, (11)

for the first Lax operator L = ∂x −Ax(x, λ). Now, this property implies[
L, (ZX(x, λ))−

]
= −

[
L,

(
ZX(x, λ)

)
+

]
, (12)

where the subscript − (+) means that I restrict the series only to negative (non-negative) powers
of λ, and hence yields the construction of a consistent gauge connection defined as

θX(x, λ) =
(
ZX(x, λ)

)
− or θX(x, λ) =

(
ZX(x, λ)

)
+
. (13)

Further, I have to impose one more consistency condition implied by the explicit form of Ax (2),
namely δAx must be diagonal

δXAx = HδXφ′. (14)

This implies restrictions about the indices of the transformations [16]. After posing T = Treg

I obtain the so-called dressing symmetries [15] and the indices are even for X = H and odd for
X = E,F . Instead, after posing T = Tasy I get for X = H the commuting (m)KdV flows (or
the (m)KdV hierarchy), which define the different time t2k+1, k = 0, 1, 2, . . . evolutions and in
particular (1) with t = t3 [16].

At this point I want to make an important observation. Let me consider the KdV variable x
as a space direction x− of some more general system (and ∂− = ∂x as a space derivative). Let
me introduce the time variable x+ through the corresponding evolution flow

∂+ =
(
δE−1 + δF−1

)
, (15)

defined by a zero curvature condition of the form (8)

∂+Ax−(x−, x+;λ) = [θ+(x−, x+;λ),L]. (16)
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This specific θ+(x−, x+;λ) is derived using (13) with the regular expansion. Then, it can be
proved [16] that the equation of motion for φ becomes:

∂+∂−φ = 2 sinh(2φ), or if φ→ iφ, ∂+∂−φ = 2 sin(2φ), (17)

i.e. the Sine-Gordon equation. As we will see later, this observation will appear very fruitful for
my purpose since it provides an introduction of Sine-Gordon dynamics as a vector field in the
powerful algebraic framework of the KdV hierarchy and its symmetries. For instance, I obtain
as simple by-product the fact that mKdV hierarchy is a symmetry for SG equation. Of course,
the Hamiltonians – given by the part of the dressing charges corresponding to the (16) and the
higher flows ∂2k+1 = δE−2k−1 + δF−2k−1 [15] – coincide with the well-known ones [5].

Now, let me explain how the Witt symmetry appears in the KdV system [14]. The main idea
is that one may dress not only the generators of the underlying A(1)

1 algebra but also an arbitrary
differential operator in the spectral parameter. I take for example λm+1∂λ which are the well
known vector fields of the diffeomorphisms of the unit circumference and close a Witt algebra.
Then I proceed in the same way as above defining the resolvent associated to the circumference
diffeomorphisms

ZV (x, λ) = T (x, λ)∂λT (x, λ)−1. (18)

When I consider the asymptotic case, i.e. I take T = Tasy in (18), I obtain the non-negative Witt
flows. In general they are written in terms of recursive quasi-local expressions αV2m(x), m ≥ 0
as

δV2mφ(x) = αV2m(x), (19)

where

αV0 (x) = −xφ′(x), αV2m+2(x) =
[
−φ′∂−1

x φ′∂x +
1
4
∂2
x

]
αV2m(x). (20)

Let me highlight the appearance of the pseudodifferential operator ∂−1
x , acting on a function f(x)

as

∂−1
x f(x) =

∫ x

dyf(y), (21)

which is responsible (together with the form of the initial condition (20)) for the non complete
locality. From these vector fields I can deduce the action on u(x) using (3)

δV2mu(x) = 2∂xβV2m+1(x) (22)

again in terms of recursive quasi-local expressions βV2m−1(x)

βV−1 = −x, βV2m+1(x) =
[

1
2

(
u+ ∂−1

x u∂x +
1
2
∂2
x

)]
βV2m−1(x). (23)

For instance, the first two of (19) can be written as

δV0 φ = −xφ′, δV2 φ =
1
2
φ′

(
∂−1
x φ′2

)
− 1

2
φ′′ − 1

2
x

[
1
2
φ′′′ − (φ′)3

]
. (24)

The negative Witt transformations can also be built up by taking T = Treg in (18) in such
a way to complete the algebra [14]. Unfortunately, those vector fields do not act as gauge
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transformations on the SG equation of motion (16), actually they are not true symmetry trans-
formations [16].

Nevertheless, thanks to the way (16) I have introduced SG theory through, I am in the
position to extend the (half) Witt symmetry algebra jumping from (m)KdV to the SG theory.
For obvious reasons I will rename in the following the KdV variable u with

u−(x−, x+) = −(∂−φ(x−, x+))2 − ∂2
−φ(x−, x+). (25)

Hence, after looking at the symmetric rôle that the derivatives ∂− and ∂+ play in the Sine-
Gordon equation, I can obtain the negative (m)KdV hierarchy, acting on the fields φ(x−, x+)
and

u+(x−, x+) = −(∂+φ(x−, x+))2 − ∂2
+φ(x−, x+), (26)

in the same way as above but with the change of rôles x− → x+ (and consequently ∂− → ∂+).
Similarly, I obtain the other half of a Witt algebra by using the same construction already
showed, but with x− substituted by x+.

Of course, it is not obvious at all that the two different halves will recombine into a unique
Witt algebra. Actually, even the first Witt vector field in the original construction (24) needs
a symmetrising improvement to leave exactly invariant the zero curvature form of SG equa-
tion (16):

δV0 φ = −x−∂−φ− x+∂+φ. (27)

Nevertheless, I have checked this statement brute force in the case[
δV2 , δ

V
−2

]
φ = 4δV0 φ, (28)

and it works in a peculiar manner, simply using the transformation definitions (27) and the
second of (24). I would like to leave for future publication the detailed explanation of how
a complete proof of this proposition may be elaborated along smart lines [11].

In conclusion, I have found an entire Witt algebra of transformations acting as gauge sym-
metries on SG equation (16). Moreover, I sketch now how the restriction of the action on soliton
solution phase space yields the result argued in [12] following a slightly different procedure.

3 The Witt symmetry acting on the soliton solution variables

I start with a brief description of the well known soliton solutions of SG equation and (m)KdV
hierarchy in the infinite times formalism. To see how a N -soliton solution can be parametrised,
I need to go through the expression of the so-called tau-function. This can be written as
a determinant

τ(X1, . . . , XN |B1, . . . , BN ) = det(1 + V ), (29)

where V is a NxN matrix

Vij = 2
BiXi

Bi +Bj
, i, j = 1, . . . , N, (30)

and Xi({t2k+1}|xi, Bi) are exponential functions of of all the times {t2k+1}, k ∈ Z (e.g. in the
previous notation t−1 = x+, t1 = x−, t3 = t)

Xi({t2k+1}|xi, Bi) = xi exp

(
2

+∞∑
k=−∞

B2k+1
i t2k+1

)
. (31)
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The constant parameters Bi and xi describe the soliton velocities and positions respectively.
Now the SG or the mKdV field solution is expressed in a beautiful unitary way as

eφ =
τ−
τ+
, (32)

where simply

τ± = τ({±Xi}|{Bi}), (33)

in the sense that after putting all the negative (positive) times to zero, I end up with the
N -soliton solution of the mKdV hierarchy (the negative mKdV hierarchy), whereas after the
position to zero of all the times but t−1 = x+, t1 = x−, I end up with the N -soliton solution of
the SG equation.

The main goal of this Section is to find the action of the Witt symmetry on the N -soliton
solution and this is more conveniently achieved introducing other variables {Ai, Bi}, expressed
implicitly by the old variables {Xi, Bi} through the implicit formulae

Xj

∏
k 	=j

Bj −Bk
Bj +Bk

=
N∏
k=1

Bj −Ak
Bj +Ak

, j = 1, . . . , N. (34)

In fact, the {Ai, Bi} are the soliton limit of certain variables describing the more general quasi-
periodic finite-zone solutions of (m)KdV [17], being the Bi the limit of the branch points of
the hyperelliptic curve describing a particular solution and the Ai the limit of the zeroes of the
so-called Baker–Akhiezer function defined on the curve. Actually, even for the description of the
quantum physics of Form Factors these variables are apparently more natural and suitable [18].
Although, in terms of these variables the tau functions have still a cumbersome form

τ+ = 2N
N∏
j=1

Bj


∏
i<j

(Ai +Aj)
∏
i<j

(Bi +Bj)∏
i,j

(Bi +Aj)

 ,

τ− = 2N
N∏
j=1

Aj


∏
i<j

(Ai +Aj)
∏
i<j

(Bi +Bj)∏
i,j

(Bi +Aj)

 , (35)

the SG (mKdV) field (32) enjoys a simple expression

eφ =
N∏
j=1

Aj
Bj
. (36)

In consequence, the two components of the stress-energy tensor (25) and (26) take a wieldy form
as well

u− = −2

 N∑
j=1

A2
j −

N∑
j=1

B2
j

 , u+ = −2

 N∑
j=1

A−2
j −

N∑
j=1

B−2
j

 . (37)

Now I am in the position to restrict the Witt symmetry of SG equation developed in the previous
Section to the case of soliton solutions. Although these transformations have been derived
in [12], here I will follow a more intuitive path, which underlines the geometrical meaning of this
symmetry. In other words our starting point consists in the transformations of the rapidities
under the Witt symmetry: I do expect that they change the conformal structure of the Riemann
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surface describing the finite-zone solutions. Actually, in the (m)KdV theory the soliton limit of
the Witt action on the Riemann surface reads simply [13]

δ2nBi = B2n+1
i , n ≥ 0, (38)

where I have forgotten the superscript V for indicating the action on soliton variables. Further,
the action of negative transformations should not be different

δ−2nBi = −B−2n+1
i , n > 0, (39)

save an additional− sign in the r.h.s. [12] which takes into account the Witt algebra commutation
relations. I have to show now the transformations of the Ai variables as consequences of (38)
and (39) once applied to the implicit map (34) by using the expression (31) of Xi in terms of Bi.
The problem is simplified by the fact that I know from the field theory that the symmetry algebra
is a Witt algebra, and hence I need to compute only the transformations δ0, δ±2 and δ±4,
for the higher vector fields are then furnished by commuting. In this way it is evident why
the Witt transformations become local when restricted on the soliton solutions, though the
transformations of φ and u± in the SG theory are quasi-local. Actually, I think more natural
and more compact to express the Witt action on Ai by using the equations of motion of Ai
derived from (31) and (34), like for instance

δ−1Ai = ∂+Ai =
N∏
j=1

(
A2
i −B2

j

)
B2
j

∏
j 	=i

A2
j(

A2
i −A2

j

) ,
δ1Ai = ∂−Ai =

N∏
j=1

(
A2
i −B2

j

) ∏
j 	=i

1(
A2
i −A2

j

) ,
δ3Ai = 3

 N∑
j=1

B2
j −

∑
k 	=i

A2
k

 ∂−Ai,

1
5
δ5Ai =

 N∑
j=1

B4
j −

∑
k 	=i

A4
k

 ∂−Ai −
∑
j 	=i

(
A2
i −A2

j

)
∂−Ai∂−Aj . (40)

In conclusion, the direct calculation is quite tiresome and I present here only few results:

δ−2Ai =
1
3
x+δ−3Ai −A−1

i − ∂+Ai

N∑
j=1

A−1
j − x−∂+Ai, (41)

δ−4Ai =
1
5
x+δ−5Ai −A−3

i −


N∑
j 	=i

1
Ai

(
1
A2
i

− 1
A2
j

)
+

N∑
j=1

1
Aj

N∑
k=1

1
B2
k

 ∂+Ai − x−δ−3Ai

and for non-negative vector fields

δ0Ai = (x−∂− − x+∂+ + 1)Ai, δ2Ai =
1
3
x−δ3Ai +A3

i −

 N∑
j=1

Aj

 ∂−Ai − x+∂−Ai,

δ4Ai =
1
5
x−δ5Ai +A5

i −

∑
j 	=i

Ai
(
A2
i −A2

j

)
+

N∑
j=1

Aj

N∑
k=1

B2
k

 ∂−Ai − x+δ3Ai. (42)
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At this point, I need to carry out two important checks. First, I have to calculate the
commutators of the δ2m (with m ∈ Z) with the light-come SG flow ∂±, acting on Ai. These
are always zero and represent an equivalent way to express the symmetry action. Second,
I have to verify the algebra of the δ2m (with m ∈ Z) on Ai and this is a very non trivial check for
I have derived all the transformations (41) and (42) from the Witt algebra on Bi, written in (38)
and (39), and from the implicit map (34). Nevertheless the action on Ai is again a representation
of the Witt algebra:

[δ2n, δ2m]Ai = (2n− 2m)δ2n+2mAi, n,m ∈ Z. (43)

4 Comments about quantisation

Of course, I might be interested in the quantum Sine-Gordon theory. In the case of solitons
there is a standard procedure: the canonical quantisation of the N -soliton solutions. Indeed, let
me introduce the variables canonically conjugated to the Ai:

Pj =
N∏
k=1

Bk −Aj
Bk +Aj

, j = 1, . . . , N. (44)

In these variables one can perform the canonical quantisation of theN -soliton system introducing
the deformed commutation relations between the operators Âi and P̂i:

P̂jÂj = qÂjP̂j ,

P̂kÂj = ÂjP̂k, for k �= j, (45)

where q = exp(iξ), ξ = πγ
π−γ and γ is the coupling constant of the SG theory. Understanding

how the Witt symmetry is deformed after quantisation is a very seductive problem.
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In this article, I will report a Lax pair structure, a Bäcklund–Darboux transformation, and
the investigation of homoclinic structures for 2D Euler equations of incompressible inviscid
fluids.

1 Introduction

The governing equation of turbulence, that we are interested in, is the incompressible 2D Navier–
Stokes equation under periodic boundary conditions. We are particularly interested in investi-
gating the dynamics of 2D Navier–Stokes equation in the infinite Reynolds number limit and
of 2D Euler equation. Our approach is different from many other studies on 2D Navier–Stokes
equation in which one starts with Stokes equation to prove results on 2D Navier–Stokes equa-
tion for small Reynolds number. In our studies, we start with 2D Euler equation and view
2D Navier–Stokes equation for large Reynolds number as a (singular) perturbation of 2D Euler
equation. 2D Euler equation is a Hamiltonian system with infinitely many Casimirs. To under-
stand the nature of turbulence, we start with investigating the hyperbolic structure of 2D Euler
equation. We are especially interested in investigating the possible homoclinic structures.

In [1], we studied a linearized 2D Euler equation at a fixed point. The linear system decou-
ples into infinitely many one-dimensional invariant subsystems. The essential spectrum of each
invariant subsystem is a band of continuous spectrum on the imaginary axis. Only finitely many
of these invariant subsystems have point spectra. The point spectra can be computed through
continued fractions. Examples show that there are indeed eigenvalues with positive and negative
real parts. Thus, there is linear hyperbolicity.

In [2] and [3], a Lax pair and a Bäcklund–Darboux transformation were found for the 2D Euler
equation. Typically, Bäcklund–Darboux transformation can be used to generate homoclinic
orbits [4].

The 2D Euler equation can be written in the vorticity form,

∂tΩ + {Ψ,Ω} = 0, (1)

where the bracket { , } is defined as

{f, g} = (∂xf)(∂yg)− (∂yf)(∂xg),

where Ψ is the stream function given by,

u = −∂yΨ, v = ∂xΨ,

u and v are the velocity components, and the relation between vorticity Ω and stream function Ψ
is,

Ω = ∂xv − ∂yu = ∆Ψ.
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2 A Lax pair and a Darboux transformation

Theorem 1 (Li, [2]). The Lax pair of the 2D Euler equation (1) is given as

Lϕ = λϕ,

∂tϕ+Aϕ = 0, (2)

where

Lϕ = {Ω, ϕ}, Aϕ = {Ψ, ϕ},

and λ is a complex constant, and ϕ is a complex-valued function.

Consider the Lax pair (2) at λ = 0, i.e.

{Ω, p} = 0, (3)
∂tp+ {Ψ, p} = 0, (4)

where we replaced the notation ϕ by p.

Theorem 2 (Li and Yurov, [3]). Let f = f(t, x, y) be any fixed solution to the system (3),
(4), we define the Gauge transform Gf :

p̃ = Gfp =
1

Ωx
[px − (∂x ln f)p], (5)

and the transforms of the potentials Ω and Ψ:

Ψ̃ = Ψ + F, Ω̃ = Ω + ∆F, (6)

where F is subject to the constraints

{Ω,∆F} = 0, {Ω + ∆F, F} = 0. (7)

Then p̃ solves the system (3), (4) at (Ω̃, Ψ̃). Thus (5) and (6) form the Darboux transformation
for the 2D Euler equation (1) and its Lax pair (3), (4).

3 Preliminaries on linearized 2D Euler equation

We consider the two-dimensional incompressible Euler equation written in vorticity form (1)
under periodic boundary conditions in both x and y directions with period 2π. We also require
that both u and v have means zero,∫ 2π

0

∫ 2π

0
u dxdy =

∫ 2π

0

∫ 2π

0
v dxdy = 0.

We expand Ω into Fourier series,

Ω =
∑

k∈Z2/{0}
ωk e

ik·X ,

where ω−k = ωk, k = (k1, k2)T , X = (x, y)T . In this paper, we confuse 0 with (0, 0)T , the
context will always make it clear. By the relation between vorticity Ω and stream function Ψ,
the system (1) can be rewritten as the following kinetic system,

ω̇k =
∑
k=p+q

A(p, q) ωpωq, (8)
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where A(p, q) is given by,

A(p, q) =
1
2

[
|q|−2 − |p|−2

]
(p1q2 − p2q1), (9)

where |q|2 = q21 + q22 for q = (q1, q2)T , similarly for p.
We denote {ωk}k∈Z2/{0} by ω. For any fixed p ∈ Z2/{0}, we consider the simple fixed point ω∗:

ω∗p = Γ, ω∗k = 0, if k �= p or − p, (10)

of the 2D Euler equation (8), where Γ is an arbitrary complex constant. The linearized two-
dimensional Euler equation at ω∗ is given by,

ω̇k = A(p, k − p) Γ ωk−p +A(−p, k + p) Γ̄ ωk+p. (11)

Definition 1 (Classes). For any k̂ ∈ Z2/{0}, we define the class Σk̂ to be the subset of Z2/{0}:

Σk̂ =
{
k̂ + np ∈ Z2/{0}

∣∣ n ∈ Z, p is specified in (10)
}
.

See Fig. 1 for an illustration. According to the classification defined in Definition 1, the
linearized two-dimensional Euler equation (11) decouples into infinitely many invariant subsys-
tems:

ω̇k̂+np = A(p, k̂ + (n− 1)p) Γ ωk̂+(n−1)p +A(−p, k̂ + (n+ 1)p) Γ̄ ωk̂+(n+1)p . (12)
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Figure 1. An illustration of the classes Σk̂ and the disk D̄|p|.

Theorem 3. The eigenvalues of the linear operator Lk̂ defined by the right hand side of (12),
are of four types: real pairs (c,−c), purely imaginary pairs (id,−id), quadruples (±c± id), and
zero eigenvalues.
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The eigenvalues can be computed through continued fractions.

Definition 2 (The Disk). The disk of radius |p| in Z2/ {0}, denoted by D̄|p|, is defined as

D̄|p| =
{
k ∈ Z2/ {0}

∣∣ |k| ≤ |p|
}
.

Theorem 4 (The Spectral Theorem). We have the following claims on the spectra of the
linear operator Lk̂:

1. If Σk̂ ∩ D̄|p| = ∅, then the entire �2 spectrum of the linear operator Lk̂ is its continuous

spectrum. See Fig. 2, where b = −1
2 |Γ||p|−2

∣∣∣∣ p1 k̂1

p2 k̂2

∣∣∣∣ .
2. If Σk̂ ∩ D̄|p| �= ∅, then the entire essential �2 spectrum of the linear operator Lk̂ is its

continuous spectrum. That is, the residual spectrum of Lk̂ is empty, σr(Lk̂) = ∅. The
point spectrum of Lk̂ is symmetric with respect to both real and imaginary axes. See Fig. 2.
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Figure 2. The spectrum of Lk̂.

4 A Galerkin truncation

To simplify our study, we study only the case when ωk is real, ∀ k ∈ Z2/{0}, i.e. we only study
the cosine transform of the vorticity,

Ω =
∑

k∈Z2/{0}
ωk cos(k ·X),

and the 2D Euler equation (1), (8) preserves the cosine transform. To further simplify our study,
we will study a concrete line of fixed points (10) with the mode p = (1, 1)T parametrized by Γ.
When Γ �= 0, each fixed point has 4 eigenvalues which form a quadruple. These four eigenvalues
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Figure 3. The collocation of the modes in the Galerkin truncation.

appear in the only unstable invariant linear subsystem labeled by k̂ = (−3,−2)T . See Fig. 3 for
an illustration.

We computed the eigenvalues through continued fractions, one of them is [1]:

λ̃ = 2λ/|Γ| = 0.24822302478255 + i 0.35172076526520. (13)

We hope that a Galerkin truncation with a small number of modes including those inside the
disk D̄|p| can capture the eigenvalues. We propose the Galerkin truncation to the linear sys-
tem (12) with the four modes k̂ + p, k̂ + 2p, k̂ + 3p, and k̂ + 4p,

ω̇1 = −A2Γω2, ω̇2 = A1Γω1 −A3Γω3,

ω̇3 = A2Γω2 −A4Γω4, ω̇4 = A3Γω3.

From now on, the abbreviated notations,

ωn = ωk̂+np, An = A(p, k̂ + np), Am,n = A(k̂ +mp, k̂ + np), (14)

will be used. The eigenvalues of this four dimensional system can be easily calculated. It turns
out that this system has a quadruple of eigenvalues:

λ = ± Γ
2
√

10

√
1± i

√
35 =̇ ±

(
Γ
2

)
× 0.7746× e±iθ1 , (15)

where θ1 = arctan(0.845), in comparison with the quadruple of eigenvalues (13), where

λ=̇±
(

Γ
2

)
× 0.43× e±iθ2 ,
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and θ2 = arctan(1.418). Thus, the quadruple of eigenvalues of the original system is recovered
by the four-mode truncation. We further study the corresponding Galerkin truncation of 2D
Euler equation:

ω̇1 = −A2 ωp ω2, ω̇2 = A1 ωp ω1 −A2 ωp ω3, ω̇3 = A2 ωp ω2 −A1 ωp ω4,

ω̇4 = A2 ωp ω3, ω̇p = A1,2 (ω3 ω4 − ω1 ω2), (16)

and the equations for the decoupled variables ω0 and ω5 are given by,

ω̇0 = −A1 ωp ω1, ω̇5 = A1 ωp ω4,

where

A1 = − 3
10
, A2 =

1
2
, A3 = A2, A4 = A1,

A1,2 = A1 −A2 = −4
5
, A2,3 = 0, A3,4 = −A1,2.

There are three invariants for the system (16):

I = 2A1,2(ω1ω3 + ω2ω4) +A2ω
2
p, (17)

U = A1

(
ω2

1 + ω2
4

)
+A2

(
ω2

2 + ω2
3

)
, (18)

J = ω2
p + ω2

1 + ω2
2 + ω2

3 + ω2
4. (19)

J is the enstrophy, and U is a linear combination of the kinetic energy and the enstrophy. I is
an extra invariant which is peculiar to this invariant subsystem. With I, the explicit formula
for the hyperbolic structure can be computed.

The common level set of these three invariants which is connected to the fixed point (10)
determines the stable and unstable manifolds of the fixed point and its negative −ω∗:

ωp = −Γ, ωn = 0 (n ∈ Z). (20)

Using the polar coordinates:

ω1 = r cos θ, ω4 = r sin θ; ω2 = ρ cosϑ, ω3 = ρ sinϑ

we have the following explicit expressions for the stable and unstable manifolds of the fixed
point (10) and its negative (20) represented through the homoclinic orbits asymptotic to the
line of fixed points:

ωp = Γ tanh τ, r =
√

A2

A2 −A1
Γ sech τ,

θ = −A2

2κ
ln cosh τ + θ0, ρ =

√
−A1

A2
r,

θ + ϑ =


− arcsin

[
1
2

√
A2
−A1

]
, (κ > 0),

π + arcsin
[

1
2

√
A2
−A1

]
, (κ < 0),

(21)

where A1 and A2 are given in (16), τ = κΓt+ τ0, (τ0, θ0) are the two parameters parametrizing
the two-dimensional stable (unstable) manifold, and

κ =
√
−A1A2 cos(θ + ϑ) = ±

√
−A1A2

√
1 +

A2

4A1
.
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The two auxilliary variables ω0 and ω5 have the expressions:

ω0 =
αβ

1 + β2
sech τ

{
sin[β ln cosh τ + θ0]− 1

β
cos[β ln cosh τ + θ0]

}
,

ω5 =
αβ

1 + β2
sech τ

{
cos[β ln cosh τ + θ0] +

1
β

sin[β ln cosh τ + θ0]
}
,

where

α = −A1Γκ−1

√
A2

A2 −A1
, β = −A2

2κ
.

The graphs of these homoclinic orbits are spirals on a 2D ellipsoid, with turning points.

5 Conclusion

Certain newly developed results on 2D Euler equation have been discussed, which include a Lax
pair, a Darboux transformation, and the investigation on homoclinic structures.
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The additional mechanism of the super-high-frequency power absorption in the quasy-one-
dimensional antiferromagnet was considered. This absorption works due to the generation of
the stationary nonlinear excitations of kinks type. The estimation of the effect is obtained
for the real physical system. The shape of the signal of absorption is analyzed for some
values of the external magnetic field. The quantity of the effect is detectable.

1 Introduction

We investigate theoretical problem of the super-high-frequency (SHF) field absorption by a gas
of kink type solitons in the model of one-dimensional easy axis antiferromagnet (AFM) to show
that the effect of linear response can be visible. The frequencies of solitons are comparable to the
frequencies of magnons, and can be in intersection with the second ones. The external stationary
homogeneous magnetic field, applied along the easy axis, causes the phase of system state, the
eigenvalue frequencies spectrum of this phase and the value of the gap, particularly. The external
microwave magnetic field is applied at the same direction. The shape of the expected absorption
signal has the marked intense and is analyzed for some values of the external constant magnetic
field.

The paper has the following structure. In the Section 2, the known results about the magne-
tization created by one kink [1, 2, 3], we obtain using the method of adiabatic approximation.
This way turns out very convenient for the following calculation of the contribution of the weak
uniform magnetic field into the energy of interaction between the kink and magnetic field, and
to the magnetization also (see (1), (6) and (7)). The Section 3 is devoted to the calculation of
the average energy absorbed from the external field over one period of our system. The theo-
retical investigations are illustrated by the numerical calculated curves of the dependence of the
absorbed capacity on the frequency for some values of external magnetic field. The calculation
of the quantity of the effect is based on the data of computer simulation, and was done with
papameters of well-investigated quasi-one-dimensional AFM system, which admits the existence
of the soliton excitations [4, 5]. We discuss obtained results in the Conclusion.

2 “Mechanical” aspects of solitons

Familiar model of one-dimensional two-sublattice AFM in an external magnetic field was consid-
ered in the paper of Bar’yakhtar and Ivanov [2]. This system was described in terms of weak FM
m and AFM l vectors, such that (m,l) = 0, m2 +l 2 = 1 (here m = �M1+ �M2

2M0
, l = �M1− �M2

2M0
, and M1,

M2 are the sublattices magnetizations, | M1| = | M2| = M0). This formulation of the effective
equations for magnetizations of the two subblattices was obtained for the natural assuming for
AFM that the energy of relativistic interaction is small comparing to the exchange energy. The
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magnetization m, created by one kink, was expressed in terms of l and ∂l/∂t

m(x, t) =
2
ω0δ

[
∂l

∂t
,l

]
+

2
δ

[
h− (h,l)l

]
, (1)

where ω0 = 2µ0M0/�, µ0 is the Bohr magneton, and M0 is an equilibrium magnetization. In
angular variables θ and ϕ for vector l, |l| = 1, lz = cos θ, lx + ly = sin θ exp(ıϕ),

The well-known [2] nonperturbed kink type solutions were obtained

cos θ = σ tanhB(x− vt− x0),
ϕ = ωt− ϕ0 + ∆(x− vt− x0), (2)

where σ = ±1, B = κ(v;ω)
1−v2 , κ2(v;ω) = γ2(1 − v2) − (ω − h3)2, γ = (c/ω0)

√
(β/α), ∆ =

v
1−v2 (h3 − ω).

The method of adiabatic approximation proposed in our paper allows to justify the results
obtained earlier [1, 2, 3] as well as to study the further applications.

The dynamics of free kink in 4-dimensional phase-space (X,Φ, I1, I2) is defined by the Hamil-
tonian equations

dI1
dt

= −∂H0

∂X
,

dI2
dt

= −∂H0

∂Φ
, v =

dX

dt
=
∂H0

∂I1
, ω =

dΦ
dt

=
∂H0

∂I2
. (3)

Here X and Φ are the parameters defining the kink spatial arrangement and form, correspon-
dingly, I2 is the adiabatic invariant of two-parameter solution of the Landau–Lifshitz equations,
I1 is the field impact, H0 is an unperturbed Hamiltonian. For the first two variables we can
write the definitions Φ(t) =

∫
dtω(t), X =

∫
dtv(t). The variables I1 = I1(v, ω), I2 = I2(v, ω)

will be defined later. The solution (2) can be rewritten in the form

ϕ = Φ + ∆(v, ω)(x−X), cos θ = σ tanhB(x−X).

The Lagrange function L0 in new variables can be obtained as follows:

L0 = I1
dX

dt
+ I2

dΦ
dt

− E0(I1, I2),

where I1 = 2γ2v/κ(v, ω), I2 = 2(ω − h3)/κ(v, ω).
In [11] it was shown that with a week uniform magnetic field h(t) = h0 cos 2Ωt, ( h0, M) 	 H0,

which is polarized along the easy magnetization axis, the breather dynamics equations (the
adiabatic approximation equations) will have the form (3) as before, where H = H0 + Hint.
Moreover, it was investigated the FM linear response to the SHF field with the frequency the
same with the initial soliton one. It was expected that under the weak uniform magnetic field the
resonance interaction between the breathers having frequency ω = Ω and the external magnetic
field can exist, but the numerical calculations showed that the effect was small sufficiently.

The relation for Hint for our AFM system (the energy of interaction between the kink and
magnetic field) obtained by us is the following:

Hint = H1 exp(ıΦ) + H̄1 exp(ıΦ), (4)

where

H1 = h0
iπσ

2B2

v

(1− v2)
cosh−1

(
π∆
2B

){
γ2 + h3(ω − h3)

}
. (5)
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The whole magnetization created by one kink can be written as

Mx =
∫
dxmx = M1 exp(ıΦ) + M̄1 exp(−ıΦ). (6)

The calculating of M1 leads to the following relation

M1 = −γ2
( ıπσ
δB2

) v

(1− v2)
cosh−1

(
π∆
2B

)
. (7)

3 High-frequency properties of solitons

Investigations of the contribution of the solitons of different types to the specific heat, magne-
tization and the dynamical structure factor, defining non-elastic neutron dissipation and so on,
are actual problems of the solid state physics during last years [6–10].

The magnet state involving a great number of kinks, the average distance between which
is much larger than the average size of the kinks (a “gas” of kinks), can be described by the
distribution function ρ(X,Φ, I1, I2), determining the number of quasiparticles per an element
of phase volume �Γ. It would appear reasonable that in the thermodynamic equilibrium state
ρ = ρ0 = exp(−β̃E0), where the inverse energetic temperature β̃ = (M0a)2αω0/cT , T is the
temperature.

The kinetic equation in general case has the form ∂ρ
∂t + div(ρu) = −ρ−ρ0

τ , where τ is the
relaxation time. The kinetic equation determining the small nonequilibrium correction ρ1, owing
to the presence of a weak external magnetic field which varies in time, has the following form in
the linear approximation:

∂ρ1

∂t
+
∂E0

∂I2

∂ρ1

∂Φ
+
ρ1

τ
=
∂ρ0

∂I2
cos(Ωτ)

∂Hint

∂Φ
. (8)

The average energy Q̄ absorbed from the external field over one period is given by the
expression

Q̄ = − 1
TLa2

∫
dt

∫
d3x

∂h

∂t
M, Mx =

∫
dΓ

(2π�)2
ρ(Γ)Mx,

where L is the length, M is the total magnetization of a sample, T = 2π/Ω which is determined
by the kink distribution function ρ, and Mx is the whole magnetization, created by one kink.

The equation (8) can be solved by means of relations (4)–(7). The term with ρ0 will vanish
by averaging t over.

It is essentially to point out that the range of the kinks existence defined by the inequalities
v2 + (ω−h3)2

γ2 < 1 (0 < h3 < γ) is the ellipse. It is important that there exists the region of
negative frequencies. We can accept that the external SHF field can have negative frequencies
also. So, the appropriate frequencies of field are defined by the inequality |Ω| < γ + h3. By this
means we have three domains of frequencies:

I. Ω2 < Ω < Ω1, qI = J(Ω),
II. Ω4 < Ω < Ω2, qII = J(Ω) + J(−Ω),

III. Ω5 < Ω < Ω4, qIII = J(−Ω),
(9)

where Ω1 = γ + h3, Ω2 = γ − h3, Ω4 = −(γ − h3), Ω5 = −(γ + h3).
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Now we introduce the expression for the absorbed energy in the linear-response appro-
ximation. Here for convenience we use the substitution x = γv/κ(ṽ), dx = (γ3ṽv)dv/κ3, in
which J(Ω) has the form:

J = J(Ω;h3, h0) = J0(h0) |Ω| F (Ω;h3)
ṽ

∫ ∞
1

√
x2 − 1

[
1 +

(Ω− h3)2

γ2 ṽ2
x2

]2

× cosh−2

[
π

2

(
Ω− h3

γ

)√
x2 − 1

]
exp

[
−2γβ̃

F (Ω;h3)
ṽ

x

]
dx, (10)

where

J0 = 2h2
0π

3ε2β̃/δ, F (Ω;h3) = 1 +
h3

γ

(
Ω− h3

γ

)
, ṽ =

√
1− (Ω− h3)2

γ2
,

Note that J depends on one variable Ω, but thereafter we will include the parameters h0 and h3

as arguments of J to emphasize their important role.
Conceptually, the parameter 2γβ̃ (see (2)) causes the quantity of the effect. For this one to

be nonzero, it is essential to 2γβ̃ ≤ 1.

4 Conclusion

The numerical calculated curves of (1/J0)qI,II(Ω;h3, h0) (see (9), (10) for definition) for several
values of external field h3 are obtained. For this calculation we used the parameters of exchange
J = 3K and anisotropy HA = 500 Oe of the well investigated quasi-one-dimensional AFM
system CsMnCl3 ·2H2O, which admits the existence of the soliton excitations [5]. This choice of
parameters of the crystal leads to the following values of the dimensionless parameters: ε = 0.62,
J0 = 1.5 · 10−13, β̃ = 3.46 · 10−3, δ = 3.63 · 103. The result is represented on Fig. 1 for the most
interesting case of h3 close to the spin-flop field hsf , i.e. h3 = 120, hsf = 135 (take into account
that the frequency, field and other variables and parameters are dimensionless).

The fluent peak observed at the Ωm = 120 with the capacity value Qm = 103 Erg/sec · cm3 is
the most important for our investigation. This peak is the respective signal connected with the
additional contribution of the kinks into our system SHF absorption [4]. The sharp increasing
of capacity observed at the frequency Ω = 255, coincided closely with the upper AFM resonance
frequencies, is not taken into account. The kinks in this region of frequencies are out of the
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physical interest. The value of the imaginary part of the susceptibility is χ′′m = 0.22. Thus,
the maximum at the frequency Ωm = 120 is of interest, since it is renegated out of the uniform
resonance line, has the marked intensily and therefore can be analyzed in the experiments aimed
at the finding of the additional line form in the absorption spectrum, the frequency-field, angle,
temperature and other dependencies, followed from the theory, presented in this paper.
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It is well known that the Boussinesq equation is the bidirectional equivalent of the celebrated
Korteweg-de Vries equation. Here we consider Boussinesq-type versions of two classical uni-
directional integrable equations. A procedure is presented for deriving multisoliton solutions
of one of these equations – a bidirectional Kaup–Kupershmidt equation. These solitons have
the unusual property that they “switch” shape on switching their direction of propagation.

1 Introduction

In a recent article [1], we constructed a bidirectional version of the well-known Kaup–Kuper-
shmidt (KK) equation [2, 3]

ut + 45u2ux −
75
2
uxuxx − 15uu3x + u5x = 0, (1)

which has the nonlocal form

5 ∂−1
x utt + 5uxxt − 15uut − 15u ∂−1

x ut − 45u2ux +
75
2
uxuxx + 15uu3x − u5x = 0. (2)

In Ref. [1], equation (2) was designated the bidirectional Kaup–Kupershmidt (bKK) equation.
A second nonlinear evolution equation (NEE) that is also of interest here,

5 ∂−1
x utt + 5uxxt − 15uut − 15ux∂−1

x ut − 45u2ux + 15uxuxx + 15uu3x − u5x = 0, (3)

was formulated in [1] as a bidirectional counterpart of the classical Sawada–Kotera (SK) equa-
tion [4, 5]

ut + 45u2ux − 15uxuxx − 15uu3x + u5x = 0. (4)

The integrability of equations (2) and (3) was assured by finding their Lax pairs [1]. Indeed, by
obtaining the bilinear form of equation (3), we were able to identify this bidirectional equation
with the well-known Ramani equation [6] (see equation (7) below). The latter equation has
been studied extensively – though only in its more familiar bilinear form (7) – and is now
deemed to be completely integrable [6, 7, 8, 9]; we shall refer to equation (3) as the “bSK-
Ramani” equation. On the other hand, the bKK equation (2) has received little attention of
note in the literature (although the equation in its normal form (2) is listed in the Jimbo–Miwa
classification of integrable systems [10]). In Ref. [1] we reported its Lax pair, along with an
infinity of conservation laws. We also derived there the solitary-wave solution which has the
remarkable property that it “switches” shape on switching its direction of propagation.

In this paper, a procedure is described for obtaining multisoliton solutions of the bKK equa-
tion (2). The preliminary results presented here build on the work of the prior study [1] where it
was shown that the ‘anomalous’ character of these solitons arises quite naturally within Hirota’s
bilinear transform theory [11, 12]. Yet our approach also makes use of the strategy pursued
by one of us (A.P.) to obtain the soliton solutions of its unidirectional cousin, the KK equa-
tion (1) [13]. However, the current problem is complicated by the need to take account of
the bidirectional nature of the bKK solitons; like the solitary wave, they too are found to be
directionally dependent.
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2 Bilinear forms and solitary waves

Following Hirota [11], we make a change of dependent variable

u (x, t) = α∂2
x ln f (x, t) , α = const. (5)

where ∂nx denotes the nth partial derivative with respect to x. Under this transformation, we
find that the bSK-Ramani equation (3) has two bilinear forms [1]: when α = −1 we get(

80D2
t + 20D3

xDt −D6
x

)
f · f −

(
120DxDt − 30D4

x

)
f · g = 0,

D2
xf · f + 2f · g = 0, (6)

where Dx, Dt are the usual Hirota derivatives [12]

DxDt a (x, t) · b (x, t) = (∂x − ∂x′) (∂t − ∂t′) a (x, t) b
(
x′, t′

) ∣∣
x′=x, t′=t

and g (x, t) is an auxiliary function. The second bilinear form has α = −2 and is given by(
5D2

t + 5D3
xDt −D6

x

)
f · f = 0. (7)

The single bilinear equation (7) identifies the bSK-Ramani equation (3) with Ramani’s equa-
tion [6], whereas the less well-known coupled system (6) appeared somewhat later [10].

Similarly, under the transformation (5), the bKK equation (2) admits two bilinear represen-
tations [1]: α = −1(

80D2
t + 20D3

xDt −D6
x

)
f · f − 120DxDtf · g + 30D2

xf · h = 0,

D2
xf · f + 2f · g = 0,

D4
xf · f + 2f · h = 0; (8)

α = −2:

16
(
5D2

t + 5D3
xDt −D6

x

)
f · f − 30D4

xf · g + 30D2
xf · h = 0,

D2
xf · f + f · g = 0,

D4
xf · f + f · h = 0. (9)

Equations (8) and (9), in which g and h are auxiliary functions, are derived in Ref. [1].
Finding the multisoliton solutions of the bSK-Ramani equation (3) is straightforward since we

may solve the single bilinear form (7) rather than the coupled system (6). Thus, the N -soliton
solution of equation (7) is given by Hirota’s ansatz [11]

f (x, t) =
∑
µ=0,1

exp

 N∑
i=1

µiθi +
∑

1≤i<j≤N
µiµj lnAij

 , (10)

where θi = pix+ωit+ηi (i = 1, . . . , N) and pi, ωi, ηi are constant parameters. Following Ref. [13],
we will call the generic solution (10) the regular N -soliton: observe that it is described by a single
interaction coefficient Aij . The solitary wave is given by setting N = 1 in equation (10) and
yields the familiar sech2 pulse [1]

u (x, t) = −1
2
p2sech2 1

2
(px+ ωt+ η) , (11)

where ω(p) satisfies the quadratic dispersion relation

5ω2 + 5ωp3 − p6 = 0. (12)
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Figure 1. Solitary-wave solutions of the bKK equation: (a) a right-travelling single-humped wave,
(b) a left-travelling double-humped wave.

For the bKK equation, no reduction of the bilinear forms (8) and (9) to a single bilinear
equation, akin to the Ramani equation (7), is possible. We must therefore solve one or other
of the coupled systems (8) or (9) for which no prescribed ansatz, comparable to the regular
N -soliton (10), is available. However, we may exploit the close connection between the bKK and
bSK-Ramani equations – that is evident from equations (2) and (3) – to argue as follows. Since
the bilinear forms (6) and (7) of the bSK-Ramani equation are equivalent under f2 ↔ f [1], the
N -soliton solution of the coupled bilinear form (6) is the square of the regularN -soliton (10). But
then the duality of the bKK and bSK-Ramani equations suggests the following hypothesis: the
N -soliton solution of the bKK bilinear form (8) will mimic its counterpart for the corresponding
bSK-Ramani system (6). For example, if we apply this reasoning to the regular solitary wave
(set N = 1 in (10)), we obtain the solution of equation (8) [1],

f (x, t) = 1 + eθ +
1
16
a2e2θ, θ = px+ ωt+ η, (13)

where

a2 =
4ω − p3

ω − p3
(a > 0) (14)

and ω(p) satisfies the (bSK-Ramani) dispersion relation (12). Then, using u = −∂2
x ln f (equa-

tion (5) with α = −1), we obtain the ‘anomalous’ solitary wave of the bKK equation (2)

u (x, t) = −ap2 a+ 2 cosh θ
(a cosh θ + 2)2

, (15)

which was first reported in Ref. [1]. The most significant feature of this solitary wave is that it
“switches” its shape on switching direction (cf. the bSK-Ramani solitary wave (11) that propa-
gates to the left or right with the same bell-shaped profile). The right-travelling single-humped
solitary wave is shown in Fig. 1(a), whilst the left-running wave has the double-humped profile
pictured in Fig. 1(b) (where here, and in subsequent figures, we plot the physical wave −u (x, t)).
Extending the argument, we conjecture that the N -soliton of the bKK equation (8) has the struc-
ture – though not the precise analytical form – of the squared regular N -soliton (10). We shall
use this duality hypothesis – which was formulated in Ref. [1] – to obtain higher-order soliton
solutions of the bKK equation; in effect, we choose to solve the coupled bilinear form (8) rather
than the alternate system (9).

3 Two-soliton solution of the bKK equation

Before proceeding, it will be helpful to introduce the following notation: if F (Dx,Dt) is any
bilinear operator, then we define F (p) = F (p, ω). Now, the regular two-soliton solution of the
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bSK-Ramani equation is given by (set N = 2 in equation (10))

f (x, t) = 1 + eθ1 + eθ2 +A12eθ1+θ2 , θi = pix+ ωit+ ηi, i = 1, 2, (16)

which solves equation (7) if

A12 = −FR(p1 − p2)
FR(p1 + p2)

= −5 (ω1 − ω2)2 + 5 (ω1 − ω2) (p1 − p2)3 − (p1 − p2)6

5 (ω1 + ω2)2 + 5 (ω1 + ω2) (p1 + p2)3 − (p1 + p2)6
(17)

and ωi(pi) satisfies the dispersion relation (cf. equation (12))

FR(pi) = 5ω2
i + 5ωip3

i − p6
i = 0, i = 1, 2, (18)

where FR(Dx,Dt) = 5D2
t + 5D3

xDt − D6
x is the Ramani bilinear operator. According to our

duality hypothesis, the two-soliton solution of the bKK equation will mimic f2 (a solution of
the bSK-Ramani bilinear form (6)). We therefore seek a solution of the bilinear form (8) with

f (x, t) = 1 + eθ1 + eθ2 +
1
16
a2

1 e2θ1 +
1
16
a2

2 e2θ2 + b12 eθ1+θ2

+
A

16

(
a2

1 e2θ1+θ2 + a2
2 eθ1+2θ2

)
+

(
A

16

)2

a2
1 a

2
2 e2(θ1+θ2), (19)

where (cf. equation (14))

a2
i =

4ωi − p3
i

ωi − p3
i

, i = 1, 2, (20)

and ωi(pi) satisfies the (bSK-Ramani) dispersion law (18). The expression (19) merits further
comment: firstly, it has been normalised by setting the coefficients of the terms eθi to unity
(ηi are arbitrary). Further, f is symmetrical under the exchange θ1 ↔ θ2. Finally, by applying
the “elastic” interaction property of colliding solitons [14, 15] – whereby (19) separates asympto-
tically into two distinct ‘solitary’ waves of the form (13)–(14) – we are left with just the two
unknown constants b12 and A. The parameter A arises quite naturally as a measure of the
post-interaction phase shifts of the constituent solitary waves, and so plays the same rôle as A12

in the bSK-Ramani two-soliton (16).
We now substitute the putative bKK two-soliton (19) into the bilinear form (8) and make

use of the standard result [12]

F (Dx,Dt) eθ1 · eθ2 = F (p1 − p2) eθ1+θ2 , θi = pix+ ωit+ ηi, i = 1, 2.

Following some routine but lengthy algebra (that is best carried out using a symbolic manipu-
lation programme such as Mathematica), we find that A = A12, equation (17), and

b12 =
∆12

2FR(pi + pj)
=

∆12

2D12
, (21)

where

∆12 = 20ω1ω2 + 10ω1p2

(
3p2

1 + p2
2

)
+ 10ω2p1

(
p2
1 + 3p2

2

)
− p1p2

(
12p4

1 − 5p2
1p

2
2 + 12p4

2

)
(22)

and

D12 = 10ω1ω2 + 5ω1p2

(
3p2

1 + 3p1p2 + p2
2

)
+ 5ω2p1

(
p2
1 + 3p1p2 + 3p2

2

)
− p1p2

(
6p4

1 + 15p3
1p2 + 20p2

1p
2
2 + 15p1p

3
2 + 6p4

2

)
. (23)
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Figure 2. A perspective view of the bKK two-soliton: (a) the interaction of two left-travelling double-
humped solitary waves, (b) the head-on collision of a single- and a double-humped pulse.

This completes the derivation of the two-soliton solution u (x, t) of the bKK equation (2) which
is obtained explicitly from (19) (with A→ A12) and the relation u = −∂2

x ln f . Fig. 2(a) shows
a two-soliton comprised of a pair of double-humped ‘solitary’ waves propagating to the left,
whilst Fig. 2(b) pictures the head-on collision between a single-peaked and a double-peaked
‘solitary’ wave. Typically, the soliton pulses emerge from the interactions intact, except for the
clearly visible phase shifts. The bKK two-soliton (19) bears further comment. It shares the same
wave dynamics as the bSK-Ramani two-soliton, equation (16): their colliding solitary waves un-
dergo identical phase shifts that are determined by the common interaction coefficient A12,
equation (17). This bears out the intimate connection between the bKK and bSK-Ramani
equations that is already apparent through the shared dispersion relations (12) and (18), and
justifies the duality hypothesis on which our solution procedure is based. Another important
feature of (19) is the ‘new’ parameter b12, equation (21), which cannot be expressed in terms
of A12 alone (cf. the bSK-Ramani two-soliton (16)). It is instructive to compare this key param-
eter with its counterpart for the bSK-Ramani equation. Squaring (and normalising) the regular
two-soliton (16), and extracting the coefficient of eθ1+θ2 , we find

bR12 =
1
2

(A12 + 1) =
∆R

12

2D12

with

∆R
12 = 20ω1ω2 + 10ω1p2

(
3p2

1 + p2
2

)
+10ω2p1

(
p2
1 + 3p2

2

)
− p1p2

(
12p4

1 + 40p2
1p

2
2 + 12p4

2

)
.

Thus, b12 mimics bR12 (they differ only in the p3
1p

3
2 term in their numerators) and suggests that our

duality hypothesis can be extended to include this crucial parameter. This further conjecture
will help us when we seek solitons of higher order.

4 Further soliton solutions of the bKK equation

For the sake of brevity, we must content ourselves with describing the main results. We will
leave a more complete presentation of these preliminary results – giving a full account of the
technical details – to a future work.

According to our duality hypothesis, to obtain the bKK three-soliton solution we start with
the regular three-soliton (put N = 3 in equation (10)). We then square (and normalise) this
expression, introducing a minimal number of undetermined coefficients to give the form of the
ansatz f (consistent with the symmetry in θi, i = 1, 2, 3). Rather than solve the coupled bilinear
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form (8) directly, we proceed by iteration on the solitons of lower order. (This soliton reduction
procedure was first developed in Ref. [13] to solve the related KK equation (1)). Once f has
been reduced to a solitary wave, equation (13), and then a two-soliton, equation (19), we arrive
at the three-soliton

f = 1 +
3∑
i=1

eθi +
1
16

3∑
i=1

a2
i e

2θi +
∑

1≤i<j≤3

bij eθi+θj +
1
16

∑
1≤i<j≤3

Aij

(
a2
i e

2θi+θj + a2
je
θi+2θj

)
+ b123eθ1+θ2+θ3 +

1
162

∑
1≤i<j≤3

A2
ija

2
i a

2
j e2(θi+θj)

+
1
16

[
a2

1b23A12A13e2θ1+θ2+θ3 + a2
2b13A12A23eθ1+2θ2+θ3 + a2

3b12A13A23eθ1+θ2+2θ3
]

+
1

162
A12A13A23

[
a2

1a
2
2A12e2(θ1+θ2)+θ3 + a2

1a
2
3A13e2θ1+θ2+2θ3 + a2

2a
2
3A23eθ1+2(θ2+θ3)

]
+

1
163

a2
1a

2
2a

2
3A

2
12A

2
13A

2
23 e2(θ1+θ2+θ3) (24)

in which all but one of the coefficients have been fixed. The parameters Aij and bij in (24)
generalise equations (17) and (21), respectively, in the obvious way. The only unknown is the
‘new’ parameter b123 which cannot be found by reducing f to a soliton of lower order. However,
we can deduce the following useful reductions in this way: with pi = (pi, ωi), we have

b123(p1,p2,0) = b12(p1,p2), b123(p1,0,0) = b23(0,0), b123(p1,p2,p2) =
1
8
a2

2A12. (25)

We now invoke our further conjecture that b123 will mimic its counterpart bR123: this yields

b123 =
∆123

4D123
, D123 = D12D13D23, (26)

where Dij generalises (23) and

∆123 = 18 	p2
i p

2
jp

2
k

(
5ωi − 2p3

i

) (
5ωj − 2p3

j

)
∆ij% +810 	p10

i p
4
jp

4
k% +324p6

1p
6
2p

6
3

− 4050	 ωip
7
i p

4
jp

4
k% +405 	ωip

5
i p

6
jp

4
k% −2430 	ωip

3
i p

6
jp

6
k%

+ 1620 	ωipip
10
j p

4
k% −8100 	ωiωjp

7
i pjp

4
k% −4050 	ωiωjp

5
i p

3
jp

4
k%

+ 810 	ωiωjp
5
i pjp

6
k% +16200 	ωiωjp

3
i p

3
jp

6
k% +3240 	ωiωjpipjp

10
k %

− 16200 	ωiωjωkp
7
i pjpk% −8100 	ωiωjωkp

5
i p

3
jpk% −81000ω1ω2ω3p

3
1p

3
2p

3
3. (27)

The symbol 	% denotes the sum over all distinct permutations of (1, 2, 3) assigned to the
subscripts (i, j, k) of the enclosed product, and ∆ij generalises (22). All but two of the coefficients
in (27) are fixed by the reductions (25); the remaining two coefficients are obtained by using the
bilinear equation in (8) once more (though with a much simplified ansatz in place of (24)). The
explicit three-soliton solution u(x, t)of the bKK equation (2) follows from (24) and u = −∂2

x ln f .
Fig. 3 shows a three-soliton solution in which two left-running double-humped ‘solitary’ waves
collide head-on with a single-peaked pulse propagating to the right. Though we shall not do
so here, we could continue in the same way to derive the four-soliton solution by iterating on
the first three known solitons. In principle, we are now able to generate the N -soliton solution
of the bKK equation (2) by iteration on the solitons of lower order; however, the practical
difficulties should not be underestimated. The sheer complexity of the algebraic expressions
involved will present severe difficulties beyond the first few multisolitons (even with the aid of
symbolic software such as Mathematica).
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Figure 3. A three-soliton solution of the bKK equation showing the head-on interaction of a right-run-
ning single-peaked pulse with two left-running double-humped solitary waves.

5 Concluding remarks

A direct method has been presented for obtaining explicit multisoliton solutions of the bidi-
rectional Kaup-Kupershmidt equation (2). Not surprisingly, these solitons possess the same
remarkable property as the ‘anomalous’ solitary wave found in Ref. [1]; namely, their wave
profiles are directionally dependent. As far as we know, this type of soliton behaviour has not
been observed before now and these “switching” solitons are reported here for the first time.
The ‘anomalous’ character of the bKK solitons – whose description requires the introduction of
a new parameter at each order – arises quite naturally within the bilinear formalism as a squared
regular N -soliton. This canonical form, in conjunction with the duality of the bKK and bSK-
Ramani equations, provides the basis for the iterative procedure that is used to obtain the
solitons of higher order. From a wave perspective, this formulation – couched in terms of the
common interaction parameters Aij and shared dispersion laws (18) – would seem to be the
natural one. For not only does it make explicit the dynamical duality of the soliton solutions of
the bKK and bSK-Ramani equations, but it also underlines the intimacy between these funda-
mentally different integrable bidirectional equations. This mirrors the deep connection between
their better known undirectional cousins the KK equation (1) and the SK equation (4), respec-
tively [2, 13, 16, 17]. We intend to report a more comprehensive discussion of these preliminary
findings, together with the derivation of further multisolitons, in the near future.
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New integrable reductions of the modified Kadomtsev–Petviashvili (mKP) hierarchy was
obtained. We solve the so-called D-Hermitian constrained mKP (DHcmKP) hierarchy by
using the dressing transformation technique. The dressing (transformation) operator for
the DHcmKP hierarchy is defined, and multicomponent derivative nonlinear Schrödinger
equation was integrated as an example.

1 Introduction

We consider Lax–Zakharov–Schabat equations

βUt − αVy + UV − V U = 0 ⇔ [α∂y − U, β∂t − V ] = 0,

α, β ∈ C, ∂y :=
∂

∂y
, ∂t :=

∂

∂t
, (1)

in the algebra ζ of the microdifferential operators (MDO) [1].

U, V ∈ ζ :=

L =
n(L)∑
i=−∞

aiDi : ai = ai(x, y, t); i, n(L) ∈ Z

 , (2)

where MDO U , V satisfy additional constraints, which are concretely defined in the following
section, and coefficients ai are, in general, smooth (N×N) matrix-valued functions of x, y, t,∈ R.
In the algebra MDO ζ (2) operation of multiplication is induced by the generalized Leibnitz rule

Dnf :=
∞∑
j=0

(
n
j

)
f (j)Dn−j , n ∈ Z, Dm(f) :=

∂mf

∂xm
= f (m), m ∈ Z+, (3)

where(
n
j

)
:=

n(n− 1) . . . (n− j + 1)
j!

, DnDm := Dn+m, n,m ∈ Z,

and f is the operator of multiplication by function f(x, y, t), which belongs to the same functional
space as the coefficients of microdifferential operators L ∈ ζ do. Lie’s commutator in algebra ζ

is defined as [U, V ] := UV − V U , and Hermitian-conjugated operator L∗ :=
n(L)∑
i=−∞

(−1)iDia∗i ,

a∗i = ā�, (α∂y)∗ := −ᾱ∂y, (β∂t)∗ := −β̄∂t.

2 Reduction of D-Hermitian conjugation

Definition 1. We say that an operator L ∈ ζ is D-Hermitian (D-skew-Hermitian) if

L∗ = DLD−1
(
L∗ = −DLD−1

)
.
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Definition 2. We say that an integral operator W ∈ ζ<1 :=
{
L<1 :=

0∑
i=−∞

uiDi
}

is D-unital

if W−1 = D−1W ∗D.

Lemma 1. Let L∗ = µDLD−1, µ = ±1, and W−1 = D−1W ∗D. Then L̂∗ = µDL̂D−1, where
L̂ := WLW−1.

Proof. L̂∗ :=
(
WLW−1

)∗ =
(
W−1

)∗
L∗W ∗ = µDWD−1DLD−1DW−1D−1 = µDL̂D−1. �

Lemma 2. Let hi, gi be smooth (N×K) matrix-valued functions of real variable x ∈ R, i = 1, 2;
A = (amn) = const ∈ MatK×K(C) and a ∈ R ∪ {±∞}. Then

h1D−1g�1 h2D−1g�2 = h1

(
A+

∫ x

a
g�1 h2dx

)
D−1g�2 − h1D−1

(
A+

∫ x

a
g�1 h2dx

)
g�2 .

Proof. By direct calculation from the Leibnitz rule (3) for n = −1 we obtain:

h1D−1g�1 h2D−1g�2 = h1

∞∑
i=0

(−1)i(g�1 h2)(i)D−i−2g�2 ,

h1

(
A+

∫ x

a
g�1 h2dx

)
D−1g�2 − h1

∞∑
i=0

(−1)i
(
A+

∫ x

a
g�1 h2dx

)(i)

D−i−1g�2

= −h1

∞∑
i=1

(−1)i
(
A+

∫ x

a
g�1 h2dx

)(i)

D−i−1g�2 = h1

∞∑
i=0

(−1)i(g�1 h2)(i)D−i−2g�2 . �

Lemma 3. Let C∗ = −C = const ∈ MatK×K(C), ϕ = ϕ(x) be a matrix (N ×K) function and
ϕ ∈ L2(−∞, s) ∀ s ∈ R. Then w−1

0 = w∗0, where

w0 := I − ϕ

(
C +

∫ x

−∞
ϕ∗ϕxdx

)−1

ϕ∗ := I − ϕΩ−1ϕ∗. (4)

Proof.

w∗0 = I − ϕΩ∗−1ϕ∗ = I − ϕ

ϕ∗ϕ− C −
x∫

−∞
ϕ∗ϕxdx

−1

ϕ∗, (5)

w0w
∗
0 = I − ϕ

[(
C +

∫ x

−∞
ϕ∗ϕxdx

)−1

+
(
ϕ∗ϕ− C −

∫ x

−∞
ϕ∗ϕxdx

)−1

−

C +

x∫
−∞

ϕ∗ϕxdx

−1

ϕ∗ϕ

ϕ∗ϕ− C −
x∫

−∞
ϕ∗ϕxdx

−1ϕ∗
= I − ϕΩ−1

[
I + (Ω− ϕ∗ϕ)Ω∗−1

]
ϕ∗ = I. �

Theorem 1. Let W := w0 +ϕΩ−1D−1ϕ∗x (see conditions of Lemma 3). Then W−1 = D−1W ∗D
(i.e. W is a D-unital operator).

Proof.

1. W = I − ϕΩ−1ϕ∗ + ϕΩ−1D−1ϕ∗x = I − ϕΩ−1D−1ϕ∗D,
W ∗ = I −DϕD−1Ω∗−1ϕ∗,

D−1W ∗D = I − ϕD−1Ω∗−1ϕ∗D = w−1
0 + ϕD−1

(
Ω∗−1ϕ∗

)
x
.
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2. WD−1W ∗D =
(
w0 + ϕΩ−1D−1ϕ∗x

) (
w−1

0 + ϕD−1(Ω∗−1ϕ∗)x
)

= I + w0ϕD−1
(

Ω∗−1ϕ∗
)
x
+ ϕΩ−1D−1ϕ∗xw

−1
0 + ϕΩ−1D−1ϕ∗xϕD−1

(
Ω∗−1ϕ∗

)
x
, (6)

and using Lemma 2, the definitions of Ω and Ω∗ (4)–(5) by direct calculation we obtain that the
sum of integral operators in (6) is equal to zero, i.e. WD−1W ∗D = I. �

3 Lax equation invariant under reductions
of D-Hermitian conjugation

In this paper we restrict ourselves by the scalar cases (N = 1) of the algebra (2).
We consider the modified Kadomtsev–Petviashvili (mKP) hierarchy [2]

αn
∂Z

∂tn
= −

(
ZDnZ−1

)
<1
Z, αn ∈ C, n ∈ N, t1 := x, (7)

where integral operator Z is given by

ζ<1 & Z = z0 + z1D−1 + z2D−2 + · · ·
(
z−1
0 exists

)
. (8)

With the use of the MDO L := ZDZ−1 := LmKP = D+U0+U1D−1+U2D−2+· · · , system (7)
can be rewritten in the form of the Lax representation

αmLtm = [Bm, L] := BmL− LBm, (9)

where Bm := (Lm)>0, m ∈ N.
The mKP hierarchy (7) can be transformed into Zakharov–Schabat equations

αnBmtn
− αmBntm

+ [Bm, Bn] = 0, m, n ∈ N, αm, αn ∈ C. (10)

Note that the subscripts mean partial differentiations with respect to the indicated variables
(evolutionary parameters tj , j ∈ N). If we eliminate U0, U1, U2, . . . from (9), the remaining
equations for the function U := U0 in (9) (or in (10) ) for t1 := x, t2 := y, t3 := t would
represent the mKP equation

α3Ut =
1
4
Uxxx −

3
2
U2Ux +

3
4
α2

2∂
−1
x Uyy +

3
2
α2Ux∂

−1
x Uy, (11)

where ∂−1
x f :=

∫ x
fdx, and its hierarchy flows.

W. Oevel and W. Strampp have also introduced so-called constrained modified Kadomtsev–
Petviashvili (cmKP) [3], apart from the cKP (constrained KP) hierarchy [4, 5, 6, 7] (see, also [8]).
The Lax operator of the cmKP hierarchy is defined by

LcmKP = Dn + un−1Dn−1 + · · ·+ u1D + u0 +D−1s, (12)

or

LcmKP := (LnmKP)≥0 +D−1s,

and the hierarchy flows are described by

αm
∂LcmKP

∂tm
=

[(
L
m/n
cmKP

)
>0
, LcmKP

]
, αmstm = −

(
L
m/n
cmKP

)∗
>0

(s). (13)
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We proposed another restriction of mKP hierarchy, so-called D-Hermitian cmKP (DHcmKP)
hierarchy in the form

LDHcmKP := Ln = Dn + un−1Dn−1 + · · ·+ u1D − V, (14)

where ζ<1 & V is D-Hermitian (D-skew-Hermitian) integral degenerated Volterra operator,
defined as

V = qMD−1q∗D = (qMq∗)− qMD−1q∗x, if n = 2k,

where M∗ = M,(or V = iqMD−1q∗D, if n = 2k − 1); q = (q1, . . . , ql), k, l ∈ N, and additional
reduction for operator Ln:

L∗n = µDLnD−1, µ = ±1.

In this case, the D-unital operator Z := W (the definition of integral operator W see below
in Theorem 1) is the transformation (dressing) operator for mKP hierarchy (7)–(10). We now
work out a few examples of restrictions of the mKP hierarchy connected with D-Hermitian Lax
operators of the form (14). We consider the evolution equations

αmLntm
= [Bm, Ln] , (15)

where Ln := LDHcmKP (14), and Bm are fractional powers m/n of Ln; n,m,∈ N. The “basic

root” L
1
n
n = D + a0 + a−1D−1 + · · · is calculated by requiring (L

1
n
n )n = LDHcmKP. This leads to

straightforward recursive scheme for the coefficients a0, a−1, . . . of L
1
n
n , from which these coeffi-

cients can be calculated as differential expressions of un−1, un−2, . . . , u1, q, q
∗. Higher fractional

powers Lm/nn of Ln are then calculated as powers Lm/nn = (L1/n
n )m of this “basic root”. By con-

struction, the first question with m = 1 in the hierarchy (14) is given by Lnt1
= [D, Ln] = ∂Ln

∂x ,
so that the first time variable t1 may be identified with the underlying space variable x.

4 Some examples of equations from the DHcmKP flow

Let us n = 1. For L1 = D − iqMD−1q∗D the first nontrivial equations in (15) are given by
(α2 = i)

iqt2 = qxx − 2iqMq∗qx, (16)

which are the first equations in the multicomponent modified nonlinear Schrödinger hierarchy
discussed in [9].
n = 2. For L2 = D2 + iuD − qMD−1q∗D we obtain

iqt2 = qxx + iuqx, ut2 = 2(qMq∗)x, α2 = i, (17)

qt3 = qxxx +
3
2
iuqxx −

(
3
8
u2 +

3
2
qMq∗ − 3

4
iux

)
qx,

ut3 =
1
4
uxxx +

3
8
u2ux −

3
2

(qMq∗u)x , α3 = 1. (18)

This represents the modified KdV hierarchy coupled with its eigenfunctions. The system (17)
is the new multicomponent integrable model of Yajima–Oikawa type [9, 10]. The next higher
flow in this hierarchy has the following form (α4 = −i):

ut4 = 2
[
qMq∗xx + qxxMq∗ + (qMq∗)2

]
x
, iqt4 =

(
L2

2

)
>0

(q). (19)
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5 Method of integration of the Lax equation
from the DHcmKP hierarchy

There are many mathematical and physical problems associated with the DHcmKP hierarchy.
However, the most important one, may be, is finding the soliton solutions for the equations
from this hierarchy. We have shown (see Lemma 1) that the D-unital MDO W transforms
D-Hermitian operator L into D-Hermitian operator L̂ by the dressing transformation L →
WLW−1 := L̂. Now, we want to extend the previous results to the equations from the DHcmKP
hierarchy.

Theorem 2. Let ϕ = (ϕ1, . . . , ϕK), K ∈ N be a smooth fast decreasing on the −∞ complex
value K-component vector-function of variable x ∈ R and an evolution parameter t2 ∈ R which
satisfy additional conditions:

a) ϕ be a solution of the equation iϕt2 = ϕxx,
b) ϕx = ϕΛ, where Λ = diag(λ1, λ2, . . . , λK) = const; λj := λj1+iλj2 ∈ C; λj1 > 0, j = 1,K.
Then the vector-function

q := ϕΩ−1 = ϕ

(
C +

∫ x

−∞
ϕ∗ϕdxΛ

)−1

(20)

is a solution of the mNSE (16) with the matrix M = −i(CΛ + Λ∗C), where C∗ = −C is a
skew-Hermitian (K ×K) complex matrix.

Proof. The proof is constructed by direct calculation. Using the lemmas we get

L0 := D → L := WDW−1 = D − ϕΩ−1(CΛ− Λ∗C∗)D−1Ω∗−1ϕ∗D,
M0 := i∂t2 −D2 →M := WM0W

−1 =
(
L2

)
>0
, (21)

and from the trivial equation [L0,M0] = 0 we obtain that [L,M ] = 0. �

Corollary 1. Let K ≥ l ∈ N and matrix C = i
2 diag

(
µ1

λ11
, . . . , µl

λl1
, 0, . . . , 0

)
∈ MatK×K(iR).

Then the function q = (q1, . . . , ql)(x, t2), where q := ϕΩ−1 and

qj = (−1)K−j

∣∣∣∣Ω(j)

ϕ

∣∣∣∣
Ω

, j = 1, . . . , l (22)

is a solution of the l-component mNSE

iqt2 = qxx − 2i
l∑

j=1

µj |qj |2qx. (23)

Here Ω(j) is obtained from Ω by deletion of j-line and |Ω| := det Ω. In order to prove (22)
we use the well-known algebraic equality for framed determinant

det
(

Ω ϕ∗

ϕ α

)
:=

∣∣∣∣Ω ϕ∗

ϕ α

∣∣∣∣ = α det Ω− ϕΩcϕ∗, α ∈ C, (24)

where Ωc is the matrix of cofactors, and then

qj = ϕΩ−1eTj , ek := (ek1 , ek2 , . . . , ekK
), ekm = δmk .
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For l = 1 we obtain from the formula (22) the K-soliton solution for the scalar mNSE [11, 12]

q = (−1)K+1

∣∣∣∣Ω(1)

ϕ

∣∣∣∣
|Ω| , Ω = (wmn), m, n = 1,K,

ϕm = ϕm0 exp
{
λmx− iλ2

mt2
}
, ϕm0 = const,

wmn =
iµ

2λ11
δmn1 +

λn
λ̄m + λn

ϕ̄m0ϕn0 exp
{(
λ̄m + λn

)
x+ i

(
λ̄2
m − λ2

n

)
t2

}
,

iqt2 = qxx − 2iµ|q|2qx. (25)

In particular, ifK = 1, then the previous formulas represent a one-soliton solution for the (25):

q =
2λ11ϕ0 exp{λx− iλ2t2}

iµ+ |ϕ0|2 exp{2λ11x+ 4λ11λ12t2}
,

where ϕ0 := ϕ10, λ := λ1 = λ11 + iλ12 := Reλ+ i Imλ.

6 Conclusion

In conclusion, we hope that the method of integration of Lax equations with D-Hermitian
reductions presented here will be generalized to other nonlinear models from the DHcmKP
hierarchy (and in the matrix case too). Similar generalizations for Hermitian reductions in cKP
hierarchy [7, 8] were considered in the papers [13, 14], but these results were obtained using the
methods from the article [15].
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The Gibbs (grand-canonical) reduced density matrices (RDMs) are calculated in the thermo-
dynamic weak-coupling limit for the non-relativistic spinless system of particles, interacting
via collective electromagnetic pair vector Chern–Simons potential, and characterized by the
Maxwell–Boltzmann (MB) statistics.

1 Introduction

The Chern–Simons 2-d quantum system of n nonrelativistic spinless identical particles of unit
mass is described by the Hamiltonian Ḣn, defined on C∞(R2n\ ∪j,k (xj = xk))

Ḣn =
1
2

n∑
j=1

||pj − aj(Xn)||2, aνj (Xn) = ενµ∂µ,jUC(Xn), ν, µ = 1, 2, (1)

UC(Xn) = g
∑

1≤k<j≤n
ejek ln |xj − xk|, Xn = (x1, . . . , xn) ∈ R2n, pµj = i−1∂µ,j = i−1 ∂

∂xµj
,

where ||v||2 =
(
v1

)2 +
(
v2

)2, ε is the skew symmetric tensor and the repeating index implies
a summation, real number ej (a charge) takes values in a finite set E{c} from R.

Differentiating the equality f
(
f−1(x)

)
= x we derive the formula

df−1(x)
dx

=
(
df(y)
dy

)−1

, y = f−1(x).

From this equality for f(x) = tanx and the equality d
dx tanx = 1+tan2(x) the following relation

is derived

∂

∂xν
arctan

x2

x1
= ενµxµ|x|−2 = ενµ

∂

∂xµ
ln |x|.

This means that CS system is almost(quasi-)integrable, that is

Ḣn = eiÛḢ0
ne
−iÛ ,

where −2Ḣ0
n is the 2n-dimensional Laplacian −2H0

n restricted to C∞(R2n\∪j,k (xj = xk)) and Û
is the operator of multiplication by U(Xn),

U(Xn) = g
∑

1≤k<j≤n
ejekφ(xj − xk), φ(xj − xk) = arctan

x2
j − x2

k

x1
j − x1

k

As a result, there exists the simplest self-adjoint extension Hn of Ḣn

Hn = eiÛH0
ne
−iÛ . (2)
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with the domain D(Hn) = eiÛD
(
H0
n

)
. Another self-adjoint extension of Ḣn is given by (2) in

which, instead of H0
n, another self-adjoint extension of Ḣ0

n is considered.
The CS system of particles with different statistics has been studied by many authors [1,

2, 3, 4] since it can be derived (formally) in 3-d topological electrodynamics (its Lagrangian
contains CS term) in the limit of the vanishing Maxwell term (the same is true for its relativistic
version). There is a hope it can give a new mechanism of superconductivity, superfluidity and
P , T violation.

2 Main result

Let Λ ∈ R2 be a compact set and assume the Dirichlet boundary conditions on the boundary ∂Λ.
For the inverse temperature β, and the activity zes of the particles with the charge es, the Gibbs
(grand-canonical, equilibrium) RDMs are given by

ρΛ(Xm|Ym)

= Z(e)m
Ξ−1

Λ

∑
n≥0

n∏
s=1

∑
e′s

zns
e′s
ns!

∫
Λn

dX ′n exp{i[U(Xm, X
′
n)− U(Ym, X ′n)]}P β0(Λ)(Xm, X

′
n|Ym, X ′n),

where ΞΛ is the grand partition function (it coincides with the numerator in the r.h.s. of this
equality for the case m = 0, i.e. when there are no Xm and Ym), P β0(Λ)(Xm|Ym) is the kernel
of the semigroup, whose infinitesimal generator concides with H0

n,Λ (−2H0
n,Λ is the Laplacian

in Λn with the Dirichlet boundary condition on the boundary ∂Λn), Z(e)m
=

m∏
s=1

zes , and the

summation in es is performed over E{c}.

P β0(Λ)(Xn|Yn) =
n∏
j=1

P β0(Λ)(xj |yj), Xm =
(
X1
m, X

2
m

)
, Ym =

(
Y 1
m, Y

2
m

)
∈ R2m, (3)

P β0(Λ)(x|y) is the transition probability of the 2-dimensional free diffusion proccess with the
Dirichlet boundary condition on ∂Λ.

P β0(Λ)(x|y) =
∫
P βx,y(dω)χΛ(ω),

Px,y(dω) is the conditional Wiener measure and χΛ(ω) is the characteristic function of the paths
that are inside Λ.

From the equality

U(Xm, X
′
n) = U(Xm) +

m∑
j=1

n∑
k=1

φ(xj − x′k)eje
′
k + U(X ′n)

we obtain

ρΛ(Xm|Ym) = Z(e)m
Ξ−1

Λ exp{i[U(Xm)− U(Ym)]}P β0(Λ)(Xm|Ym)

×
∑
n≥0

∑
e′s

zns
e′s
ns!

∫
Λn

dX ′n
n∏
k=1

exp

i
m∑
j=1

ejek(φ(xj − x′k)− φ(yj − x′k))

P β0(Λ)(x
′
k|x′k).

As a result

ρΛ(Xm|Ym) = Z(e)m
exp{i[U(Xm)− U(Ym)] +GΛ(Xm|Ym)}P β0(Λ)(Xm|Ym), (4)
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GΛ(Xm|Ym) =
∑
e

ze

∫
Λ

P β0(Λ)(x|x)

exp

i
m∑
j=1

eej(φ(xj − x)− φ(yj − x))

− 1

 dx. (5)

Here we used the equality

ΞΛ = exp

∑
e

ze

∫
Λ

P β0(Λ)(x|x)dx

 .

With the help of the equality

exp
{
i arctan

x2

x1

}
=

x

|x| =
( x

x∗
) 1

2
, x = x1 + ix2,

we derive

exp

i
m∑
j=1

eej(φ(xj − x)− φ(yj − x))

 =
m∏
j=1

(
(x− xj)(x∗ − y∗j )
(x∗ − x∗j )(x− yj)

) 1
2
geej

= Gx(Xm|Ym).

We have to use the Taylor expansions for |x| < 1

(1− x)g = 1− gx+
g(g − 1)

2
x2 +

∑
n≥3

Cgnx
n =

∑
n≥0

Cgnx
n,

(1− x)−g = 1 + gx+
g(g + 1)

2
x2 +

∑
n≥3

C−gn xn =
∑
n≥0

C−gn xn,

As a result for g′ = 1
2geej , g

′ �∈ Z,
∣∣xj

x

∣∣ < 1,
∣∣yj

x

∣∣ < 1(
x− xj
x∗ − x∗j

)g′

=
( x

x∗
)g′ (1− xj

x

1− x∗j
x∗

)g′

=
( x

x∗
)g′ {

1 + g′
(
−xj
x

+
x∗j
x∗

)
+
g′2
2

(
x2
j

x2
+
x∗2j
x∗2

)

+
g′

2

(
x∗2j
x∗2

−
x2
j

x2

)
− g′2

∣∣∣xj
x

∣∣∣2 +
∑

n+
1 n

−
1 ≥3

C−g
′

n+
1

Cg
′

n−
1

(
x∗j
x∗

)n+
1 (xj

x

)n−
1

}
.

Applying this formula we deduce(
(x− xj)(x∗ − y∗j )
(x∗ − x∗j )(x− yj)

)g′

= 1 +G′x(xj |yj)

+
∑

n+
1 +···+n−

2 ≥3

C−g
′

n+
1

Cg
′

n−
1

C−g
′

n+
2

Cg
′

n−
2

(
x∗j
x∗

)n+
1 (xj

x

)n−
1

(
y∗j
x∗

)n−
2 (yj

x

)n+
2
,

where

G′x(xj |yj) = g′
(
−xj − yj

x
+
x∗j − y∗j
x∗

)
− g′2

(
xj
x
−
x∗j
x∗

)(
yj
x
−
y∗j
x∗

)
+
g
′2

2

(
x2
j + y2

j

x2
+
x∗2j + y∗2j
x∗2

)
+
g′

2

(
y2
j − x2

j

x2
−
y∗2j − x∗2j
x∗2

)
− g′2

[∣∣∣xj
x

∣∣∣2 +
∣∣∣yj
x

∣∣∣2] .
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As a result

Gx(Xm|Ym) = 1 +G0
x,e(Xm|Ym) +

m∑
j=1

G′x(xj |yj), (6)

where

G0
x,e(Xm|Ym) =

∑
n+

1,1+···+n−
2,m≥3

m∏
j=1

C−g
′

n+
1,j

Cg
′

n−
1,j

C−g
′

n+
2,j

Cg
′

n−
2,j

(
x∗j
x∗

)n+
1,j(xj

x

)n−
1,j

(
y∗j
x∗

)n−
2,j(yj

x

)n+
2,j
.

It can be checked that

−g′2
(
xj
x
−
x∗j
x∗

) (
yj
x
−
y∗j
x∗

)
+
g′2

2

(
x2
j + y2

j

x2
+
x∗2j + y∗2j
x∗2

)
− g′2

[∣∣∣xj
x

∣∣∣2 +
∣∣∣yj
x

∣∣∣2]

= −g′2
∣∣∣∣xj − yj

x

∣∣∣∣2 +
g′2

2

(
(xj − yj)2

x2
+

(x∗j − y∗j )
2

x∗2

)
. (7)

This yields

G′x(xj |yj) = −g′2
∣∣∣∣xj − yj

x

∣∣∣∣2 +G−x (xj |yj), G−x (xj |yj) = g′
(
−xj − yj

x
+
x∗j − y∗j
x∗

)
+
g′2

2

(
(xj − yj)2

x2
+

(x∗j − y∗j )
2

x∗2

)
+
g′

2

(
y2
j − x2

j

x2
−
y∗2j − x∗2j
x∗2

)
. (8)

Let l+m = max(|xj |, |yj |, j = 1, . . . ,m). Let Λ = BL then

GΛ(Xm|Ym) =
∑
e

ze


∫

|x|≤2l+m

P β0(Λ)(x|x)

 m∏
j=1

(
x∗ − x∗j
x− xj

x− yj
x∗ − y∗j

) 1
2
geej

− 1

 dx

+
∫

2l+m≤|x|≤L

P β0(Λ)(x|x)G0
x(Xm|Ym)dx+

∫
2l+m≤|x|≤L

P β0(Λ)(x|x)G′x(Xm|Ym)dx

 . (9)

For |x| ≥ 2l+m we have the bound

G0
x,e(Xm|Ym) ≤ (2l+m)3

|x|3 24|g′|m.

Here we used the inequalities∣∣∣∣∣
(
x∗j
x∗

)n+
1,j (xj

x

)n−
1,j

(
y∗j
x∗

)n−
2,j (yj

x

)n+
2,j

∣∣∣∣∣ ≤ (2l+m)3

|x|3 2−(n+
1,j+n

−
1,j+n

+
2,j+n

−
2,j),∣∣∣C+(−)g

n

∣∣∣ ≤ C−|g|n > 0.

After applying them we enlarge the sum in the expression for G0
x,e to the sum over (Z+)4m.

Since PΛ(x|x) tends to (2πβ)−1 the first and the second terms in (9) have limits when L
tends to infinity. We have only to calculate the third term. Let us show that∫

r≤|x|≤L
G−x (x′|y′)dx = 0. (10)
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For arbitrary r, L, v = v1 + iv2, B = BL\Br we have∫
B

(
v

x
− v∗

x∗

)
dx = −2i

v1

∫
B

x2

|x|2dx− v2

∫
B

x1

|x|2dx

 = 0,

∫
B

(
v

x2
+

v∗

x∗2

)
dx = 2

v1

∫
B

(
x1

)2 −
(
x2

)2

|x|4 dx+ 2v2

∫
B

x1x2

|x|4 dx

 = 0,

∫
B

(
v

x2
− v∗

x∗2

)
dx = 2i

v2

∫
B

(
x1

)2 −
(
x2

)2

|x|4 dx− 2v1

∫
B

x1x2

|x|4 dx

 = 0.

All the above integrals are zero since the all the functions change signs when either a sign of
one of the variables is changed, or a permutation is done.

As a result∫
r<|x|≤L

G′x(Xm|Ym)dx = −1
4
g2

(∑
e

zee
2

)
Nr,L

m∑
j=1

e2j |xj − yj |2. (11)

The integral in the right-hand-side of this equality diverges as 2 lnL. For g′ = k, k ∈ Z we
obtain (6) in which we have to put Ckn = 0 for n > k, Ckn = k!

(n−k)!n! .
From (9), (11) we derive

GΛ(Xm|Ym) =
∑
e

ze


∫

|x|≤2l+m

P β0(Λ)(x|x)

 m∏
j=1

(
x∗ − x∗j
x− xj

x− yj
x∗ − y∗j

) 1
2
geej

− 1

 dx

+
∫

2l+m≤|x|≤L

P β0(Λ)(x|x)G0
x(Xm|Ym)dx− 1

4
g2

(∑
e

zee
2

)
N2l+m,L

m∑
j=1

e2j |xj − yj |2

 . (12)

Using the equalities

lim
L→∞

P β0(BL)(x|x) = (2πβ)−1, lim
L→∞

(lnL)−1Nr,L = β−1

and the fact that G0
x,e is an integrable function in Λ\{0} and we derive the following result.

Theorem 1. Let Λ coincide with BL.
I. If g2 = g2

0(lnL)−1 then

lim
L→∞

ρBL(Xm|Ym) = Z(e)m
exp {i[U(Xm)− U(Ym)]}P β0 (Xm|Ym)

× exp

− 1
4β
g2
0

(∑
e

zee
2

)
m∑
j=1

e2j |xj − yj |2
 .

II. If lim
L→∞

g2 lnL = 0 then

lim
L→∞

ρBL(Xm|Ym) = Z(e)m
exp{i[U(Xm)− U(Ym)]}P β0 (Xm|Ym).

III. If lim
L→∞

g2 lnL = ∞ then

lim
L→∞

ρBL(Xm|Ym) = 0, xj �= yj .
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The mean-field type limit for the quantum CS system does not exit contrary to the classical
CS particle system [8]. But there is a similarity in the behavior of the RDMs in the weak
coupling limit and the Gibbs correlation functions in the mean-field type limit.

Description of integrable systems with magnetic interaction in the thermodynamic limit can
be found in [5, 6, 7, 9, 10].
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In the present paper we construct integrable Hamiltonian systems of the Euler–Arnold type
associated with infinite-dimensional quasigraded Lie algebras of matrix valued functions on
higher genus curves. In details is considered the case when underlying matrix Lie algebra
coincide with gl(n). Corresponding generalizations of Steklov integrable systems as long as
gl(n) analogues of Clebsh integrable systems are obtained.

1 Introduction

The main purpose of the present paper is to construct new integrable Hamiltonian systems of
the Euler–Arnold type. Our approach to the solution of this problem is based on the usage of
infinite-dimensional Lie algebras. Traditionally Lie theoretical explanation of the integrability of
Euler–Arnold equations on finite-dimensional Lie algebras is based on on the loop algebras and
Kostant–Adler scheme [1, 2]. In the papers [3, 4] it was shown, that in similar way integrable
Euler–Arnold equations on the algebra so(3) and some its extensions could be obtained from
the infinite-dimensional Lie algebras of the special elliptic functions with the values in so(3). In
our previous papers [5, 6] we generalized construction described in [4] for the case of classical
matrix algebras of higher ranks. Growth of the rank of algebra requires automatic growth of
the genus of the curve. In the result we have obtained algebras of gl(n)-, so(n)- and sp(n)-
valued functions on the algebraic curves of higher genus. The most important property of the
discovered algebras is that they admit Kostant–Adler scheme, and hence, could be used to
construct new integrable systems. Using them we have constructed new integrable Hamiltonian
systems on the Lie algebras so(n)⊕so(n), so(n)+so(n), e(n) that generalize integrable systems
of Steklov–Veselov, Steklov–Liapunov, and Clebsh [5, 6, 7].

In the present paper we consider the case when underlying matrix Lie algebra coincides with
g = gl(n). We show that there exist precise integrable gl(n)-analogues of Steklov–Veselov and
Steklov–Liapunov systems on gl(n)⊕gl(n), gl(n)+gl(n) along with gl(n) analogue of the Clebsh
system on gl(n − 1) + R2n. It is necessary to notice that same results are valid for the case of
g = sp(n). We do not adduce them here due to the restricted size of the article.

2 Quasi-graded algebras on higher genus curves

2.1 Construction

1. Higher genus curve embedded in Cn. Let us consider in the space Cn with the coordinates
w1, w2, . . . , wn the following system of quadrics:

w2
i − w2

j = aj − ai, i, j = 1, n, (1)
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where ai are arbitrary complex numbers. Rank of this system is n− 1, so substitution:

w2
i = w − ai, y =

n∏
i=1

wi, y2 =
n∏
i=1

w2
i

solves these equations and defines the equation of the hyperelliptic curve H.
2. Classical Lie algebras. Let g denotes one of the classical matrix Lie algebras gl(n), so(n)

and sp(n) over the field of the complex numbers. We will need explicit form of their bases. Let
Ii,j ∈ Mat (n,C) be a matrix defined as:

(Iij)ab = δiaδjb.

Evidently, a basis in the algebra gl(n) could be built from the matrices Xij ≡ Iij , i, j ∈ 1, . . . , n.
The commutation relations in gl(n) will have the standard form:

[Xi,j , Xk,l] = δk,jXi,l − δi,lXk,j .

The basis in the algebra so(n) could be chosen as: Xij ≡ Iij − Ii,j , i, j ∈ 1, . . . , n, with “skew-
symmetry” property Xij = −Xji and the following commutation relations:

[Xi,j , Xk,l] = δk,jXi,l − δi,lXk,j + δj,lXk,i − δk,iXj,l.

The basis in the algebra sp(n) we choose as Xij = Iij − εiεjI−i,−j , |i|, |j| ∈ 1, . . . , n, with the
property Xi,j = −εiεjX−j,−i, where εj = sign j and commutation relations:

[Xi,j , Xk,l] = δk,jXi,l − δi,lXk,j + εiεj(δj,−lXk,−i − δk,−iX−j,l).

3. Algebras on the curve. For the basic elements Xij of all three algebras gl(n), so(n) and sp(n)
and arbitrary n ∈ Z we introduce the following algebra-valued functions on the curve H, or to
be more precise on its ramified covering:

Xn
ij = Xij ⊗ wnwiwj .

The next theorem holds true:

Theorem 1. (i) Elements Xn
ij form n ∈ Z quasi-graded Lie algebra g̃H with the following

commutation relations:

1) [Xn
ij , X

m
kl ] = δkjX

n+m+1
il − δilX

n+m+1
kj + aiδilX

n+m
kj − ajδkjX

n+m
il for the gl(n); (2a)

2) [Xn
ij , X

m
kl ] = δkjX

n+m+1
il − δilX

n+m+1
kj + δjlX

n+m+1
ki − δikX

n+m+1
jl

+ aiδilX
n+m
kj − ajδkjX

n+m
il + aiδikX

n+m
jl − ajδjlX

n+m
ki for the so(n); (2b)

3) [Xn
ij , X

m
kl ] = δkjX

n+m+1
il − δilX

n+m+1
kj + εiεj

(
δj−lXn+m+1

k−i − δi−kXn+m+1
j−l

)
+ aiδilX

n+m
kj − ajδkjX

n+m
il + aiεiεj

(
aiδi−kXn+m

j−l − ajδj−lXn+m
k−i

)
for the sp(n). (2c)

(ii) Algebra g̃H as a linear space admits a decomposition into the direct sum of two subalgebras:
g̃H = g̃+

H + g̃−H, where subalgebras g̃+
H and g̃−H are generated by the elements X0

ij, and X−1
ij

correspondingly.

Example 1. Let g = so(3). In this case putting Xk ≡ εijkXij , we obtain the following commu-
tation relations:

[Xn
i , X

m
j ] = εijkX

n+m+1
k + εijkakX

n+m
k .

Remark 1. From the item (i) of the theorem it follows that in the rational degeneration, i.e.
when ai = 0, g̃H = g̃, where g̃ is an ordinary loop algebra.



366 T.V. Skrypnyk

2.2 Coadjoint representation

To define the coadjoint representation we have to define g̃∗H. For our purposes it will be conve-
nient to identify g̃∗H with g̃H as linear spaces. In order to do this we will define pairing between
L(w) ∈ g̃∗H and X(w) ∈ g̃H in the following way:

〈X(w), L(w)〉f = cn res
w=0

y−2(w)(X(w)|L(w)), (3)

where f(w) is arbitrary function on the curve H. It is easy to show that element dual to X−mij
with respect to this pairing is Y m

ij ≡ (X−mij )∗ = wm−1y2(w)
wiwj

X∗ij . Hence the general element of the
dual space has the following form:

L(w) =
∑
m∈Z

n∑
i,j=1

l
(m)
ij

wm−1y2(w)
wiwj

X∗ij . (4)

Coadjoint action of algebra g̃H on its dual space g̃∗H coincides with commutator:

ad∗X(w)L(w) = [L(w), X(w)]. (5)

From the explicit form of coadjoint action (5) follows the next statement:

Proposition 1. Functions Ikm(L(w)) = res
w=0

w−m−1 TrL(w)k, where m ∈ Z, are invariants of
coadjoint representation.

3 Integrable systems from hyperelliptic algebras

3.1 Poisson structures and Poisson subspaces

1. First Lie–Poisson structure. In the space g̃∗H we can define Lie–Poisson brackets using
introduced above pairing (3). It defines brackets on P (g̃∗H) in the following way:

{F (L), G(L)} =
∑
l,m∈Z

n∑
i,j,p,s=1

〈L(w), [X−lij , X
−m
ps ]〉 ∂G

∂l
(l)
ij

∂F

∂l
(m)
ps

. (6)

From the Proposition 1 follows the next statement:

Proposition 2. Functions Ikm(L(w)) are central for brackets { , }.

Let us explicitly calculate Poisson brackets (6). Taking into account that l(m)
ij = 〈L(w), X−mij 〉,

it is easy to show, that for the coordinate functions l(m)
ij these brackets have the following form:

1)
{
l
(n)
ij , l

(m)
kl

}
= δkjl

(n+m−1)
il − δill

(n+m−1)
kj + aiδill

(n+m)
kj − ajδkjl

(n+m)
il for the gl(n); (7a)

2)
{
l
(n)
ij , l

(m)
kl

}
= δkjl

(n+m−1)
il − δill

(n+m−1)
kj + δjll

(n+m−1)
ki − δikl

(n+m−1)
jl

+ aiδill
(n+m)
kj − ajδkjl

(n+m)
il + aiδikl

(n+m)
jl − ajδjll

(n+m)
ki for the so(n); (7b)

3)
{
l
(n)
ij , l

(m)
kl

}
= δkjl

(n+m−1)
il − δill

(n+m−1)
kj + εiεj

(
δj−ll

(n+m−1)
k−i − δi−kl

(n+m−1)
j−l

)
+ aiδill

(n+m)
kj − ajδkjl

(n+m)
il + εiεj

(
aiδi−kl

(n+m)
j−l − ajδj−ll

(n+m)
k−i

)
for the sp(n). (7c)
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2. Second Lie–Poisson structure. Let us introduce into the space g̃∗H new Poisson brackets
{ , }0, which are a Lie–Poisson brackets for the algebra g̃0

H, where g̃0
H = g̃−H ' g̃+

H. Explicitly,
this brackets have the following form:

{l(n)
ij , l

(m)
kl }0 = −{l(n)

ij , l
(m)
kl }, n,m ∈ Z+, {l(n)

ij , l
(m)
kl }0 = {l(n)

ij , l
(m)
kl }, n,m ∈ Z− ∪ 0,

{l(n)
ij , l

(m)
kl }0 = 0, m ∈ Z− ∪ 0, n ∈ Z+ or n ∈ Z− ∪ 0, m ∈ Z+.

Let subspace Ms,p ⊂ g̃∗H be defined as follows:

Ms,p =
p∑

m=−s+1

(g̃∗H)m.

Brackets { , }0 could be correctly restricted to Ms,p. It follows from the next proposition:

Proposition 3. Subspaces Jp,s =
−p−1∑
m=−∞

(g̃H)m +
∞∑
m=s

(g̃H)m are ideals in g̃0
H.

3.2 Algebras of integrals and Hamiltonian equations

To construct integrable Hamiltonian systems we need a large family of mutually commuting
functions (integrals of motion). It is provided by the following theorem:

Theorem 2. Let functions {Ikm(L)} be defined as in Proposition 1. Their restriction to Ms,p

generate commutative algebra with respect to the restriction of the brackets { , }0 on Ms,p.

Dynamical equations we will consider here are Hamiltonian equations of the form:

dl
(k)
ij

dt
=

{
l
(k)
ij , H

(
l
(m)
kl

)}
0
, (8)

where Hamiltonian H is one of the functions Ikm or their linear combination. These equations
could be written in the form of Lax type equations [2]:

dL(w)
dt

= PMs,p([L(w),M(w)]), (9)

where PMs,p denotes operator that project dual space onto subspace Ms,p L(w) ∈ Ms,p, and
second operator is defined as follows: M(w) = (P− − P+)∇H(L(w)). Here P± are projection
operators on the subalgebra g̃±H,

∇H(L(w)) =
s−1∑
k=−p

n∑
ij=1

∂H

∂l
(k)
ij

X−kij (10)

is an algebra-valued gradient of H.
Thus we have constructed Hamiltonian systems possessing (Theorem 2) a lot of mutually

commuting integrals of motion. In the next section we will consider examples of such systems.

4 Integrable systems in finite-dimensional quotients

The most interesting from the physical point of view examples usually arise in the spaces Ms,p

with small s and p. We will assume, that curve H is nondegenerated, i.e. ai �= aj for i �= j.
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4.1 Generalized gl(n) tops

Let us consider subspace M0,1. It is evident that M0,1 = (g̃+
H/J1,0)∗ = g∗. Corresponding Lax

operator L(w) ∈M0,1 has the following form:

L(w) =
∑

i,j=1,k

l
(1)
ij

y2(w)
wiwj

X∗ij .

Let us consider the case g = gl(n). In this case we have: X∗ij = Xji. Lie–Poisson brackets

between the coordinate functions lij ≡ l
(1)
ij have standard form:

{lij , lkl} = δkjlil − δillkj .

Commuting integrals are constructed using expansions in the powers of w of the functions:
Ik(w) = Tr (L(w))k. We are especially interested in the quadratic Hamiltonians. Let

h(w) ≡ I2(w) =
2n−2∑
s=0

hs(lij)ws =
∑
ij

 ∏
k 	=i,j

(w − ak)2

 lijlji.

We obtain:

h0 =

(
n∏
k=1

a2
k

)
n∑

i,j=1

lijlji
aiaj

,

h1 = −
(

n∏
k=1

a2
k

)
n∑

i,j=1

(
2

n∑
k=1

a−1
k −

(
a−1
i + a−1

j

))
lijlji
aiaj

,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

h2n−3 = −
n∑

i,j=1

(
2

n∑
k=1

ak − (ai + aj)

)
lijlji,

h2n−2 =
n∑

i,j=1

lijlji.

Last function in this set is a Casimir function, previous 2n − 3 define nontrivial flows on
each coadjoint orbit in g∗. For the Hamiltonian of the generalized gl(n) rigid body we can take
H(lij) ≡ 1/2hn−1(lij) or H(lij) ≡ 1/2h0(lij). They are transformed to the standard Hamiltonian
of the Euler top in the case n = 3 after reduction to so(n) subalgebra.

4.2 Generalized gl(n − 1) Clebsh systems

Let us consider subspace M1,0. Corresponding Lax matrix L(w) ∈M1,0 has the following form:

L(w) = w−1
∑

i,j=1,n

l
(0)
ij

y2(w)
wiwj

Xji.

In the space M1,0 Poisson structure { , } has the following form:{
l
(0)
ij , l

(0)
kl

}
= aiδill

(0)
kj − ajδkjl

(0)
il . (11)
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The Lie algebraic structure that is defined by these brackets strongly depends on the constants ai.
Let us consider the case of the simplest “degeneration” an → 0, ai �= 0, where i < n. In this
case we will have the following commutation relations:{

l
(0)
ij , l

(0)
kl

}
= aiδill

(0)
kj − ajδkjl

(0)
il ,

{
l
(0)
ij , l

(0)
kn

}
= −ajδkjl(0)in ,

{
l
(0)
ij , l

(0)
nk

}
= aiδikl

(0)
nj ,{

l
(0)
in , l

(0)
jn

}
=

{
l
(0)
ni , l

(0)
nj

}
=

{
l
(0)
ij , l

(0)
nn

}
= 0,

{
l
(0)
in , l

(0)
nj

}
= aiδijl

(0)
nn ,

where i, j, k < n. Making the following change of the variables:

lij =
l
(0)
ij

bibj
, xk =

l
(0)
kn

bk
, yk =

l
(0)
nk

bk
, z = l(0)nn , where bi = a

1/2
i , i, j, k < n (12)

we obtain commutation relations for the Lie algebra gl(n− 1) +H2n+1:

{lij , lkl} = δillkj − δkjlil, {xi, yj} = z, {lij , xk} = −δkjxi,
{lij , yk} = δikyk, {xi, xj} = {yi, yj} = {lij , z} = 0,

where H2n+1 is a Heisenberg algebra in the space R2n+1. It is evident, that z is a central element
in this algebra, so we can put z = 0. Corresponding Poisson algebra will coincide with semi-
direct sum gl(n − 1) + R2n. We will call corresponding integrable Hamiltonian system “gl(n)
Clebsh system”.

Let us calculate commuting integrals of the gl(n) Clebsh system. They are constructed using
expansions in the powers of w of the functions: Hk(w) = Tr(L(w))k. Let us calculate explicitly
second order integrals:

h(w) ≡ H2(w) =
2n−4∑
s=−2

hs

(
l
(0)
ij

)
ws = w−2

∑
i,j=1,n

 ∏
k 	=i,j

(w − ak)2

 l
(0)
ij l

(0)
ji .

It is not difficult to notice that in the case an �= 0, Hamiltonians have essentially the same form
as in the previous example of the generalized tops (modulo the shift the indices hk → hk−2 and
replacing of variables: lij → l

(0)
ij ). Let us now calculate these Hamiltonians in the limit an → 0,

z → 0. Taking into account coordinate transformation (12) we obtain:

h−2 = 2

(
n−1∏
k=1

a2
k

)
n−1∑
k=1

xkyk,

h−1 = (−1)

(
n−1∏
k=1

a2
k

)  n−1∑
i,j=1

(
lijlji − 2a−1

i xiyi
)
− h0

 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

h2n−5 = (−1)

 n−1∑
i,j=1

(ai + aj)aiajlijlji + 2a2
ixiyi

− 2

(
n−1∑
k=1

ak

)
h2n−4,

h2n−4 =

 n−1∑
i,j=1

aiajlijlji + 2aixiyi

 .

Function h−2 is a Casimir function. For the Hamiltonian of the Clebsh system one can take, for
example, h−1 or h2n−4. They are transformed to the standard integrals of the Clebsh system in
the case n = 3 after reduction to so(n) subalgebra.
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4.3 Generalized interacting gl(n) tops

Let us consider subspace M1,1. In the case ai �= 0, as it follows from the explicit form of
the brackets given below, M1,1 = (g ⊕ g)∗. Corresponding Lax operator L(w) ∈ M1,1 has the
following form:

L(w) =
n∑

i,j=1

(
w−1l

(0)
ij + l

(1)
ij

) y2(w)
wiwj

X∗ij .

In the of gl(n) case we may put X∗ij = Xji. Lie–Poisson brackets between the coordinate

functions l(1)ij are the following:{
l
(0)
ij , l

(0)
kl

}
= −aiδill(0)kj + ajδkjl

(0)
il ,

{
l
(1)
ij , l

(1)
kl

}
= δkjl

(1)
il − δill

(1)
kj ,

{
l
(0)
ij , l

(1)
kl

}
= 0.

Putting bi = a
1/2
i and making the change of variables: lij = l

(1)
ij , mij =

l
(0)
ij

bibj
, we obtain canonical

coordinates of the direct sum of two algebras gl(n):

{mi,j ,mk,l} = δkjmil − δilmkj , {lij , lkl} = δkjlil − δillkj , {lij ,mkl} = 0.

Commuting integrals are constructed using expansion in the powers of w of the functions:
Ik(w) = Tr (L(w))k. We are interested in the quadratic integrals:

h(w) ≡ I2(w) =
2n−2∑
s=−2

hs

(
l
(1)
ij

)
ws =

∑
ij

 ∏
k 	=i,j

(w − ak)2

 (
l
(0)
ij + wl

(1)
ij

)2
.

By direct calculations making the described above change of variables we obtain:

h−2 =
(
b41b

4
2 · · · b4n

) n∑
i,j=1

mijmji,

h−1 = −
(
b41b

4
2 · · · b4n

)  n∑
i,j=1

2
∑
k=1,n

b−2
k −

(
b−2
i + b−2

j

)mijmji − 2b−1
i b−1

j mijlji

 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

h2n−3 = −

 n∑
i,j=1

(
2

n∑
k=1

b2k −
(
b2i + b2j

))
lijlji − 2bibjmijlji

 ,

h2n−2 =
n∑

i,j=1

lijlji.

It is evident that functions h−2 and h2n−2 are invariants. For the Hamiltonian of the generalized
interacting rigid bodies we can take either hn−1 or h1. Operator M and Lax equations for these
Hamiltonians are calculated using formulas (9), (10).

4.4 Steklov–Liapunov system on gl(n) + gl(n)

Let us consider subspace M0,2 = (g̃+
H/J2,0)∗. It is easy to show that M0,2 = (g + g)∗. Corre-

sponding Lax operator L(w) ∈M0,2 has the following form:

L(w) =
n∑

i,j=1

(
l
(1)
ij + wl

(2)
ij

) y2(w)
wiwj

X∗ij .



Integrable Hamiltonian Systems via Quasigraded Lie Algebras 371

We will again be concentrated on g = gl(n) case and put X∗ij = Xji. Lie–Poisson brackets
between coordinate functions are the following:{

l
(1)
ij , l

(1)
kl

}
= δkjl

(1)
il − δill

(1)
kj + aiδill

(2)
kj − ajδkjl

(2)
il ,{

l
(1)
ij , l

(2)
kl

}
= δkjl

(2)
il − δill

(2)
kj ,

{
l
(2)
ij , l

(2)
kl

}
= 0.

Change of variables: l
(1)
ij = lij − aipij , l

(2)
ij = pij transforms described above brackets to the

standard brackets on the semi-direct sum gl(n) + gl(n):

{lij , lkl} = δkjlil − δillkj , {lij , pkl} = δkjpil − δilpkj , {pij , pkl} = 0.

Commuting integrals are constructed using expansion in the powers of w of the functions:
Ik(w) = Tr (L(w))k. We are again interested mainly in quadratic integrals:

h(w) ≡ I2(w) =
2n−2∑
s=0

hs+2

(
l
(1)
ij

)
ws = w2

∑
ij

 ∏
k 	=i,j

(w − ak)2

 (
l
(1)
ij + wl

(2)
ij

)2
.

By direct calculations, making the described above change of variables we obtain the following
set of Hamiltonians:

h0 =
(
a2

1a
2
2 · · · a2

n

) n∑
i,j=1

(lij − aipij)(lji − ajpji)
aiaj

,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

h2n−1 = (−1)

(
2

n∑
k=1

ak

)
n∑

i,j=1

pijpji + 2lijpji,

h2n =
n∑

i,j=1

pijpji.

Last two functions are invariant functions. If we choose function H = h0 for the Hamiltonian
function we obtain precise gl(n) generalization of Steklov–Liapunov system.
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We report an infinite class of discrete hierarchies which naturally generalize familiar discrete
KP one.

1 Introduction

The interrelation between discrete and differential integrable hierarchies plays crucial role in
obtaining solutions to the discrete multi-matrix models [1, 2]. At a level of KP-type differential
hierarchies the discrete structure of multi-matrix models is captured by the Darboux–Bäck-
lund (DB) transformations. In turn partition functions of multi-matrix models turns out to be
τ -functions of differential hierarchies and are constructed as DB orbits of certain simple initial
conditions [2]. The well known discrete KP (1-Toda lattice) hierarchy [3] together with its reduc-
tions can be viewed as a container for a set of KP-type differential hierarchies whose solutions
are generated by DB transformations.

This paper is designed to exhibit certain class of discrete hierarchies which generalize discrete
KP and show the relationship with general (unconstrained) differential KP. This relationship
yields bi-infinite sequences of differential KP equipped with two compatible gauge transforma-
tions. We believe that these results might be of potential interest from the physical point of
view.

2 nth discrete KP

Given the shift operator Λ = (δi,j−1)i,j∈Z one considers the Lie algebra of pseudo-difference
operators

D =

{ ∑
−∞<k�∞

�kΛk
}

= D− +D+

with usual splitting into “negative” and “positive” parts:

D− =

 ∑
−∞<k≤−1

�kΛk

 and D+ =

{ ∑
0<k�∞

�kΛk
}
.

We assume that entries of bi-infinite diagonal matrices �k ≡ (�k(i))i∈Z may depend on “spectral”
parameter z and multi-time t ≡ (t1 ≡ x, t2, t3, . . .). In what follows ∂ ≡ ∂/∂x and ∂p ≡ ∂/∂tp.

Let us define1

Q = Λ + a0z
n−1Λ1−n + a1z

2(n−1)Λ1−2n + · · · ∈ D, n ∈ N (1)

with ak = (ak(i))i∈Z being functions on t only.
1Here z acts as component-wise multiplication.
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Proposition 1. Lax equations of Q-deformations

zp(n−1)∂pQ =
[
Qpn+ , Q

]
, p = 1, 2, . . . (2)

make sense.

Proof. One needs to use standard simple arguments to prove correctness of equations (2). It
is enough to show that

[
Qpn+ , Q

]
= −

[
Qpn− , Q

]
is of the same form as l.h.s. of (2). �

We will refer to (2) as nth discrete KP hierarchy. Let us represent Q as a dressing up of Λ
by a “wave” operator as Q = WΛW−1 where

W = I + w1z
n−1Λ−n + w2z

2(n−1)Λ−2n + w3z
3(n−1)Λ−3n + · · · ∈ I +D−.

Then Q-deformations are induced by W -deformations

zp(n−1)∂pW = Qpn+ W −WΛpn,

zp(n−1)∂p
(
W−1

)T =
(
W−1

)T Λ−pn −
(
Qpn+

)T (
W−1

)T
. (3)

Define χ(t, z) =
(
zieξ(t,z)

)
i∈Z

, χ∗(t, z) =
(
z−ie−ξ(t,z)

)
i∈Z

with ξ(t, z) ≡
∞∑
p=1

tpz
p and wave vectors

Ψ(t, z) = Wχ(t, z), Ψ∗(t, z) =
(
W−1

)T
χ∗(t, z). (4)

Discrete linear system

QΨ(t, z) = zΨ(t, z), QTΨ∗(t, z) = zΨ∗(t, z),

zp(n−1)∂pΨ = Qpn+ Ψ, zp(n−1)∂pΨ∗ = −(Qpn+ )TΨ∗ (5)

are evident consequence of (3) and (4). Making use of obvious relations zχ = Λχ and χi = ∂i−jχj
with i and j being arbitrary integers, we deduce

Ψi(t, z) = zi
(
1 + w1(i)z−1 + w2(i)z−2 + · · ·

)
eξ(t,z)

= zi
(
1 + w1(i)∂−1 + w2(i)∂−2 + · · ·

)
eξ(t,z) ≡ ziŵi(∂)eξ(t,z) ≡ ziψi(t, z).

What we are going to do next is to establish equivalence of nth discrete KP to bi-infinite
sequence of differential KP copies “glued” together by two compatible gauge transformations one
of which can be recognized as DB transformation mapping Qi ≡ ŵi∂ŵ

−1
i to Qi+n ≡ ŵi+n∂ŵ

−1
i+n.

By straightforward calculations one can prove

Proposition 2. The following three statements are equivalent
i) the wave vector Ψ(t, z) satisfies discrete linear system

QΨ(t, z) = zΨ(t, z), zn−1∂Ψ = Qn+Ψ; (6)

ii) the components ψi of a vector ψ ≡ (ψi = z−iΨi)i∈Z satisfy

Giψi(t, z) = zψi+n−1(t, z), Hiψi(t, z) = zψi+n(t, z) (7)

with Hi ≡ ∂ −
n∑
s=1

a0(i+ s− 1) and

Gi ≡ Hi + a0(i+ n− 1) + a1(i+ n− 1)H−1
i−n + a2(i+ n− 1)H−1

i−2nH
−1
i−n + · · · ;

iii) for sequence of dressing operators ŵi following equations

Giŵi = ŵi+n−1∂, Hiŵi = ŵi+n∂ (8)

hold.
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Consistency condition of (6) is given by Lax equation

zn−1∂Q =
[
Qn+, Q

]
(9)

which in explicit form looks as

∂ak(i) = ak+1(i+ n)− ak+1(i)

+ ak(i)

(
n∑
s=1

a0(i+ s− 1)−
n∑
s=1

a0(i+ s− (k + 1)n)

)
, k ≥ 0. (10)

Remark 1. One-field reductions of the systems (10) lead to Bogoyavlenskii lattices [4]

∂ri = ri

(
n−1∑
s=1

ri+s −
n−1∑
s=1

ri−s

)
, ri ≡ a0(i)

including well known Volterra lattice ∂ri = ri(ri+1 − ri−1) in the case n = 2.

Consistency condition of (8) is given by relations

Gi+nHi = Hi+n−1Gi, i ∈ Z (11)

which in fact are equivalent to (9).

Proposition 3. By virtue of (8) and its consistency condition, Lax operators Qi are connected
with each other by two invertible compatible gauge transformations

Qi+n−1 = GiQiG
−1
i , Qi+n = HiQiH

−1
i . (12)

Proof. By virtue of (8), we have

Qi+n−1 = ŵi+n−1∂ŵ
−1
i+n−1 =

(
Giŵi∂

−1
)
∂

(
∂ŵ−1

i G−1
i

)
= Giŵi∂ŵ

−1
i G−1

i = GiQiG
−1
i .

The similar arguments are applied to show second relation in (12). The mapping Qi → Q̃i =
Qi+n−1 we denote as s1, while s2 stands for transformation Qi → Qi = Qi+n. As for compati-
bility of s1 and s2, by virtue of (11), we have

Qi+2n−1 = Gi+nQi+nG
−1
i+n = Gi+nHiQiH

−1
i G−1

i+n

= Hi+n−1GiQiG
−1
i H−1

i+n−1 = Hi+n−1Qi+n−1H
−1
i+n−1.

So we can write s1 ◦ s2 = s2 ◦ s1. The inverse maps s−1
1 and s−1

2 are well defined by the formulas
Qi−n+1 = G−1

i−n+1QiGi−n+1 and Qi−n = H−1
i−nQiHi−n. �

It is obvious that relation sn1 = sn−1
2 holds. Indeed the l.h.s. and r.h.s. of this relation

correspond to the same mapping Qi → Qi+n(n−1). The Abelian group generated by s1 and s2
we denote by symbol G.

Rewrite second equation in (7) as zn−1HiΨi(t, z) = Ψi+n(t, z) = (ΛnΨ)i. From this we derive

zk(1−n)(ΛknΨ)i = Hi+(k−1)n · · ·Hi+nHiΨi,

zk(n−1)(Λ−knΨ)i = H−1
i−kn · · ·H

−1
i−2nH

−1
i−nΨi.

These relations make connection between matrices of the form P =
∑
k∈Z

zk(1−n)pk(t)Λkn and

sequences of pseudo-differential operators {Pi, i ∈ Z} mapping the upper triangular part of
given matrix (including main diagonal) into the differential parts of Pi’s and the lower triangular
part of the matrix to the purely pseudo-differential parts. More exactly, we have (PΨ)i = PiΨi,
(P−Ψ)i = (Pi)−Ψi and (P+Ψ)i = (Pi)+Ψi, where

Pi =
∑
k>0

p−k(i, t)H−1
i−kn · · ·H

−1
i−2nH

−1
i−n +

∑
k≥0

pk(i, t)Hi+(k−1)n · · ·Hi+nHi = (Pi)− + (Pi)+.
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Proposition 4. Equations zp(n−1)∂pΨ = Qpn+ Ψ, p = 2, 3, . . . lead to ∂pψi = (Qp
i )+ψi, p =

2, 3, . . ..

Proof. We have

zp(1−n)(QpnΨ)i = zpΨi = zi+pŵie
ξ(t,z) = ziŵi∂

peξ(t,z) = ziŵi∂
pŵ−1

i ψi = ziQp
iψi = Qp

iΨi.

Thus

zp(n−1)∂pΨi = zi+p(n−1)∂pψi = (Qpn+ Ψ)i = zp(n−1)(Qp
i )+Ψi = zi+p(n−1)(Qp

i )+ψi.

The latter proves proposition. �

Let us establish equations managing Gi- and Hi-evolutions with respect to KP flows. Dif-
ferentiating l.h.s. and r.h.s. of (8) by virtue of Sato–Wilson equations ∂pŵi = (Qp

i )+ŵi − ŵi∂
p

formally leads to evolution equations

∂pGi =
(
Qp
i+n−1

)
+
Gi −Gi (Qp

i )+ ,

∂pHi =
(
Qp
i+n

)
+
Hi −Hi (Qp

i )+ . (13)

Standard arguments can be used to show that equations (13) are properly defined individually.
Let us show that permutation relations (11) are invariant under the flows given by equations (13).
We have

∂p(Hi+n−1Gi) =
{(
Qp
i+2n−1

)
+
Hi+n−1 −Hi+n−1

(
Qp
i+n−1

)
+

}
Gi

+Hi+n−1

{(
Qp
i+n−1

)
+
Gi −Gi (Qp

i )+
}

=
(
Qp
i+2n−1

)
+
Hi+n−1Gi −Hi+n−1Gi (Qp

i )+

=
(
Qp
i+2n−1

)
+
Gi+nHi −Gi+nHi (Qp

i )+ =
{(
Qp
i+2n−1

)
+
Gi+n −Gi+n

(
Qp
i+n

)
+

}
Hi

+Gi+n

{(
Qp
i+n

)
+
Hi −Hi (Qp

i )+
}

= ∂p(Gi+nHi).

Hence we proved that evolution equations (13) are consistent.

Define Φi = Φi(t) via HiΦi = 0 or equivalently through equation ∂Φi = Φi

n∑
s=1

a0(i+ s− 1).

Taking into consideration second equation in (13), we have

∂p(HiΦi) =
(
Qp
i+n

)
+
HiΦi −Hi (Qp

i )+ Φi +Hi∂pΦi = 0.

From this we derive ∂pΦi = (Qp
i )+ Φi + αiΦi where αi’s are some constants. Commutativity

condition ∂p∂qΦi = ∂q∂pΦi leads to evolution equations for KP eigenfunctions ∂pΦi = (Qp
i )+ Φi,

i.e. αi = 0. Thus the relations Qi+n = HiQiH
−1
i defines DB transformations with eigenfunctions

Φi = τi+n/τi. It should perhaps to recall that arbitrary eigenfunction of Lax operator Q contains
information about DB transformation τ → τ = Φτ while the identity2{

τ
(
t−

[
z−1

])
, τ(t)

}
+ z

(
τ

(
t−

[
z−1

])
τ(t)− τ

(
t−

[
z−1

])
τ(t)

)
= 0

holds.
So, we have shown that nth discrete KP is equivalent to sequence of differential KP linked

with each other by two compatible gauge transformations one of which, namely, s2 : Qi → Qi+n

are nothing but Darboux–Bäcklund transformation. The problem which can be addressed is
to describe nth discrete KP in the language of bilinear identities by analogy as was done for
ordinary discrete KP [5].

2Here conventional notations {f, g} = ∂f · g − ∂g · f and
[
z−1

]
=

(
1/z, 1

(
2z2

)
, . . .

)
are used.
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A typical and effective way to construct a higher dimensional integrable equation is to extend
the Lax pair for a (1 + 1) dimensional equation known as integrable to higher dimensions.
Here we construct an alternative modified KdV equation in (2+1) dimensions by the higher-
dimensional extension of a Lax pair. And it is shown that this higher dimensional modified
KdV equation passes the Painlevé test (WTC method).

1 Introduction

A central and so active topic in the theory of integrable systems is to construct as many higher
dimensional integrable systems as possible. The Lax representation is a powerful tool for con-
structing integrable equations in (2 + 1) dimensions. In this paper we will derive a (2 + 1)
dimensional equation of the modified KdV (mKdV) equation. Let us first recall here that the
mKdV equation in (1 + 1) dimensions reads

vt +
1
4
vxxx +

3
2
v2vx = 0. (1)

Higher dimensional integrable equations are not usually unique, in the sense that there exist
several equations that reduce to a given one under dimensional reduction. It is widely known,
for instance, that

vt +
1
4
vxxz + v2vz +

1
2
vx∂

−1
x

(
v2

)
z

= 0 (2)

and

vt +
1
4
vxxx +

3
4
vx∂

−1
z

{
v

(
∂−1
z vx

)
x

}
+

3
4

(
∂−1
z vx

) (
v∂−1

z vx
)
x
− 3

4
vx

(
∂−1
z vx

)2 = 0 (3)

are the higher-dimensional mKdV equations [1, 2, 3]. It is easy to check equation (2) and (3) are
reduced to equation (1), setting z = x. Our goal in this paper is to add into them an alternative
one derived from the higher-dimensional extension of a Lax pair.

It is well-known that the Lax representation [4] describes (1 + 1) dimensional integrable
equations as follows. Consider two operators L and T which are called the Lax pair and given
by

L = L0 − λ, (4)
T = ∂x(L0) + T ′0 + ∂t, (5)

with λ being a spectral parameter independent upon t. Then the commutator

[L, T ] = 0 (6)
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contains a nonlinear evolution equation for suitably chosen L and T . Equation (6) is so-called
the Lax equation. For example if we take

L0 = LmKdV = ∂2
x + 2σv∂x, (7)

T ′0 = T ′mKdV = σv∂2
x −

(
3
2
v2 +

1
2
σvx

)
∂x, (8)

with σ = ±i, then LmKdV and T ′mKdV satisfy the Lax equation (6) provided that v(x, t) satisfies
the mKdV equation (1). By operator LmKdV1 (7), the mKdV equation (1) can be extended to
the higher-dimensional ones (2) and (3). In this paper we will extend the mKdV equation (1)
to an alternative (2 + 1) dimensional one by taking a different L0 operator

L0 = ∂2
x + v∂x +

1
4
v2 +

1
2
vx. (9)

This paper is organised as follows. In Section 2, we shall begin with verifying a different L0

operator (9) gives the mKdV equation in (1+1) dimensions. In the process, we use the Painlevé
test. Next an alternative mKdV equation in (2 + 1) dimensions is introduced by the extension
of T operator of the Lax pair. In this process, we also need to perform the Painlevé test.
Section 5 contains our summary.

2 The modified KdV equation

In this section, let us show the mKdV equation (1) can be constructed by the operator L0

L0 = LmKdV′ = ∂2
x + v∂x +

1
4
v2 +

1
2
vx. (10)

The Lax pair (4) and (5) are given by

L = LmKdV′ − λ, (11)
T = ∂x(LmKdV′) + T ′mKdV′ + ∂t, (12)

where T ′mKdV′ is an unknown operator. And then the Lax equation (6) gives

[LmKdV′ − λ, ∂x(LmKdV′) + ∂t] + [LmKdV′ − λ, T ′mKdV′ ] = 0. (13)

The first term in the left-hand side of equation (13) gives

[LmKdV′ − λ, ∂x(LmKdV′) + ∂t] = −vx∂3
x −

(
3
2
vvx +

1
2
vxx

)
∂2
x

−
(

3
2
v2
x +

3
4
v2vx +

1
2
vxx + vt

)
∂x +

(
3
4
vxvxx +

1
2
vvxxx + · · ·

)
, (14)

where note that ∂x(LmKdV′) = ∂3
x + v∂2

x +
(

1
4v

2 + 3
2vx

)
∂x + 1

2vvx + 1
2vxx. So we choose here the

form of the operator T ′mKdV′ so that it involves, at least, a second-order differential operator,

T ′mKdV′ = U∂2
x + V ∂x +W, (15)

where U , V and W are functions of x and t. Then the second term in the left-hand side of
equation (13) gives

[LmKdV′ − λ, T ′mKdV′)] = 2Ux∂3
x + (Uxx + 2Vx + vUx − 2Uvx) ∂2

x

+ (Vxx + 2Wx + vVx − V vx − Uvvx − 2Uvxx) ∂x + (Wxx + vWx + · · · ) . (16)
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By comparing the first term (14) to the second one (16),

U =
v

2
, (17)

V =
v2

2
, (18)

2Wx = vt +
1
2
vvxx +

1
2
v2
x +

3
4
v2vx (19)

and

Wxx + vWx +
3
4
vxvxx +

1
2
vvxxx + · · · = 0, (20)

where equation (20) is an identity by U , V and Wx. The exact forms of U and V have obtained
and one of W has not yet.

Now let us get it by applying the Painlevé test in the sense of Weiss–Tabor–Carnevale (WTC)
method [5]. For that, let us compute the degree of variables in equation (19). Equation (19)
demands that, if taking [∂x] = 1,

[v] = 1, (21)
[∂t] = 3, (22)
[Wx] = 4, (23)

where [∗] means the degree of a variable ∗. These degrees lead us to take as unknown function Wx

−2Wx = αvxxx + βvvxx + γv2
x + δv2vx, (24)

where α, β, γ and δ are real constants. Equation (19) reads

vt + αvxxx +
(
β +

1
2

)
vvxx +

(
γ +

1
2

)
v2
x +

(
δ +

3
4

)
v2vx. (25)

Now we show four constants in equation (25) are obtained such as passing the Painlevé test
(WTC method). The solution to equation (1) has the form

v ∼ v0φ
η. (26)

Here φ is single valued about an arbitrary movable singular manifold. In η is a negative integer
(leading order). By using leading order analysis, we obtain

η = −1. (27)

Substituting

v(x, t) =
∑
j=0

vj(x, t)φ(x, t)j−1 (28)

leads to the resonances, after trivial algebra,

j = −1, 3, 4, (29)

in the condition

β = γ = −1
2
. (30)
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To simplify the calculations, we use the reduced manifold ansatz of Kruskal:

φ(x, t) = x+ ρ(t), (31)
vj(x, t) = vj(t). (32)

The resonance j = −1 in (29) corresponds to the arbitrary singularity manifold φ. We used
MATHEMATICA to handle the computation for the existence of arbitrary functions correspond-
ing to the resonances except j = −1. We find that v3 and v4 are arbitrary for equation (25).
Thus the general solution v to equation (25) admits the sufficient number of arbitrary functions,
thus passing the Painlevé test with the condition (30). Then equation (25) is reduced to the
mKdV equation

vt + αvxxx +
(
δ +

3
4

)
v2vx = 0, (33)

where α and δ are still arbitrary. Hereafter let us choose

α =
1
4

and δ =
3
4
. (34)

This choice, of course, is meaningless. From condition (30) and (34), W and T ′mKdV′ are given,
respectively, by

W = −1
8
vxx +

1
4
vvx −

1
8
v3, (35)

T ′mKdV′ =
1
2
v∂2

x +
1
2
v2∂x −

1
8
vxx +

1
4
vvx −

1
8
v3. (36)

Namely it has been shown that the operator LmKdV′ can give the mKdV equation (1) by the
Lax equation (6) and the Painlevé test.

3 An extension the modified KdV equation
to (2 + 1) dimensions

It is well known that the Lax differential operator plays a key role in constructing higher dimen-
sional equations from lower dimensional ones. We extend only T operator to (2 + 1) dimensions
as follows [1, 6, 7]

T = ∂z(LmKdV′) + T̃mKdV′ + ∂t. (37)

Here z is a new spatial coordinate. Then the Lax pair is given by

L = LmKdV′ − λ, (38)

T = ∂z (LmKdV′) + T̃mKdV′ + ∂t, (39)

where note that ∂z(LmKdV′) = ∂2
x∂z + v∂x∂z + vz∂x +

(
1
4v

2 + 1
2vx

)
∂z + 1

2vvz + 1
2vxz and T̃mKdV′

is an unknown operator. So we obtain

[LmKdV′ − λ, ∂z(LmKdV′) + ∂t] + [LmKdV′ − λ, T̃mKdV′ ] = 0, (40)

from the Lax equation (6) of the pair (38) and (39). The first term in the left-hand side of
equation (40) gives

[LmKdV′ − λ, ∂z(LmKdV′) + ∂t] = −vz∂3
x −

(
3
2
vvz +

1
2
vxz

)
∂2
x

−
(

3
2
vxvz +

3
4
v2vz +

1
2
vxz + vt

)
∂x +

(
3
4
vxvxz +

1
2
vvxxz + · · ·

)
. (41)
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As in (1 + 1) dimensions, we assume the form of the operator T̃mKdV′

T̃mKdV′ = U∂2
x + V ∂x +W, (42)

where U , V and W are functions of x, z and t. Then the second term in the left-hand side of
equation (40) gives

[LmKdV′ − λ, T̃mKdV′)] = 2Ux∂3
x + (Uxx + 2Vx + vUx − 2Uvx) ∂2

x

+ (Vxx + 2Wx + vVx − V vx − Uvvx − 2Uvxx) ∂x + (Wxx + vWx + · · · ) . (43)

By comparing the first term (41) to the second one (43),

U =
1
2
∂−1
x vz, (44)

V =
1
2
v

(
∂−1
x vz

)
, (45)

2Wx = vt +
1
4
v2vz +

1
2
vvx

(
∂−1
x vz

)
+

1
2
vxvz +

1
2
vxx

(
∂−1
x vz

)
(46)

and

Wxx + vWx +
3
4
vxvxz +

1
2
vvxxz + · · · = 0, (47)

where equation (47) is an identity by U , V and Wx. The exact forms of U and V have obtained
and one of W has not yet as in (1 + 1) dimensions.

Let us compute the degree of variables in equation (46), if taking [∂x] = 1,

[v] = 1, (48)
[∂t] = 2 + [∂z], (49)
[Wx] = 3 + [∂z], (50)

with [∂z] being arbitrary. These degrees lead us to take as unknown function Wx

−2Wx = avxxz + bvxx
(
∂−1
x vz

)
+ cvvxz + dvxvz

+ evvx
(
∂−1
x vz

)
+ fv2vz + gv3

(
∂−1
x vz

)
, (51)

where all from a to g is real constant. Substituting Wx into equation (46) gives

vt + avxxz +
(
b+

1
2

)
vxx

(
∂−1
x vz

)
+ cvvxz +

(
d+

1
2

)
vxvz

+
(
e+

1
2

)
vvx

(
∂−1
x vz

)
+

(
f +

1
4

)
v2vz + gv3

(
∂−1
x vz

)
= 0. (52)

Here we perform the Painlevé test for equation (52) to get real constants in it. For that, we
need to rewrite equation (52) for taking away the term of ∂−1

x . That exact form, however, is
very complicated for writing down here. We would like to write down the result. That is,

leading order : − 1 (53)
resonances : − 1, 1, 3, 4 (54)

real constants : b = d = −1
2
, c = g = 0, (55)

and other constants are arbitrary.
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Thus equation (52) gives

vt +
1
4
vxxz +

(
1
2

+ e

)
vvx

(
∂−1
x vz

)
+ (1− e) v2vz = 0, (56)

where we take a = 1
4 and f = 3

4 − e for being reduced to the mKdV equation (1) setting z = x.
This equation (56) is quite different from the higher dimensional mKdV equation (2) and (3).

That is, the alternative mKdV equation (56) in (2 + 1) dimensions was given by the Lax
equation (6) and the Painlevé test.

4 Summary

A natural problem in the integrable systems is whether we can find new (2 + 1) dimensional
integrable equations from already known (1+1) dimensional integrable ones. The Lax represen-
tation is a powerful tool to do so. The method used in this paper is based on works by Calogero
et al.

Our results in this paper are as follows.

(i) The (1 + 1) dimensional mKdV equation (1) has been obtained by the Lax pair

L = ∂2
x + v∂x +

1
4
v2 +

1
2
vx − λ, (57)

T = ∂3
x +

3
2
v∂2

x +
(

3
4
v2 +

3
2
vx

)
∂x +

3
4
vvx +

3
8
vxx −

1
8
v3 + ∂t. (58)

(ii) By extending the Lax pair (57) and (58) to (2 + 1) dimensions, the higher dimensional
mKdV equation (56) has been introduced. And then the Lax pair is given by

L = ∂2
x + v∂x +

1
4
v2 +

1
2
vx − λ, (59)

T = ∂2
x∂z +

1
2

(
∂−1
x vz

)
∂2
x + v∂x∂z +

(
vz +

1
2
v∂−1

x vz

)
∂x +

(
1
4
v2 +

1
2
vx

)
∂z +

3
8
vxz

+
1
4
vx∂

−1
x vz +

1
2
vvz −

e

4
v2∂−1

x vz +
(

3e
4
− 3

8

)
∂−1

(
v2vz

)
+ ∂t (60)

This equation is integrable in the sense of the existence of the Lax pair and passing the
Painlevé test.

Next let us mention our further works.

(i) The higher dimensional mKdV equations (2) and (3) have various exact solutions (soliton
solution and so on) [2, 3]. They constructed via Bilinear approach or Hirota method. We
have not been able to constructed exact solutions to equation (56) yet.

(ii) We will extend the Lax pair (57) and (58) to (2+1) dimensions by using other method [7, 8].

We believe that higher dimensional integrable equations can be obtained from lower dimen-
sional integrable ones by extending the Lax pairs to higher dimensions. We have a dream such
as constructing (3 + 1) dimensional integrable equations (if there exist). Further study on this
topic continues.
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In this report we consider the nonlinear evolution equation (ut +uux)x +u = 0 (Vakhnenko
equation – VE) that can be integrated by the inverse scattering transform (IST) method.
This equation arose as a result describing the high-frequency perturbations in a relaxing
medium. The VE has two families of travelling wave solutions, both of which are stable to
long wavelength perturbations. In particular, the VE has a loop-like soliton solution. The
interaction of two solitons by both Hirota’s method and the IST method are considered.
The associated eigenvalue problem has been formulated. This has been achieved by finding
a Bäcklund transformation. The inverse scattering method has a third order eigenvalue
problem. Under the interaction of solitons there are features that are not typical for the
KdV equation.

1 Introduction

Describing real media under the action of intense waves is often unsuccessful in the framework of
equilibrium models of continuum mechanics. To develop physical models for wave propagation
through media with complicated inner kinetics, the notions based on the relaxational nature
of a phenomenon are regarded to be promising. A nonlinear evolution equation is suggested
to describe the propagation of waves in a relaxing medium [1]. It is shown that for the low-
frequency approach this equation is reduced to the Korteweg-de Vries (KdV) equation. In
contrast to the low-frequency perturbations, the high-frequency perturbations satisfy a new
nonlinear equation [2]

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ u = 0. (1)

The equation (1) has been studied in various Refs. [2, 3, 4, 5, 6, 7, 8, 9]. Hereafter, as was
initiated in [3], this equation is referred to as the Vakhnenko equation (VE). There is a certain
analogy between the KdV equation and the VE. They have the same hydrodynamic nonlinearity
and do not contain dissipative terms; only the dispersive terms are different. It turns out that
the VE possesses, at least partially, the remarkable properties inherent to the KdV equation.
The study of the VE has scientific interest both from the viewpoint of the existence of stable
wave formations and from the viewpoint of the general problem of integrability of nonlinear
equations.

2 Physical processes described by the Vakhnenko equation

From the nonequilibrium thermodynamics standpoint, the models of a relaxing medium are
more general than the equilibrium models. Thermodynamic equilibrium is disturbed owing to
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the propagation of fast perturbations. There are processes of the interaction that tend to return
the equilibrium. In essence, the change of macroparameters caused by the changes of inner
parameters is a relaxation process.

To analyze the wave motion, we use the hydrodynamic equations in Lagrangian coordinaties:

∂V

∂ t
− 1
ρ0

∂u

∂x
= 0,

∂u

∂ t
+

1
ρ0

∂p

∂x
= 0. (2)

The following dynamic state equation is applied to account for the relaxation effects:

dρ = c−2
f dp+ τ−1

p (ρ− ρe) dt. (3)

We note that the mechanisms of the exchange processes are not defined concretely when deriving
the dynamic state equation (3). In this equation the thermodynamic and kinetic parameters
appear only as sound velocities ce, cf and relaxation time τp. These characteristics can be found
experimentally.

Let us consider a small nonlinear perturbation p′ < p0. Combining the relationships (2), (3)
we obtain the nonlinear evolution equation in one unknown p (the dash in p′ is omitted) [1]

τp
∂

∂ t

(
∂ 2p

∂x2
− c−2

f

∂ 2p

∂ t2
+ αf

∂ 2p2

∂ t2

)
+

(
∂ 2p

∂x2
− c−2

e

∂ 2p

∂ t2
+ αe

∂ 2p2

∂ t2

)
= 0. (4)

A similar equation has been obtained by Clarke [10], but without nonlinear terms.
In [1] it is shown that for low-frequency perturbations (τpω 	 1) the equation (4) is reduced

to the Korteweg-de Vries – Burgers (KdVB) equation

∂p

∂ t
+ ce

∂p

∂x
+ αec

3
ep
∂p

∂x
− βe

∂2p

∂x2
+ γe

∂3p

∂x3
= 0,

while for high-frequency waves (τpω % 1) we have obtained the new equation

∂2p

∂x2
− c−2

f

∂2p

∂ t2
+ αfc

2
f

∂2p2

∂x2
+ βf

∂p

∂x
+ γfp = 0. (5)

The nonlinear equation (5) has dissipative βf∂p/∂x and dispersive γfp terms. Without nonlinear
and dissipative terms, we have a linear Klein–Gordon equation.

In the general case the last equation has been investigated insufficiently. It is likely that this is
connected with the fact, noted by Whitham [11], that the high-frequency perturbations attenuate
very fast. However in Whitham’s monograph, the evolution equation without nonlinear and
dispersive terms was considered. Certainly, the lack of such terms restricts the class of solutions.
At least, there is no solution in the form of a solitary wave, which is caused by nonlinearity and
dispersion.

3 Evolution equation for high-frequency perturbations

The equation (5), which we are interested in, is written down in dimensionless form. In the
moving coordinates system with velocity cf , the equation has the form in dimensionless variables

x̃ =
√

γf

2 (x− cf t), t̃ =
√

γf

2 cf t, ũ = αfc
2
fp (tilde over variables x̃, t̃, ũ is omitted)

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ α

∂u

∂x
+ u = 0. (6)
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The constant α = βf/
√

2γf is always positive. Equation (6) without the dissipative term has
the form of the nonlinear equation [2, 3] (see equation (1))

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ u = 0. (7)

The travelling-wave solutions of the VE (7) were derived in [2, 3], and its symmetry properties
were studied in [5]. A remarkable feature of the VE is that it has a soliton solution which has
loop-like form, i.e. it is a multi-valued function (see Fig. 1 in [2]). Whilst loop soliton solutions
are rather intriguing, it is the solution to the initial value problem that is of more interest in
a physical context.

The physical interpretation of the multi-valued functions that describe the loop-like soliton
solutions was given in [1]. The problem is whether the ambiguity has a physical nature or is
related to the incompleteness of the mathematical model, in particular to the lack of dissipation.
It is significant that the loop-like solutions are stable to long-wavelength perturbations [3], and
that the introduction of a dissipative term (see equation (6)), with dissipation parameter less
than some limiting value, does not destroy these loop-like solutions [1]. Since the solution has
a parametric form [2, 3], there is a space of variables in which the solution is a single-value
function. Consequently, the ambiguity of solution does not relate to the incompleteness of
the mathematical model. Thus in the framework of this model approach, the high-frequency
perturbation can be described by the multi-valued functions [1].

We have succeeded in finding new coordinates (X,T ), in terms of which the solution of
equation (1) is given by single-valued parametric relations. New independent coordinates X, T
are defined as [4]

x = x0 + T +W (X,T ), t = X, W =
∫ X

−∞
U(X ′, T ) dX ′. (8)

Here u(x, t) = U(X,T ), and x0 is a constant. We also assume that, as X → −∞, the derivatives
of W vanish and W tends to a constant. Equation (1) then has the form [4, 8]

WXXT + (1 +WT )WX = 0. (9)

If the solution U(X,T ) = WX of the transformed VE (9) has been obtained, the original inde-
pendent space coordinate x can be found by means of the formula (8). This relationship together
with u(x, t) = U(X,T ) enables us to define the solution of the VE in parametric form with T
as parameter. We note that the transformation (9) between old and new coordinates is similar
to the transformation between Eulerian variables (x, t) and Lagrangian variables (T,X) [8].

Finally, by taking W = 6(ln f)X , where f is a function of X and T , we observe that the
transformed VE (9) may be written as the bilinear equation [4](

DTD
3
X +D2

X

)
f · f = 0, (10)

where D is the Hirota binary operator [12].

4 Bäcklund transformation for the transformed
Vakhnenko equation

We present a Bäcklund transformation for equation (10), following the method developed in [13].
It is well known that the Bäcklund transformation is one of the analytical tools for dealing with
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soliton problems and has a close relationship to the IST method [12, 13, 14]. First we define P
as follows:

P :=
[(
DTD

3
X +D2

X

)
f ′ · f ′

]
ff − f ′f ′

[(
DTD

3
X +D2

X

)
f · f

]
.

We aim to find a pair of equations such that each equation is linear in each of the dependent
variables f and f ′, and such that together f and f ′ satisfy P = 0. The pair of equations is the
required Bäcklund transformation.

Combining this relationship we can rewrite P in the following form [8]:

P = 2DT

({
D3
X−λ(X)

}
f ′ · f

)
· (f ′f)− 2DX({3DTDX + 1 + µ(T )DX}f ′ · f) · (DXf

′ · f).

Thus we have proved [8] that the Bäcklund transformation is given by the two equations(
D3
X − λ

)
f ′ · f = 0, (11)

(3DXDT + 1 + µDX) f ′ · f = 0, (12)

where λ = λ(X) is an arbitrary function of X and µ = µ(T ) is an arbitrary function of T . In
original form with µ = 0 we have

(W ′ −W )XX +
1
2

(W ′ −W )(W ′ +W )X +
1
36

(W ′ −W )3 − 6λ = 0, (13)

(W ′ −W )
[
3(W ′ +W )XT +

1
2

(W ′ −W )(W ′ −W )T

]
− 6(W ′ −W )X

[
1 +

1
2

(W ′ +W )T

]
= 0. (14)

Separately the two equations (11), (12) appear as part of the Bäcklund transformation for
other nonlinear evolution equations. For example, equation (11) is the same as one of the
equations that is part of the Bäcklund transformation for a higher order KdV equation (see
equation (5.139) in [12]), and equation (12) is similar to (5.132) in [12] that is part of the
Bäcklund transformation for a model equation for shallow water waves [15].

5 Interaction of the solitons

The transformation into new coordinates (8) is the key to solving the problem of the interaction
of the solitons. The exact N -soliton solutions are obtained by use of (i) Hirota’s method [4, 7];
(ii) elements of the inverse scattering transform procedure for the KdV equation (spectral equa-
tion of second order – Schrödinger equation) [6]; (iii) the inverse scattering transform procedure
(spectral equation of third order) [9].

Since the equation (1) can be written in bilinear form (10), Hirota’s method enables us to find
soliton solutions. These solutions have been obtained in [4, 7], for example, for the one-soliton
solution

f = 1 + exp (2η) , W = 6(ln f)X , η = kX − ωT + α, U = WX = 6k2 sech2η,

and for the two-soliton solution

f = 1 + exp (2η1) + exp (2η2) + b2 exp (2η1 + 2η2) , W = 6(ln f)X ,

b2 =
F [2 (k1 − k2) , −2 (ω1 − ω2)]
F [2 (k1 + k2) , −2 (ω1 + ω2)]

=
(k2 − k1)2

(k2 + k1)2
k2

1 + k2
2 − k1k2

k2
1 + k2

2 + k1k2
,

ηi = kiX − ωiT + αi, F (DX , DT ) := DTD
3
X +D2

X .
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Now we present IST method for finding the solution of the VE. The IST is the most appro-
priate way of tackling the initial value problem. The results of applying the IST method would
be useful in solving the Cauchy problem for the VE. In order to use the IST method one first
has to formulate the associated eigenvalue problem.

Introducing the function ψ = f ′/f , we find that equations (11), (12) reduce to

ψXXX + UψX − λψ = 0, (15)
3ψXT + (WT + 1)ψ + µψX = 0, (16)

respectively. It may be shown

[WXXT + (1 +WT )WX ]Xψ + λX(3ψT + µψ) = 0.

Hence equation (9) is the condition for λX = 0, and hence for λ to be constant. Constant λ
(spectral parameter) is what is required in the IST problem.

Thus the IST problem is directly related to a spectral equation of third order (15). The third
order eigenvalue problem is similar to the one associated with a higher order KdV equation [16,
17], a Boussinesq equation [16, 18], and a model equation for shallow water waves [12, 19].

Kaup [16], Caudrey [18, 20] and Deift et al. [21] studied the inverse problem for certain third
order spectral equations. We adapt the results obtained by these authors to the present problem
and describe a procedure for using the IST to find the N -soliton solution to the transformed
VE, and hence to the VE itself.

We proved that the T -evolution of the scattering data is given by the relationships [9] (k =
1, 2, . . . , 2N)

ζ
(k)
j (T ) = ζ

(k)
j (0),

γ
(k)
1j (T ) = γ

(k)
1j (0) exp

{[
−

(
3λj

(
ζ
(k)
1

))−1
+

(
3λ1

(
ζ
(k)
1

))−1
]
T

}
. (17)

Here λj(ζ) = ωjζ, λ3
j (ζ) = λ, and ωj = ei2π(j−1)/3 are the cube of roots of 1.

The final result for the N -soliton solution of the transformed VE is given by the relation [9]

U(X,T ) = 3
∂2

∂X2
ln (detM(X,T )) , (18)

where M is the 2N×2N matrix given by

Mkl = δkl−

3∑
j=2

γ
(k)
1j (0)

exp
{[
−

(
3λj

(
ζ
(k)
1

))−1
+

(
3λ1

(
ζ
(k)
1

))−1
]
T +

(
λj

(
ζ
(k)
1

)
− λ1

(
ζ
(l)
1

))
X

}
λj

(
ζ
(k)
1

)
− λ1

(
ζ
(l)
1

) , (19)

and the scattering data is calculated from constants ξm, βm as

n = 1, 2, . . . , N, m = 2n− 1,

λ1

(
ζ
(m)
1

)
= iω2ξm, λ2

(
ζ
(m)
1

)
= iω3ξm, γ

(m)
12 (0) = ω2βm, γ

(m)
13 (0) = 0,

λ1

(
ζ
(m+1)
1

)
= −iω3ξm, λ3

(
ζ
(m+1)
1

)
= −iω2ξm, γ

(m+1)
12 (0) = 0, γ

(m+1)
13 (0) = ω3βm.

For the N -soliton solution there are N arbitrary constants ξm and N arbitrary constants βm.
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Figure 1. Interaction of two solitons in moving
coordinates at time interval ∆t = 70/α1.

Figure 2. The phaseshifts of the smaller soliton
is zero. Time interval is ∆t = 5/α1.

For example, the matrix for one-soliton solution has a form
1− ω2β1√

3 ξ1
exp

[√
3 ξ1X − (

√
3 ξ1)−1T

] iω3β1

2ξ1
exp

[
2iω3ξ1X − (

√
3 ξ1)−1T

]
−iω2β1

2ξ1
exp

[
−2iω2ξ1X − (

√
3 ξ1)−1T

]
1− ω3β1√

3 ξ1
exp

[√
3 ξ1X − (

√
3 ξ1)−1T

]
 . (20)

Calculating the determinant

detM =
{

1 +
β1

2
√

3 ξ1
exp

[√
3 ξ1

(
X − T

3ξ21

)]}2

,

we have from (18) the one-soliton solution of the transformed VE as obtained by the IST method

U = 3
∂2

∂X2
ln (detM(X,T )) =

9
2
ξ21 sech2

[√
3

2
ξ1

(
X − T

3ξ21

)
+ α1

]
, (21)

where α1 = 1
2 ln(β1/2

√
3ξ1) is an arbitrary constant.

The determinant of the matrix for two-soliton solution has a form

detM =
(
1 + q21 + q22 + b2q21q

2
2

)2
, (22)

where

qi = exp

[√
3

2
ξi

(
X − T

3ξ2i

)
+ αi

]
, b2 =

(
ξ2 − ξ1
ξ2 + ξ1

)2 ξ21 + ξ22 − ξ1ξ2
ξ21 + ξ22 + ξ1ξ2

,

and αi = 1
2 ln(βi/2

√
3ξi) are arbitrary constants.

In the interaction of two solitons for the VE [4, 7, 6] there are features that are not typical
for the KdV equation (see Figs. 1–3). The larger soliton moving with larger velocity catches
up with the smaller soliton moving in the same direction. For convenience in the figures, the
interactions of solitons are shown in coordinates moving with the speed of the centre mass.
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Figure 3. Both solitons have phaseshifts in the same direction. Time interval is ∆t = 1/α1.

After the nonlinear interaction the solitons separate, their forms are restored, but phaseshifts
arise. The larger soliton always has a forward phaseshift, while the smaller soliton can have
three kinds of phaseshift. Note that this property is not typical for the KdV equation. There is
a special value of the ratio (α2/α1)∗ = 0.88867. The different kinds of phaseshift are illustrated
in Figs. 1–3.

• For α2/α1 > (α2/α1)∗ the phaseshift of smaller soliton is in the opposite direction to the
phaseshift of the larger soliton (Fig. 1).

• For α2/α1 = (α2/α1)∗ the smaller soliton has no phaseshift (Fig. 2).

• For α2/α1 < (α2/α1)∗ less critical value both solitons have phaseshifts in the same direction
(Fig. 3).
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MIŠKINIS P., New Exact Solutions of Khokhlov–Zabolotskaya–Kuznetsov Equation . . . . . . . . . . . . 171

POPOVYCH H.V., Lie, Partially Invariant, and Nonclassical Submodels of Euler Equations. . . . .178

POPOVYCH R.O. and BOYKO V.M., Differential Invariants and Application
to Riccati-Type Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184



398

PROKHOROVA M.F., Heat Equation on Riemann Manifolds: Morphisms
and Factorization to Smaller Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

REYES E.G., The Soliton Content of the Camassa–Holm and Hunter–Saxton Equations . . . . . . . . 201

SERGYEYEV A. and SANDERS J.A., The Complete Set of Generalized Symmetries
for the Calogero–Degasperis–Ibragimov–Shabat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

SHEFTEL M.B., Method of Group Foliation and Non-Invariant Solutions
of Invariant Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

TARANOV V., The Most Symmetric Drift Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

TSYFRA I.M., Conditional Symmetry Reduction and Invariant Solutions
of Nonlinear Wave Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

VLADIMIROV V. and SKURATIVSKII S., On the Localized Invariant Traveling
Wave Solutions in Relaxing Hydrodynamic-Type Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234
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E-mail: Jules.Beckers@ulg.ac.be, Nathalie.Debergh@ulg.ac.be

After a few generalities we compare fundamental quantum mechanics applied to the har-
monic oscillator with unusual oscillatorlike developments dealing with non-hermitian oper-
ators, this latter aspect exploiting in particular the property of subnormality. In this last
context we can also restore the hermiticity of the Hamiltonian operator and discover a nice
property of the new scalar product. General constructions of oscillatorlike Hamiltonians are
also considered and new ideas connected with Heisenberg relations are presented.

1 Introduction

In every treatise on Quantum Mechanics [1] we learn that physical observables are represented
by linear and self-adjoint operators acting on states belonging to Hilbert spaces characterized
by a well defined scalar product. It is the case for important observables such as position,
momentum and energy in particular, the last one being in correspondence with the (quantum)
Hamiltonian operator (ensuring by its self-adjointness to have a real spectrum). The operators
generate between themselves a Lie algebra which in the context of position and momentum is
called the Heisenberg algebra

[x, p] = iI, [x, x] = [p, p] = 0 (� = 1).

When the one-dimensional harmonic oscillator is described, this algebra can be put on the form

[a, a†] = I, [a, a] = [a†, a†] = 0 (ω = 1), (1)

where

a =
1√
2

(
x+

d

dx

)
, a† =

1√
2

(
x− d

dx

)
, (a†)† = a,

a being known as the annihilation operator and a† as the creation one, acting on Fock states
{|n〉, n = 0, 1, 2, . . .}. Within such developments, the Hamiltonian

HH.O. =
1
2
{a, a†} = −1

2
d2

dx2
+

1
2
x2

has the real spectrum

En = n+
1
2

(2)

and the set of eigenfunctions

hn(x) =
π−

1
4

√
2nn!

e−
x2

2 Hn(x),
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where Hn are the well known (classical) Hermite polynomials. Let us also recall that we have
the so-called intertwining relations

[HH.O., a] = −a, [HH.O., a
†] = a† (3)

characteristic of these developments. It is important to notice here that all these elements are
ad-hoc ones for getting interesting constructions of the famous coherent states [2] but not for
visiting squeezed states [3].

Let us now enter a recent property called “subnormality of unbounded operators” [4] and let
us mention its definition: “a densely defined Hilbert space operator S is said to be subnormal
if there is a normal operator N (acting possibly in a larger space) such that S is included
in N”. Mathematicians have shown that “the best behaving unbounded subnormal operator is
the famous creation operator a† of the harmonic oscillator acting in L2(R)”. It is equivalent to
the one defined by

a†λ = a† + λI, λ ∈ R,

an interesting way to introduce a new supplementary parameter in oscillatorlike developments.
By noticing that the previous commutation relations (1) and (3) are unchanged by the sub-

stitution a† → a†λ, we point out that the new Hamiltonian Hλ becomes

Hλ = HH.O. + λa.

It is no more self-adjoint (notice that (a†λ)† �= a) but still has a real spectrum (2) and eigenfunc-
tions depending now on λ. Indeed we get [5] a Fock basis characterized by

|n〉λ ≡ ψn(λ, x) =
π−

1
4

√
2nn!

1√
L

(0)
n (−λ2)

e−
x2

2 Hn

(
x+

λ√
2

)

which has the new interesting property to lead here to meaningful squeezed states [5]. We have
thus deformed the states but without deforming the Lie algebra.

The lost of the self-adjointness of Hλ is evident with respect to the original scalar product
but we have noticed that this well accepted property can be restored if we modify [6] the scalar
product by asking that(

a†λψn(λ, x), ψm(λ, x)
)

= (ψn(λ, x), aψm(λ, x)) = δnm.

Such a property evidently corresponds to (a†λ)† = a in the new Hilbert space characterized by
a measure depending on λ. It is not difficult to prove [6] that the new measure is given in
a unique way by

ρ(λ, x)dx = exp
[
−
√

2λx− λ2

2

]
dx,

where we recognize the generating function of the Hermite polynomials.
Unhappily this context only gives new families of coherent states but no information on

squeezed states.
In order to include these λ �= 0 and λ = 0 contexts, we have proposed [7] a general construction

of oscillatorlike Hamiltonians by maintaining (a†)† = a but permitting H† = H or H† �= H. Let
us now construct the following operators

b = (1 + c1)a+ c2a
† + c3 and b+ = c4a+ (1 + c5)a† + c6
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and require that

H =
1
2
{b, b+}, [b, b+] = 1, [H, b] = −b, [H, b+] = b+.

We point out that the usual harmonic oscillator corresponds to all the ci’s equal to zero and our
deformed context to all the ci’s equal to zero except the sixth one (c6 = λ). Moreover by asking
for Schrödinger Hamiltonians of the type

H = A
d2

dx2
+ (Bx+ C)

d

dx
+Dx2 + Ex+ F,

we can easily get A, B, C, D, E, F as functions of the ci’s parameters and see that if A =
−D = −1

2 , B = C = E = F = 0, we recover the harmonic oscillator and if A = −D = −1
2 ,

C = E = λ√
2
, B = F = 0, we recover our λ-context. Moreover we notice that H† = H iff

B = C = 0 while H† �= H in the other cases. All these developments are subtended by new
Fock spaces {|n〉c, n = 0, 1, 2, . . .} characterized by square integrable eigenfunctions (when A < 0
and B < 1) associated to real eigenvalues En = n+ 1

2 and the action of the operators given by

b|n〉c =
n√
−A

Nn

Nn−1
(1 + c1 − c2)|n− 1〉c,

b+|n〉c =
1

2
√
−A

Nn

Nn+1
(1 + c5 − c4)|n+ 1〉c,

b+b|n〉c = n|n〉c, bb+|n〉c = (n+ 1)|n〉c.

These results give once more new results [7] in quantum optics through coherence and squeezing
developments.

Let us end this communication by two comments dealing once again with non-hermitian
operators and some surprising results.

The first comment is connected to the choice of unusual annihilation and creation operators
illustrating the (a†)† �= a context. Following Ushveridze [8], we can choose

a =
1

α′(x)

(
d

dx
+ β(x)

)
, a† = α(x) (4)

which ensure the Heisenberg algebra (2) and lead to

H = a†a+
1
2
→ En = n+

1
2
, fn(x) = Nn exp

[
−

∫
β(x)dx

]
An(x). (5)

With the Ushveridze specific values

a =
d

dx
+ cx3, a† = x, c > 0, (6)

one finds square integrable eigenfunctions which are normalizable but not orthogonal. Our
surprise was that the construction of the orthogonal ones by the Schmidt procedure leads to
eigenfunctions containing the so-called Freud polynomials [9] permitting once again squeezing
developments [10] in this special matter.

The second comment is on the position and momentum operators discussed from equa-
tions (4)–(6). In fact we immediately have new operators given by

X =
1√
2

(
a+ a†

)
=

1√
2

(
d

dx
+ cx3 + x

)
(7)
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and

P =
i√
2

(
a− a†

)
=

i√
2

(
− d

dx
− cx3 + x

)
(8)

which evidently are such that X† �= X and P † �= P . Our proposal [11] is to rewrite (7) and (8)
in the following forms

X = ReX + i ImX =
1√
2

(
x+ cx3

)
+ i

(
− i√

2
d

dx

)
and

P = ReP + i ImP =
(
− i√

2
d

dx

)
+

i√
2

(
x− cx3

)
putting in evidence four “new” operators which are self-adjoint while X and P are not. Moreover
we have

[X,P ] = iI = [ReX,ReP ]− [ImX, ImP ],

a trivial generalization of the usual Heisenberg characteristics. If we come back on X = x and
P = −i ddx , we get

ImX = 0 = ImP

and the usual commutation relation takes place in correspondence with

∆x∆p ≥ 1
2
.

Different questions are now open and have to be discussed in the future.
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Classification of finite dimensional irreducible representations of nonstandard q-deformation
U ′

q(son) of the universal enveloping algebra U(so(n,C)) of the Lie algebra so(n,C) (which
does not coincide with the Drinfeld–Jimbo quantized universal enveloping algebra Uq(son))
is given for the case when q is not a root of unity. It is shown that such representations
are exhausted by representations of the classical and nonclassical types. Examples of the
algebras U ′

q(so3) and U ′
q(so4) are considered in detail. Notions of weights, highest weights,

highest weight vectors are introduced. Raising and lowering operators for irreducible finite
dimensional representations of U ′

q(son) are introduced. They depend on weight upon which
they act. Explicit formulas for these operators are given.

1 Introduction

Quantum orthogonal groups, quantum Lorentz groups and their quantized universal envelop-
ing algebras are of special interest for modern mathematics and physics. M. Jimbo [1] and
V. Drinfeld [2] defined q-deformations (quantized universal enveloping algebras) Uq(g) for all
simple complex Lie algebras g by means of Cartan subalgebras and root subspaces (see also [3]
and [4]). However, these approaches do not give a satisfactory presentation of the quantized
algebra Uq(so(n,C)) from a viewpoint of some problems in quantum physics and mathematics.
Considering irreducible representations of the quantum groups SOq(n + 1) and SOq(n, 1) we
are interested in reducing them onto the quantum subgroup SOq(n). This reduction would
give an analogue of the Gel’fand–Tsetlin basis for these representations. However, defini-
tions of quantized universal enveloping algebras, mentioned above, do not allow the inclusions
Uq(so(n+ 1,C)) ⊃ Uq(so(n,C)) and Uq(so(n, 1)) ⊃ Uq(so(n)). To be able to exploit such reduc-
tions we have to consider q-deformation of the universal enveloping algebra of the Lie algebra
so(n+ 1,C) defined in terms of the generators Ik,k−1 = Ek,k−1−Ek−1,k (where Eis is the matrix
with elements (Eis)rt = δirδst) rather than by means of Cartan subalgebras and root elements.
To construct such deformations we have to deform trilinear relations for elements Ik,k−1 instead
of Serre’s relations (used in the case of quantized universal enveloping algebras of Drinfeld and
Jimbo). As a result, we obtain an associative algebra which will be denoted as U ′q(son).

This q-deformation was first constructed in [5]. It permit us to construct the reductions of
U ′q(son,1) and U ′q(son+1) onto U ′q(son). The q-deformed algebra U ′q(son) leads for n = 3 to the
q-deformed algebra U ′q(so3) defined by D. Fairlie [6]. The cyclically symmetric algebra, similar
to Fairlie’s one, was also considered somewhat earlier by Odesskii [7]. The algebra U ′q(so4) is
a q-deformation of the algebra U(so(4,C)) given by means of commutation relations between the
elements Iji, 1 ≤ i < j ≤ 4. For the Lie algebra so(4,C) we have so(4,C) = so(3,C) + so(3,C),
while in the case of our q-deformation U ′q(so4) this is not the case (see e.g. [8]).

In the classical case, the imbedding SO(n) ⊂ SU(n) (and its infinitesimal analogue) is of
great importance for nuclear physics and in the theory of Riemannian symmetric spaces. It is
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well known that in the framework of Drinfeld–Jimbo quantum groups and algebras one cannot
construct the corresponding embedding. The algebra U ′q(son) allows to define such an em-
bedding [9], that it is possible to define the embedding U ′q(son) ⊂ Uq(sln), where Uq(sln) is
a Drinfeld–Jimbo quantum algebra.

As a disadvantage of the algebra U ′q(son) we have to mention the difficulties with Hopf algebra
structure. Nevertheless, U ′q(son) turns out to be a coideal in Uq(sln) (see [9]) and this fact allows
us to consider tensor products of finite dimensional irreducible representations of U ′q(son) for
many interesting cases (see [10]).

Finite dimensional irreducible representations of the algebra U ′q(son) for q being not a root
of unity were constructed in [5]. The formulas of action of the generators of U ′q(son) upon the
basis (which is a q-analogue of the Gel’fand–Tsetlin basis) are given there. A proof of these
formulas and some their corrections were given in [11]. However, finite dimensional irreducible
representations described in [5] and [11] are representations of the classical type. They are q-
deformations of the corresponding irreducible representations of the Lie algebra son, that is, at
q → 1 they turn into representations of son.

If q is not a root of unity, the algebra U ′q(son) has other classes of finite dimensional irreducible
representations which have no classical analogues. These representations are singular at the
limit q → 1. They are described in [12]. A detailed description of these representations for the
algebra U ′q(so3) is given in [13]. A classification of irreducible ∗-representations of real forms of
the algebra U ′q(so3) is given in [14].

The aim of this paper is to give classification theorem for finite dimensional irreducible
representations of the algebra U ′q(son) on complex vector spaces when q is not a root of unity. We
show that in this case all irreducible finite dimensional representations of U ′q(son) are exhausted
by representations of the classical and nonclassical types. Detailed proofs of propositions and
theorems, given in this paper, will be given separately.

Everywhere below we assume that q is not a root of unity.

2 Definition of the q-deformed algebra U ′
q(son)

An existence of a q-deformation of the universal enveloping algebra U(so(n,C)), different from
the Drinfeld–Jimbo quantized universal enveloping algebra Uq(son), is explained by the following
reason. The Lie algebra so(n,C) has two structures:

(a) The structure related to existing in so(n,C) a Cartan subalgebra and root elements.
A quantization of this structure leads to the Drinfeld–Jimbo quantized universal enveloping
algebra Uq(son).

(b) The structure related to realization of so(n,C) by skew-symmetric matrices. In the Lie
algebra so(n,C) there exists a basis consisting of the matrices Iij , i > j, defined as Iij = Eij−Eji,
where Eij is the matrix with entries (Eij)rs = δirδjs. These matrices are not root elements.

Using the structure (b), we may say that the universal enveloping algebra U(so(n,C)) is
generated by the elements Iij , i > j. But in order to generate the universal enveloping algebra
U(so(n,C)), it is enough to take only the elements I21, I32, . . . , In,n−1. It is a minimal set of
elements necessary for generating U(so(n,C)). These elements satisfy the relations

I2
i,i−1Ii+1,i − 2Ii,i−1Ii+1,iIi,i−1 + Ii+1,iI

2
i,i−1 = −Ii+1,i,

Ii,i−1I
2
i+1,i − 2Ii+1,iIi,i−1Ii+1,i + I2

i+1,iIi,i−1 = −Ii,i−1,

Ii,i−1Ij,j−1 − Ij,j−1Ii,i−1 = 0 for |i− j| > 1.

The following theorem is true [15] for the universal enveloping algebra U(so(n,C)):
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Theorem 1. The universal enveloping algebra U(so(n,C)) is isomorphic to the complex asso-
ciative algebra (with a unit element) generated by the elements I21, I32, . . . , In,n−1 satisfying the
above relations.

We make the q-deformation of these relations by fulfilling the deformation of the integer 2 in
these relations as

2 → [2]q :=
(
q2 − q−2

)
/

(
q − q−1

)
= q + q−1.

As a result, we obtain the complex unital (that is, with a unit element) associative algebra
generated by elements I21, I32, . . . , In,n−1 satisfying the relations

I2
i,i−1Ii+1,i −

(
q + q−1

)
Ii,i−1Ii+1,iIi,i−1 + Ii+1,iI

2
i,i−1 = −Ii+1,i, (1)

Ii,i−1I
2
i+1,i −

(
q + q−1

)
Ii+1,iIi,i−1Ii+1,i + I2

i+1,iIi,i−1 = −Ii,i−1, (2)

Ii,i−1Ij,j−1 − Ij,j−1Ii,i−1 = 0 for |i− j| > 1. (3)

This algebra was introduced by us in [5] and is denoted by U ′q(son).
The analogue of the elements Iij , i > j, can be introduced into U ′q(son) (see [16]). In order to

give them we use the notation Ik,k−1 ≡ I+
k,k−1 ≡ I−k,k−1. Then for k > l+ 1 we define recursively

I+
kl := [Il+1,l, Ik,l+1]q ≡ q1/2Il+1,lIk,l+1 − q−1/2Ik,l+1Il+1,l, (4)

I−kl := [Il+1,l, Ik,l+1]q−1 ≡ q−1/2Il+1,lIk,l+1 − q1/2Ik,l+1Il+1,l.

The elements I+
kl, k > l, satisfy the commutation relations

[I+
ln, I

+
kl]q = I+

kn, [I+
kl, I

+
kn]q = I+

ln, [I+
kn, I

+
ln]q = I+

kl for k > l > n, (5)
[I+
kl, I

+
nr] = 0 for k > l > n > r and k > n > r > l, (6)

[I+
kl, I

+
nr]q =

(
q − q−1

) (
I+
lr I

+
kn − I+

krI
+
nl

)
for k > n > l > r. (7)

For I−kl, k > l, the commutation relations are obtained from these relations by replacing I+
kl by

I−kl and q by q−1.
The algebra U ′q(son) can be defined as a unital associative algebra generated by I+

kl, 1 ≤ l <
k ≤ n, satisfying the relations (5)–(7). In fact, using the relations (4) we can reduce the relations
(5)–(7) to the relations (1)–(3) for I21, I32, . . . , In,n−1.

The Poincaré–Birkhoff–Witt theorem for the algebra U ′q(son) can be formulated as follows
(a proof of this theorem is given in [17]): The elements

I+
21
m21I+

31
m31 · · · I+

n1
mn1I+

32
m32I+

42
m42 · · · I+

n2
mn2 · · · I+

n,n−1
mn,n−1 , mij = 0, 1, 2, . . . , (8)

form a basis of the algebra U ′q(son). This assertion is true if I+
ij are replaced by the corresponding

elements I−ij .

Example 1. Let us consider the case of the algebra U ′q(so3). It is generated by two elements
I21 and I32, satisfying the relations

I2
21I32 −

(
q − q−1

)
I21I32I21 + I32I

2
21 = −I32, (9)

I21I
2
32 −

(
q + q−1

)
I32I21I32 + I2

32I21 = −I21. (10)

Introducing the element I+
31 ≡ I31 = q1/2I21I32−q−1/2I32I21 we have for I21, I32, I31 the relations

[I21, I32]q = I31, [I32, I31]q = I21, [I31, I21]q = I32, (11)

where the q-commutator [·, ·]q is defined as [A,B]q = q1/2AB − q−1/2BA.
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Note that the algebra U ′q(so3) has a large automorphism group. In fact, it is seen from (9)
and (10) that these relations do not change if we permute I21 and I32. From relations (11) we see
that the set of these relations do not change under cyclic permutation of the elements I21, I32, I31.
The change of a sign at I21 or at I32 also does not change the relations (9) and (10). Generating
a group by these automorphisms, we may find that they generate the group isomorphic to the
modular group SL(2,Z). It is why the algebra U ′q(so3) is interesting for algebraic geometry and
quantum gravity (see, for example, [18] and [19]).

Example 2. Let us consider the case of the algebra U ′q(so4). It is generated by the elements
I21, I32 and I43. We create the elements

I31 = [I21, I32]q, I42 = [I32, I43]q, I41 = [I21, I42]q. (12)

Then the elements Iij , i > j, satisfy the following set of relations

[I21, I32]q = I31, [I32, I31]q = I21, [I31, I21]q = I32,

[I32, I43]q = I42, [I43, I42]q = I32, [I42, I32]q = I43,

[I31, I43]q = I41, [I43, I41]q = I31, [I41, I31]q = I43,

[I21, I42]q = I41, [I42, I41]q = I21, [I41, I21]q = I42,

[I21, I43] = 0, [I32, I41] = 0, [I42, I31] =
(
q − q−1

)
(I21I43 − I32I41)

which completely determine the algebra U ′q(so4). At q = 1 these relations define just the
Lie algebra so(4,C). Each of the sets (I21, I32, I31), (I32, I43, I42), (I31, I43, I41), (I21, I42, I41)
determine a subalgebra isomorphic to U ′q(so3).

The algebra U ′q(so4) is also important for quantum gravity and algebraic geometry (see [20]
and [21]). The algebra U ′q(son) for general n is also used in quantum gravity [22].

Let us describe the automorphism group G of the algebra U ′q(son). It is clear from the
defining relations of the algebra U ′q(son) that for each i (i = 2, 3, . . . , n) this algebra admits an
automorphism τi given by the formulas

τi : Ij,j−1 → Ij,j−1, j �= i, τi : Ii,i−1 → −Ii,i−1.

These automorphisms generate a group of automorphisms which will be denoted by G. Elements
of G can be denoted by g = (ε2, ε3, . . . , εn), where εj runs independently the values +1 and −1.
Namely, if under action of g generating elements Ij1,j1−1, . . . , Ijs,js−1 change a sign, then in
g = (ε2, ε3, . . . , εn) εj1 = · · · = εjs = −1 and other εi are equal to 1. It is clear that the group G
has 2n−1 elements.

If n = 3, then the group G does not coincide with the group of all automorphisms of U ′q(so3).
It is not known if this assertion is true for n > 3.

3 Representations of classical and nonclassical types

The elements of the set

I21, I43, . . . , I2k,2k−1, (13)

where n = 2k if n is even and n = 2k + 1 if n is odd, commute pairwise.

Proposition 1. (a) If T is a finite dimensional irreducible representation of the algebra U ′q(son),
then the operators

T (I21), T (I43), . . . , T (I2k,2k−1)

are simulteneously diaginalizable.
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(b) Possible eigenvalues of any of these operators can be as i[m]q, m ∈ 1
2Z, or as [m]+,

m ∈ 1
2Z, m �∈ Z, where

[m]q =
qm − q−m

q − q−1
, [m]+ =

qm + q−m

q − q−1
.

Eigenvalues of the form i[m]q are called eigenvalues of the classical type. Eigenvalues of the
form [m]+ are called eigenvalues of the nonclassical type.

The following proposition is important for construction of weight theory for finite dimensional
representations of U ′q(son).

Proposition 2. Let T be a finite dimensional irreducible representation of U ′q(son). Then
(a) Eigenvalues of any operator T (I2i,2i−1) are all of the classical type or all of the nonclassical

type.
(b) Moreover, all operators T (I2i,2i−1), i = 1, 2, . . . , k, have eigenvalues of the same type.

This proposition is proved by restricting the representation T to the subalgebras U ′q(so4)
generated by the elements Ij,j−1, Ij+1,j , Ij+2,j+1, j = 2, 3, . . . , n− 2 and using the results of the
paper [8].

Definition 1. A finite dimensional irreducible representation T of the algebra U ′q(son) is called
a representation of classical (nonclassical) type if the operators T (I2i,2i−1), i = 1, 2, . . . , k have
eigenvalues of the classical (of the nonclassical) type.

Proposition 3. Let T be a finite dimensional irreducible representation of U ′q(son) of the clas-
sical (nonclassical) type. Then a restriction of T to the subalgebra U ′q(son−1) decomposes into
a direct sum of irreducible representations of this subalgebra belonging to the same type.

4 Weights of representations

In this section we construct a q-analogue of weights for finite dimensional irreducible representa-
tions of the algebra U ′q(son). Note that this algebra has no elements which can be treated as root
elements (similar to root elements of semisimple Lie algebras or quantized universal enveloping
algebras of Drinfeld and Jimbo). For this reason, we do not have a weight theory for finite
dimensional representations of U ′q(son) similar to that for semisimple Lie algebras. However, we
can construct the theory which can replace the weight theory of representations of semisimple
Lie algebras.

Definition 2. Let T be a finite dimensional representation of the algebra U ′q(son). Eigenvec-
tors v of operators T (I2j,2j−1), j = 1, 2, . . . , k, are called weight vectors of the representation T .
If T (I2j,2j−1)v = mjv, then the the set of numbers m = (m1,m2, . . . ,mk), where n = 2k+ 1 or
n = 2k, is called a weight of the vector v.

The set of all weights of an irreducible representation T of U ′q(son) is called a weight diagram
of the representation T .

Proposition 4. A weight diagram of a finite dimensional irreducible representation T of the
classical type is invariant with respect to the Weyl group W of the Lie algebra so(n,C).

This proposition is proved by restriction of the representation T to the subalgebras U ′q(so3)
generated by the pairs of generators I2j,2j−1, I2j+1,2j , j = 1, 2, . . ., and using the results of the
paper [23].

Note that a weight diagram of a finite dimensional irreducible representation of the nonclas-
sical type is not invariant with respect to the Weyl group W .
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5 Raising and lowering operators

Recall that in the Lie algebra so(n,C) there exist root elements Eα1 , Eα2 , . . . , Eαk
, corresponding

to simple roots, and root elements Fα1 , Fα2 , . . . , Fαk
, corresponding to simple roots taken with

sign minus. If T ′ is a finite dimensional irreducible representation of so(n,C) and |m〉 is its
weight vector, then

T ′(Eαi)|m〉 = βm|m + αi〉, T ′(Fαi)|m〉 = γm|m− αi〉,

where βm and γm are complex numbers. In the algebra U ′q(son) there exist no elements similar
to Eαj and Fαj . However, in finite dimensional representations of U ′q(son) there exist operators
having properties of the operators T ′(Eαi) and T ′(Fαi). These operators depend on a weight
on which they act and are called raising and lowering operators of the representation. They are
described as follows.

Let T be a finite dimensional irreducible representation of U ′q(son) of the classical type and
let |m〉 be its weight vector. If n = 2k we create the operators

Rm
αi

= −T (I2i+2,2i−1) + q−(mi+mi+1)/2T (I2i+1,2i)− iq−mi+1/2T (I2i+2,2i)

− iq−mi+1−1/2T (I2i+1,2i−1), i = 1, 2, . . . , k − 1, (14)

Lm
αi

= −T (I2i+2,2i−1) + q(mi+mi+1)/2T (I2i+1,2i) + iqmi+1/2T (I2i+2,2i)

+ iqmi+1−1/2T (I2i+1,2i−1), i = 1, 2, . . . , k − 1, (15)

and the operators

Rm
αk

= T (I2k,2k−3) + q(−mk−1+mk)/2T (I2k−1,2k−2) + iq−mk−1+1/2T (I2k,2k−2)

− iqmk−1/2T (I2k−1,2k−3), (16)

Lm
αk

= −T (I2k,2k−3) + q(mk−1−mk)/2T (I2k−1,2k−2) + iqmk−1+1/2T (I2k,2k−2)

+ iq−mk−1/2T (I2k−1,2k−3). (17)

If n = 2k + 1, then we create the operators (14), (15) and the operators

Rm
αk

= T (I2k+1,2k−1) + iq−mk+1/2T (I2k+1,2k), (18)

Lm
αk

= T (I2k+1,2k−1)− iqmk+1/2T (I2k+1,2k). (19)

If T is a finite dimensional representation of U ′q(son) of the nonclassical type and |m〉 is its
weight vector, then we create the operators

Rm
αi

= −T (I2i+2,2i−1) + q−(mi+mi+1)/2T (I2i+1,2i)− q−mi+1/2T (I2i+2,2i)

− q−mi+1−1/2T (I2i+1,2i−1), i = 1, 2, . . . , k − 1, (20)

Lm
αi

= −T (I2i+2,2i−1) + q(mi+mi+1)/2T (I2i+1,2i)− qmi+1/2T (I2i+2,2i)

− qmi+1−1/2T (I2i+1,2i−1), i = 1, 2, . . . , k − 1, (21)

and the operators

Rm
αk

= T (I2k,2k−3) + q(−mk−1+mk)/2T (I2k−1,2k−2) + q−mk−1+1/2T (I2k,2k−2)

+ qmk−1/2T (I2k−1,2k−3), (22)

Lm
αk

= −T (I2k,2k−3)− q(mk−1−mk)/2T (I2k−1,2k−2) + qmk−1+1/2T (I2k,2k−2)

+ q−mk−1/2T (I2k−1,2k−3) (23)
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if n = 2k. If n = 2k + 1, then we create the operators (20), (21) and the operators

Rm
αk

= T (I2k+1,2k−1) + q−mk+1/2T (I2k+1,2k), (24)

Lm
αk

= T (I2k+1,2k−1)− qmk+1/2T (I2k+1,2k). (25)

The operators Rm
αk

and Lm
αk

correspond to the operators T ′(Eαi) and T ′(Fαi) of a represen-
tation T ′ of the Lie algebra so(n,C), respectively. We have

Rm
αk
|m〉 = βi|m + αi〉, Lm

αk
|m〉 = γi|m− αi〉, (26)

where αi and γi are complex numbers, which depend on the representation of U ′q(son). Note
that the relations (26) are not true if we replace the vector |m〉 by some other weight vector
|m′〉, since in such a case in the right hand side we shall obtain, beside the vectors |m′ + αi〉
and |m′ − αi〉, other weight vectors.

Formulas (14)–(17) and (20)–(23) for raising and lowering operators follow from formulas of
section 8 of the paper [8] if to restrict the representation T of U ′q(son) to the subalgebras U ′q(so4)
generated by the elements I2j,2j−1, I2j+1,2j , I2j+2,2j+1, j = 1, 2, . . . , k − 1.

Formulas (18), (19), (24) and (25) for raising and lowering operators follow from formulas
for raising and lowering operators for irreducible representations of the algebra U ′q(so3) of the
paper [8] if to restrict the representation T to the subalgebra U ′q(so3) generated by the elements
I2k+1,2k and I2k,2k−1.

Definition 3. If T is a finite dimensional irreducible representation of the algebra U ′q(son), then
a weight m of this representation is called a highest weight if Rm

αi
|m〉 = 0, i = 1, 2, . . . , k. The

corresponding vector |m〉 is called a highest weight vector.

Let us give a form of highest weights of irreducible representations of the classical and of the
nonclassical types. In order to determine such a form we restrict the corresponding irreducible
representations of U ′q(son) to the subalgebras U ′q(so4) and U ′q(so3) and use the results of the
papers [8] and [23]. As a result, we find that if a weight m ≡ (m1,m2, . . . ,mk) of an irreducible
representation T of the classical type is a highest weight, then the numbers mj are all integral
or all half-integral (but not integral) and satisfy the conditions

m1 ≥ m2 ≥ · · · ≥ mk if n = 2k + 1

and the conditions

m1 ≥ m2 ≥ · · · ≥ mk−1 ≥ |mk| if n = 2k.

The set of these highest weights coincides with the set of highest weights of irreducible finite
dimensional representations of the Lie algebra so(n,C). These highest weights will be called
highest weights of the classical type.

If a weight m ≡ (m1,m2, . . . ,mk) of an irreducible representation T of the nonclassical type
is a highest weight, then the numbers mj are all half-integral (but not integral). In order to
formulate the classification theorem for representations of the nonclassical type we shall need
only highest weights m for which all mj are positive. Such highest weights must satisfy the
conditions

m1 ≥ m2 ≥ · · · ≥ mk ≥ 1/2.

These highest weights will be called highest weights of the nonclassical type.
It is well known that the root elements Eαi and Fαi of the Lie algebra so(n,C) satisfy the

relations

[Eαi , Fαi ] = 2Hαi , [Eαi , Fαj ] = 0, i �= j.
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Instead of these relations for raising and lowering operators of representations of the classical
and nonclassical type of the algebra U ′q(so2k) we have the relations

(
Rm−αi
αi

Lm
αi
− Lm+αi

αi
Rm
αi

)
|m〉 = [2l]q

{(
q − q−1

)2
C4 −

(
q2l + q−2l

) (
q2 − q−2

)}
|m〉, (27)(

R
m−αj
αi Lm

αj
− Lm+αi

αj
Rm
αi

)
|m〉 = 0, (28)

where l = (mi−mi+1)/2 if i �= k and l = (mi +mi+1)/2 if i = k and C4 is the Casimir operator
of the subalgebra U ′q(so4) generated by the elements I2i,2i−1, I2i+1,2i, I2i+2,2i+1, which is given as

C4 = q−1I2i,2i−1I2i+2,2i+1 − I2i+1,2i−1I2i+2,2i + qI2i+1,2iI2i+2,2i−1.

For the algebra U ′q(so2k+1) we have the relations (27) for i �= k, (28) for i �= j and the relations

(
Rm−αk
αk

Lm
αk
− Lm+αk

αk
Rm
αk

)
|m〉 = q[mk]q[mk]+

(
q − q−1

)2 |m〉. (29)

6 Classification theorems

For finite dimensional irreducible representations of the classical type the following theorem is
true.

Theorem 2. (a) Each irreducible finite dimensional representation of the classical type has
a highest weight. A highest weight is unique (up to a constant).

(b) Irreducible finite dimensional representations with different highest weights are not equi-
valent. Conversely, nonequivalent irreducible finite dimensional representations of U ′q(son) have
different highest weights.

Existing of a highest weight is proved in the same way as in the case of irreducible repre-
sentations of the Lie algebra so(n,C) by using Propositions 1 and 2. A proof of uniqueness of
highest weight is not simple. The relations (27)–(29) are used in this proof.

The assertion (b) is proved by using a proof of the similar assertion for irreducible representa-
tions of the algebra U ′q(so4) from paper [8]. Namely, if |m〉 is a highest weight vector, then we act
upon |m〉 successively by the corresponding operators Lm′

αi
, i = 1, 2, . . . , k. Then, as in [8], we can

find how the operators Rm′
αi

act upon weight vectors |m′〉. Therefore, by the method of the pa-
per [8] we evaluate uniquely how the operators T (I2i+2,2i−1), T (I2i+1,2i), T (I2i+2,2i), T (I2i+2,2i+1)
act upon the corresponding weight vectors. Thus, a highest weight determines uniquely (up to
equivalence) the operators T (Ij,j−1), j = 2, 3, . . . , n.

Thus, in order to obtain a classification of irreducible finite dimensional representations of
the classical type of the algebra U ′q(son) we have to determine highest weights, described in the
previous section, to which such irreducible representations with these highest weights correspond.

It can be proved that the irreducible representation Tm of U ′q(son) from the paper [5] are of
the classical type and has highest weight m. If we take all these irreducible representations Tm,
then they give all highest weights m, described in previous section for irreducible representations
of the classical type. That is, for each highest weight m of the classical type from the previous
section there corresponds an irreducible representation of U ′q(son). Thus, we obtain the following
classification of irreducible representations of the classical type.

Theorem 3. Irreducible finite dimensional representations of the classical type of the algebra
U ′q(son) are in one-to-one correspondence with highest weights of the classical type, described in
the previous section.
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Thus, irreducible finite dimensional representations of the classical type of the algebra U ′q(son)
are in one-to-one correspondence with irreducible finite dimensional representations of the Lie
algebra son. The corresponding irreducible representations of U ′q(son) and of son act on the
same vector space. Moreover, when q → 1, then operators of an irreducible representation of
U ′q(son) tend to the corresponding operators of the corresponding irreducible representation of
son. This is a reason why the representations of Theorem 3 are called representations of the
classical type.

An analogue of Theorem 2 for irreducible representations of the nonclassical type is formulated
as follows.

Theorem 4. (a) Each irreducible finite dimensional representation of the nonclassical type has
a highest weight. A highest weight is unique (up to a constant).

(b) Irreducible finite dimensional representations with different highest weights are not equiv-
alent.

This theorem is proved in the same way as Theorem 2.
In order to formulate the classification theorem for irreducible representations of the nonclas-

sical type we first formulate the following proposition.

Proposition 5. If T is an irreducible representation of the nonclassical type and G is the
automorphism group of U ′q(son) from section 2, then the composition T (g) := T ◦ g, g ∈ G,
g �= e, is a representation of the nonclassical type which is not equivalent to T .

This proposition is proved by showing that spectrum of the operator T (I2i,2i−1) (i = 1, 2, . . .,
k) coincides with the set [12 ]+, [32 ]+, . . . , [ s2 ]+ or with the set −[12 ]+, −[32 ]+, . . . ,−[ s2 ]+, where s is
some positive integer. In order to show this we use the method of mathematical induction. For
U ′q(so4) this assertion is true (see [8]). The induction is proved by using Wigner–Eckart theorem
for irreducible representations of the nonclassical type derived by N. Iorgov (this theorem will
be published).

Thus, with every irreducible representation T of the nonclassical type we associate a set
of irreducible representations {T (g) | g ∈ G}, consisting of 2n−1 pairwise nonequivalent irre-
ducible representations of the nonclassical type. In this set there exists exactly one irreducible
representation with highest weight m = (m1,m2, . . . ,mk) such that m1 ≥ m2 ≥ · · · ≥ mk ≥ 1

2 .
For every highest weight of the nonclassical type m with m1 ≥ m2 ≥ · · · ≥ mk ≥ 1

2 there
exists an irreducible representation of the nonclassical type having m as its highest weight.
Therefore, from above reasoning we derive the following classification of irreducible representa-
tions of the nonclassical type.

Theorem 5. Irreducible representations of the nonclassical type of the algebra U ′q(son) are in
one-to-one correspondence with pairs (m, g), where m is a highest weight of the nonclassical
type with m1 ≥ m2 ≥ · · · ≥ mk ≥ 1

2 and g is an element of the automorphism group G.

Note that irreducible representations of the nonclassical type have no classical analogue.
Namely, operators of representations of the nonclassical type are singular at the point q = 1.

7 Irreducible representations of U ′
q(so3)

This and the next sections are devoted to examples of the theory described above. In this section
we describe irreducible finite dimensional representations of the algebra U ′q(so3).

Irreducible finite dimensional representations of the classical type of this algebra are given by
nonnegative integral or half-integral number l. The irreducible representation Tl, given by such
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a number l, acts on (2l+1)-dimensional vector space Hl with a basis |l,m〉, m = −l,−l+1, . . . , l.
The operators Tl(I21) and Tl(I32) are given by the formulas

Tl(I21)|l,m〉 = i[m]q|l,m〉,

Tl(I32)|l,m〉 =
1

qm + q−m
([l −m]q|l,m+ 1〉 − [l +m]q|l,m− 1〉) ,

where [a]q denotes a q-number. Note that for these representations we have

Tr Tl(I21) = 0, Tr Tl(I32) = 0.

Irreducible representations T ε1,ε2n of the nonclassical type are given by the numbers εi = ±1
(they determine elements of the automorphism group G) and by the integer n = 1, 2, . . .. (Ac-
cording to Section 6, these representations are given by half-integral number l, but we replaced l
by n = l+1/2.) The representation T ε1,ε2n acts on n-dimensional vector space with the basis |k〉,
k = 1, 2, . . . , n. The operators T ε1,ε2n (I21) and T ε1,ε2n (I32) are given by the formulas

T ε1,ε2n (I21)|k〉 = ε1
qk−1/2 + q−k+1/2

q − q−1
|k〉,

T ε1,ε2n (I32)|1〉 =
1

q1/2 − q−1/2
(ε2[n]q|1〉+ i[n− 1]q|2〉) ,

T ε1,ε2n (I32)|k〉 =
1

qk−1/2 − q−k+1/2
(i[n− k]q|k + 1〉) + +i[n+ k − 1]q|k − 1〉) ,

These representations have the properties

Tr T ε1,ε2n (I21) �= 0, Tr T ε1,ε2n (I32) �= 0.

There exist 4 one-dimensional irreducible representations of the nonclassical type. They are
equivalent to T ε1,ε21 , εi = ±1.

Note that a proof of the fact that these representations of U ′q(so3) exhaust all irreducible
representations of this algebra is given in [23].

8 Irreducible representations of U ′
q(so4)

Irreducible finite dimensional representations of the classical type of the algebra U ′q(so4) are
given by two integral or two half-integral (but not integral) numbers r and s such that r ≥ |s|.
These numbers constitute the highest weight of the representation. We define the numbers
j = (r+ s)/2 and j′ = (r− s)/2 and denote the representation by Tjj′ . This representation acts
on the vector space with the basis

|k, l〉, k = −j,−j + 1, . . . , j, l = −j′,−j′ + 1, . . . , j′.

The operators Tjj′(Ii,i−1), i = 2, 3, 4, act upon these vectors by the formulas

Tjj′(I21)|k, l〉 = i[k + l]q|k, l〉, Tjj′(I43)|k, l〉 = i[k − l]q|k, l〉,

Tjj′(I32)|k, l〉 =
1

(qk+l + q−k−l)(qk−l + q−k+l)

×
{
−

(
qj−l + q−j+l

)
[j′ − l]q|k, l + 1〉+

(
qj+l + q−j−l

)
[j′ + l]q|k, l − 1〉

+
(
qj

′−k + q−j
′+k

)
[j − k]q|k + 1, l〉 −

(
qj

′+k + q−j
′−k

)
[j + k]q|k − 1, l〉

}
.
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Irreducible finite dimensional representations of the nonclassical type of the algebra U ′q(so4)
are given by two half-integral (but not integral) numbers r, s such that r ≥ s > 0 and by
the numbers ε1, ε2, ε3, εi = ±1, which determine elements of the automorphism group G. The
numbers r and s constitute a highest weight of the representation if ε1 = ε2 = ε3 = 1. We define
the numbers j = (r + s)/2 and j′ = (r − s)/2 and denote the corresponding representations
by T ε1ε2,ε3jj′ .

If (r, s) runs over all highest weights of the nonclassical type with r ≥ s > 0, then j and j′

run over the values

j = 0, 1, 2, . . . , j′ = 1
2 ,

3
2 ,

5
3 , . . . or j = 1

2 ,
3
2 ,

5
3 , . . . , j′ = 0, 1, 2, . . . .

The representation T ε1,ε2,ε3jj′ acts on the vector space H with the basis

|k, l〉, k = j, j − 1, . . . , 1
2 , l = j′, j′ − 1, . . . ,−j′,

if j′ is integral and with the basis

|k, l〉, k = j, j − 1, . . . ,−j, l = j′, j′ − 1, . . . , 1
2 ,

if j is integral. The representations are given by the formulas

T ε1,ε2,ε3jj′ (I21)|k, l〉 = ε1[k + l]+|k, l〉, T ε1,ε2,ε3jj′ (I43)|k, l〉 = ε2[k − l]+|k, l〉,

T ε1,ε2,ε3jj′ (I32)|k, l〉 =
1

[k + l]q[k − l]q(q − q−1)
{−i[j′ − l]q[j − l]q|k, l + 1〉

+ i[j′ + l]q[j + l]q|k, l − 1〉 − i[j′ − k]q[j − k]q|k + 1, l〉+ i[j′ + k]q[j + k]q|k − 1, l〉},

where k �= 1
2 if j is half-integral and l �= 1

2 if j′ is half-integral, and by

T ε1,ε2,ε3jj′ (I32)|12 , l〉 =
1

[l + 1
2 ][l − 1

2 ](q − q−1)
{−i[j − l]q[j′ − l]q|12 , l + 1〉

+ i[j + l]q[j′ + l]q|12 , l − 1〉 − i[j′ − 1
2 ]q[j − 1

2 ]q|32 , l〉+ i[j′ + 1
2 ]q[j + 1

2 ]qε3(−1)l|12 ,−l〉}

if j is half-integral and by

T ε1,ε2,ε3jj′ (I32)|k, 1
2〉 = 1

[k+ 1
2
]q [k− 1

2
]q(q−q−1)

{−i[j − 1
2 ]q[j′ − 1

2 ]q|k, 3
2〉+ i[j+1

2 ]q[j′+1
2 ]q

× ε3(−1)k| − k, 1
2〉 − i[j′−k]q[j−k]q|k + 1, 1

2〉+ i[j′+k]q[j+k] + q|k − 1, 1
2〉}

if j′ is half-integral.
Note that a proof of the fact that these representations of U ′q(so4) exhaust all irreducible

representations of this algebra is given in [8].
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It is known that the algebra D(V )G of G-invariant differential operators corresponding to
a G-module V of a complex reductive group G is commutative if and only if V is a sphe-
rical G-module. In the present work we study the structure of D(V )G for G-modules with
spherical orbits. It is proved that the centralizer Z(V )G of the subalgebra k[V ]G in D(V )G

is commutative. Also a characterization of actions with spherical orbits in terms of the
reduced action is obtained.

1 Multiplicity-free representations and spherical varieties

Let G be a connected reductive algebraic group defined over an algebraically closed field of zero
characteristic, and (ρ, V ) be a finite-dimensional representation of the group G. The induced
representation of G on the algebra of polynomials k[V ] is given by the formula (g ∗ f)(v) :=
f

(
ρ

(
g−1

)
v
)

for any g ∈ G, f ∈ k[V ], v ∈ V . It is well known that k[V ] as a G-module has the
isotypic decomposition

k[V ] = ⊕λ∈Ξ+(G)k[V ]λ,

where Ξ+(G) is the semigroup of dominant weights of G and k[X]λ is the sum of all irreducible
G-submodules in k[V ] with the highest weight λ.

Definition 1. A representation (ρ, V ) is called multiplicity-free if for any λ ∈ Ξ+(G) such that
k[V ]λ �= 0 the G-module k[V ]λ is irreducible. We say in this case that the G-module k[V ] is
multiplicity-free.

A complete list of multiplicity-free irreducible linear actions of connected reductive groups
obtained by V. Kac [1, Theorem 3] is as follows:

(1) SLn, Spn, SOn ⊗ k∗, S2GLn, Λ2SLn (for n odd), Λ2GLn (for n even), SLm ⊗ SLn (for
m �= n), GLn ⊗ SLn, GL2 ⊗ Spn, GL3 ⊗ Sp3, GL4 ⊗ Sp4, SLn ⊗ Sp4 (for n > 4), Spin7 ⊗ k∗,
Spin9 ⊗ k∗, Spin10, G2 ⊗ k∗, E6 ⊗ k∗.

(2) G⊗ k∗ for all semisimple groups G from list (1).

Here k∗ is the multiplicative group of the field k considered as a one-dimensional algebraic
group. The linear group Λ2SLn is the image of SLn under the representation in the second
exterior power of the tautological representation, and S2SLn is the same thing with respect to
the second symmetric power.

A classification of reducible multiplicity-free representations was obtained independently by
C. Benson and G. Ratkliff [2], and by A. Leahy [3].

Multiplicity-free representations form a very restricted class of representations. Nevertheless
they are very important due to Roger Howe’s philosophy that every “nice” result in the invariant
theory of particular representations can be traced back to a multiplicity-free representation.
For example, all of Weyl’s first and second fundamental theorems can be explained by some
multiplicity freeness results. Some other examples we shall discuss below.



420 I.V. Arzhantsev

Let B be a Borel subgroup of G.

Definition 2. A normal algebraic variety X with regular G-action (and the action G : X itself)
is said to be spherical if there exists a point x ∈ X such that the orbit Bx is open in X.

Denote by k(X) the field of rational functions on a variety X and by k(X)L (resp. k[X]L)
the subfield (resp. the subalgebra) of L-fixed elements for any subgroup L ⊂ G. By Rosenlicht’s
theorem [4, 2.3], the G-variety X is spherical if and only if k(X)B = k.

Theorem 1 ([5]). Suppose that X is a normal affine variety. Then an action G : X is spherical
if and only if the G-module k[X] is multiplicity-free.

In particular, multiplicity-free representations are in the natural one-to-one correspondence
with spherical linear actions.

For more information on interconnections between spherical actions and representation theo-
ry, symplectic geometry, classical mechanics and so on, see the recent survey [6].

2 Representations with spherical orbits

In this section we consider a generalization of the notion of spherical action.

Definition 3. Let X be an irreducible algebraic variety. An action G : X is called an action
with spherical orbits if there exists an open susbet X0 ⊂ X such that for any x ∈ X0 the orbit
Gx is a spherical G-variety.

Below we list some basic facts about actions with spherical orbits.
(1) Any spherical actions is an action with sperical orbits.
(2) Any trivial G-actions is an action with spherical orbits.
(3) Rosenlicht’s theorem implies that an action G : X is an action with spherical orbits if

and only if k(X)G = k(X)B.
(4) It is shown in [7, Corollary 1] that for an action with spherical orbits any G-orbit is

spherical.
(5) Let G1 : X1 and G2 : X2 be actions with spherical orbits. Then the action (G1 ×G2) :

(X1 ×X2) is an action with spherical orbits.

Now we consider a fragment of a classification of representations with spherical orbits [8].

Definition 4. A G-module V is indecomposable if there exist no proper decompositions G =
G1 ×G2 and V = V1 ⊕ V2 such that (g1, g2) ∗ (v1, v2) = (g1v1, g2v2) for any g = (g1, g2) ∈ G and
any v = (v1, v2) ∈ V .

By property (5), it is sufficient to classify indecomposable representations with spherical
orbits. In Tables 1 and 2 all indecomposable representations with spherical orbits (but non-
spherical!) for connected semisimple groups are indicated. Table 1 contains representations
with a one-dimensional quotient (i.e., k[V ]G = k[q1]), and Table 2 contains representations with
a two-dimensional quotient (i.e., k[V ]G = k[q1, q2]). (Here qi are basic invariants.) There is
no indecomposable representations with spherical orbits and a higher-dimensional quotient, for
more details see [8].

Comments to the Tables. In the column “weights” the highest weights of the G-module
are indicated. For the group G1 × G2 the weight φ ⊗ ψ corresponds to the tensor product of
simple G1- and G2-modules with highest weights φ and ψ respectively. The symbol + denotes
a direct sum of modules. If G is the product of several simple groups, then their fundamental
weights are denoted successively by letters φi, ψi and τi.
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Table 1.

G weights dimV

0 {e} 0 1

1 Λ2SL2n φ2 2n2 − n

2 S2SLn 2φ1 n(n+ 1)/2

3 SOn, n > 2 φ1 n

4 Spin7 φ3 8

5 Spin9 φ4 16

6 G2 φ1 7

7 E6 φ1 27

8 SLn, n > 2 φ1 + φn−1 2n

9 SL2n+1 φ1 + φ2 (2n+ 1)(n+ 1)

10 SL2n φ1 + φ2 n(2n+ 1)
φ1 + φ2n−2

11 SLn × SLn φ1 ⊗ φ1 n2

12 SL2 × Sp2n φ1 ⊗ φ1 4n

13 SL4 × Sp4 φ1 ⊗ φ1 16

14 SLn × SL2 × Sp2m, n > 2, m ≥ 1 φ1 ⊗ ψ1 + ψ1 ⊗ τ1 2(n+ 2m)

Table 2.

G weights dimV

1 SO8 φ1 + φ3 16

2 Sp2n × SL2 × Sp2m, n,m ≥ 1 φ1 ⊗ ψ1 + ψ1 ⊗ τ1 4(m+ n)

3 Invariant differential operators

Let X be an affine variety, and set A = k[X]. We define the algebra of (algebraic) differential
operators on A and X as follows: If P ∈ Endk(A) and a ∈ A, then [P, a] denotes the usual
commutator: [P, a](b) = P (ab) − a(P (b)), b ∈ A. Define Dn(A) = 0 for n < 0, and for n ≥ 0
inductively define:

Dn(A) = {P ∈ Endk(A) | [P, a] ∈ Dn−1(A) for all a ∈ A}.

Clearly, D0(A) ∼= A acting on itself by multiplication. Note that Dn(A) ⊂ Dn+1(A) for all n,
and we define D(A) := ∪nDn(A). Now we set Dn(X) := Dn(A), and similarly for D(X). We
call D(X) the algebra of differential operators on X.

Suppose that X = kn, so that A = k[x1, . . . , xk]. Then D(X) is the kth Weyl algebra
Wk, i.e., the noncommutative algebra k < x1, . . . , xk, ∂1, . . . , ∂k > generated by the xi and the
∂j := ∂/∂xj with there usual commutation relations.

Now let X be an affine G-variety, where G is complex reductive. The group G acts rationally
on k[X] and D(X) [9, § 3]. Denote by D(X)G the algebra of G-invariant differential operators.

We shall need the following well-known result.

Proposition 1. If X is a spherical G-variety, then the algebra D(X)G is commutative.
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Proof. By Schur’s Lemma, any endomorphism T of k[X] which commutes with G must preserve
each isotypic component k[V ]λ. Further, the restriction of T to a given component must be
a scalar, again by Schur’s lemma. Hence D(X)G is a subalgebra of the multiplication algebra
on the set of isotypic components, and so is abelian. �

There is a beautiful characterization of multiplicity-free representations in terms of invariant
differential operators.

Theorem 2 ([10, Proposition 7.1]). The algebra D(V )G is commutative if and only if the
representation (ρ, V ) is multiplicity-free.

Moreover, for multiplicity-free representations the algebra D(V )G is isomorphic to a polyno-
mial algebra, see [11] and [12].

The main purpose of this work is to obtain an analogous characterization for representations
with spherical orbits.

4 Reduced actions and the algebra Z(X)G

Let X be an affine variety and G be a reductive algebraic group. The algebra k[X]G is finitely
generated, and there is a canonical morphism πX,G (or just πG) : X → X//G, where X//G is the
affine variety corresponding to k[X]G and π∗G is the inclusion k[X]G ⊂ k[X]. The morphism πG
is surjective and induces a one-to-one correspondence between the closed G-orbits in X and the
points of X//G, see [4, 4.4].

To any action G : X one can canonically associate an action without non-constant invariants
over some field of algebraic functions [13].

Namely, denote by K the field of quotients Qk[X]G of k[X]G and by K its algebraic closure.
Let Xred be the spectrum of the K-algebra K[Xred] = K ⊗k[X]G k[X]. This is an irreducible
affine variety over K defined over K, with K[Xred] = K ⊗k[X]G k[X]G. Its dimension equals

dimXred = dimX − dimX//G, (1)

which is the dimension of a generic fiber of the quotient morphism πG : X → X//G.
The action of G on k[X] is k[X]G-linear and hence can be extended to an action of G(K) on

K[Xred], which, in its turn, can be extended to an action of G(K) on K[Xred]. This gives rise
to an action of G(K) on Xred defined over K. This action is called reduced action.

Proposition 2. The reduced action is spherical if and only if the following conditions hold:
1) the action G : X is an action with spherical orbits;
2) there exists an open dense subset X0 ⊂ X such that for any points x1, x2 ∈ X0 with

Gx1 �= Gx2 there is f ∈ k[X]G such that f(x1) �= f(x2) (i.e. generic G-orbits can be separated
by invariants).

Proof. We follow the proof of [13, Proposition 4]. Elements of K can be thought as algebraic
functions on Y = X//G, and points of Xred as algebraic mappings φ : Y → X such that
πG ◦ φ = id. We may assume that G ⊂ GLn(k) and X is a G-invariant closed subvariety of kn

(see, e.g., [4]). Denote by b a Borel subalgebra in the Lie algebra g of the group G. Let us think
elements of b(K) as algebraic mappings ξ : Y → b. The tangent algebra of the stabilizer B(K)φ
is defined by the linear equations

ξ(y)φ(y) = 0 (2)

over K. For a generic point y ∈ Y they turn into linear equations defining the tangent algebra
of the stabilizer Bφ(y) over k.
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Obviously, the functional rank of system (2) is the maximum of the ranks of its specializations.
Since all φ(Y ) do not belong to a proper closed subvariety of X, we obtain that the dimension
of a generic stabilizer for the action B(K) : Xred is equal to that for the action B : X.

By Rosenlicht’s theorem, the dimension of a generic B-orbit on X is equal to dimX −
tr.deg k(X)B. By (1), the action G(K) : Xred is spherical if and only if

tr.deg k(X)B = dimX//G = tr.deg Qk[X]G. (3)

Note that Qk[X]G ⊆ k(X)G ⊆ k(X)B. Hence (3) is equivalent to tr.deg Qk[X]G = tr.deg k(X)G

= tr.deg k(X)B. The second equality is the condition 1) of Proposition 2. By [4, 3.2], the first
equality means that generic G-orbits can be separated by invariants. �

Corollary 1. Suppose that G : V is a linear action of a semisimple group G. Then the reduced
action G(K) : V red is spherical if and only if G : V is an action with spherical orbits.

Proof. By [4, Theorem 3.3], for a semisimple group action on a factorial variety the condition
Qk[X]G = k(X)G holds automatically. �

Consider the centralizer of k[X]G in D(X)G:

Z(X)G =
{
D ∈ D(X)G | D(ab) = aD(b) for any a ∈ k[X]G, b ∈ k[X]

}
.

Clearly, k[X]G ⊂ Z(X)G. We are going to show that Z(X)G contains differential operators
of positive order.

There is a canonical morphism (πG)∗ : D(X)G → D(X//G), where (πG)∗(P ) is the restriction
of P ∈ D(X)G to k[X]G = k[X//G]. We let Kn(X) denote the elements of Dn(X) which
annihilate k[X]G. Then, by definition, Kn(X)G is the kernel of (πG)∗ restricted to Dn(X)G, and
K(X)G := ∪nKn(X)G is the kernel of (πG)∗. We have

0 −→ K(X)G ↪→ D(X)G
(πG)∗−→ D(X//G).

Note that Dn−1(X)τ(g) ⊂ Kn(X), where τ(C) denotes the action of C ∈ g on k[X] as a
derivation.

Define a positive integer n0 by

Kn0(X)G �= 0 and Km(X)G = 0 for any m < n0.

Lemma 1. The space Kn0(X)G is contained in Z(X)G.

Proof. For any a, b ∈ k[X]G and P ∈ Kn0(X)G one has [P, a](b) = P (ab) − bP (a) = 0. Hence
[P, a] ∈ Kn0−1(X)G. By definition, this implies [P, a] = 0. �

Now we are able to prove the main result of this note.

Theorem 3. Let G : X be an action with spherical orbits of a reductive group G on an affine
variety X. Suppose that generic G-orbits can be separated by invariants. Then the algebra
Z(X)G is commutative.

Proof. Elements of Z(X)G commute with the k[X]G-action on k[X] and can be considered
as differential operators on K ⊗k[X]G k[X] or on K ⊗k[X]G k[X]. Thus one has the embedding

Z(X)G ↪→ D(Xred)G(K). By Propositions 1 and 2, the last algebra is commutative. �

The algebra D(V )G is the centralizer of its scalar subalgebra k. This algebra is commutative
in spherical case. By Theorem 3, for representations of Table 1 (resp. Table 2) the commutativity
holds if one replaces scalars by k[q1] (resp. k[q1, q2]).
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Example 1. Let G = (k∗)s be an algebraic torus acting on V = kn, n ≥ s by

(t1, . . . , ts) ∗ (x1, . . . , xn) := (t1x1, . . . , tsxs, xs+1, . . . , xn).

It is clear that any torus action is an action with spherical orbits. For this particular action
generic orbits can be separated by invariants. One has k[V ]G = k[xs+1, . . . , xn] and Z(V )G =
k[x1∂1, . . . , xs∂s, xs+1, . . . , xn].

Example 2. Consider the action k∗ : k2, t ∗ (x1, x2) = (tx1, tx2). This is an action with
spherical orbits, but generic orbits can not be separated by invariants. Here k[V ]G = k and
Z(V )G = D(V )G = k〈x1∂1, x1∂2, x2∂1, x2∂2〉. The last algebra is not commutative.

Finishing this section, we would like to state the following

Conjecture. The following conditions are equivalent:
1) an action G : X is an action with spherical orbits and generic orbits can be separated by

invariants;
2) the algebra Z(X)G is commutative.
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In this paper we consider C∗-algebras connected with a simple unimodal non-bijective dy-
namical system (f, I) with zero Schwarzian. We associate with f a C∗-algebra C∗(Af ). In
the first part we describe the dynamics of (f, I). In the second part we describe the set of
irreducible representation of C∗(Af ) for a special subclass of mappings (Theorem 3) and
give realization (Theorem 4) of this algebra as C∗-algebra generated by continuous fields of
C∗-algebras on the spectrum of C∗(Af ). As a result we find out when two such C∗-algebras
are isomorphic.

1 Zero Schwarzian unimodal mappings

Many important examples of C∗-algebras arising in physical models are connected with dynam-
ical systems. In particular, the two-parameter unit quantum disk algebra [1] is generated by the
relation

qzz∗ − z∗z = q − 1 + µ(1− zz∗)(1− z∗z),
0 ≤ µ ≤ 1, 0 ≤ q ≤ 1, (µ, q) �= (0, 1),

which can be rewritten [2] in the form XX∗ = F (X∗X), where

F (λ) =
(q + µ)λ+ 1− q − µ

µλ+ 1− µ
.

In present paper we investigate unimodal deformation of the above relation. Consider a conti-
nuous unimodal map f : [0, 1] → [0, 1] with zero Schwarzian that consists of two hyperbolae:

f(x) =


f1(x) =

α1x+ β1

γ1x+ δ1
, x ∈ [0, ρ],

f2(x) =
α2x+ β2

γ2x+ δ2
, x ∈ (ρ, 1].

Let Orb+(f) be a set of all non-cyclic positive orbits [7]. Considering mappings up to topological
conjugacy [3] we can assume that γ2 = 0, δ2 = 1. In the present paper we restrict ourselves with
the following types of f (see Fig. 1):

Type 1: f2(1) = 1, f1(ρ) = f2(ρ) = 0, Type 2: f2(1) = 0, f1(ρ) = f2(ρ) = 1,

f(x) =


f1(x) =

αx− αρ

γx+ δ
, x ∈ [0, ρ],

f2(x) =
x− ρ

1− ρ
, x ∈ (ρ, 1];

f(x) =


f1(x) =

α(x− ρ) + δ + γρ

γx+ δ
, x ∈ [0, ρ],

f2(x) =
x− 1
ρ− 1

, x ∈ (ρ, 1].
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Lemma 1. Let (f, I) be F2n dynamical system. Then n � 3 and for each i ∈ {0, 1, 2} only two
following cases are possible.

1. There exists only one attractive cycle of the period 2i, smaller cycles are repellent and no
cycles of larger periods.

2. There exists an interval of periodic points such that the middle point of the interval has
period 2i, other points of the interval have period 2i+1, smaller cycles are repellent and no cycles
of larger periods.

Cases for i = 0 correspond only to type 1. Cases for i = 1 correspond either to type 1 or to
type 2. Cases for i = 2 correspond only to type 2.

Proof. First consider type 1 mappings. Define ρ and ρ1 as f1(0) = ρ1 and f1(ρ) = 0. Let x0 be a
stable point of f1(x) that lies between 0 and ρ. It can be easily checked that: Sign (1−|f ′(x0)|) =
Sign (ρ− ρ1).

When f has an attracting stable point, |f ′1(x0)| is less than 1. Hence ρ > ρ1. Therefore
∀ x ∈ [0, x0) f (2)(x) > x, ∀ x ∈ (x0, 1) f (2)(x) < x and mapping f has no cycles of the period
two. We will observe the same situation until |f ′1(x0)| equals 1. When |f ′1(x0)| = 1 the left
hyperbola is symmetric with respect to diagonal. Therefore each point of the interval [0, ρ]
except x0 has period two. As follows from a simple geometrical considerations in this case
mapping f has no cycles of period four. If |f ′1(x0)| is more than 1 or equivalently the stable
point becomes repellent, then two following cases are possible: 1) any cycle of period 2n exists,
2) there exists either attracting cycle of period two or an interval of periodic points such that
the middle point of the interval has period two and other points have period four. Therefore in
the first case the dynamical system is not F2n . In the second case the dynamical system has
obviously no cycles of larger periods.

Let us prove the latter statement.
1. The proof is by induction on n. The base of induction is existence of repellent cycles of

periods one and two. Let γ �= 0. Hence we can put γ = 1. When γ = 0, the proof is trivial
because if cycle of period 2n exists, then one is obviously repellent. Let xn be first from the
left stable point of f (2n). It is really uninteresting work to show that if a cycle of period two
is repellent, then for all x ∈ [0, x2] |f (4)

′
(x)| > 1. Hence we can add this fact to the base of

induction. Let x′ be a point such that f1(x′) = ρ. It is also very boring to show that for any f1

such that x0 is repellent point the derivative (f1(f1(x)))
′
, x ∈ [x′, x0] is more than one.

Now we prove that if the cycles of periods 2n−1 and 2n are repellent for some n � 1 and
∀ x ∈ [0, xn] |f (2n)

′
(x)| > 1, then there exists a cycle of period 2n+1 which is repellent and

∀ x ∈ [0, xn+1] |f (2n+1)
′
(x)| > 1.
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1) First we prove that if a stable point x0 is repellent, then there exists a cycle of period
two. If point x0 is repellent, then ρ < ρ1. Therefore f (2)(0) > 0 and exists x1 ∈ [0, x0] such that
f(x1) = ρ and f (2)(x1) = 0. Hence there exists x2 ∈ [0, x1] such that f (2)(x2) = x2.

Now consider f (2n). It is evident that (f (2n), J), where J = [0, xn−1] and xn−1 is the first
from the left stable point of f (2n−1), is equivalent to type 1 mapping. Therefore f (2n) has cycle
of period two or equivalently f has cycle of period 2n+1.

2) Now let repellent cycles of the periods 2n−1 and 2n exist. Consider a dynamical system
(f (2n), J), where J = [0, xn−1]. It is clearly type one system for some ρ̃, f̃1 and f̃2. By induction

hypothesis ∀ x ∈ [0, xn] |f̃1

′
(x)| > 1. Also ∀ x ∈ [ρ̃, xn−1] f̃2

′
(x) > 1. Therefore, for all

x ∈ [0, xn+1] |f (2(n+1))
′
(x)| = |(f̃2(f̃1(x)))

′ | > 1.
Now consider type 2 mapping. Let g(x) = f(f(x)) (see Fig. 2). We will consider g(x) in

[0, s]× [0, s], where s is a stable point of f , bearing in mind parallel considerations for the right
corner. Like in case one we define ρ and ρ1 as g(0) = ρ1 and g(ρ) = 0. Let x0 be a stable point
of g(x) that lies between 0 and ρ. Thus we obtain a situation of the type 1. Therefore if (f, I)
is F2n , then for each i = 1, 2 mapping f has either an attracting cycle of period 2i or an interval
of periodic points such that the middle point of the interval has period 2i and other points have
period 2i+1. �
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Figure 2.
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Theorem 1. Let (f, I) be type 1 or type 2 dynamical system. Let s be its stable repellent point
and βj its repellent cycle of period 2j (if it exists). For type one mapping j = 0 and β0 �= s.
For type two mapping j = 1. Define Ps = {δ|δ ∈ Orb+(f), α(δ) = s} and Pβj = {δ|δ ∈
Orb+(f), α(δ) = βj}. Let i be defined as in Lemma 1. Then

I. For dynamical system of type 1 and i = 0 or for dynamical system of type 2 and i = 1:
1) Orb+(f) = Ps;
2) there exists Is = [t1, t2) and one-to-one mapping φ : Is → Ps such that t ∈ φ(t) for

every t ∈ Is;
3) Is can be chosen to lie in arbitrary neighborhood of s.

II. For dynamical system of type 1 and i = 1 or for dynamical system of type 2 and i = 2:
1) Orb+(f) = Ps∪̇Pβj ;
2) there exists Iβj = [t1, t2) and one-to-one mapping φ : Iβj → Pβj such that t ∈ φ(t)

for every t ∈ Iβj . There exists Is = [t1, t2) and one-to-one mapping φ : Is → Ps such
that t ∈ φ(t) for every t ∈ Is;

3) Is ∩ Iβj = ∅. Moreover Iβj can be chosen to lie in arbitrary neighborhood of βj.
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Proof. Let us first consider type 1 mapping. Define ρ and ρ1 as in lemma: f1(0) = ρ1 and
f1(ρ) = 0. By the lemma ρ � ρ1. Define intervals In = f

(−n)
2 ([0, ρ)), n � 1. Note that

Ii ∩ Ij = ∅ i �= j, ∀ n In ∩ [0, ρ) = ∅ and ∪n�1In ∪ [0, ρ) = [0, 1). It is easy to see that for
x ∈ δ ∈ Orb+(f), x ∈ In, f−1(x) = f−1

2 (x) ∈ In+1 and α(x) = s. Now prove that any of the
intervals In can be chosen as Is. Since ∀x ∈ In f

(−n)(x) �∈ In we obtain that different points
of In correspond to different trajectories. It is clear to see that if x ∈ δ ∈ Orb+(f) and x ∈ Ii,
then for any j there exists point y ∈ δ such that y ∈ Ij . Now let ∃ x ∈ δ ∈ Orb+(f), x ∈ [0, ρ)
and x �∈ Per(f). The stable point x0 ∈ [0, ρ) is repellent for f−1

1 and therefore there exists
a natural number m such that f (−m)

1 (x) ∈ [ρ1, ρ) and f (−1)(f (−m)
1 )(x) = f−1

2 f
(−m)
1 (x) ∈ I1. By

f−1(x) we mean either f−1
1 (x) or f−1

2 (x) and by f−1(x) = f−1
2 (x) we mean that there is only

one possibility. If x ∈ δ ∈ Orb+(f), x ∈ [0, ρ) and x ∈ Per(f), then for f−1(x) ∈ δ we obtain
f−1(x) = f−1

2 (x) ∈ I1.
Now consider type 2 mapping. Let g(x) = f(f(x)). Dynamical system (g, [0, s]) satisfies all

conditions for the case 1. Let δ ∈ Orb+(f), δ = {xk}, k ∈ Z and x0 ∈ [0, s). It is clear to see that
such point x0 always exists. By the case two subsequences {x2n}, n ∈ Z can be parametrized
by Is. Since f−1 is one to one on [0, s), then Is parametrizes all δ ∈ Orb+(f). Consider type 1
mapping. It has a cycle of period two which is attracting by Lemma 1. In this case s = 1 and β0

are stable repellent points. Consider mapping g(x) = f(f(x)) (see Fig. 3). Define d = f1(0). It
is clear that (g(x), [0, d]) is equivalent to type 2 mapping for i = 1. Therefore exists interval Iβ0

that parameterizes orbits δ ∈ Orb+(f) δ = {xk} such that xk < d for all k (δ ∈ Pβ0). Define
I1 = [d, f−1

2 (d)] and Ij+1 = f−1
2 (Ij), j � 1. Let’s prove that any of the intervals Ij can be

chosen as Is. Indeed if t1, t2 ∈ Ij and t1 �= t2, then f (−n)
2 (t1) �= f

(−n)
2 (t2) for all n � 1. Therefore

different points of the interval correspond to different orbits. If xk ∈ δ ∈ Orb+(f), xk > d, then
xk ∈ Il for some l and for all j � 1 there exists n ∈ Z such that xk+n ∈ Ij . Hence Ps∪̇Pβ0

parameterizes all orbits in Orb+(f).
The proof for type 2 and i = 2 is absolutely analogous to the proof for type 2 and i = 1. �

Proposition 1. Let (f, I) be either type 1 dynamical system and i = 0 or type 2 dynamical
system and i = 1; then it has only one anti-Fock orbit δ, |α(δ)| = 1.

Proof. For type 1 mapping we can simply write it:
{

0, ρ1, f
−1
2 (ρ1), f (−2)

2 (ρ1), . . .
}

. It is clear

that lim
n→∞ f

(−n)
2 (ρ1) = 1 exists. Hence |α(δ)| = 1.

For type 2 mapping we consider a sequence
{

0, ρ1, g
−1(ρ1), g(−2)(ρ1), . . .

}
, where g(x) =

f(f(x)). Like for type 1 this sequence is a unique anti-Fock orbit for g. Since f−1 is one to one
on [0, s] we obtain that a unique anti-Fock orbit for g corresponds to a unique anti-Fock orbit
for f . �

2 Enveloping C∗-algebra

By C∗(Af ) we mean a C∗-algebra obtained from free ∗-algebra F(X,X∗) generated by X with
sub-norm ‖b‖ = sup

π
‖π(b)‖ where supremum is taken over all π ∈ Rep(F(X,X∗)) such that

π(XX∗) = f(π(X∗X)) by standard factorization and completion procedure. The following
theorem (see [2]) connects representations of C∗-algebra C∗(Af ) with certain orbits of dynamical
system (f,R+).

Theorem 2. Let f be partially monotone continuous map and (f,R) be F2m dynamical system.
Let A = C∗(Af ) be corresponding C∗-algebra.

1. To every positive non-cyclic orbit ω(xk)k∈Z there corresponds an irreducible representa-
tion πω in Hilbert space l2(Z) given by the formulae: Uek = ek−1, Cek =

√
xkek for k ∈ Z and

X = UC is a polar decomposition.
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2. To positive non-cyclic Fock-orbit ω = (xk)k∈N there corresponds an irreducible represen-
tation πω in Hilbert space l2(N) given by the formulae: Ue0 = 0, Uek = ek−1, Cek =

√
xkek for

k > 1 and X = UC.
3. To positive non-cyclic anti-Fock-orbit ω = (x−k)k∈N there corresponds an irreducible

representation πω in Hilbert space l2(N) given by the formulae: Uek = ek−1, Cek =
√
xkek for

k > 1 and X = UC.
4. To cyclic positive orbit ω = (xk)k∈N of length m there corresponds a family of m-dimen-

sional irreducible representation πω,φ in Hilbert space l2({1, . . . ,m}) given by the formulae:
Ue0 = eiφem−1, Uek = ek−1, Cek =

√
xkek for k = 1, . . . ,m; 0 ≤ φ ≤ 2π and X = UC.

This is a complete list of unequivalent irreducible representation of a given ∗-algebra.

As follows from [6] C∗-algebras generated by operators of irreducible representations are
either Z×δC(δ), where δ = δ∪ω(δ)∪α(δ) for non-cyclic bilateral orbit or Mm(T (C(T))), where
T (C(T)) is algebra of the Toeplitz operators for Fock and anti-Fock orbits.

Consider T as a topological space with topology induced from R. Let H be a Hilbert space
with orthonormal basis (ek)k∈Z. Let U be unitary shift operator Uek = ek+1 for all k ∈ Z. We
know that for any t ∈ T φ(t) = (xk)k∈Z & t futher on we will assume, without loss of generality,
that x0 = t. Denote by Cφ(t) diagonal operator Cφ(t)ek = xkek for all k ∈ Z. Algebra C∗(πφ(t))
is generated by operator Xφ(t) = U(Cφ(t))1/2. Denote by Ψ : C∗(πφ(t)) → B(H)T the ∗-ho-
momorphism defined on the generator as Ψ(X)(t) = Xφ(t). Further on we will denote by πφ(t)

the (irreducible for φ(t) ∈ Orb+(f) and reducible when t ∈ T \ T ) representation associated
with non-cyclic orbit φ(t) by formulas of the Theorem 2 and by πβ,ψ the finite dimensional
representation associated with cycle β and parameter ψ ∈ [0, 2π]. In the following theorem we
give the description of all irreducible representations of C∗(Af ) in cases 1 and 3 of Lemma 1 as
well as fix some notations.

Theorem 3. Let (f, I) be either type 1 mapping and cycle of period one is attracting or type
two mapping and cycle of period two is attracting then

1. In the first case C∗(Af ) has only one-dimensional irreducible finite dimensional representa-
tions parameterized by φ, ψ ∈ [0, 2π). They are given by the following formulas: π0(X) =

√
x0e

iφ,
π1(X) = eiψ. In the second case C∗(Af ) has only one-dimensional and two-dimensional irre-
ducible finite dimensional representations parameterized by φ ∈ [0, 2π) they are of the form πs,φ
and πβ1,φ.

2. C∗(Af ) has irreducible Fock representation πf and one irreducible anti-Fock representa-
tion πaf . Both of them in case 1 and πaf in case 2 generate algebras of Toeplitz operators. In
case 2 πf generate algebra M2(T (C(T))), where T (C(T)) is the algebra of Toeplitz operators.

3. In the first case for each t ∈ T = I1 there is irreducible infinite-dimensional representa-
tions πφ(t) of C∗(Af ). For all t ∈ T operators of πt generate isomorphic C∗-algebras. Denote
this algebra by A. Algebra A is a cross-product algebra C(X) × Z where X is a closure of
any orbit φ(t). Algebra A has only one infinite-dimensional representation and two circles of
one dimensional representations denote γs, γ1 two arbitrary such representations from different
circles. In the second case for each t ∈ T = Is there is irreducible infinite-dimensional repre-
sentations πφ(t) of C∗(Af ). For all t ∈ Is operators of πφ(t) generate isomorphic C∗-algebras.
Denote this algebra by B. Algebra B has only one infinite-dimensional representation one circle
of one dimensional representations (denote ηs any of them) and one circle of two-dimensional
representations (denote ηβ1 any of them).

4. ∗-algebra C∗(Af ) has no other irreducible representations.
5. For any a ∈ C∗(Af ) the mapping Ψ(a) is continuous map from T to B(H) where the

latter is endowed with norm topology. Moreover, for all a ∈ C∗(Af ) the following equality holds
Ψ(a)(t2) = U∗Ψ(a)(t1)U , where T = [t1, t2].
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6. C∗-algebras C∗(πφ(t1)) and C∗(πφ(t2)) coincide for any t1, t2 ∈ T as a subalgebras of B(H).
We have denoted this algebra by A for dynamical systems of type 1 and by B for type 2. Since
U ∈ A and U ∈ B we denote by adU the inner automorphism a → U∗aU, a ∈ A or a ∈ B as
appropriate.

Proof. First two statements of the theorem are direct consequences of Theorems 2, 1. Let
us show that for any t1, t2 ∈ T algebras C∗(πφ(t1)) and C∗(πφ(t2)) coincide as a subalgebras of
B(H). C∗(πφ(t)) is generated by operators U and Cφ(t). Since φ(t) is not periodic there is point
x ∈ φ(t) which occurs only finite number of times in the sequence φ(t), it is easy to see that x is
isolated point in φ(t). Hence if we put g to be equal to 1 at x and zero otherwise then g will be
continuous function on spec (Cφ(t)) and g(Cφ(t)) will be a compact non-zero operator in C∗(πφ(t)).
And since this algebra is prime it contains all compact operators. Hence by compact perturbation
Cφ(t) +K, where K is compact we can obtain any diagonal operator C = diag(ck)k∈Z such that
ω({ck}) = ω(φ(t)) and α({ck}) = α(φ(t)). Obvious equality C∗(U,Cφ(t)) = C∗(U,Cφ(t) + K)
completes the proof of our claim. It is easy to see that, up to isomorphism, C∗(πφ(t)) depends
only on two integers |ω(φ(t))| and |α(φ(t))|.

We proceed now to show that for every a ∈ C∗(Af ) the map Ψ(a) is continuous. Since X is
a generator of C∗(Af ) we need only to prove that Ψ(X)(t) = U(Cφ(t))1/2 is continuous in t

||Ψ(X)(t)−Ψ(X)(t′)|| =
∥∥∥C1/2

φ(t) − C
1/2
φ(t)

∥∥∥ = sup
k∈Z

∣∣∣x1/2
k − (x′k)

1/2
∣∣∣ .

Hence continuity at t′ is equivalent to uniform convergence of φ(t) to φ(t′) when t → t′. Fix
arbitrary ε > 0. It can be inferred from the proof of Theorem 1 that if φ(t) = (ys(t))s∈Z

then ys(t) = gs(t) for s < 0 where gs is a composition of f−1
1 and f−1

2 and this composition
is independent of t ∈ T . Let c1 be α(φ(t)) and c2 be ω(φ(t)) which are independent of t ∈ T .
For ε > 0 there is integer S such that ys(t) ∈ Bε(c1) ∪ Bε(c2) for all |s| > S and t in some
neighborhood of t′. Thus we can find η > 0 such that sup

s:|s|>S
|ys(t′) − ys(t)| < ε for all t′ :

|t − t′| < η. Since functions gs and f (j) are continuous we can choose η small enough for
|gs(t′) − gs(t)| < ε and |f (s)(t′) − f (s)(t)| < ε to be true for all s: |s| ≤ S and |t − t′| < η, i.e.
sup
s:|s|≤S

|ys(t′) − ys(t)| < ε. Hence, φ(t′) uniformly converges to φ(t). Other statements of the

theorem are straightforward. �

Remark 1. For any a ∈ C∗(Af ) the map Ψ(f) is a continuous map from T to A for type 1
dynamical systems (or B for type 2 dynamical systems) such that adU(Ψ(a)(t2)) = Ψ(a)(t1).

Now we are ready to describe enveloping C∗-algebras. Define operators U1 and U2 on the
basis as follows U1ek = ek+1 for k < 0 and U1ek = 0 for k ≥ 0 and U2ek = ek+1 for k > 0 and
U1ek = 0 for k ≤ 0. Consider two C∗-subalgebras G1 and G2 in B(H) generated by operators U1

and U2 correspondingly. Then operator U1 + U2 generates C∗-subalgebra G1 ⊕ G2 in B(H)
isomorphic to T (C(T)) ⊕ T (C(T)). Further on we will use notations of theorem 3 and will
regard T (C(T)) ⊕ T (C(T)) as a concrete algebra in B(H), namely G1 ⊕ G2. Let (f, I) be of
type 1 with attractive stable point. Let C denote C∗-algebra of all continuous maps ξ from
T = [t1, t2] to A such that adU(ξ(t2)) = ξ(t1).

Theorem 4. Let (f, I) be of type 1 with attractive stable point. Then T (C(T)) ⊕ T (C(T)) is
a C∗-subalgebra in A. Let us denote by M1 the C∗-subalgebra in C comprised of those ele-
ments f such that f(t1) ∈ T (C(T))⊕ T (C(T)) and π(f(t)) = π(f(t′)) for any one dimensional
representation π of A from the first circle and ρ(f(t)) = ρ(f(t′)) for any one dimensional rep-
resentation ρ of A from the second circle (see theorem 3) and for all t, t′ ∈ T . Then C∗(Af ) is
isomorphic to M1.
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Proof. It is easy to verify that πφ(t1) is equivalent to the direct sum of Fock and anti-Fock
representations. Hence representations πφ(t) where t ∈ T comprise a residual family for C∗(Af ).
By Theorem 3 and the remark C∗(Af ) is isomorphic under Gelfand transformation (Γ(a)(π) =
π(a), where π ∈ Rep(C∗(Af ))) to a C∗-subalgebra in C. Conditions π(f(t)) = π(f(t′)) and
ρ(f(t)) = ρ(f(t′)) for all t, t′ ∈ T are easily verified on generator X. Since π and ρ are
∗-homomorphisms these conditions hold for every a ∈ C∗(Af ). Hence C∗(Af ) is a C∗-subalgebra
in M1. Since it is a massive subalgebra in GCR C∗-algebra M1 we have C∗(Af ) = M1 by theo-
rem 11.1.6 [5]. �

Let G3 denote the C∗-subalgebra inB(H) generated by operatorXf defined byXfek = xkek+1

for k > 0 and Xfek = 0 for k ≤ 0 (i.e. Xf is πf (X) if l2(N) is identified with subspace in l2(Z)).
Then operator U1 + Xf generates G1 ⊕ G3 which is isomorphic to T (C(T)) ⊕ M2(T (C(T))).
Further on we will identify the latter with the concrete C∗-algebra G1 ⊕ G3. Let D denote
C∗-algebra of all continuous maps ξ from T = [t1, t2] to B such that adU(ξ(t1)) = ξ(t2).

Theorem 5. Let (f, I) be type two mapping and cycle of period two is attracting. Then G1⊕G3

is a subalgebra in B. Let us denote by M2 the C∗-subalgebra of D comprised of those elements
f such that f(t1) ∈ T (C(T)) ⊕M2(T (C(T))) and η(f(t)) = η(f(t′)) for any one dimensional
representation η of B and ζ(f(t)) = ζ(f(t′)) for any two dimensional representation ζ of B and
for all t, t′ ∈ T . Then C∗(Af ) is isomorphic to M2.

The proof is analogous to that of the previous theorem.

Corollary 1. For F2n unimodal dynamical systems with zero Schwarzian and attractive cycle
of length one or two isomorphism class of associated C∗-algebra depends only on the type of the
system (whether it 1 or 2).

Acknowledgements

This work has been partially supported by the project 01.07/071 of the NFFR of Ukraine.

[1] Klimek S. and Lesnievsky A., Quantum Reimann surfaces. I. The unit disk, Commun. Math. Phys., 1992,
V.146, 103–122.

[2] Ostrovskyi V. and Samoilenko Yu., Introduction to the theory of representations of finitely-presented
∗-algebras. I. Representations by bounded operators, Amsterdam, The Gordon and Breach Publ., 1999.

[3] Sharkovsky A.N., Maistrenko Yu.L. and Romanenko E.Yu., Difference equations and applications, Math.
and Its Applications, Vol.250, Kluwer Acad. Publ., 1993.

[4] Pedersen G.K., C∗-algebras and their automorphism groups, London Math. Soc. Monographs, Vol.14, Lon-
don, Academic Press, 1979.

[5] Dixmier J., C∗-algebras and their representations, Moscow, Nauka, 1974.

[6] Popovych S.V. and Maistrenko T.Yu., C∗-algebras associated with quadratic dynamical system, in Pro-
ceedinds of Third International Conference “Symmetry in Nonlinear Mathematical Physics” (12–18 July,
1999, Kyiv), Editors A.G. Nikitin and V.M. Boyko, Kyiv, Institute of Mathematics, 2000, V.30, Part 1,
364–370.

[7] Popovych S.V. and Maistrenko T.Yu., C∗-algebras, associated with F2n unimodal dynamical systems, Ukr.
Math. J., 2001, V.53, N 7, 929–938.



Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 432–438

The Lipkin–Meshkov–Glick Model

and its Deformations through Polynomial Algebras

Nathalie DEBERGH and Florica STANCU

Fundamental Theoretical Physics, University of Liège, Institute of Physics,
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We search for solutions of the many-particle Hamiltonian of Lipkin, Meshkov and Glick in the
context of the sl(2,R) deformed polynomial algebra. The reducibility of the original model
is proved according to the representations of this algebra. A new symmetry is uncovered,
which further splits any matrix of a given j multiplet into two submatrices. In this way
the diagonalization of the Hamiltonian matrix is simplified and the entire spectrum of the
many-particle Hamiltonian is easily recovered. Supplementary eigenvalues stemming from
the deformed algebra approach are also introduced. We indicate how they can lead to a new
class of deformed-type models.

1 Introduction

Quantum mechanical equations with analytic solutions are rare. Only some interactions like e.g.
the harmonic oscillator or the Coulomb potential give rise to a class of equations which are called
exactly solvable. But sometimes one can weaken the condition of exact solvability by asking for
an exact knowledge of a finite number of solutions only. This leads to what is referred to in [1]
as quasi-exact solvability. Quasi-exactly solvable models have been essentially developed in a
nonrelativistic context. They are characterized by the fact that, up to a change of variables as
well as a transformation at the level of the wavefunctions, their Hamiltonians can be expressed
as at most a quadratic function of the generators of a Lie algebra, namely sl(2,R) for algebras
of rank one. These generators stabilize a finite-dimensional space and so do the Hamiltonians
which can be easily diagonalized within this space.

In physical examples at most a quadratic function of generators of sl(2,R) is a consequence of
the assumption of a two-body interaction between particles. One of the well-known quasi-exactly
solvable models is that proposed by Lipkin, Meshkov and Glick [2], developed for treating many
particle systems. Another one is the spin Van der Waals model used in statistical mechanics [3].
Interestingly enough, it has been shown that these two models are equivalent and represent
particular cases of a more general Hamiltonian [4]. In these two cases the sl(2,R) generators
are called quasi-spin or pseudo-spin operators.

Here we refer to the work of Lipkin, Meshkov and Glick (LMG), who constructed a two
N -fold degenerate level Hamiltonian where N is the number of fermions in the system. The two
levels are separated by an energy ε. The simplified version of the LMG Hamiltonian, which we
consider here, contains only terms which mix particle-hole configurations. The corresponding
Hamiltonian reads

HLMG = εj0 +
δε

2N
(
j2+ + j2−

)
, (1)

where δ is the interaction strength, while the sl(2,R) generators j0, j± are realized as

j0 = −N
2

+
1
2

N∑
m=1

(
α†mαm + β†mβm

)
, (2)
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j+ =
N∑
m=1

α†mβ
†
m, (3)

j− =
N∑
m=1

αmβm, (4)

and satisfy

[j0, j±] = ±j±, [j+, j−] = 2j0. (5)

In the definitions (2)–(4) the fermion operators β†m, βm create and annihilate holes in the lower
level, while α†m, αm create and annihilate particles in the upper level. These operators are such
that

{αm, α†n} = {βm, β†n} = δmn,

[αm, βn] = [αm, β†n] = [βm, α†n] = [α†m, β
†
n] = 0.

The Casimir operator of the sl(2,R) algebra

C1 =
1
2
{j+, j−}+ j20 (6)

evidently commutes with the Hamiltonian (1). Hence the Hamiltonian matrix splits into sub-
matrices each associated with a given value of j and of order 2j+ 1. Each state in a j multiplet
has a different number of excited particle-hole pairs. The interaction part of (1) mixes states
within the same j multiplet but cannot mix states having different eigenvalues of C1. It can only
excite or de-excite two particle-hole pairs or in other words it can only change the eigenvalue
of j0 by two units. From the definition (2), it follows that the eigenvalues of j0 are given by half
the difference between the number of particles in the upper level and the number of particles in
the lower level. Then the maximum eigenvalue of j0 and of j is N

2 . The largest matrix to be
diagonalized in (1) is thus of dimension N + 1 = 2j + 1.

The main purpose of this paper is to revisit the LMG Hamiltonian (1) in the context of
the sl(2,R) deformed polynomial algebra. In such a context, we show that the largest matrix
associated to a given N can be split into two submatrices of dimensions N

2 + 1 and N
2 for N

even and two submatrices, both of dimensions N+1
2 for N odd. This is due to the presence,

apart from (6), of an additional invariant, i.e. the Casimir operator of the deformed algebra.
Moreover, the polynomial deformation technique leads to new representations corresponding to
new eigenvalues appropriate to a deformed LMG model.

2 The deformed polynomial algebra approach

Instead of (1) in this section we propose to consider the following Hamiltonian [5]

H = ε(2J0 + δ(J+ + J−)) (7)

containing the operators J0, J±, which satisfy the following polynomial algebra (as compared
with (5))

[J0, J±] = ±J±, (8)

[J+, J−] = − 16
N2

J3
0 +

2
N2

(
2j2 + 2j − 1

)
J0, (9)
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where j is an eigenvalue of the operator C1 as defined by (6). Such a choice is justified by the
fact that the particular realization of the algebra (8)–(9)

J0 =
1
2
j0, J± =

1
2N

j2±, (10)

makes the Hamiltonian (7) to coincide with (1). However realizations other than (10) can be
produced in general, leading to new eigenvalues, different from those of (1), as shown below.

Indeed the Casimir operator of the sl(2,R) deformed polynomial algebra (8)–(9) is

C2 = J+J− −
4
N2

J4
0 +

8
N2

J3
0 +

2j2 + 2j − 5
N2

J2
0 −

2j2 + 2j − 1
N2

J0 (11)

and two types of finite-dimensional representations arise. The first ones are defined according to

J0|J,M〉 = (M + c)|J,M〉,
J+|J,M〉 = f(M)|J,M + 1〉, J−|J,M〉 = g(M)|J,M − 1〉, (12)

with M = −J,−J + 1, . . . , J − 1, J , J = 0, 1
2 , 1, . . . and

f(M − 1)g(M) =
1
N2

(J −M + 1)(J +M)

×
(
2j2 + 2j − 1− 4J2 − 4J − 4M2 + 4M + 8(1− 2M)c− 24c2

)
.

The real number c can take three distinct values [6] given by

c = 0 and c = ±
√

1
4
j(j + 1)− 1

8
− J(J + 1).

The second type of representations are characterized by the following equations

J0|J ′,M ′〉 =
(
M ′

2

)
|J ′,M ′〉,

J+|J ′,M ′〉 = f ′
(
M ′

)
|J ′,M ′ + 2〉, J−|J ′,M ′〉 = g′

(
M ′

)
|J ′,M ′ − 2〉, (13)

where J ′ = 0, 1, 2, . . . and

f ′
(
M ′ − 2

)
g′

(
M ′

)
=

1
4N2

(
J ′ −M ′ + 2

) (
J ′ +M ′

)
×

(
2j2 + 2j − 1− J ′2 − 2J ′ −M ′2 + 2M ′

)
(14)

if M ′ = −J ′,−J ′ + 2, . . . , J ′ − 2, J ′ and

f ′
(
M ′ − 2

)
g′

(
M ′

)
=

1
4N2

(
J ′ −M ′ + 1

) (
J ′ +M ′ − 1

) (
2j2 + 2j − J ′2 −M ′2 + 2M ′

)
(15)

if M ′ = −J ′ + 1,−J ′ + 3, . . . , J ′ − 3, J ′ − 1. In the cases where J ′ = 1
2 ,

3
2 , . . ., J

′ must be equal
to j (M ′ to m) and

f ′(m− 2)g′(m) =
1

4N2
(j +m)(j +m− 1)(j −m+ 1)(j −m+ 2).

It is important to note that the polynomial algebra provides a new “quantum number” c, as
introduced above. It helps to distinguish between the eigenvalues of (7) corresponding to even
and odd N . For N even one has c = 0 and for N odd c = ±1/4.
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In the following we shall drop the representation (13) due to the fact that it is reducible.
Indeed evaluating the eigenvalue of the Casimir operator C2 of (11) within the invariant subspace
of the representation (13) we obtain two distinct values which implies that the invariant subspace
splits into the direct sum(

J ′ = n, c = 0
)
(13)

=
(
J =

n

2
, c = 0

)
(12)

⊕
(
J =

n− 1
2

, c = 0
)

(12)

, (16)

where the left hand side refers to the representation space of (13) and each bracket in the
right hand side designates an invariant subspace of (12). A similar decomposition holds for
half-integer j(

J ′ = j = n+
1
2
, c = 0

)
(13)

=
(
J =

n

2
, c =

1
4

)
(12)

⊕
(
J =

n

2
, c = −1

4

)
(12)

(17)

for any integer n. The original LMG model defined by (1) or equivalently by (7) with the
realization (10) is clearly connected to the representations (13) with J ′ = j (J ′ being an integer
or a half integer). We can conclude that the LMG Hamiltonian matrix is reducible. More
precisely, according to equations (16) and (17), a matrix Hamiltonian of dimension 2n + 1 can
be split into a direct sum of two submatrices of dimensions n+ 1 and n for j even and a matrix
of dimension 2n+2 can be split into two matrices, each of dimension n+1, for j half integer. We
thus obtain the result mentioned in the Introduction with N = 2n and N = 2n+ 1 respectively,
such result being significant for a large number of particles. Then searching for the spectrum of
the Hamiltonian (7) amounts to the diagonalization of the matrix 〈H〉 given by

2J + 2c δf(J − 1) 0 0 · · 0
δg(J) 2J − 2 + 2c δf(J − 2) 0 · · 0

0 δg(J − 1) 2J − 4 + 2c δf(J − 3) · · 0
0 0 δg(J − 2) 2J − 6 + 2c · · 0
· · · · · · ·
· · · · · −2J + 2 + 2c δf(−j)
0 0 0 0 · δg(−J + 1) −2J + 2c


. (18)

obtained in the invariant subspace defined by (12). In the following section we are going to
illustrate these findings on specific examples.

3 Examples

3.1 The N = 2 case

We first consider the simplest N = 2 case in order to easily illustrate our results. The complete
LMG matrix is of dimension 4, corresponding to the four possible states of two particles occu-
pying two levels (the two particles can be on the lower level, or on the upper one, or one particle
can be on the lower while the other can be on the upper level or vice-versa). Following the origi-
nal LMG Hamiltonian (1), the matrix of dimension 4 splits into 3 + 1 while the matrix of (7) in
the invariant space of the representation (12) splits into 2 + 1 + 1 (corresponding to J = 1

2 and
J = 0 twice). The eigenvalues E (in units of ε) are obtained from the diagonalization of three
matrices of type (18) of dimensions 2, 1 and 1 respectively. The eigenvalues are summarized in
the following table

j J E

0 0 0
1 0 0

1
2 ±

√
1 + 1

4δ
2
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3.2 The N = 8 case

For N = 8, there are 28 = 256 states. The largest original LMG matrix corresponds to j =
N
2 = 4, the others being associated to j = 3 (7 times), j = 2 (20 times), j = 1 (28 times) and
j = 0 (14 times). Following the decompositions (16)–(17) the polynomial algebra leads to other
representations: J = 2 (1 time), J = 3

2 (8 times), J = 1 (27 times), J = 1
2 (48 times) and

J = 0 (42 times). The corresponding eigenvalues come from the diagonalization of matrices of
type (18) and are given in units of ε in the following table

j J E

0 0 0
1 0 0

1
2 ±

√
1 + 1

64δ
2

2 1
2 ±

√
1 + 9

64δ
2

1 0,±
√

4 + 3
16δ

2

3 1 0,±
√

4 + 15
16δ

2

3
2 ±

√
5 + 33

64δ
2 ±

√
16 + 3

2δ
2 + 27

128δ
4

4 3
2 ±

√
5 + 113

64 δ
2 ±

√
16 + 19

2 δ
2 + 275

128δ
4

2 0,±
√

10 + 59
32δ

2 ±
√

36− 9
8δ

2 + 2025
1024δ

4

4 Supplementary eigenvalues

In the previous section the tables contain the eigenvalues of the Hamiltonian (1) only. They were
obtained through the polynomial algebra technique. However the polynomial algebra is richer
than the usual sl(2,R) algebra, associated with the quasi-spin formalism in the LMG model. As
seen above, its representations have three labels (J, c, j) instead of one (j) for sl(2,R). Thus the
number of representations is larger. This is particularly clear from the table corresponding to
N = 8. Indeed when j = 2 for example, we can see that the eigenvalues of the LMG Hamiltonian
are recovered when J = 1

2 and J = 1 while the case J = 0 is missing and must correspond to
another model. The same situation holds for j = 3, when J = 0 or J = 1

2 and j = 4 when
J = 0, J = 1

2 and J = 1. These new possibilities are excluded by the Hamiltonian (1) but not
by (7). They lead to supplementary eigenvalues as summarized in the following table

j J E

2 0 0
3 0 0

1
2 ±

√
1 + 21

64δ
2

4 0 0
1
2 ±

√
1 + 37

64δ
2

1 0,±
√

4 + 31
16δ

2

Taking for example the maximal value of j, i.e. j = 4 associated to N = 8 we can see that these
supplementary eigenvalues are surprisingly close to some of the original LMG Hamiltonian.
Indeed when δ = 1, we have
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j J E

4 0 0
1
2 ±1.256
1 0,±2.437
3
2 ±1.228,±3.467
2 0,±2.402,±4.232

i.e. very close to the numerical values shown in [5]. The same kind of results hold for any number
of particles. In order to fix the ideas, for an even number N = 2n of particles, the largest matrix
corresponds to j = n, the values J = n−1

2 , n
2 give rise to the LMG eigenvalues while the cases

J = 0, 1
2 , 1, . . . ,

n
2 − 1 lead to supplementary solutions, close and larger than the LMG ones for

a fixed j. Moreover the closeness is better realized for δ smaller, as it can be seen from the
analytic expressions.

A natural question then arises: to what kind of model do correspond these supplementary
eigenvalues? In order to answer this question, let us once again concentrate on the case of
N = 8 particles and, this time, on the representations (13). We have five different values as far
as J ′ is concerned, i.e. J ′ = 0, 1, 2, 3, 4. In fact, according to (13)–(15) we can generalize the
realization (10) to

J± =
1
16
M(J ′)j2±, (19)

where M(J ′) is a diagonal matrix depending on J ′ and of dimension 2J ′ + 1. In principle this
matrix should be different for each value of J ′. It is interesting to note that this diagonal matrix
reduces to the identity I for J ′ = J ′max = N

2 = 4 only, in agreement with (10). With this
generalization the Hamiltonian (7) becomes

H = εj0 +
δε

2N
(
M(J ′)j2+ + j2−M(J ′)

)
(20)

with J ′ = 0, 2, 4, . . . , N2 and M(N2 ) = I. In general the operators (19) can also be written as

J+ =
1

2N
M(J ′)j2+ ≡ 1

2N
(j′+)2, J− =

1
2N

j2−M(J ′) ≡ 1
2N

(j′−)2

with

[j0, j′±] = ±j′±, (21)

[j′+, j
′
−] =

J ′−1∑
k=0

ckj
2k+1
0 , (22)

where ck are coefficients being fixed according to N and J ′. The relations (21)–(22) are those
of a polynomial deformation of sl(2,R) except when J ′ = 1 and J ′ = N

2 where it is equivalent
to sl(2,R) (J ′ = 0 leading to trivial results). We can then conclude that our model (7) or
equivalently (20) represents the usual LMG model (corresponding to J ′ = N

2 ) plus N
2 deformed

LMG models (corresponding to J ′ = 0, 1, . . . , N2 −1 and M(J ′) �= I), the deformed models giving
rise to supplementary eigenvalues as discussed in this section. In all cases M(J ′) is uniquely
defined by the deformed algebra.

5 Summary

We have presented a derivation of the entire spectrum of the many-particle Hamiltonian of
Lipkin, Meshkov and Glick in the context of the sl(2,R) deformed polynomial algebra. For any
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given number N of particles the spectrum first splits into j multiplets of the sl(2,R) algebra.
The eigenvalues associated with the largest j are non-degenerate except for E = 0. We have
shown that the Hamiltonian matrix of each j further splits into two submatrices corresponding
to two distinct irreducible representations of the deformed polynomial algebra. In order to
illustrate the method we have derived explicit analytic expressions for the eigenvalues of the
LMG Hamiltonian for N = 2 and 8. Our method can evidently be extended to any N .

Furthermore we have shown that the deformed polynomial algebra related to the LMG model
implies a larger spectrum than that of the model itself. Some of the new eigenvalues present
characteristics similar to those of the LMG model and actually correspond to a superposition
of specific deformed LMG models where, once again, the deformed polynomial algebra sl(2,R)
plays a prominent role.
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Properties of ternary semigroups, groups and algebras are briefly reviewed. It is shown
that there exist three types of ternary units. A ternary analog of deformation is shortly
discussed. Ternary coalgebras are defined in the most general manner, their classification
with respect to the property “to be derived” is made. Three types of coassociativity and
three kinds of counits are given. Ternary Hopf algebras with skew and strong antipods are
defined. Concrete examples of ternary Hopf algebras, including the Sweedler example (which
has two ternary generalizations), are presented. A ternary analog of quasitriangular Hopf
algebras is constructed, and ternary abstract quantum Yang–Baxter equation (together with
its classical counterpart) is obtained. A ternary “pairing” of three Hopf algebras is built.

I would like to report about the work done in part together with Andrzej Borowiec and
Wieslaw Dudek, and I am grateful to them for fruitful collaboration.

Firstly ternary algebraic operations were introduced already in the XIX-th century by A. Cay-
ley. As the development of Cayley’s ideas it were considered n-ary generalization of matrices
and their determinants [1] and general theory of n-ary algebras [2, 3] and ternary rings [4] (for
physical applications in Nambu mechanics, supersymmetry, Yang–Baxter equation, etc. see [5]
as surveys). The notion of an n-ary group was introduced in 1928 by W. Dörnte [6]. From
another side, Hopf algebras [7] and their generalizations [8, 9, 10, 11] play a basic role in the
quantum group theory (also see e.g. [12, 13]). We note that the derived ternary Hopf algebras
are used as an intermediate tool in obtaining the Drinfeld’s quantum double [14].

Here we first present necessary material on ternary semigroups, groups and algebras [15] in the
abstract arrow language. Then using systematic reversing order of arrows [7], we define ternary
bialgebras and Hopf algebras, investigate their properties and give some examples1. Most of the
constructions introduced below are valid for n-ary case as well after obvious changes.

A non-empty set G with one ternary operation [ ] : G × G × G → G is called a ternary
groupoid and is denoted by (G, [ ]) or

(
G,m(3)

)
. If on G there exists a binary operation * (or

m(2)) such that [xyz] = (x* y)* z or

m(3) = m
(3)
der = m(2) ◦

(
m(2) × id

)
(1)

for all x, y, z ∈ G, then we say that [ ] or m(3)
der is derived from * or m(2) and denote this fact by

(G, [ ]) = der(G,*). If [xyz] = ((x*y)*z)*b holds for all x, y, z ∈ G and some fixed b ∈ G, then
a groupoid (G, [ ] is b-derived from (G,*). In this case we write (G, [ ]) = derb(G,*) [16, 17].
A ternary isotopy is a set of functions f, g, h, w : G→ G such that f ([xyz]) = [g (x) , h (y) , w (z)]
for all x, y, z ∈ G. If g = h = w = f , then f is ternary isomorphism.

A ternary semigroup is (G, [ ]) (or
(
G,m(3)

)
) where the operation [ ] (m(3)) is associative

[[xyz]uv] = [x [yzu] v] = [xy [zuv]] (for all x, y, z, u, v ∈ G) or

m(3) ◦
(
m(3) × id× id

)
= m(3) ◦

(
id×m(3) × id

)
= m(3) ◦

(
id× id×m(3)

)
(2)

1Due to the lack of place in the Proceedings we present only important results and constructions omitting
most proofs and detailed derivations which will appear elsewhere.
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A ternary operation m(3)
der derived from a binary associative operation m(2) is also associative,

but a ternary groupoid (G, [ ]) b-derived (b is a cancellative element) from a semigroup (G,*)
is a ternary semigroup if and only if b lies in the center of (G,*). Fixing in a ternary operation
m(3) one element a we obtain a binary operation m(2)

a . A binary groupoid (G,*) or
(
G,m

(2)
a

)
,

where x * y = [xay] or m(2)
a = m(3) ◦ (id×a× id) for some fixed a ∈ G is called a retract of

(G, [ ]) and is denoted by reta(G, [ ]) [16, 17]. It can be shown that if there exists an element
e such that for all y ∈ G we have [eye] = y, then this semigroup is derived from the binary
semigroup

(
G,m

(2)
e

)
, where m(2)

e = m(3) ◦ (id×e× id).
An element em ∈ G is called a middle identity of (G, [ ]) if for all x ∈ G we have [emxem] =

x or m(3) ◦ (em × id×em) = id. An element el ∈ G satisfying the identity [elelx] = x or
m(3) ◦ (el × el × id) = id is called a left identity. By analogy we define a right identity, satisfying
[xerer] = x or m(3) ◦ (id×er × er) = id for all x ∈ G. An element which is a left, middle and
right identity e = em = el = er is called a ternary identity (briefly: identity), an element which
is only left and right identity is a semi-identity esemi = em = el. There are ternary semigroups
without left (middle, right) neutral elements, but there are also ternary semigroups in which all
elements are identities [15, 18]. More general, a 2-sequence of elements α2 = e1e2 is neutral, if
[e1e2x] = [xe1e2] = x for all x ∈ G and by analogy for n-sequence. Two sequences α and β are
equivalent, if there are exist another two sequences γ and δ such that [γαδ] = [γβδ].

Lemma 1. For any ternary semigroup (G, [ ]) with a left (right) identity there exists a binary
semigroup (G,*) and its endomorphism µ such that [xyz] = x* µ(y)* z for all x, y, z ∈ G.

Proof. Let el be a left identity of (G, [ ]). Then the operation x * y = [xely] is associa-
tive. Moreover, for µ(x) = [elxel], we have µ(x) * µ(y) = [[elxel]el[elyel]] = [[elxel][elely]el] =
[el[xely]el] = µ(x* y) and [xyz] = [x[elely][elelz]] = [[xel[elyel]]elz] = x* µ(y)* z. In the case
of right identity the proof is analogous. �

A ternary groupoid (G, [ ]) is a left cancellative if [abx] = [aby] =⇒ x = y, a middle can-
cellative if [axb] = [ayb] =⇒ x = y, a right cancellative if [xab] = [yab] =⇒ x = y hold for all
a, b ∈ G. A ternary groupoid which is left, middle and right cancellative is called cancellative.

Definition 1. A ternary groupoid (G, [ ]) is semicommutative if [xyz] = [zyx] for all x, y, z ∈ G.
If the value of [xyz] is independent on the permutation of elements x, y, z, viz.

[x1x2x3] =
[
xσ(1)xσ(2)xσ(3)

]
(3)

or m(3) = m(3) ◦ σ, then (G, [ ]) is a commutative ternary groupoid. If σ is fixed, then a ternary
groupoid satisfying (3) is called σ-commutative.

The group S3 is generated by two transpositions; (12) and (23). This means that (G, [ ]) is
commutative if and only if [xyz] = [yxz] = [xzy] holds for all x, y, z ∈ G. Further if in a ternary
semigroup (G, [ ]) satisfying the identity [xyz] = [yxz] there are a, b such that [axb] = x for all
x ∈ G, then (G, [ ]) is commutative.

Mediality in the binary case (x* y) * (z * u) = (x* z) * (y * u) for groups coincides with
commutativity. In the ternary case they do not coincide. A ternary groupoid (G, [ ]) is medial
if it satisfies the identity

[[x11x12x13][x21x22x23][x31x32x33]] = [[x11x21x31][x12x22x32][x13x23x33]]

or

m(3) ◦
(
m(3) ×m(3) ×m(3)

)
= m(3) ◦

(
m(3) ×m(3) ×m(3)

)
◦ σmedial, (4)

where σmedial =
(
123456789
147258369

)
∈ S9.
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It is not difficult to see that a semicommutative ternary semigroup is medial. An element x
such that [xxx] = x is called an idempotent. A groupoid in which all elements are idempotents is
called an idempotent groupoid. A left (right, middle) identity is an idempotent, also any neutral
sequence e1e2 is an idempotent.

Definition 2. A ternary semigroup (G, [ ]) is a ternary group if for all a, b, c ∈ G there are
x, y, z ∈ G such that [xab] = [ayb] = [abz] = c.

In a ternary group the equation [xxz] = x has a unique solution which is denoted by z = x
and called skew element [6], or equivalently

m(3) ◦ (id× id×·) ◦D(3) = id,

where D(3) (x) = (x, x, x) is a ternary diagonal map.

Theorem 1. In any ternary group (G, [ ]) for all x, y, z ∈ G the following relations take place
[xxx] = [xxx] = [xxx] = x, [yx x] = [y x x] = [xx y] = [xxy] = y, [xyz] = [ z y x], x = x.

Since in an idempotent ternary group x = x for all x, an idempotent ternary group is
semicommutative. From [19, 20] it follows

Theorem 2. A ternary semigroup (G, [ ]) with a unary operation − : x→ x is a ternary group
if and only if it satisfies identities [yx x ] = [xx y] = y, or

m(3) ◦ (id×· × id) ◦
(
D(2) × id

)
= Pr2,

m(3) ◦ (id× id×·) ◦
(

id×D(2)
)

= Pr1,

where D(2) (x) = (x, x) and Pr1 (x, y) = x, Pr2 (x, y) = y.

A ternary semigroup (G, [ ]) is an idempotent ternary group if and only if it satisfies identities
[yxx] = [xxy] = y. Moreover, a ternary group with an identity is derived from a binary group.

Theorem 3 (Gluskin–Hosszú). For a ternary group (G, [ ]) there exists a binary group (G,�),
its automorphism ϕ and fixed element b ∈ G such that [xyz] = x� ϕ (y) � ϕ2 (z) � b.

Proof. Let a ∈ G be fixed. The binary operation x � y = [xay] (a ∈ G fixed) is associative,
because (x � y) � z = [[xay]az] = [xa[yaz]] = x � (y � z) with identity a and ϕ(x) = [axa],
b = [a a a ] (see [21]). �

Theorem 4 (Post). For any ternary group (G, [ ]) there exists a binary group (G∗,�) and
H � G∗, such that G∗�H � Z2 and [xyz] = x� y � z for all x, y, z ∈ G.

Proof. Let c be a fixed element in G and let G∗ = G × Z2. In G∗ we define binary operation
� putting (x, 0) � (y, 0) = ([xyc], 1), (x, 0) � (y, 1) = ([xyc], 0), (x, 1) � (y, 0) = ([xcy], 0),
(x, 1) � (y, 1) = ([xcy], 1). This operation is associative and (c, 1) is its neutral element. The
inverse element (in G∗) has the form (x, 0)−1 = (x, 0), (x, 1)−1 = ([c x c], 1). Thus G∗ is a group
such that H = {(x, 1) : x ∈ G} � G∗. Obviously the set G can be identified with G × {0} and
[xyz] = ((x, 0) � (y, 0)) � (z, 0) = ([xyc], 1) � (z, 0) = ([[xyc]cz], 0) = ([xy[ccz]], 0) = ([xyz], 0),
which completes the proof. �

Let us consider ternary algebras. One can introduce autodistributivity property [[xyz] ab] =
[[xab] [yab] [zab]] (see [22]). If we take 2 ternary operations { , , } and [ , , ], then distributivity
is {[xyz] ab} = [{xab} {yab} {zab}]. If (+) is a binary operation (addition), then left linearity
is [(x+ z) , a, b] = [xab] + [zab]. By analogy one can define central (middle) and right linearity.
Linearity is defined, when left, middle and right linearity hold valid simultaneously.
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Definition 3. Ternary algebra is a triple
(
A,m(3), η(3)

)
, where A is a linear space over a field K,

m(3) is a linear map m(3) : A⊗A⊗A→ A called ternary multiplication m(3) (a⊗ b⊗ c) = [abc]
which is ternary associative [[abc] de] = [a [bcd] e] = [ab [cde]] or

m(3) ◦
(
m(3) ⊗ id⊗ id

)
= m(3) ◦

(
id⊗m(3) ⊗ id

)
= m(3) ◦

(
id⊗ id⊗m(3)

)
. (5)

There are 3 types of ternary unit maps η(3) : K → A: 1) One strong unit map m(3) ◦(
η(3) ⊗ η(3) ⊗ id

)
= m(3) ◦

(
η(3) ⊗ id⊗η(3)

)
= m(3) ◦

(
id⊗η(3) ⊗ η(3)

)
= id; 2) two sequen-

tial units η(3)
1 and η

(3)
2 satisfying m(3) ◦

(
η

(3)
1 ⊗ η

(3)
2 ⊗ id

)
= m(3) ◦

(
η

(3)
1 ⊗ id⊗η(3)

2

)
= m(3) ◦(

id⊗η(3)
1 ⊗ η

(3)
2

)
= id; 3) Four long (left) ternary units

m(3) ◦
(

id⊗η(3)
1 ⊗ η

(3)
2

)
◦

(
m(3) ◦

(
id⊗η(3)

3 ⊗ η
(3)
4

))
= id

which corresponds to
[[
aη

(3)
1 η

(3)
2

]
, η

(3)
3 , η

(3)
4

]
= a ∈ A (right and middle units are defined simi-

larly). In first case the ternary analog of the binary relation η(2) (x) = x1, where x ∈ K, 1 ∈ A,
is η(3) (x) = [x, x, 1] = [x, 1, x] = [1, x, x].

Let (A,mA, ηA), (B,mB, ηB) and (C,mC , ηC) be ternary algebras, then the ternary tensor
product space A⊗B⊗C is naturally endowed with the structure of an algebra. The multiplication
mA⊗B⊗C on A⊗B⊗C reads [(a1⊗b1⊗c1)(a2⊗b2⊗c2)(a3⊗b3⊗c3)] = [a1a2a3]⊗ [b1b2b3]⊗ [c1c2c3],
and so the set of ternary algebras is closed under taking ternary tensor products. A ternary
algebra map (homomorphism) is a linear map between ternary algebras f : A → B which
respects the ternary algebra structure f ([xyz]) = [f (x) , f (y) , f (z)] and f (1A) = 1B.

A ternary (and n-ary) commutator can be obtained in different ways [23]. We will consider
a simplest version called a Nambu bracket (see e.g. [24]). Let us introduce two maps ω(3)

± :
A⊗A⊗A→ A⊗A⊗A by

ω
(3)
+ (a⊗b⊗c) = a⊗ b⊗ c+ b⊗ c⊗ a+ c⊗ a⊗ b, (6)

ω
(3)
− (a⊗b⊗c) = b⊗ a⊗ c+ c⊗ b⊗ a+ a⊗ c⊗ b. (7)

Thus obviously m(3) ◦ ω(3)
± = σ

(3)
± ◦ m(3), where σ(3)

± ∈ S3 denotes sum of terms having even
and odd permutations respectively. In the binary case ω(2)

+ = id⊗ id and ω
(2)
− = τ is the twist

operator τ : a⊗b→ b⊗a, while m(2) ◦ω(2)
− is permutation σ(2)

− (ab) = ba. So the Nambu product
is ω(3)

N = ω
(3)
+ − ω

(3)
− , and the ternary commutator is [ , , ]N = σ

(3)
N = σ

(3)
+ − σ

(3)
− , or simply

[a, b, c]N = [abc] + [bca] + [cab] − [cba] − [acb] − [bac] (see [24] and refs. therein). An abelian
ternary algebra is defined by vanishing of Nambu bracket [a, b, c]N = 0 or ternary commutation
relation σ(3)

+ = σ
(3)
− . By analogy with the binary case a deformed ternary algebra can be defined

by

σ
(3)
+ = qσ

(3)
− or [abc] + [bca] + [cab] = q ([cba] + [acb] + [bac]) , (8)

where multiplication by q is treated as an external operation. An opposite and more com-
plicated possibility requires 2 deformation parameters and can be defined as σ(3)

+ ([a, b, c]) =[
q, p, σ

(3)
− ([a, b, c])

]
, which reminds the binary case ab = qba in the following form m(2) (a, b) =

m(2)
(
q, σ

(2)
− (ab)

)
. Here we will exploit (8).

Let C be a linear space over a field K.

Definition 4. Ternary comultiplication ∆(3) is a linear map over a field K such that

∆(3) : C → C ⊗ C ⊗ C. (9)
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In the standard Sweedler notations [7] ∆(3) (a) =
n∑
i=1

a′i⊗a′′i ⊗a′′′i = a(1)⊗a(2)⊗a(3). Consider

different possible types of ternary coassociativity.
1. Standard ternary coassociativity(

∆(3) ⊗ id⊗ id
)
◦∆(3) =

(
id⊗∆(3) ⊗ id

)
◦∆(3) =

(
id⊗ id⊗∆(3)

)
◦∆(3). (10)

2. Nonstandard ternary Σ-coassociativity (Gluskin-type — positional operatives)(
∆(3) ⊗ id⊗ id

)
◦∆(3) =

(
id⊗

(
σ ◦∆(3)

)
⊗ id

)
◦∆(3),

where σ ◦∆(3) (a) = ∆(3)
σ (a) = a(σ(1)) ⊗ a(σ(2)) ⊗ a(σ(3)) and σ ∈ Σ ⊂ S3.

3. Permutational ternary coassociativity(
∆(3) ⊗ id⊗ id

)
◦∆(3) = π ◦

(
id⊗∆(3) ⊗ id

)
◦∆(3),

where π ∈ Π ⊂ S5.
Ternary comediality is(

∆(3) ⊗∆(3) ⊗∆(3)
)
◦∆(3) = σmedial ◦

(
∆(3) ⊗∆(3) ⊗∆(3)

)
◦∆(3),

where σmedial is defined in (4). Ternary counit is defined as a map ε(3) : C → K. In general,
ε(3) �= ε(2) satisfying one of the conditions below. If ∆(3) is derived, then maybe ε(3) = ε(2), but
another counits may exist. There are 3 types of ternary counits:

1. Standard (strong) ternary counit(
ε(3) ⊗ ε(3) ⊗ id

)
◦∆(3) =

(
ε(3) ⊗ id⊗ε(3)

)
◦∆(3) =

(
id⊗ε(3) ⊗ ε(3)

)
◦∆(3) = id . (11)

2. Two sequential (polyadic) counits ε(3)1 and ε
(3)
2(

ε
(3)
1 ⊗ ε

(3)
2 ⊗ id

)
◦∆ =

(
ε
(3)
1 ⊗ id⊗ε(3)2

)
◦∆ =

(
id⊗ε(3)1 ⊗ ε

(3)
2

)
◦∆ = id . (12)

3. Four long ternary counits ε(3)1 –ε(3)4 satisfying((
id⊗ε(3)3 ⊗ ε

(3)
4

)
◦∆(3) ◦

((
id⊗ε(3)1 ⊗ ε

(3)
2

)
◦∆(3)

))
= id . (13)

Below we will consider only the first standard type of associativity (10). By analogy with (3)
σ-cocommutativity is defined as σ ◦∆(3) = ∆(3).

Definition 5. Ternary coalgebra is a triple
(
C,∆(3), ε(3)

)
, where C is a linear space and ∆(3) is

a ternary comultiplication (9) which is coassociative in one of the above senses and ε(3) is one
of the above counits.

Let
(
A,m(3)

)
be a ternary algebra and

(
C,∆(3)

)
be a ternary coalgebra and f, g, h ∈

HomK (C,A). Ternary convolution product is

[f, g, h]∗ = m(3) ◦ (f ⊗ g ⊗ h) ◦∆(3) (14)

or in the Sweedler notation [f, g, h]∗ (a) =
[
f

(
a(1)

)
g

(
a(2)

)
h

(
a(3)

)]
.



444 S. Duplij

Definition 6. Ternary coalgebra is called derived, if there exists a binary (usual, see e.g. [7])
coalgebra ∆(2) : C → C ⊗ C such that (cf. 1))

∆(3)
der =

(
id⊗∆(2)

)
⊗∆(2). (15)

Definition 7. Ternary bialgebra B is
(
B,m(3), η(3),∆(3), ε(3)

)
for which

(
B,m(3), η(3)

)
is a ter-

nary algebra and
(
B,∆(3), ε(3)

)
is a ternary coalgebra and they are compatible

∆(3) ◦m(3) = m(3) ◦∆(3). (16)

One can distinguish four kinds of ternary bialgebras with respect to a “being derived” pro-
perty:

1. ∆-derived ternary bialgebra

∆(3) = ∆(3)
der =

(
id⊗∆(2)

)
◦∆(2). (17)

2. m-derived ternary bialgebra

m
(3)
der = m

(3)
der = m(2) ◦

(
m(2) ⊗ id

)
. (18)

3. Derived ternary bialgebra is simultaneously m-derived and ∆-derived ternary bialgebra.
4. Non-derived ternary bialgebra which does not satisfy (17) and (18).
Let us consider a ternary analog of the Woronowicz example of a bialgebra construction,

which in the binary case has two generators satisfying xy = qyx (or σ(2)
+ (xy) = qσ

(2)
− (xy)), then

the following coproducts ∆(2) (x) = x ⊗ x, ∆(2) (x) = y ⊗ x + 1 ⊗ y are algebra maps. In the
derived ternary case using (8) we have σ(3)

+ ([xey]) = qσ
(3)
− ([xey]), where e is the ternary unit

and ternary coproducts are ∆(3) (e) = e⊗e⊗e, ∆(3) (x) = x⊗x⊗x, ∆(3) (x) = y⊗x⊗x+e⊗y⊗
x+e⊗e⊗y, which are ternary algebra maps, i.e. they satisfy σ(3)

+

([
∆(3) (x) ∆(3) (e) ∆(3) (y)

])
=

qσ
(3)
−

([
∆(3) (x) ∆(3) (e) ∆(3) (y)

])
.

Possible types of ternary antipodes can be defined using analogy with binary coalgebras.

Definition 8. Skew ternary antipod is

m(3) ◦
(
S

(3)
skew ⊗ id⊗ id

)
◦∆(3)

= m(3) ◦
(

id⊗S(3)
skew ⊗ id

)
◦∆(3) = m(3) ◦

(
id⊗ id⊗S(3)

skew

)
◦∆(3) = id . (19)

If only one equality from (19) is satisfied, the corresponding skew antipod is called left, middle
or right.

Definition 9. Strong ternary antipod is(
m(2) ⊗ id

)
◦

(
id⊗S(3)

strong ⊗ id
)
◦∆(3) = 1⊗ id,(

id⊗m(2)
)
◦

(
id⊗ id⊗S(3)

strong

)
◦∆(3) = id⊗1,

where 1 is a unit of algebra.

If in a ternary coalgebra ∆(3) ◦ S = τ13 ◦ (S ⊗ S ⊗ S) ◦ ∆(3), where τ13 =
(
123
321

)
, then it is

called skew-involutive.

Definition 10. Ternary Hopf algebra
(
H,m(3), η(3),∆(3), ε(3), S(3)

)
is a ternary bialgebra with

a ternary antipod S(3) of the type corresponding to the above.
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There are 8 types of associative ternary Hopf algebras and 4 types of medial Hopf algebras.
Also it can happen that there are several ternary units η(3)

i and several ternary counits ε(3)i (see
(11)–(13)), as well as different skew antipodes (see (19) and below), which makes number of
ternary Hopf algebras enormous.

Let us consider concrete constructions of ternary comultiplications, bialgebras and Hopf
algebras. A ternary group-like element can be defined by ∆(3) (g) = g ⊗ g ⊗ g, and for 3
such elements we have ∆(3) ([g1g2g3]) = ∆(3) (g1) ∆(3) (g2) ∆(3) (g3). But an analog of the
binary primitive element (satisfying ∆(2) (x) = x ⊗ 1 + 1 ⊗ x) cannot be chosen simply as
∆(3) (x) = x⊗ e⊗ e+ e⊗ x⊗ e+ e⊗ e⊗ x, since the algebra structure is not preserved. Never-
theless, if we introduce two idempotent units e1, e2 satisfying “semiorthogonality” [e1e1e2] = 0,
[e2e2e1] = 0, then

∆(3) (x) = x⊗ e1 ⊗ e2 + e2 ⊗ x⊗ e1 + e1 ⊗ e2 ⊗ x (20)

and now ∆(3) ([x1x2x3]) =
[
∆(3) (x1) ∆(3) (x2) ∆(3) (x3)

]
. Using (20) ε (x) = 0, ε (e1,2) = 1, and

S(3) (x) = −x, S(3) (e1,2) = e1,2, one can construct a ternary universal enveloping algebra in full
analogy with the binary case (see e.g. [12]).

One of the most important examples of noncommutative Hopf algebras is the well known
Sweedler Hopf algebra [7] which in the binary case has two generators x and y satisfying (in the
“arrow language”) m(2) (x, x) = 1, m(2) (y, y) = 0, σ(2)

+ (xy) = −σ(2)
− (xy). It has the following

comultiplication ∆(2) (x) = x ⊗ x, ∆(2) (y) = y ⊗ x + 1 ⊗ y, unit ε(2) (x) = 1, ε(2) (y) = 0, and
antipod S(2) (x) = x, S(2) (y) = −y, which respect to the algebra structure. In the derived case
a ternary Sweedler algebra is generated also by two generators x and y obeying m(3) (x, e, x) =
m(3) (e, x, x) = m(3) (x, x, e) = e, σ(3)

+ ([yey]) = 0, σ(3)
+ ([xey]) = −σ(3)

− ([xey]). The derived Hopf
algebra structure is given by

∆(3) (x) = x⊗ x⊗ x, ∆(3) (y) = y ⊗ x⊗ x+ e⊗ y ⊗ x+ e⊗ e⊗ y, (21)

ε(3) (x) = ε(2) (x) = 1, ε(3) (y) = ε(2) (y) = 0, (22)

S(3) (x) = S(2) (x) = x, S(3) (y) = S(2) (y) = −y, (23)

and it can be checked that (21)–(22) are algebra maps, while (23) is antialgebra maps. To obtain
a non-derived ternary Sweedler example we have the possibilities: 1) one “even” generator x,
two “odd” generators y1,2 and one ternary unit e; 2) two “even” generators x1,2, one “odd”
generator y and two ternary units e1,2. In the first case the ternary algebra structure is (no
summation, i = 1, 2)

[xxx] = e, [yiyiyi] = 0, σ
(3)
+ ([yixyi]) = 0, σ

(3)
+ ([xyix]) = 0,

[xeyi] = − [xyie] , [exyi] = − [yixe] , [eyix] = − [yiex] ,

σ
(3)
+ ([y1xy2]) = −σ(3)

− ([y1xy2]) . (24)

The corresponding ternary Hopf algebra structure is

∆(3) (x) = x⊗ x⊗ x, ∆(3) (y1,2) = y1,2 ⊗ x⊗ x+ e1,2 ⊗ y2,1 ⊗ x+ e1,2 ⊗ e2,1 ⊗ y2,1,

ε(3) (x) = 1, ε(3) (yi) = 0, S(3) (x) = x, S(3) (yi) = −yi. (25)

In the second case we have for the algebra structure

[xixjxk] = δijδikδjkei, [yyy] = 0, σ
(3)
+ ([yxiy]) = 0, σ

(3)
+ ([xiyxi]) = 0,

σ
(3)
+ ([y1xy2]) = 0, σ

(3)
− ([y1xy2]) = 0, (26)
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and the ternary Hopf algebra structure is

∆(3) (xi) = xi ⊗ xi ⊗ xi, ∆(3) (y) = y ⊗ x1 ⊗ x1 + e1 ⊗ y ⊗ x2 + e1 ⊗ e2 ⊗ y,

ε(3) (xi) = 1, ε(3) (y) = 0, S(3) (xi) = xi, S(3) (y) = −y. (27)

Let us consider the group G = SL (n,K). Then the algebra generated by aij ∈ SL (n,K) can
be endowed by the structure of ternary Hopf algebra (see e.g. [25] for binary case) by choosing
the ternary coproduct, counit and antipod as (here summation is implied)

∆(3)
(
aij

)
= aik ⊗ akl ⊗ alj , ε

(
aij

)
= δij , S(3)

(
aij

)
=

(
a−1

)i
j
. (28)

This antipod is a skew one since from (19) it follows m(3) ◦ (S(3) ⊗ id⊗ id) ◦ ∆(3)
(
aij

)
=

S(3)
(
aik

)
akl a

l
j =

(
a−1

)i
k
akl a

l
j = δila

l
j = aij . This ternary Hopf algebra is derived since for

∆(2) = aij⊗a
j
k we have ∆(3) =

(
id⊗∆(2)

)
⊗∆(2)

(
aij

)
=

(
id⊗∆(2)

) (
aik ⊗ akj

)
= aik⊗∆(2)

(
akj

)
=

aik⊗akl ⊗alj . In the most important case n = 2 we can obtain the manifest action of the ternary
coproduct ∆(3) on components. Possible non-derived matrix representations of the ternary prod-
uct can be done only by four-rank n×n×n×n twice covariant and twice contravariant tensors{
aijkl

}
. Among all products the non-derived ones are only the following aoijkb

jl
oockoil and aijokb

ol
ioc

ko
il

(where o is any index). So using e.g. the first choice we can define the non-derived Hopf algebra
structure by ∆(3)

(
aijkl

)
= aiµvρ ⊗ avσkl ⊗ aρjµσ, ε

(
aijkl

)
= 1

2

(
δikδ

j
l + δilδ

j
k

)
, and the skew antipod

sijkl = S(3)
(
aijkl

)
which is a solution of the equation siµvρavσkl = δiρδ

µ
k δ

σ
l .

Next consider ternary dual pair k (G) (push-forward) and F (G) (pull-back) which are related
by k∗ (G) ∼= F (G) (see e.g. [26]). Here k (G) = span (G) is a ternary group algebra (G has a
ternary product [ ]G or m(3)

G ) over a field k. If u ∈ k (G) (u = uixi, xi ∈ G), then [uvw]k =
uivjwl [xixjxl]G is associative, and so (k (G) , [ ]k) becomes a ternary algebra. Define a ternary
coproduct ∆(3)

k : k (G) → k (G) ⊗ k (G) ⊗ k (G) by ∆(3)
k (u) = uixi ⊗ xi ⊗ xi (derived and

associative), then ∆(3)
k ([uvw]k) =

[
∆(3)
k (u) ∆(3)

k (v) ∆(3)
k (w)

]
k
, and k (G) is a ternary bialgebra.

If we define a ternary antipod by S(3)
k = uix̄i, where x̄i is a skew element of xi, then k (G) becomes

a ternary Hopf algebra. In the dual case of functions F (G) : {ϕ : G→ k} a ternary product [ ]F
or m(3)

F (derived and associative) acts on ψ (x, y, z) as
(
m

(3)
F ψ

)
(x) = ψ (x, x, x), and so F (G)

is a ternary algebra. Let F (G) ⊗ F (G) ⊗ F (G) ∼= F (G×G×G), then we define a ternary
coproduct ∆(3)

F : F (G) → F (G) ⊗ F (G) ⊗ F (G) as
(

∆(3)
F ϕ

)
(x, y, z) = ϕ ([xyz]F ), which is

derive and associative. Thus we can obtain ∆(3)
F ([ϕ1ϕ2ϕ3]F ) =

[
∆(3)
F (ϕ1) ∆(3)

F (ϕ2) ∆(3)
F (ϕ3)

]
F

,

and therefore F (G) is a ternary bialgebra. If we define a ternary antipod by S
(3)
F (ϕ) = ϕ (x̄),

where x̄ is a skew element of x, then F (G) becomes a ternary Hopf algebra.
Let us introduce a ternary analog of R-matrix. For a ternary Hopf algebra H we consider a

linear map R(3) : H ⊗H ⊗H → H ⊗H ⊗H.

Definition 11. A ternary Hopf algebra
(
H,m(3), η(3),∆(3), ε(3), S(3)

)
is called quasifiveangular

(the reason of such notation is clear from (32)) if it satisfies(
∆(3) ⊗ id⊗ id

)
= R

(3)
145R

(3)
245R

(3)
345, (29)(

id⊗∆(3) ⊗ id
)

= R
(3)
125R

(3)
145R

(3)
135, (30)(

id⊗ id⊗∆(3)
)

= R
(3)
125R

(3)
124R

(3)
123, (31)

where as usual index of R denotes action component positions.
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Using the standard procedure (see e.g. [12, 27, 13]), we obtain set of abstract ternary quantum
Yang–Baxter equations, one of which has the form

R
(3)
243R

(3)
342R

(3)
125R

(3)
145R

(3)
135 = R

(3)
123R

(3)
132R

(3)
145R

(3)
245R

(3)
345, (32)

and others can be obtained by corresponding permutations. The classical ternary Yang–Baxter
equations for one parameter family of solutions R (t) can be obtained by the expansion R(3) (t) =
e⊗ e⊗ e+ rt+O

(
t2

)
, where r is a ternary classical R-matrix, then e.g. for (32) we have

r342r125r145r135 + r243r125r145r135 + r243r342r145r135 + r243r342r125r135 + r243r342r125r145

= r132r145r245r345 + r123r145r245r345 + r123r132r245r345

+ r123r132r145r345 + r123r132r145r245.

For three ternary Hopf algebras(
HA,m

(3)
A , η

(3)
A ,∆(3)

A , ε
(3)
A , S

(3)
A

)
,

(
HB,m

(3)
B , η

(3)
B ,∆(3)

B , ε
(3)
B , S

(3)
B

)
and(

HC ,m
(3)
C , η

(3)
C ,∆(3)

C , ε
(3)
C , S

(3)
C

)
we can introduce a non-degenerate ternary “pairing” (see e.g. [27] for binary case) 〈 , , 〉(3) :
HA ×HB ×HC → K, trilinear over K, satisfying〈

η
(3)
A (a) , b, c

〉(3)
=

〈
a, ε

(3)
B (b) , c

〉(3)
,

〈
a, η

(3)
B (b) , c

〉(3)
=

〈
ε
(3)
A (a) , b, c

〉(3)
,〈

b, η
(3)
B (b) , c

〉(3)
=

〈
a, b, ε

(3)
C (c)

〉(3)
,

〈
a, b, η

(3)
C (c)

〉(3)
=

〈
a, ε

(3)
B (b) , c

〉(3)
,〈

a, b, η
(3)
C (c)

〉(3)
=

〈
ε
(3)
A (a) , b, c

〉(3)
,

〈
η

(3)
A (a) , b, c

〉(3)
=

〈
a, b, ε

(3)
C (c)

〉(3)
,〈

m
(3)
A (a1 ⊗ a2 ⊗ a3) , b, c

〉(3)
=

〈
a1 ⊗ a2 ⊗ a3,∆

(3)
B (b) , c

〉(3)
,〈

∆(3)
A (a) , b1 ⊗ b2 ⊗ b3, c

〉(3)
=

〈
a,m

(3)
B (b1 ⊗ b2 ⊗ b3) , c

〉(3)
,〈

a,m
(3)
B (b1 ⊗ b2 ⊗ b3) , c

〉(3)
=

〈
a, b1 ⊗ b2 ⊗ b3,∆

(3)
C (c)

〉(3)
,〈

a,∆(3)
B (b) , c1 ⊗ c2 ⊗ c3

〉(3)
=

〈
a, b,m

(3)
C (c1 ⊗ c2 ⊗ c3)

〉(3)
,〈

a, b,m
(3)
C (c1 ⊗ c2 ⊗ c3)

〉(3)
=

〈
∆(3)
A (a) , b, c1 ⊗ c2 ⊗ c3

〉(3)
,〈

a1 ⊗ a2 ⊗ a3, b,∆
(3)
C (c)

〉(3)
=

〈
m

(3)
A (a1 ⊗ a2 ⊗ a3) , b, c

〉(3)
,〈

S
(3)
A (a) , b, c

〉(3)
=

〈
a, S

(3)
B (b) , c

〉(3)
=

〈
a, b, S

(3)
C (c)

〉(3)
,

where a, ai ∈ HA, b, bi ∈ HB. The ternary “paring” between HA⊗HA⊗HA and HB⊗HB⊗HB

is given by 〈a1 ⊗ a2 ⊗ a3, b1 ⊗ b2 ⊗ b3〉(3) = 〈a1, b1〉(3) 〈a2, b2〉(3) 〈a3, b3〉(3). These constructions
can naturally lead to ternary generalization of duality concept and quantum double [14, 12, 13].
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It is known that Fairlie–Odesskii algebra U ′
q(so3) appears as algebra of observables in quan-

tum gravity in (2 + 1)-dimensional de Sitter space with space being torus. In this paper,
we study the center of this algebra at q a root of 1. It turns out that Casimir elements in
this case are algebraically dependent. Using realization of the algebra U ′

q(so3) in terms of
quantized lengths of geodesics on torus with one hole, we find this dependence in an explicit
form. It is expressed in terms of Chebyshev polynomials of the first kind. The properties of
Casimir elements in the cyclic type representations are studied.

1 Introduction

It is shown by Nelson, Regge and Zertuche [1] that the algebra of observables in quantum gravity
in (2+1)-dimensional de Sitter space with space being torus is related to Fairlie–Odesskii algebra
U ′q(so3) [2, 3], where q is related to the Plank constant and the curvature of the de Sitter space.
Thus it is important, from point of view of physics, to study the structure (in particular, the
center) of this algebra. The center of the algebra U ′q(so3) in the case of q being not a root of 1
is generated by the element C, which is deformation of the Casimir element of Lie algebra so3.
The center of this algebra at q a root of 1 contains three more elements C1, C2, C3 [2, 4]. It
turns out that all four Casimir elements are algebraically dependent. The main goal of this
paper is to describe this dependence in an explicit form. To find it we use the realization of
algebra U ′q(so3) in terms of quantum geodesics on torus T with one hole proposed by Chekhov
and Fock [5]. Namely, generators I1 and I2 (resp. Casimir element C) of algebra U ′q(so3) are
related to quantized lengths of geodesics corresponding to two basis cycles (resp. cycle around
the hole) on T . They are expressed in terms of z1, z2, z3, which are “coordinates” on quantized
Teichmüller space Aq of T . In this realization, the fact that elements C, C1, C2, C3 belong to
the center of U ′q(so3) is almost obvious. We note, that the same algebra U ′q(so3) appeared also
in the paper [6] as Kauffman bracket skein algebra of T .

It is known that algebra U ′q(so3), at q a root of 1, possesses cyclic type irreducible represen-
tations [7, 8]. The action formulas for Casimir operators on the spaces of these representations
are presented in explicit form. It is shown that C1, C2, C3 do not separate this type of repre-
sentations. To separate them we also need to include C.

2 Fairlie–Odesskii algebra U ′
q(so3)

The Fairlie–Odesskii algebra U ′q(so3) [2, 3] is an associative unital algebra with generating ele-
ments I1, I2, I3 and defining relations

q1/2I1I2 − q−1/2I2I1 = I3, q1/2I2I3 − q−1/2I3I2 = I1, q1/2I3I1 − q−1/2I1I3 = I2,

where q �= 0,±1, is a complex number called deformation parameter. In the limit q → 1, the
algebra U ′q(so3) reduces to the Lie algebra so3. Algebra U ′q(so3) has a linear basis Ik11 Ik22 Ik33 ,
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k1, k2, k3 ≥ 0 (Poincaré–Birkhoff–Witt basis) [7]. At arbitrary q, the algebra U ′q(so3) has central
element

C = −q1/2
(
q − q−1

)
I1I2I3 + qI2

1 + q−1I2
2 + qI2

3 . (1)

It generates the center of U ′q(so3) when q is not a root of 1 (see [6]).
Let us fix q to be a primitive root of 1 of order p > 2, that is qp = 1, qp

′ �= 1, 1 ≤ p′ < p.
Then elements

Ck = 2 Tp
(
Ik

(
q − q−1

)
/2

)
, k = 1, 2, 3, (2)

where Tp(x) is Chebyshev polynomial of the first kind, are also central in U ′q(so3). The Chebyshev
polynomial Tp(x) is uniquely defined through Tp(cos θ) = cos (pθ). It explicit form is

Tp(x) =
p

2

�p/2�∑
k=0

(−1)k(p− k − 1)!
k!(p− 2k)!

(2x)p−2k, (3)

where +p/2, is integral part of p/2. Some examples of Chebyshev polynomials of the first kind:

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x, . . . .

The central elements C1, C2 and C3 were first described in implicit form (and without proof)
in [2]. In the paper [4], these elements were given in explicit form as sum of type (3). It was
pointed out to me by V. Fock the coincidence of this sum with Chebyshev polynomial of the
first kind. The elements C, C1, C2 and C3 are algebraically dependent. Our main goal is to
describe this dependence in an explicit form.

3 Algebra U ′
q(so3) as algebra of quantum geodesics

on torus with one hole

Now we describe the algebra Aq of quantized Teichmüller space of torus with one hole [5]. It
is an associative unital algebra with generating elements z1, z−1

1 , z2, z−1
2 , z3, z−1

3 and defining
relations

zkz
−1
k = z−1

k zk = 1, z1z2 = qz2z1, z2z3 = qz3z2, z3z1 = qz1z3. (4)

It is easy to realize that zk11 z
k2
2 z

k3
3 , k1, k2, k3 ∈ Z, constitute a linear basis in Aq. Geodesic

functions G1, G2 and G3, which are related to lengths L1, L2 and L3 of geodesics (1, 0), (0, 1)
(corresponding to two basis cycles) and (1, 1) (corresponding to sum of these cycles) on torus
with one hole as Gk = 2 cosh (Lk/2), after quantization take the form [5]:

G1 = q−1/2z−1
3 z−1

1 + q1/2z−1
3 z1 + q−1/2z3z1, (5)

G2 = q−1/2z−1
2 z−1

3 + q1/2z−1
2 z3 + q−1/2z2z3, (6)

G3 = q−1/2z−1
1 z−1

2 + q1/2z−1
1 z2 + q−1/2z1z2. (7)

Proposition 1 ([5]). The map φ given by

φ : Ik �→ Gk/
(
q − q−1

)
, k = 1, 2, 3,

defines an injective homomorphism φ : U ′q(so3) → Aq.
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Proof. It is easy to show by straightforward calculation that

q1/2G1G2 − q−1/2G2G1 =
(
q − q−1

)
G3,

q1/2G2G3 − q−1/2G3G2 =
(
q − q−1

)
G1,

q1/2G3G1 − q−1/2G1G3 =
(
q − q−1

)
G2.

It proves that φ defines a homomorphism. Let us show that ker(φ) = 0. We assume that there
exists an element a =

∑
ak1,k2,k3I

k1
1 Ik22 Ik33 , where only finite number of coefficients ak1,k2,k3

are non-zero, such that φ(a) = 0. Let al1,l2,l3 �= 0 for some l1, l2, l3 ≥ 0 and ak1,k2,k3 = 0
for all k1, k2, k3 such that k1 + k2 + k3 > l1 + l2 + l3. Then φ(I l11 I

l2
2 I

l3
3 ) contains summand

αzl1+l3
1 zl2+l3

2 zl1+l2
3 , α �= 0. It is unique summand with maximal sum of powers of z1, z2 and z3.

Only φ(Ik11 Ik22 Ik33 ) with k1 + k2 + k3 = l1 + l2 + l3 and ak1,k2,k3 �= 0 contain summands with
the same sum of powers of z1, z2, z3. But the very monomials in z1, z2, z3 are not coinciding,
because from zk1+k3

1 zk2+k3
2 zk1+k2

3 = zl1+l3
1 zl2+l3

2 zl1+l2
3 it follows that ki = li. Thus coefficient at

zl1+l3
1 zl2+l3

2 zl1+l2
3 in φ(a) is non-zero. It contradicts the assumption that φ(a) = 0. �

The injectivity of homomorphism φ follows from construction given in [5]. We proved the
injectivity in purely algebraic way.

Now our strategy is following. We find the images of C, C1, C2, C3 in Aq. Then, due to
Proposition 1, the relations between the obtained images will imply the relations between of C,
C1, C2 and C3. Instead of C, we will use

∂ =
(
q + q−1

)
1−

(
q − q−1

)2
C. (8)

Straightforward calculation shows that (see (1))

φ(∂) = q−2
(
z−2
1 z−2

2 z−2
3 + z2

1z
2
2z

2
3

)
. (9)

It is easy to see that φ(∂) commutes with z1, z2, z3 and, therefore, with φ(I1), φ(I2), φ(I3).
Hence, due to Proposition 1, ∂ is central in U ′q(so3). The images of Ck, k = 1, 2, 3, in Aq are
(see (2))

φ(Ck) = 2Tp(Gk/2), k = 1, 2, 3. (10)

Let us define an associative algebra Lq with generating elements Λ, Λ−1, Λ0 which satisfy the
relations

ΛΛ−1 = Λ−1Λ = 1, ΛΛ0 = q2Λ0Λ,

where q is a non-zero complex number. In order to formulate an important lemma, we remind
the standard notations for q-numbers:

[m] =
qm − q−m

q − q−1
, (11)

q-factorials and q-binomial coefficients:

[m]! = [m][m− 1] · · · [1],
[
n

m

]
=

[n]!
[m]![n−m]!

=
[n][n− 1] · · · [n−m+ 1]

[1][2] · · · [m]
.

Lemma 1. In algebra Lq at non-zero complex number q, we have

2Tp

(
Λ + Λ0 + Λ−1

2

)
= Λp + Λ−p +

∑
Rp,k,lΛlΛk0,

where sum runs over integral k and l such that k > 0, k ± l ≤ p, k + l ≡ p (mod 2), and

Rp,k,l = q−kl
[p]
[k]

[p+k+l
2 − 1
k − 1

][p+k−l
2 − 1
k − 1

]
.
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Proof. We will prove the lemma by induction. It is easy to see that the lemma is correct at
p = 0 and p = 1. For p = 2, we have 2T2(x/2) = x2−2, and validity of lemma follows from direct
calculation. The left-hand sides of the relations given in lemma satisfy the recurrent relation
which follows from recurrent relation for Chebyshev polynomials: Tp(x) = 2xTp−1(x)−Tp−2(x).
Hence, the right-hand sides also must satisfy the same relation. In terms of Rp,k,l it looks like

Rp,k,l = Rp−1,k,l−1 +Rp−1,k,l+1 +Rp−1,k,l+1 + q−2lRp−1,k−1,l −Rp−2,k,l.

Substituting explicit expressions for Rp,k,l and cancelling common multiplier we obtain the
relation

[p]
[
p+ k + l

2
− 1

] [
p+ k − l

2
− 1

]
= q−k[p− 1]

[
p− k − l

2

] [
p+ k + l

2
− 1

]
+ qk[p− 1]

[
p− k + l

2

] [
p+ k − l

2
− 1

]
+ q−l[p− 1][k][k − 1]

− [p− 2]
[
p− k + l

2

] [
p− k − l

2

]
,

which can be verified in direct way using definition (11) of q-numbers. �

Corollary 1. In algebra Lq, when q is a primitive root of 1 of order p > 2 , we have

2Tp

(
Λ + Λ0 + Λ−1

2

)
= Λp + Λ−p + Λp0

if p is odd, and

2Tp

(
Λ + Λ0 + Λ−1

2

)
= Λp + Λ−p + Λp0 + 2Λp/2Λp/20 + 2Λ−p/2Λp/20

if p is even.

Proof. Let us make some remarks on the values of q-numbers at q a root of 1. If p is odd,
then [p] = 0 and [s] �= 0, if s = 1, 2, . . . , p − 1. If p is even, then [p/2] = [p] = 0 and [s] �= 0,
if s = 1, 2, . . . , p/2 − 1, p/2 + 1, . . . , p − 1. Let p be an odd number. Then numerators and
denominators in the both q-binomial coefficients included in Rp,k,l are non-zero. Thus all the
Rp,k,l = 0 (due to [p] = 0), unless k = p. In the case k = p, we have l = 0 and Rp,p,0 = 1. Now
we consider the case of even p. Simple analysis shows that if the denominator of a q-binomial
coefficient included in Rp,k,l contains [p/2] then the corresponding numerator also contains this
q-number. Cancelling it, we obtain non-zero q-binomial coefficient. All the Rp,k,l = 0 (due to
[p] = 0), unless k = p or k = p/2. If k = p, we obtain l = 0 and Rp,p,0 = 1 in full analogy
with odd p case. Analyzing numerators and denominators in q-binomial coefficients in the case
of k = p/2, we find that the q-binomial coefficients are non-zero only if l = ±p/2. Since
qp/2 = −1 (not +1 because q is a primitive root of 1), we have [p]/[p/2] ≡ qp/2 + q−p/2 = −2
and (−1)∓p2/4 = (−1)p/2. Using the relation [p− r] = −[r], we obtain Rp,p/2,±p/2 = 2. Thus we
have found all the non-zero coefficients Rp,k,l. �

Corollary 2. The map φ on C1, C2 and C3, when q is a primitive root of 1 of order p > 2, is

C1 �→ qp/2
(
z−p3 z−p1 + z−p3 zp1 + zp3z

p
1

)
,

C2 �→ qp/2
(
z−p2 z−p3 + z−p2 zp3 + zp2z

p
3

)
,

C3 �→ qp/2
(
z−p1 z−p2 + z−p1 zp2 + zp1z

p
2

)
 at odd p,
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C1 �→ z−p3 z−p1 + z−p3 zp1 + zp3z
p
1 + (−1)p/22

(
zp1 + z−p3

)
,

C2 �→ z−p2 z−p3 + z−p2 zp3 + zp2z
p
3 + (−1)p/22

(
zp3 + z−p2

)
,

C3 �→ z−p1 z−p2 + z−p1 zp2 + zp1z
p
2 + (−1)p/22

(
zp2 + z−p1

)
 at even p.

Proof. Let us find φ(C1) (see (10)). We denote three summands in G1 = q−1/2z−1
3 z−1

1 +
q1/2z−1

3 z1 +q−1/2z3z1 by Λ−1, Λ0 and Λ, respectively. It is easy to verify that these three objects
give realization of algebra Lq in Aq. Then this corollary can be obtained using Corollary 1 and
commutation relations (4) for Aq. The cases of the elements C2 and C3 can be analyzed in full
analogy with the case of element C1. �

It is obvious that images of C1, C2, C3, at q a root of 1, commute with zk, and therefore with
φ(I1), φ(I2), φ(I3). It gives one more proof of the fact that C1, C2, C3 are central in U ′q(so3).

Proposition 2. The algebraic dependence of the central elements ∂, C1, C2, C3 of U ′q(so3) at
q a primitive root of 1 of order p > 2 has the form

p = 2k + 1 : − qp/2C1C2C3 + C2
1 + C2

2 + C2
3 + 2Tp(∂/2)− 2 = 0,

p = 4k : − C1C2C3 + C2
1 + C2

2 + C2
3 + 2Tp(∂/2) + 16Tp/2(∂/2) + 10

+ 4(Tp/2(∂/2) + 1)(C1 + C2 + C3) = 0,

p = 4k + 2 : − C1C2C3 + C2
1 + C2

2 + C2
3 + 2Tp(∂/2)− 16Tp/2(∂/2) + 10

− 4(Tp/2(∂/2)− 1)(C1 + C2 + C3) = 0.

(12)

(The relation between C and ∂ is given by (8)).

Proof. To prove this proposition we map by φ left-hand sides of these relations to Aq. It is
easy to verify (using (9) and 2Tk((t+ t−1)/2) = tk + t−k) the relations

2Tp(φ(∂)/2) = z−2p
1 z−2p

2 z−2p
3 + z2p

1 z
2p
2 z

2p
3 , 2Tp/2(φ(∂)/2) = z−p1 z−p2 z−p3 + zp1z

p
2z
p
3 ,

where second relation is given only for even p. Thus the images of left-hand sides of relations (12)
can be rewritten in terms of commuting variables xk = zpk, k = 1, 2, 3. We obtain three relations
(with respect to cases p = 2k + 1, p = 4k and p = 4k + 2) each of them not depending on p of
commuting variables x1, x2 and x3. They can be verified directly. �

In private communication, V. Fock informed me about the form of algebraic dependence of
central elements, in the case of odd p. Independently, V. Levandovskyy found this dependence
when p = 3, 4 by using Computer Algebra System PLURAL for Non-commuting Polynomial
Computation. This information was very important for me to formulate Proposition 2. Note,
that algebraic dependence of central elements of Drinfeld–Jimbo algebra Uq(sl2) at q a root of
unity is also expressed in terms of Chebyshev polynomials [9].

Conjecture 1. The elements C (or, equivalently, ∂), C1, C2, C3 of U ′q(so3) at q a root of 1 ge-
nerate the center of this algebra. All the algebraic relations among them follow from the relations
described in Proposition 2.

4 Cyclic type representations of U ′
q(so3) at q a root of 1

Let qp = 1. Then all the irreducible representations of U ′q(so3) are finite-dimensional [8]. We
describe one class of such representations, namely, cyclic type representations T ≡ Tl,h,M , where
h, l and M are complex numbers, h, h + l, h − l �∈ 1

2Z. These representations are given on
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p-dimensional vector space Vl,h,M with basis |h〉, |h + 1〉, . . . , |h + p − 1〉. It useful to identify
|h+ p〉 ≡ |h〉, |h− 1〉 ≡ |h+ p− 1〉. The action formulas are

T (I1)|m〉 = i[m]|m〉,

T (I2)|m〉 =
[m]
[2m]

(
M [l −m]|m+ 1〉 −M−1[l +m]|m− 1〉

)
,

T (I1)|m〉 = iq1/2
[m]
[2m]

(
Mqm[l −m]|m+ 1〉+M−1q−m[l +m]|m− 1〉

)
,

where m = h, h+ 1, . . . , h+ p− 1, and definition of q-numbers (11) is used.

Proposition 3 ([8]). Any of irreducible representations Tl′,h′,M ′ has unique equivalent repre-
sentation among Tl,h,M with |Reh| < 1/4, 0 < Re l < p/4, 0 ≤ argM < 2π/p.

Proposition 4. The action of T (C), T (C1), T (C2) and T (C3) is given by the formulas:

T (C)|m〉 = −[l][l + 1]|m〉,

if p = 2k + 1:

T (C1)|m〉 = ip
(
qph − q−ph

)
|m〉,

T (C2)|m〉 =
(
MpA+ −M−pA−

)
|m〉,

T (C3)|m〉 = ipqp/2
(
MpqphA+ +M−pq−phA−

)
|m〉,

A± =
qp(l∓h) − q−p(l∓h)

qph + q−ph
;

if p = 4k:

T (C1)|m〉 =
(
qph + q−ph

)
|m〉,

T (C2)|m〉 =
(
MpÃ+ + Ã0 +M−pÃ−

)
|m〉,

T (C3)|m〉 =
(
MpqphÃ+ + Ã0 +M−pq−phÃ−

)
|m〉,

Ã± =

(
q

p
2
(l∓h) − q−

p
2
(l∓h)

)2

(
q

p
2
h − q−

p
2
h
)2 , Ã0 = −2

(
q

p
2
l − q−

p
2
l
)2

(
q

p
2
h − q−

p
2
h
)2 ;

if p = 4k + 2:

T (C1)|m〉 = −
(
qph + q−ph

)
|m〉,

T (C2)|m〉 =
(
MpĂ+ + Ă0 +M−pĂ−

)
|m〉,

T (C3)|m〉 =
(
−MpqphĂ+ + Ă0 −M−pq−phĂ−

)
|m〉,

Ă± =

(
q

p
2
(l∓h) − q−

p
2
(l∓h)

)2

(
q

p
2
h + q−

p
2
h
)2 , Ă0 = −2

(
q

p
2
l + q−

p
2
l
)2

(
q

p
2
h + q−

p
2
h
)2 .

Proof. From Schur lemma, it follows that T (C), T (C1), T (C2) and T (C3) are proportional to
unit matrix. That is the vectors |m〉 are eigenvectors with eigenvalues not depending on m.
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The action of T (C) and T (C1) can be found directly using the definition of q-numbers (11).
From the action formulas for T (I2) and T (I3), we can see that matrix elements of diagonal
action of T (C2) and T (C3) may include only summands which are proportional to M±p or
summands which have no dependence on M . To find the coefficients Ã±, Ă± at M±p in action
formulas for T (C2) (resp. T (C3)), we observe that only highest order summand in the expression
of C2 (resp. C3) in terms of Chebyshev polynomial of I2 (resp. I3) gives contribution to these
coefficients. It is easy to calculate them. Now we use the relations of Proposition 2 to find the
coefficients Ã0 and Ă0 in the case of even p. The coefficients at M±2p after substitution of Ã±
and Ă± are zero. The condition on the coefficients at M±p to be zero gives Ã0 and Ă0. Of
course, the found matrix elements also identically satisfy relations of Proposition 2 constructed
from terms not depending on M . �

It follows from Proposition 3 that representations Tl,h,M and Tl+1,h,M with l, h,M as in that
proposition are not equivalent. But, it is easy to see, Tl,h,M (Ck) = Tl+1,h,M (Ck), k = 1, 2, 3.
Thus central elements C1, C2 and C3 do not separate non-equivalent cyclic type representations.
In fact, they separate almost all of them, namely, there exists at least one of central elements Ck
such that Tl,h,M (Ck) �= Tl′,h′,M ′(Ck) if (l − l′) �∈ Z. To separate all of them we also need to
include C.
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We consider the deformation of canonical commutation relations in the class of Wick al-
gebras. The irreducible representations of GCCR are classified. We study the universal
bounded representation of GCCR and compute the K-theory for the twisted canonical com-
mutation relations.

In this paper we study the deformation of CCR generalising both twisted CCR of W. Pusz
and S.L. Woronowicz and some type of qij-CCR of M. Bozejko and R. Speicher (see [3, 1]).
Namely, let us consider a ∗-algebra generated by elements {ai, a∗i , i = 1, . . . , d} satisfying the
following relations (GCCR)

a∗i ai = 1 + αiaia
∗
i −

∑
j<i: kj≥i

(1− αj)aja∗j ,

a∗i aj = λijαiaja
∗
i , ajai = λijαiaiaj , i < j, ki ≥ j,

a∗i aj = λijaja
∗
i , ajai = λijaiaj , i < j, ki < j,

0 < αi < 1, |λij | = 1, i, j = 1, . . . , d, i �= j, (1)

where the vector k = (k1, k2, . . . , kd−1) has the property that d ≥ ki ≥ i and if j < i and i ≤ kj
then ki ≤ kj .

Example 1. For k = (d, . . . , d), αi = µ2, i = 1, . . . , d and λij = 1, i �= j we have a well-known
twisted CCR:

a∗i ai = 1 + µ2aia
∗
i −

(
1− µ2

)∑
j<i

aja
∗
j ,

a∗i aj = µaja
∗
i , ajai = µaiaj , i < j.

Example 2. If we put k = (1, 2, . . . , d− 1) we get

a∗i ai = 1 + αiaia
∗
i , a∗i aj = λijaja

∗
i , ajai = λajai, i < j,

i.e. the so-called generalised “quon” commutation relations, which form a special type of
qij-CCR.
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In the Section 1 we study the C∗-algebra A constructed by the bounded representations of
these relations and show that it is isomorphic to the C∗(si, s∗i ) where partial isometries si, s∗i
satisfy the relations

s∗i si = 1−
∑

j<i: kj≥i
sjs
∗
j , s∗i sj = 0, sjsi = 0, i < j, ki ≥ j,

s∗i sj = λijsjs
∗
i , sjsi = λijsisj , i < j, ki < j.

As a corollary of this stability result we have that K0(Aµ) = Z and K1(Aµ) = {0}, where Aµ is
the C∗-algebra associated with TCCR. We also prove that Fock representation of A is faithful.

In the Section 2 we study the unbounded representations of (GCCR) for several particular
choices of parameters.

1 The universal bounded representations

The bounded representations of (1) were studied in [2]. Let π be irreducible bounded repre-
sentation of GCCR. Denote π(ai) by Ai and consider the polar decomposition A∗i = U∗i Ci,
i = 1, . . . , d. Let us fix some subset Φ ⊂ {1, . . . , d}. Put Θ = ∪j∈Φ[j, kj ]. Then the irreducible
bounded representation of GCCR corresponding to Φ has the following form

Ci = Ui = 0, i ∈ Θ,

C2
i =

⊗
j<i,j 	∈Θ

dij ⊗D2
i

⊗
j>i,j 	∈Θ

1, i �∈ Φ,

U∗i =
⊗

j<i,j 	∈Θ

Uij ⊗ S
⊗

j>i,j 	∈Θ

1, i �∈ Φ,

C2
i =

1
1− αi

⊗
j<i,j 	∈Θ

dij ⊗
⊗

j≥i,j 	∈Θ

1, i ∈ Φ,

U∗i =
⊗

j<i,j 	∈Θ

Uij ⊗
⊗

j>i,j 	∈Θ

Uij ⊗ Ûi, i ∈ Φ,

where dij : l2(N) → l2(N)

dijen = αn−1
j en, kj ≥ i, dij = 1, kj < i,

D2
i : l2(N) → l2(N), D2

i en = 1−αn−1
i

1−αi
en, Uijen = λn−1

ij en and the family of unitary operators Ûi,
i ∈ Φ is irreducible and satisfies the relations

ÛiÛj = λijÛjÛi.

It can be easily seen that for any bounded representation we have the norm bound

‖π(a∗i ai)‖ ≤
1

1− αi
.

Hence one can construct the universal bounded representation of GCCR, i.e. the C∗-algebra
Aα,λ generated by ai, a∗i with norm:

‖X‖ = sup
π
‖π(X)‖,

where X is any element of a ∗-algebra generated by GCCR, and sup is taken over all irreducible
representations of GCCR.
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Theorem 1. The C∗-algebra Aα,λ is isomorphic to A0,λ for any choice of parameters αi, i =
1, . . . , d, 0 < αi < 1 where A0,λ is generated by partial isometries si, i = 1, . . . , d satisfying the
relations

s∗i si = 1−
∑

j<i: kj≥i
sjs
∗
j , s∗i sj = 0, sjsi = 0, i < j, ki ≥ j,

s∗i sj = λijsjs
∗
i , sjsi = λijsisj , i < j, ki < j.

For the particular case of TCCR we have the C∗-algebra A0 generated by the relations

s∗i sj = δij

(
1−

∑
k<i

sis
∗
i

)
.

In the following theorem we suppose that the coefficients λij = e2πθij have the additional prop-
erty that the family {1, θij} is linearly independent over Q.

Theorem 2. The Fock representation of A0,λ is faithful.

For example for C∗-algebra generated by TCCR we have the following faithful realization

si =
⊗
j<i

(1− SS∗)⊗ S ⊗
⊗
j>i

1, i = 1, . . . , d.

Using this realization we compute the K-groups of A0.

Theorem 3. K0(Aµ) � Z and K1(Aµ) = {0}.
Proof. As it was noted above that Aµ � C∗(si, s∗i ), where

si =
⊗
j<i

(1− ss∗)⊗ s⊗
⊗
j>i

1, i = 1, . . . , d.

Let us consider the case d = 2. Let T̃0 be the ideal generated by the element (1− ss∗)⊗ (1− s).
It is easy to see that T̃0 � K ⊗ T0, where T0 is an ideal in the Toeplitz algebra T generated by
the element 1 − s. It is known fact that Ki(T0) = {0}. Further, Aµ/T̃0 � T , i.e. we have the
following short exact sequence

0 −→ T̃0 −→ Aµ −→ T −→ 0.

Since K0(T ) � Z and K1(T ) = {0}, the corresponding six-term exact sequence becomes

0 −−−−→ K0(Aµ) −−−−→ Z< <
0 ←−−−− K1(Aµ) ←−−−− 0

In the general case we consider the ideal T̂0 generated by the element
d−1⊗
i=1

(1 − ss∗) ⊗ (1 − s).

Then

T̂0 �
d−1⊗
i=1

K ⊗ T0 � K ⊗ T0

and A0(d)/T̂0 � A0(d− 1). Applying again the six-term sequence corresponding to the

0 −→ K⊗ T0 −→ A0(d) −→ A0(d− 1) −→ 0

and induction on d, we get K0(A0(d)) � Z and K1(A0(d)) = {0}. �
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2 Representations of GCCR

In this section we restrict ourselves by the case αi = µ2 for any i = 1, . . . , d. To give the
classification of irreducible representations of GCCR we need to introduce some notations. Let

Φ = {1 ≤ i1 < i2 < · · · < im ≤ d | ij > kij−1}.

Consider the function l : Φ → N such that for any j ∈ Φ we have j ≤ l(j) ≤ kj . Construct the
set Ψ:

Θ = ∪j∈Φ([j + 1, l(j)] ∩ Z),
Ψ := {l(j) + 1 | l(j) + 1 ≤ kj , j ∈ Φ}.

Let F (j) := kj + 1, j = 1, . . . , d− 1. For any s ∈ Ψ denote by Ψs the following set:

Ψs = {Fn(s), n ∈ Z+} ∩ [s, km(s−1)],

where l(m(s − 1)) = s − 1 for any s ∈ Ψ. Put also M = {1 ≤ j1 < · · · < jt ≤ d}, such that
ji �∈ ∪l∈Φ[l,kl] and ji > kji−1 , i = 1, . . . , t. Finally, let

F = {1, . . . , d} \
(
∪i∈Φ[i, ki] ∪ ∪j∈M [j, kj ]

)
.

For any j ∈ Ψs, s ∈ Ψ fix some zjs > 0 and put τjs :=
(
µ2zjs, zjs

]
. Fix any xjs ∈ τjs and

construct the function

g(x, xjs) = −
(
1− µ2

)
xjs + µ2x.

For any i ∈ M fix yi >
1

1−µ2 and set τi := (1 + µ2yi, yi]. For any xi ∈ τi, i ∈ M consider the
function

f(x, xi) = 1−
(
1− µ2

)
xi + µ2x.

As in the bounded case we give the description of representations of GCCR using the polar
decompositions π(a∗i ) = UiCi.

Theorem 4. The irreducible representations of GCCR have (up to the unitary equivalence) the
following form

C2
i =

⊗
j<i,j 	∈Θ

dij ⊗D2
i ⊗

⊗
j>i,j 	∈Θ

1, i �∈ Φ ∪Θ,

U∗i =
⊗

j<i,j 	∈Θ

Uij ⊗ Ui ⊗
⊗

j>i,j 	∈Θ

Uij , i �∈ Φ ∪Θ,

C2
i =

1
1− µ2

⊗
j<i,j 	∈Θ

dij ⊗D2
i ⊗

⊗
j>i,j 	∈Θ

1, i ∈ Φ,

U∗i =
⊗

j<i,j 	∈Θ

Uij ⊗ Ui ⊗
⊗

j>i,j 	∈Θ

Uij ⊗ Ûi, i ∈ Φ,

C2
i = 0, Ui = 0, i ∈ Θ,

where {Ûi, i ∈ Φ} form the irreducible representation of higher-dimensional non-commutative
torus, i.e.

ÛiÛj = λijÛjÛi, i �= j
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and

D2
i = D

(
µ2, xis

)
: l2(Z) → l2(Z), xis ∈

(
µ2zis, zis

]
, i ∈ Ψs, s ∈ Ψ,

D
(
µ2, xis

)
en = µ2nxisen, n ∈ Z,

D2
i = d

(
g−n(0, xjs)

)
: l2(Z−) → l2(Z−), i ∈ [j + 1, k(j)], j ∈ Ψs,

d
(
g−n(0, xjs)

)
e−n = g−n(0, xjs)e−n, n ∈ Z+,

D2
i = D (fn(xi)) : l2(Z) → l2(Z), xi ∈

(
1 + µ2yi, yi

]
, i ∈M,

D (fn(xi)) en = fn(xi)en, n ∈ Z,

D2
i = d

(
f−n(0, xj)

)
: l2(Z−) → l2(Z−), i ∈ [j + 1, kj ], j ∈M,

d
(
f−n(o, xi)

)
e−n = f−n(0, xi)e−n, n ∈ Z+,

D2
i = d (fn(0)) : l2(Z+) → l2(Z+), i ∈ F,

d (fn(0)) en = fn(0)en, n ∈ Z+

and

U∗i = U : l2(Z) → l2(Z), i ∈ Ψs, s ∈ Ψ, Uen = en+1,

U∗i = Ŝ : l2(Z−) → l2(Z−), i ∈ [j + 1, k(j)], j ∈ Ψs,

Ŝe−n = e−n+1, n ∈ N, Ŝe0 = 0,
U∗i = U, i ∈M,

U∗i = Ŝ, i ∈ [j + 1, kj ], j ∈M,

U∗i = S : l2(N) → l2(N), i ∈ F, Sen = en+1.
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In the article we investigate the sets of orthogonal projections which satisfy the linear relation
n∑

i=1

αiPi = I, αi > 0, up to unitary equivalence. A problem of unitary classification of four

projections that satisfy the linear relation α1P1 + α2P2 + α3P3 + α4P4 = I, αi > 0 is
considered in [1–4]. We present a new method for solving this problem that is based on
functors of Coxeter, which are analogous to those introduced in [5].

Let Pn,�α = C〈p1, p2, . . . , pn | p2
i = pi = p∗i ,

n∑
i=1

αipi = e〉 be a ∗-algebra, where the vector

α = (α1, α2, . . . , αn), αi > 0, i = 1, . . . , n; A =
n∑
i=1

αi. We study its representations, up to

unitary equivalence, in the category of Hilbert spaces. Define Σn as a set of α such that the
category of representations Rep Pn,�α is not empty.

1. Let us consider some properties of Pn,�α.

Lemma 1. If α ∈ Σn then A ≥ 1.

Proof. Let π be a representation of the algebra Pn,�α:
n∑
i=1

αiπ(pi) = I then
n∑
i=1

αi(I − π(pi)) =

(A− 1)I. Since the operator at the left hand-side is positive then A ≥ 1. �

Lemma 2. If A = 1 then α ∈ Σn and the algebra Pn,�α has (up to unitary equivalence) only one
irreducible representation π : π(pi) = 1.

Proof. If A = 1 then
n∑
i=1

αi(I − π(pi)) = 0 and for all i = 1, . . . , n: π(pi) = I. �

Definition 1. The algebra Pn,�α and the vector α are called reduced if there exists such a number
i0 that for all representations π of the algebra we have π(pi0) = 0 or there exists a number j0
that for all representations π of the algebra we have π(pj0) = I.

Remark 1. In the case of mapping of a reduced algebra to its enveloping C∗-algebra the
elements pi0 and pj0 − e belong to the ∗-radical, and the corresponding C∗-algebra will be
generated by less than n linear connected projections.

Lemma 3. If α ∈ Σn : ∃ αi0 > 1 then for all representations π of the algebra Pn,�α: π(pi0) = 0,
e.g. the algebra Pn,�α is reduced.

Proof. Take an arbitrary representation π of the algebra Pn,�α then
∑
i	=i0

αiπ(pi) = I−αi0π(pi0).

The operator at the left-hand side is positive. But the operator at the right-hand side is positive
when π(pi0) = 0 only. �
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Lemma 4. If α ∈ Σn and the algebra Pn,�α is not reduced then A ≤ n.

Proof. If A > n, then there exists a number i0 : αi0 > 1 and according to the Lemma 3 the
algebra Pn,�α will be reduced. �

Let Σ1
n = Σn

⋂
(0, 1)n e.g. Σ1

n consists of such points α ∈ Σn that 0 < αi < 1.
Our aim is to describe the set Σ1

n (1 ≤ A < n) and the set of representations of corresponding
algebras. There are reduced and nonreduced ones among such class of algebras.

We define functors S and T (analogy with [5]), which act on the set of categories Rep Pn,�α.
They are equivalences of categories (if Rep Pn,�α is not empty, then S(Rep Pn,�α) (or T (Rep Pn,�α))
is not empty and they are equivalent).

Let us define the functor T (functor of hyperbolic reflection).

Let α ∈ Σn, A > 1, π ∈ Rep Pn,�α, then
n∑
i=1

αiπ(pi) = I and
n∑
i=1

αi(I − π(pi)) = (A − 1)I or
n∑
i=1

αi
A−1(I − π(pi)) = I. Define T (π)(pi) = I − π(pi). Thus, we obtain the functor

T : Rep Pn,(α1,α2,...,αn) → Rep Pn,( α1
A−1

,
α2

A−1
,..., αn

A−1)

which is defined when A > 1.
It is easy to check that this functor is equivalence of categories (the corresponding algebras

are isomorphic).
Let us define the functor S (functor of linear reflection).

Let α ∈ Σ1
n,

n∑
i=1

αiπ(pi) = I and π be a representation of the algebra Pn,�α in the Hilbert

space H0. Since π(pi) is a projection then π(pi) = ΓiΓ∗i , where Γi is the natural isometry of the
space Hi = Imπ(pi) to H0.

Let H = H1 ⊕H2 ⊕ · · · ⊕Hn. Define the linear operator Γ : H → H0 that is given by the
matrix

Γ =
(√

α1 Γ1
√
α2 Γ2 · · · √

αn Γn
)
.

Since ΓΓ∗ =
n∑
i=1

αiΓiΓ∗i =
n∑
i=1

αiπ(pi) = IH0 , Γ∗ is a partial isometry from H0 to H. Let

Ĥ0 = (Im Γ∗)⊥ and ∆∗ is the natural isometry of Ĥ0 to H then U∗ = (Γ∗,∆∗) be a unitary
operator from Ĥ0 ⊕ H0 to H. As H = H1 ⊕ H2 ⊕ · · · ⊕ Hn, the operators ∆ and U have the
Peirce decomposition

∆ =
( √

1− α1∆1
√

1− α2∆2 · · ·
√

1− αn∆n

)
,

U =

( √
α1 Γ1

√
α2 Γ2 · · · √

αn Γn√
1− α1∆1

√
1− α2∆2 · · ·

√
1− αn∆n

)
.

Since U is a unitary operator and Γ∗iΓi = IHi , it is easy to obtain that ∆∗i∆i = IHi and
∆i∆∗i = Qi are orthoprojections in the space Ĥ0. From ∆∆∗ = IĤ0

(∆ is an isometry) it follows

that
n∑
i=1

(1− αi)∆i∆∗i = IĤ0
,
n∑
i=1

(1− αi)Qi = IĤ0
.

Define S : π → π̂, where π̂(pi) = Qi. From the condition
n∑
i=1

(1 − αi)Qi = I we have

π̂ ∈ Ob Rep Pn,(1−α1,1−α2,...,1−αn). One can see (in analogy with [5]), that the functor

S : Rep Pn,(α1,α2,...,αn) → Rep Pn,(1−α1,1−α2,...,1−αn),

where 0 < αi < 1 (therefore, 0 < A < n), is an equivalence of categories.
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Let π be a representation of the algebra Pn,�α in a finite-dimensional space H. We shall call
the vector (d; d1, d2, . . . , dn), where d = dimH, di = dim Imπ(pi), the generalized dimension of
the representation π.

The functors T and S induce actions on the set of vectors α, on sums of their coordinates A
and on generalized dimensions of representations of algebras Pn,�α.

It it easy to check that

T (α1, α2, . . . , αn) =
(

α1

A− 1
,
α2

A− 1
, . . . ,

αn
A− 1

)
, T (A) =

A

A− 1
,

T (d; d1, d2, . . . , dn) = (d; d− d1, d− d2, . . . , d− dn),
S(α1, α2, . . . , αn) = (1− α1, 1− α2, . . . , 1− αn), S(A) = n−A,

S(d; d1, d2, . . . , dn) =

(
n∑
i=1

di − d; d1, d2, . . . , dn

)
.

Define the functors of Coxeter as Φ+ = TS and Φ− = ST . Φ+ is defined when A < n − 1,
α ∈ Σ1

n. Φ− is defined when A > 1, T (α) ∈ (0, 1)n. Since T 2 = Id, S2 = Id, then Φ+Φ− = Id
and Φ−Φ+ = Id.

Let Φ+(k) = Φ+Φ+(k−1).

Lemma 5. lim
k→∞

Φ+(k)
(

1 + 1
n−2

)
= n−√n2−4n

2 and intervals[
1, 1 + 1

n−2

)
,

[
1 + 1

n−2 ,Φ
+

(
1 + 1

n−2

))
, . . . ,

[
Φ+(k−1)

(
1 + 1

n−2

)
,Φ+(k)

(
1 + 1

n−2

))
, . . .

do not intersect and cover the interval
[
1, n−

√
n2−4n
2

)
.

Proof. It is easy to show that Φ+(1) = 1+ 1
n−2 and the sequence Φ+(k)

(
1 + 1

n−2

)
is increasing.

Since it is bounded by 2, the limit a of the sequence exists and it is a fixed point of the map
Φ+(A) = 1 + 1

n−A−1 . From the equation 1 + 1
n−a−1 = a (taking into account that a < 2) we

obtain a = n−√n2−4n
2 . �

Lemma 6. α ∈ Σ1
n, 0 < A ≤ n

2 , if and only if T (α) ∈ Σ1
n and n

2 ≤ T (A) < n.

Proof. Obviously, the map S sets one-to-one correspondence between points of Σ1
n with the

sum A < n and points Σ1
n with the sum n−A. �

Lemma 7. If n− 1 < A < n then α /∈ Σ1
n.

Proof. If n−1 < A < n then 0 < S(A) < 1, whence, by the Lemma 1, S(α) /∈ Σn and it means
that α /∈ Σ1

n. �

Lemma 8. If α ∈ Σn, A �= 1 and Pn,�α is not reduced then αi
A−1 ≤ 1 and A ≥ n

n−1 .

Proof. If there exists a number i0 that αi0
A−1 > 1, then the algebra Pn,T (�α) will be reduced.

Take any representation π of the algebra Pn,�α. Denote π̂ as the correspondent representation
of the algebra Pn,T (�α) then by the lemma 3 π̂(pi0) = 0, so π(pi0) = I and Pn,�α is reduced.

If for all i : αi
A−1 ≤ 1 then A

A−1 ≤ n and from here A ≥ n
n−1 . �

2. Now we describe Σ1
n, when n = 3 and n = 4.

Lemma 9. Let α = (α1, α2, α3) ∈ Σ3. Then for some subset J ⊆ {1, 2, 3} :
∑
i∈J

αi = 1 or

α1 + α2 + α3 = 2. To every pointed subset J , there corresponds a unique one-dimensional
irreducible representation π: π(pi) = 1, i ∈ J , and π(pi) = 0, i /∈ J . If α1 + α2 + α3 = 2 then,
furthermore, the algebra has a unique, up to unitary equivalence, irreducible two-dimensional
representation.
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Proof. The proof reduces to an easy computation, when taking into account that an irreducible
pair of orthoprojections is a one-dimensionally or unitary equivalent to a pair

P1 =
(

1 0
0 1

)
, P2 =

(
τ

√
τ − τ2

√
τ − τ2 1− τ

)
, 0 < τ < 1. �

Lemma 10. If α ∈ Σ1
4, 0 < A < 2, is reduced then the following condition, which we will call

the R-condition, is satisfied: ∃ J ⊂ {1, 2, 3, 4} : Σi∈Jαi = 1 or ∃ αi0 : 2−A = αi0 .

Proof. There are two possible cases.
1) Let π(pi0) = 0 then

∑
i	=i0

αiπ(pi) = I. Let α′ be obtained from α by omitting the coordi-

nate αi0 . Obviously, α′ ∈ Σ3. So
∑
i∈J

αi = 1, for some subset J ⊂ {1, 2, 3, 4}\{i0}, (if
∑
i	=i0

αi = 2,

then A > 2).
2) If for all π : π(pi0) = I then

∑
i	=i0

αiπ(pi) = (1−αi0)I. The operator at the left hand-side is

positive. From here αi0 ≤ 1. If αi0 = 1, then the R-condition is satisfied, else
∑
i	=i0

αi
1−αi0

π(pi) = I.

From the previous lemma we have either: a)
∑
i∈J

αi
1−α4

= 1, for some subset J ⊂ {1, 2, 3, 4}\{i0},

hence
∑
i∈J

αi+α4 = 1 or b) α1
1−α4

+ α2
1−α4

+ α3
1−α4

= 2, α1 +α2 +α3 = 2(1−α4) and 2−A = α4. �

Note, that if α satisfies R-condition then α is not necessary reduced.

Lemma 11. If α ∈ Σ4 \ Σ1
4 then T (α) satisfies R-condition.

Proof. From the condition α ∈ Σ4 \ Σ1
4, we obtain αi0 ≥ 1 for some i0. Suppose αi0 > 1,

π ∈ Rep P4,T (�α) then, by the Lemma 3, T (π)(pi0) = 0. From here π(pi0) = I, so α is reduced.

Assume αi0 = 1. From T (α) =
(

α1
A−1 ,

α2
A−1 ,

α3
A−1 ,

α4
A−1

)
=

 α1∑
i�=i0

αi

, α2∑
i�=i0

αi

, α3∑
i�=i0

αi

, α4∑
i�=i0

αi

, the

sum
∑
j 	=i0

 αj∑
i�=i0

αi

 = 1, so T (α) satisfies R-condition. �

From Lemmas 2, 3, 8, 10, it follows

Lemma 12. If 1 ≤ A < 1 + 1
n−2

∣∣
n=4

= 3
2 then α satisfy R-condition.

Using the lemmas proved above, we obtain:

Theorem 1. Let α = (α1, α2, α3, α4), 0 < αi < 1, A =
4∑
i=1

αi, Σ1
4 be the set of such α that the

algebra P4,�α has a nonzero representation.
1) Dimensions of all irreducible representations of the algebra P4,�α are finite.
2) If A = 1 then α ∈ Σ1

4 and the corresponding algebra P4,�α has a unique irreducible repre-
sentation π, which is a one-dimensional representation and π(pi) = 1.

3) If A = 2 then α ∈ Σ1
4 and all irreducible representations has dimension one or two (their

description see in [4]).
4) The functor S is equivalence of categories of representations of “symmetry” algebras

P4,(α1α2,α3,α4) and P4,(1−α1,1−α2,1−α3,1−α4), α ∈ Σ1
4, with the center of symmetry A = 2.

5) Every point α ∈ Σ1
4, 1 < A < 2, or satisfies R-condition or Φ−(α) belongs to Σ1

4.
6) α ∈ Σ1

4, 1 < A < 2 if and only if Φ−(k)(α) satisfy R-condition for some k.The number
k is bounded by N : Φ−(N)(A) ∈ [1, 3

2). The functor Φ−(k) is equivalence of categories of
representations of algebra Pn,�α and reduced algebra Pn,Φ−(k)(�α).

The theorem allows us to reduce the solution of the problem about belonging of a point α to
Σ1

4 to verifying R-condition for some another point.
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We construct a complete set of inequivalent realizations of real 4-dimensional solvable decom-
posable Lie algebras in vector fields on a space of an arbitrary (finite) number of variables.

Realizations of Lie algebras in vector fields are applied, in particular, for integrating of ordinary
differential equations, group classification of partial differential equations, classification of gravity
fields of a general form with respect to motion groups or groups of conformal transformations. In
spite of importance for applications, the problem of complete description of realizations have not
been solved even for cases when either the dimension of algebras or the dimension of realization
space is a fixed small integer. An exception is Lie’s classification of all possible Lie groups
of point and contact transformations acting on a two-dimensional complex space without fixed
points [1], which is equivalent to classification of all possible realizations of Lie algebras in vector
fields on a two-dimensional complex space.

The necessary step to classify realizations of low-dimensional Lie algebras is classification of
these algebras, i.e. classification of possible commutative relations between basis elements. All
the possible complex Lie algebras of dimension less than 4 were already obtained by S. Lie [2].
L. Bianchi investigated three-dimensional real Lie algebras [3]. Complete and correct classifica-
tion of four-dimensional real Lie algebras was firstly obtained by G.M. Mubarakzyanov [4].

C. Wafo Soh and F.M. Mahomed [5] used Mubarakzyanov’s results to classify realizations of
three- and four-dimensional real Lie algebras in the space of three variables and to describe sys-
tems of two second-order ODEs admitting real four-dimensional real symmetry Lie algebras, but
unfortunately their paper contains a number of misprints and incorrect statements. Therefore,
this classification cannot be considered as complete.

Preliminary classification of realizations of solvable three-dimensional Lie algebras in the
space of any (finite) number of variables was given in [6]. In this paper we present a complete set
of inequivalent realizations for real 4-dimensional solvable decomposable Lie algebras in vector
fields on a space of an arbitrary (finite) number n of variables x = (x1, x2, . . . , xn). Analogous
results for indecomposable algebras in the case n = 4 have been obtained in [7].

The technics of classification is the following. For each algebra A from Mubarakzyanov’s
classification of abstract four-dimensional Lie algebras [4] we find the automorphism group
G(A) and the set of megaideals of A, i.e. the ideals invariant with respect to G(A). Knowledge
of the megaideals is important to construct realizations and to prove their inequivalence in a
simpler way. Then, we take four linearly independent vector fields of the general form ei =
ξia(x)∂a, where rank(ξia) = 4, ∂a = ∂/∂xa, and demand from them to satisfy commutative
relations of A. (Our notions of low-dimensional algebras, choice of their basis elements, and,
consequently, the form of commutative relations coincide with Mubarakzyanov’s ones.) As a
result, we obtain a system of first-order PDEs for the coefficients ξia and integrate it, considering
all the possible cases. For each case we transform the found solution to the simplest form, using
local diffeomorphisms of the space of x and automorphisms of A.
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Consideration is essentially simplified if it is taken into account that any four-dimensional
algebra contains a three-dimensional ideal. We can use classification of realizations of three-
dimensional algebras with respect to local diffeomorphisms of the space of x, extending them to
realizations of four-dimensional algebras by means of joining the fourth vector field. Then we
obtain a system of first-order PDEs only for the coefficients ξ4a.

Table 1. Realizations of real decomposable solvable four-dimensional Lie algebras.

Algebra N Realization
A3.1 ⊕A1 1 ∂1, ∂3, x3∂1 + ∂4, ∂2

2 ∂1, ∂3, x3∂1 + x4∂2 + x5∂3, ∂2

[e2, e3] = e1 3 ∂1, ∂3, x3∂1 + ϕ(x4)∂2 + ψ(x4)∂3, ∂2

4 ∂1, ∂3, x3∂1 + ∂4, x2∂1

5 ∂1, ∂3, x3∂1 + x4∂3, x2∂1

6 ∂1, ∂3, x3∂1 + ϕ(x2)∂3, x2∂1

A3.2 ⊕A1 1 ∂1, ∂2, (x1 + x2)∂1 + x2∂2 + ∂3, ∂4

2 ∂1, ∂2, (x1 + x2)∂1 + x2∂2 + ∂3, x4∂3

[e1, e3] = e1, 3 ∂1, ∂2, (x1 + x2)∂1 + x2∂2, ∂3

[e2, e3] = e1 + e2 4 ∂1, ∂2, (x1 + x2)∂1 + x2∂2 + ∂3, x4e
x3(x3∂1 + ∂2)

5 ∂1, ∂2, (x1 + x2)∂1 + x2∂2 + ∂3, e
x3(x3∂1 + ∂2)

6 ∂1, ∂2, (x1 + x2)∂1 + x2∂2 + ∂3, e
x3∂1

7 ∂1, x2∂1, x1∂1 − ∂2, ∂3

8 ∂1, x2∂1, x1∂1 − ∂2, x3e
−x2∂1

9 ∂1, x2∂1, x1∂1 − ∂2, e
−x2∂1

A3.3 ⊕A1 1 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, ∂4

2 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, x4∂3

[e1, e3] = e1, 3 ∂1, ∂2, x1∂1 + x2∂2, ∂3

[e2, e3] = e2 4 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, e
x3(∂1 + x4∂2)

5 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, e
x3∂1

6 ∂1, x2∂1, x1∂1 + ∂3, ∂4

7 ∂1, x2∂1, x1∂1 + ∂3, x4∂3

8 ∂1, x2∂1, x1∂1 + ∂3, ϕ(x2)∂3

9 ∂1, x2∂1, x1∂1 + ∂3, e
x3∂1

A3.4 ⊕A1 1 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, ∂4

2 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, x4∂3

[e1, e3] = e1, 3 ∂1, ∂2, x1∂1 + ax2∂2, ∂3

[e2, e3] = ae2, 4 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, e
x3∂1 + x4e

ax3∂2

−1 ≤ a < 1, a �= 0 5 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, e
x3∂1 + eax3∂2

6 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, e
x3∂1

7 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, e
ax3∂1, 0 < |a| < 1

8 ∂1, x2∂1, x1∂1 + (1− a)x2∂2, ∂3

9 ∂1, x2∂1, x1∂1 + (1− a)x2∂2, x3|x2|
1

1−a ∂1

10 ∂1, x2∂1, x1∂1 + (1− a)x2∂2, |x2|
1

1−a ∂1

A3.5 ⊕A1 1 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2 + ∂3, ∂4

2 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2 + ∂3, x4∂3

[e1, e3] = be1 − e2, 3 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2, ∂3

[e2, e3] = e1 + be2, 4 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2 + ∂3, x4e
bx3(cosx3∂1 − sinx3∂2)

b ≥ 0 5 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2 + ∂3, e
bx3(cosx3∂1 − sinx3∂2)

6 ∂1, x2∂1, (b− x2)x1∂1 − (1 + x2
2)∂2, ∂3

7 ∂1, x2∂1, (b− x2)x1∂1 − (1 + x2
2)∂2, x3

√
1 + x2

2 e
−b arctan x2∂1

8 ∂1, x2∂1, (b− x2)x1∂1 − (1 + x2
2)∂2,

√
1 + x2

2 e
−b arctan x2∂1
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Continuation of of Table 1.

Algebra N Realization
A2.2 ⊕ 2A1 1 ∂1, x1∂1 + ∂4, ∂2, ∂3

2 ∂1, x1∂1 + x4∂2 + x5∂3, ∂2, ∂3

[e1, e2] = e1 3 ∂1, x1∂1 + x4∂2 + ψ(x4)∂3, ∂2, ∂3

4 ∂1, x1∂1, ∂2, ∂3

5 ∂1, x1∂1 + x3∂3, ∂2, x3∂1 + x4∂2

6 ∂1, x1∂1 + x3∂3, ∂2, x3∂1

7 ∂1, x1∂1 + ∂4, ∂2, x3∂2

8 ∂1, x1∂1 + x4∂2, ∂2, x3∂2

9 ∂1, x1∂1 + θ(x3)∂2, ∂2, x3∂2

10 ∂1, x1∂1 + x2∂2 + x3∂3, x2∂1, x3∂1

A2.1 ⊕A2.1 1 ∂1, x1∂1 + ∂3, ∂2, x2∂2 + ∂4

2 ∂1, x1∂1 + ∂3, ∂2, x2∂2 + x4∂3

[e1, e2] = e1, 3 ∂1, x1∂1 + ∂3, ∂2, x2∂2 + C∂3, |C| ≤ 1
[e3, e4] = e3 4 ∂1, x1∂1 + x3∂2, ∂2, x2∂2 + x3∂3

5 ∂1, x1∂1, ∂2, x2∂2

6 ∂1, x1∂1 + x2∂2, x2∂1, −x2∂2 + ∂3

7 ∂1, x1∂1 + x2∂2, x2∂1, −x2∂2

4A1 1 ∂1, ∂2, ∂3, ∂4

2 ∂1, ∂2, ∂3, x4∂1 + x5∂2 + x6∂3

3 ∂1, ∂2, ∂3, x4∂1 + x5∂2 + λ(x4, x5)∂3

4 ∂1, ∂2, ∂3, x4∂1 + ϕ(x4)∂2 + ψ(x4)∂3

5 ∂1, ∂2, x3∂1 + x4∂2, x5∂1 + x6∂2

6 ∂1, ∂2, x3∂1 + x4∂2, x5∂1 + θ(x3, x4, x5)∂2

7 ∂1, ∂2, x3∂1 + ϕ(x3, x4)∂2, x4∂1 + ψ(x3, x4)∂2

8 ∂1, ∂2, x3∂1 + ϕ(x3)∂2, λ(x3)∂1 + ψ(x3)∂2

9 ∂1, x2∂1, x3∂1, x4∂1

10 ∂1, x2∂1, x3∂1, λ(x2, x3)∂1

11 ∂1, x2∂1, ϕ(x2)∂1, ψ(x2)∂1

We plan to publish our results on complete classification of realizations for real Lie algebras
of dimensions less than 5 in vector fields on a space of an arbitrary (finite) number of variables
in the near future, giving detailed description of the technics of classification and a number of
applications of obtained realizations to theory of differential invariants, integrating of ODEs and
group classification of PDEs.
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In the article the question of topological conjugacy is considered, which provides sufficient
condition for the algebras isomorphism. The concept of positive conjugacy for some classes
of simple dynamical systems is presented.

1 Introduction

It is well-known that dynamical systems play important role in the representation theory of
C∗-algebras. In the book by Yu.S. Samoilenko and V.L. Ostrovskii (see [1]) some results with
respect to connection between the theory of representations of ∗-algebras given by generators
and relations with, generally speaking, non-bijective dynamical systems were presented. In
recent paper (see [2]) the issue of description of isomorfism classes of C∗-algebras assosiated
with SU ∩ F2n-mappings has been considered. The question of classification of C∗-algebras
connected with dynamical systems up to isomorphism leads to studying conjugacy of dynamical
systems on the set of positive orbits. In the present paper this question is considered for simple
dynamical systems.

2 Topological conjugacy for simple unimodal dynamical systems

First we recall the necessary material from [4, 5, 6] and the results about conjugacy for SU∩F2n-
mappings (from [3]).

Mapping f ∈ C(I, I), I = [0, 1] is called unimodal if there is unique extreme point c ∈
(0, 1) and f is homeomorphism on the intervals J1 = [0, c], J2 = [c, 1]. We consider unimodal
mappings f ∈ C(I, I) such that f(0) = f(1) = 0 and extreme point c is point of maximum. Let
f ∈ C3(I, I). Schwarzian derivative is defined by the formula

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

, for x such that f ′(x) �= 0.

By SU we mean a class of unimodal mappings on interval I with Sf(x) < 0 for all x different
from c.

Dynamical system is called simple if every its trajectory is periodic or asymptoticly periodic.
A simple dynamical system can have only cycles of periods 2k, k = 0, 1, 2, . . . [4, p. 64]. By

necessary and sufficient condition of a simplicity of dynamical system is Per f =
∞⋃
n=1

{x : fn(x) =

x} is closed. Denote Fn = {f ∈ C(I, I) : Per f = Fix fn}. The class Fn consists of mappings
for which the period of each cycle is not greater than n and is a divisor of n. In fact n can be
only the power of 2. It is known that for f ∈ C(1)(I, I): f ∈ F2k ⇔ (f, I) is a simple dynamical
system.

Cycle B = {β1, . . . , βm} is called attractive if there is a neighborhood U of B such that
f(U) ⊆ U and

⋂
i>0

f i(U) = B. Cycle B is called repellent if there is a neighborhood U such that

for every x ∈ U \B there is integer k > 0 and f (k)(x) �∈ U .
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By the positive orbit of dynamical system (f, I) we will mean a sequence δ = (xk)k∈Z such
that f(xk) = xk+1 and xk > 0 for all integer k. Unilateral positive orbit is a sequence δ = (xk)k∈N

(Fock orbit) such that x1 = 0 and f(xk) = xk+1, xk > 0 for k > 1 or δ = (x−k)k∈N (anti-Fock
orbit) such that x−1 = 0 and f(xk) = xk+1, xk > 0 for k < −1. Define Orb+(f, I) be the set of
all positive orbits on interval I.

We say that two maps f, g : X → X are topologically conjugate if there exists a homeo-
morphism h : X → X such that h ◦ f = g ◦ h. This implies that h ◦ fn = gn ◦ h for every
integer n.

Further we will need some concepts of symbolic dynamics. By the address of a point x ∈ I

we mean the value A(x) =

{
Js, if x ∈ Js and x �= c, s = 1, 2;
c, if x = c.

The itinerary of a point x is the sequence of addresses

Af (x) =
(
A(x), A(f(x)), A(f2(x)), . . .

)
= (A0, A1, A2, . . .).

Define the sign of an interval Js as ε(Js) = (−1)s+1, ε(c) = 0 and put θf (x) = (θ0, θ1, θ2, . . .)
where θ0 = ε0, θ1 = ε0ε1, . . ., θn = ε0ε1 · · · εn, . . ., εi = ε(Ai). By the dynamical coordinate of

a point x ∈ I we mean a formal power series θ(x) =
∞∑
i=0

θi(x)ti. Series νf = θ(c−) = lim
x↑c

θ(x) is

called kneading invariant of f .
We will need the following theorem from [7]:

Theorem 1. Let f, g ∈ SU , νf = νg. Then
a) if the series νf is nonperiodic then f and g are topologically conjugate;
b) if the series νf is periodic of period n then f and g have an attractive or neutral trajectory

of period n or n/2; moreover f and g are topologically conjugate when these trajectories are of
the same type (i.e. simultaneously either attractive or neutral) and corresponding points of these
trajectories have the same dynamical coordinates.

Theorem 2. Let (f1, I), (f2, I) be dynamical systems such that (fi, I) ∈ SU ∩ F2n, i =
{1, 2}, ci is the greatest point of local maximum of function f2n

i . Then sign (f2n

1 (c1) − c1) =
sign (f2n

2 (c2)− c2) if and only if f and g are topologically conjugate.

Proof. We need only to verify that conditions the previous theorem are satisfied. As we can
uniquely define a series νf when Af (c−) is given we consider Af (c−) instead of νf .

At first let us demonstrate the statement in case n = 0, i.e. f ∈ SU ∩ F1. In this case
the dynamical system has one or two fixed points and does not have cycles of period greater or
equal 2. It is easy to see that if f has only one fixed point (s0 = 0) then Af (c−) = (+,+, . . .),
Af (0) = (+,+, . . .) and sign (f(c) − c) = −1. Assume that f has two fixed points s0 = 0 and
0 < s1 < 1. In this case s0 is repellent, s1 is attractive and there are three alternatives:

1) s1 < c (i.e. f(c)− c < 0);
2) s1 = c (i.e. f(c)− c = 0);
3) s1 > c (i.e. f(c)− c > 0).
In the case 1) and 2): Af (c−) = (+,+, . . .), hence for every f1, f2 ∈ SU ∩ F1 fulfilling

condition 1) or 2): νf1 = νf2 = (+,+, . . .). If s1 > c then Af (c−) = (+,−,−, . . .). Hence for
every f1, f2 ∈ SU ∩ F1 satisfying condition 3): νf1 = νf2 = (+,−,+,−, . . .). And also if f1

and f2 simultaneously satisfy one of the conditions 1), 2), 3) then dynamical coordinates of
their attractive periodic trajectories coinside:

1) Af (s1) = (+,+, . . .), θf (s1) = (+,+, . . .);
2) Af (s1) = (0, 0, . . .), θf (s1) = (0, 0, . . .);
3) Af (s1) = (−,−, . . .), θf (s1) = (−,+,−,+, . . .).
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Thus by previous theorem if f1 and f2 simultaneously satisfy one of the conditions 1), 2), 3)
then they are topologically conjugate.

We now turn to the case n ≥ 1. Let us consider the mapping g(x) = f2(x) and let a and d
be preimages of s1 under g such that a < s1 < d and [a, d] contains no other preimages of s1
(in other words a and d are the closest preimages to s1). Let I1 = [a, s1], I2 = [s1, d]. By simple
calculations we have f(I1) ⊆ I2, f(I2) ⊆ I1, i.e. intervals I1, I2 are invariant under function g.

Let us note that dynamical system (g, I2) is simple with unimodal g and Sf < 0 when
x �= c′ (c′ be the point of local maximum of function g on I2). Moreover (g, I2) is conjugate to
dynamical system (f̃ , [0, 1]) where f̃ = f2((d− s1)x+ s1)− s1 and satisfying all the conditions
of the theorem.

Let us consider the behavior of the trajectory fm(c−), m ≥ 0. f0(c−) = c− ∈ J1 hence
ε
(
f0(c−)

)
= +1. Since f(I1) ⊆ I2, f(I2) ⊆ I1 we have

fm(c−) ⊂ I2, if m = 2k + 1, fm(c−) ⊂ I1, if m = 2k,

hence ε
(
f2k+1(c−)

)
= −1. In the case m = 2k we have f2k(c−) ⊂ I1 and since c = f(c′) then

f
(
f2k+1(c−)

)
⊂ I1∩J1, if f2k+1(c−) > c′, f

(
f2k+1(c−)

)
⊂ I1∩J2, if f2k+1(c−) < c′.

Thus the sign of f2k(c−) is calculated by the recursive formula ε
(
f2k(c−)

)
= −ε

(
gk(c′−)

)
. And

if c2n is the greatest point of local maximum of function f2n
then the value Af (c−) is uniquely

defined by Af2n (c−2n), i.e. by value sign
(
f2n

(c2n)− c2n

)
.

And also it is follows from above that the dynamical coordinate of attractive periodical
trajectory also uniquely defined by this value. �

Corollary 1. For every n there is no more than three isomorphism classes of enveloping
C∗-algebras (see [2]).

Corollary 2. Let (f1, I), (f2, I) ∈ SU ∩ F2n and sign
(
µ(B1

2n)
)

= sign
(
µ(B2

2n)
)
. Then f1 ∼ f2.

3 Positive conjugacy

Define the support of dynamical system (f, I) to be the union of positive orbits X = X(f, I) =
{x ∈ δ | δ ∈ Orb+(f, I)}.

Definition 1. We will say that two maps f1 : [0, a1] → [0, a1] and f2 : [0, a2] → [0, a2] are
positively conjugate if they are topologically conjugate on their supports, i.e. X1 = X(f1, [0, a1]),
X2 = X(f2, [0, a2]) and there exist a homeomorphism ϕ : X1 → X2 such that ϕ ◦ f1 = f2 ◦ ϕ.

Proposition 1. If f1 : [0, a1] → [0, a1] and f2 : [0, a2] → [0, a2] are topologically conjugate then
they are positively conjugate.

Proof. Since f1 and f2 are conjugate then there exist a homeomorphism ϕ : [0, a1] → [0, a2]
and ϕ ◦ f1(x) = f2 ◦ ϕ(x) for all x ∈ [0, a1]. Let us show that ϕ(X1) = X2. Indeed, if x ∈ X1

then there exist δ ∈ Orb+(f1, [0, a1]) such that x ∈ δ. Since ϕ(δ) ∈ Orb+(f2, [0, a2]) (where
ϕ(δ) = (ϕ(xk))k∈Z) we have ϕ(x) ∈ X2, i.e. ϕ(X1) ⊆ X2. Considering ϕ−1 analogiously we get
ϕ−1(X2) ⊆ X1 and consequently X2 ⊆ ϕ(X1). Obviously ϕ|X1 is homeomorphism on X2. �

The converse statement to proposition 1 is not true in general. Let us consider the notion of
positive conjugacy for the class SU ∩ F2n-maps. In the case n = 0 two maps can be positively
conjugate but not topologically conjugate.
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Proposition 2. Let f1, f2 ∈ SU∩F1, ci is the point of maximum of function fi. Then f1 and f2

are positively conjugate iff one of the following statements holds:
1) sign (f1(c1)− c1) = sign (f2(c2)− c2) �= 0;
2) sign (f1(c1)− c1) ≤ 0, sign (f2(c2)− c2) = 0.

Proof. If fi ∈ SU ∩ F1 then fi has one or two fixed points and does not have any cycles of
period more than one (see theorem 1.2 in [3]). Theorem 2 implies 1. In the case 2) f1 has
support X1 = [0, s1], where s1 is fixed point of f1 that is nonequal to 0. Mapping f2 has support
X2 = [0, c2]. Since the functions f1 on X1 and f2 on X2 are monotonely increasing and fixed
points are the ends of the intervals X1 and X2 correspondingly hence f1 and f2 are topologically
conjugate on their supports. Thus f1 and f2 are positively conjugate. �

Theorem 3. Let f1, f2 ∈ SU ∩F2n, n ≥ 1. If maps f1 and f2 are positively conjugate then they
are topologically conjugate.

Proof. Let us prove that if f1 and f2 are not topologically conjugate then they are not
positively conjugate. There are two cases when f1 and f2 are not topologically conjugate:
1) sign

(
f2n

1 (c1)− c1
)

= 0, sign
(
f2n

2 (c2)− c2
)
�= 0 (ci is the greatest point of local maximum

of function f2n

i ). The support Xi of the dynamical system (fi, I) is interval [0,Mi], where
Mi = max

x∈I
fi(x). Let us note that M1 is periodic point of period 2n of function f1 but M2 is not

periodic. Therefore f1 and f2 are not conjugate on their supports. 2) sign
(
f2n

1 (c1)− c1
)
< 0,

sign
(
f2n

2 (c2)− c2
)
> 0. Let us consider the function f2n

i on the interval I2n

i that is bounded
by the two greatest preimages of fixed point si under f2n

i ). Mapping f2n

1 is monotone on the
support of

(
f2n

1 , I2n

1

)
but f2n

2 is not monotone on the support of
(
f2n

2 , I2n

2

)
. Hence f1 and f2

are not positively conjugate. �

Let us consider the notion of positive conjugacy for mappings f(x) = 1 + ax − bx2, a > 0,
b > 0. Define F−1

+ , F−1
− to be two branches of inverse to F mapping such that F−1

− (0) = 0.

Definition 2. Let (F, I) ∈ SU . By p-truncated mapping (or truncated by p) of F we mean the
mapping fp(x) = F (x + p) − p, p ∈ (0, c), x ∈ Ip, where Ip = [0, F−1

+ (p) − p]. F truncated by
interval P ⊂ (0, c) is the family of mappings fp(x), where p ∈ P .

Remark 1. In general fp(Ip) �⊆ Ip, i.e. (fp, Ip) is not always a dynamical system.

Obviously, we can consider the mapping f(x) = 1 + ax − bx2 (a > 0, b > 0) as truncated
mapping of some F ∈ SU .

Proposition 3. Let (f1, [0, a1]), (f2, [0, a2]) are dynamical systems such that fi is pi-truncated
mapping of Fi ∈ SU ∩ F1. Then f1 and f2 are positively conjugate.

Proof. Since dynamical system (fi, [0, ai]) does not have repellent points then the set Orb+(fi)
consists of Fock-orbit only. Hence the support of such dynamical system is a sequence of points
of the interval [0, ai] which converge to attractive fixed point si. Let δ1 = {xk | x0 = 0, xk+1 =
f1(xk), k ≥ 0} is Fock orbit of f1, δ2 = {yk | y0 = 0, yk+1 = f2(yk), k ≥ 0} is Fock orbit of f2.

The mapping ϕ : δ1 → δ2 defined by the formula ϕ(xk) = yk is homeomorphism since it
preserves convergence in both directions and satisfies the condition f2 ◦ ϕ(xk) = ϕ ◦ f1(xk) for
all k ≥ 0. Thus f1 and f2 are positively conjugate. �

Further we will consider only dynamical systems truncated by interval [0, F 2(M)]. This
condition guarantees an absence of anti-Fock orbits.

Theorem 4. Let (F, I) ∈ SU ∩F2, F 2(c′)− c′ < 0 (c′ is the greatest point of local maximum of
the fuction F 2). Then there exist a countable number of positive conjugacy classes of truncated
mappings of F .



Positive Conjugacy for Simple Dinamical Systems 473

Proof. Define B = {β1, β2} to be the cycle of period 2 of function F , β1 < β2. Let us consider
the sequence of intervals Tk, k ≥ 0:

T2k = F−k− ([β1, β2]), T2k+1 = F−k−
((
F−1
− (β2), β1

))
.

Interval T = [β1, β2] has the property:

if x ∈ T then Fn(x) ∈ T for all n ≥ 1 (1)

(since F 2(c′)− c′ < 0 then every trajectory of F 2 is attracted to the fixed point β2 monotonely)
and

for every x ∈ T there is x′ ∈ T such that F (x′) = x (2)

since max
x∈I

F (x) > β2.

It is evidently that for all x ∈ T2k there is m ≥ 0 such that fm(x) ∈ T . If x ∈ T2k+1 then
for every m ≥ 0: fm(x) /∈ T . Any truncated mapping f of F has only one repellent cycle (fixed
point s) and attractive cycle of period 2. Consequently, taking into account properties (1), (2)
we can see that for every x ∈ T there is δ ∈ Orb+(f) such that x ∈ δ. Thus T ⊂ X.

Further let us consider Fock-orbits. If f(0) ∈ T2k+1, k ≥ 0 then support X of f is the set
T ∪{xn | x0 = 0, xn+1 = f(xn), n ≥ 0}. Since F is monotone on T then all mappings truncated
by T2k+1, k ≥ 0 are positively conjugate. If f is truncated by T2k, k ≥ 1 then the support of f
be the set T ∪{xn | x0 = 0, xn+1 = f(xn), xn /∈ T}. Thus k defines a class of positive conjugacy
of mappings truncated by interval T2k. �
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Inequivalent classes of realizations for indecomposable four-dimensional solvable real Lie
algebras in the space of four variables are obtained.

Inequivalent two- and three-dimensional Lie algebras were classified in XIX century by Lie [1].
In 1963 Mubaraksyanov classified three- and four-dimensional real Lie algebras [2] (see also those
results in Patera and Winternitz [3]). In 1989 Mahomed and Leach obtained realizations of three-
dimensional Lie algebras in terms of vector fields defined on the plane [4]. Mahomed and Soh
tried to obtain realizations of three- and four-dimensional Lie algebras in the space of variables
(t, x, y) [5], but their attempt can not be considered successful. Their article contains some
misprints and a number of realizations are omitted. The results of [5] are used in [6] to solve
the problem of linearization of systems of second-order ordinary differential equations, so some
results from [6] are incorrect too. Realizations of solvable third-dimensional Lie algebras in the
space of any number of variables are considered in [7].

In the present paper we give a complete set of inequivalent realizations of real indecomposable
four-dimensional Lie algebras in the space of four variables, realizations of real decomposable
four-dimensional Lie algebras are considered in [8]. Obtained results can be applied to integra-
tion of ordinary differential equations (or systems of ordinary differential equations) (see, for
example, [9]), and to the problems of group classification (see, for example, [10]). We look for
the realizations in the class of vector fields:

Q =
4∑
i=1

ξi (x1, x2, x3, x4) ∂xi .

After using Mubaraksyanov classification [2] we consider ten indecomposable solvable four-
dimensional Lie algebras:

A4.1 [Q2, Q4] = Q1, [Q3, Q4] = Q2;
A4.2 [Q2, Q4] = Q2, [Q1, Q4] = qQ1, [Q3, Q4] = Q2 +Q3, q �= 0;
A4.3 [Q1, Q4] = Q1, [Q3, Q4] = Q2;
A4.4 [Q1, Q4] = Q1, [Q2, Q4] = Q1 +Q2, [Q3, Q4] = Q2 +Q3;
A4.5 [Q1, Q4] = Q1, [Q2, Q4] = qQ2, [Q3, Q4] = pQ3,

− 1 ≤ p ≤ q ≤ 1, pq �= 0;
A4.6 [Q1, Q4] = qQ1, [Q2, Q4] = pQ2 −Q3, [Q3, Q4] = Q2 + pQ3,

q �= 0, p ≥ 0;
A4.7 [Q2, Q3] = Q1, [Q1, Q4] = 2Q1, [Q2, Q4] = Q2,

[Q3, Q4] = Q2 +Q3;
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A4.8 [Q2, Q3] = Q1, [Q1, Q4] = (1 + q)Q1, [Q2, Q4] = Q2,

[Q3, Q4] = qQ3, |q| ≤ 1;
A4.9 [Q2, Q3] = Q1, [Q1, Q4] = 2qQ1, [Q2, Q4] = qQ2 −Q3,

[Q3, Q4] = Q2 + qQ3, q ≥ 0;
A4.10 [Q1, Q3] = Q1, [Q1, Q4] = −Q2, [Q2, Q4] = Q1,

[Q2, Q3] = Q2.

For each algebra we write down only the non-zero commutation relations. We start from a
given Lie algebra with a set of structure constants and look which vector fields in at most four
variables satisfy the given set of commutator relations with none of the operators vanishing.
We thus look for possible realizations or representations of our Lie algebra. Two realizations
of the same Lie algebra will be considered equivalent or similar if there exists an invertible
transformation mapping one of the realizations to the other.

We arrange all results in the next Table 1 (below ∂i = ∂xi , i = 1, . . . , 4; Akn.m denotes the
k-th realizations of algebra An.m).

Table 1. Realizations of real indecomposable solvable four-dimensional Lie algebras.

A1
4.1 ∂1, ∂2, ∂3, x2∂1 + x3∂2 + ∂4;

A2
4.1 ∂1, ∂2, ∂3, x2∂1 + x3∂2 + x4∂3;

A3
4.1 ∂1, ∂2, ∂3, x2∂1 + x3∂2;

A4
4.1 ∂1, ∂2, x3∂1 + x4∂2, x2∂1 + x4∂3 − ∂4;

A5
4.1 ∂1, ∂2, −x2

3
2 ∂1 + x3∂2, x2∂1 − ∂3;

A6
4.1 ∂1, x3∂1, ∂2, x2x3∂1 − ∂3

A7
4.1 ∂1, x2∂1, x3∂1, −∂2 − x2∂3;

A8
4.1 ∂1, x2∂1, x2

2
2 ∂1, −∂2

A1
4.2 ∂1, ∂2, ∂3, qx1∂1 + (x2 + x3) ∂2 + x3∂3 + ∂4;

A2
4.2 ∂1, ∂2, ∂3, qx1∂1 + (x2 + x3) ∂2 + x3∂3;

A3
4.2 ∂1, ∂2, x3∂1 + x4∂2, qx1∂1 + x2∂2 + (q − 1)x3∂3 − ∂4;

A4
4.2 ∂1, ∂2, e(1−q)x3∂1 + x3∂2, qx1∂1 + x2∂2 − ∂3, q �= 1

A5
4.2 ∂1, x3∂1, ∂2, (qx1 + x2x3) ∂1 + x2∂2 + (q − 1)x3∂3;

A6
4.2 ∂1, x3∂1, ∂2, (x1 + x2x3) ∂1 + x2∂2 + ∂4, q = 1;

A7
4.2 ∂1, x2∂1, x3∂1, qx1∂1 + (q − 1)x2∂2 + ((q − 1)x3 − x2) ∂3;

A8
4.2 ∂1, x2∂1, x2

1−q ln |x2|∂1, qx1∂1 + (q − 1)x2∂2, q �= 1

A1
4.3 ∂1, ∂2, ∂3, x1∂1 + x3∂2 + ∂4;

A2
4.3 ∂1, ∂2, ∂3, x1∂1 + x3∂2 + x4∂3;

A3
4.3 ∂1, ∂2, ∂3, x1∂1 + x3∂2;

A4
4.3 ∂1,∂2, x3∂1 + x4∂2, x1∂1 + x3∂3 − ∂4;

A5
4.3 ∂1, ∂2, x3∂2 + ce−x3∂1, x1∂1 − ∂3, c ∈ {0; 1};

A6
4.3 ∂1, x3∂1, ∂2, (x1 + x2x3) ∂1 + x3∂3

A7
4.3 ∂1, x2∂1, x3∂1, x1∂1 + x2∂2 + (x3 − x2) ∂3;

A8
4.3 ∂1, x2∂1, −x2 ln |x2|∂1, x1∂1 + x2∂2
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Continuation of Table 1.

A1
4.4 ∂1, ∂2, ∂3, (x1 + x2) ∂1 + (x2 + x3) ∂2 + x3∂3 + ∂4;

A2
4.4 ∂1, ∂2, ∂3, (x1 + x2) ∂1 + (x2 + x3) ∂2 + x3∂3;

A3
4.4 ∂1, ∂2, x3∂1 + x4∂2, (x1 + x2) ∂1 + x2∂2 + x4∂3 − ∂4;

A4
4.4 ∂1, ∂2, −x3

2

2 ∂1 + x3∂2, (x1 + x2) ∂1 + x2∂2 − ∂3;
A5

4.4 ∂1, x3∂1, ∂2, (x1 + x2x3) ∂1 + x2∂2 − ∂3

A6
4.4 ∂1, x2∂1, x3∂1, x1∂1 − ∂2 − x2∂3;

A7
4.4 ∂1, x2∂1, x2

2
2 ∂1, x1∂1 − ∂2

A1
4.5 ∂1, ∂2, ∂3, x1∂1 + qx2∂2 + px3∂3 + ∂4

A2
4.5 ∂1, ∂2, ∂3, x1∂1 + qx2∂2 + px3∂3;

A3
4.5 ∂1, ∂2, x3∂1 + x4∂2, x1∂1 + qx2∂2 + (1− p)x3∂3 + (q − p)x4∂4;

A4
4.5 ∂1, ∂2, x3∂1, x1∂1 + qx2∂2 + ∂4;

A5
4.5 ∂1, ∂2, x3∂1, x1∂1 + qx2∂2;

A6
4.5 ∂1, ∂2, x3∂2, x1∂1 + qx2∂2 + ∂4;

A7
4.5 ∂1, ∂2, x3∂2, x1∂1 + qx2∂2;

A8
4.5 ∂1, ∂2, x3∂1 + f (x3) ∂2, x1∂1 + qx2∂2 + ∂4;

A9
4.5 ∂1, ∂2, x3∂1 + f (x3) ∂2, x1∂1 + qx2∂2;

A10
4.5 ∂1, ∂2, c1e(1−p)x3∂1 + c2e

(q−p)x3∂2, x1∂1 + qx2∂2 + ∂3,
ci ∈ {0; 1}, c1 = 0 when p = 1, c2 = 0 when q = p

A11
4.5 ∂1, x3∂1, ∂2, x1∂1 + px2∂2 + (1− q)x3∂3;

A12
4.5 ∂1, x2∂1, x3∂1, x1∂1 + (1− q)x2∂2 + (1− p)x3∂3;

A13
4.5 ∂1, x2∂1, x3∂1, x1∂1 + ∂4, p = q = 1;

A14
4.5 ∂1, x2∂2, f (x2) ∂1, x1∂1 + ∂3, f �= c1x2 + c2, p = q = 1;

A15
4.5 ∂1, x2∂2, f (x2) ∂1, x1∂1, f �= c1x2 + c2, p = q = 1;

A16
4.5 ∂1, e(1−q)x2∂1, e(1−p)x2∂1, x1∂1 + ∂2, q �= 1, p �= 1, q �= p

A1
4.6 ∂1, ∂2, ∂3, qx1∂1 + (px2 + x3) ∂2 + (−x2 + px3) ∂3 + ∂4;

A2
4.6 ∂1, ∂2, ∂3, qx1∂1 + (px2 + x3) ∂2 + (−x2 + px3) ∂3;

A3
4.6 ∂1, ∂2, x3∂1 + x4∂2, (qx1 − x2x3) ∂1 + (p− x4)x2∂2 + (q − p− x4)x3∂3 −

(
1 + x2

4

)
∂4;

A4
4.6 ∂1, ∂2, c

(√
x2

3 + 1e(p−q) arctan x3

)
∂1 + x3∂2,(

qx1 − cx2

(√
x2

3 + 1e(p−q) arctan x3

))
∂1 + (p− x3)x2∂2 −

(
x2

3 + 1
)
∂3, c ∈ {0; 1}

A5
4.6 ∂1, x2∂1, x3∂1, qx1∂1 + ((q − p)x2 + x3) ∂2 + ((q − p)x3 − x2) ∂3

A6
4.6 ∂1, e(q−p)x2 cosx2∂1, −e(q−p)x2 sinx2∂1, qx1∂1 + ∂2

A1
4.7 ∂1, ∂2, x2∂1 + ∂3,

(
2x1 + x3

2

2

)
∂1 + (x2 + x3) ∂2 + x3∂3 + ∂4

A2
4.7 ∂1, ∂2, x2∂1 + ∂3,

(
2x1 + x3

2

2

)
∂1 + (x2 + x3) ∂2 + x3∂3;

A3
4.7 ∂1, ∂2, x2∂1 + x3∂2, 2x1∂1 + x2∂2 − ∂3;

A4
4.7 ∂1, x2∂1, −∂2,

(
2x1 − x2

2

2

)
∂1 + x2∂2 + ∂3;

A5
4.7 ∂1, x2∂1, −∂2,

(
2x1 − x2

2

2

)
∂1 + x2∂2

A1
4.8 ∂1, ∂2, x2∂1 + ∂3, (1 + q)x1∂1 + x2∂2 + qx3∂3 + ∂x4;

A2
4.8 ∂1, ∂2, x2∂1 + ∂3, (1 + q)x1∂1 + x2∂2 + qx3∂3, q �= 0;

A3
4.8 ∂1, ∂2, x2∂1 + ∂3, x1∂1 + x2∂2 + x4∂3, q = 0;

A4
4.8 ∂1, ∂2, x2∂1 + ∂3, x1∂1 + x2∂2 + c∂3, q = 0, c ∈ R;

A5
4.8 ∂1, ∂2, x2∂1 + x3∂2, 2x1∂1 + x2∂2 + ∂4, q = 1;
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Continuation of Table 1.

A6
4.8 ∂1, ∂2, x2∂1 + x3∂2, (1 + q)x1∂1 + x2∂2 + (1− q)x3∂3;

A7
4.8 ∂1, ∂2, x2∂1, (1 + q)x1∂1 + x2∂2 + ∂3, q �= 1;

A8
4.8 ∂1, ∂2, x2∂1, (1 + q)x1∂1 + x2∂2, q �= 1;

A9
4.8 ∂1, ∂2, x2∂1, x3∂1 + x2∂2, q = −1;

A10
4.8 ∂1, −x2∂1, ∂2, (1 + q)x1∂1 + qx2∂2 + ∂3;

A11
4.8 ∂1, −x2∂1, ∂2, (1 + q)x1∂1 + qx2∂2

A1
4.9 ∂1, ∂2, x2∂1 + ∂3,

(
2qx1 + x3

2−x2
2

2

)
∂1 + (qx2 + x3) ∂2 + (qx3 − x2) ∂3 + ∂4;

A2
4.9 ∂1, ∂2, x2∂1 + ∂3,

(
2qx1 + x3

2−x2
2

2

)
∂1 + (qx2 + x3) ∂2 + (qx3 − x2) ∂3;

A3
4.9 ∂1, ∂2, x2∂1 + ∂3,

(
x3

2−x2
2

2 + x4

)
∂1 + x3∂2 − x2∂3, q = 0;

A4
4.9 ∂1, ∂2, x2∂1 + x3∂2,

(
2qx1 − x2

2

2

)
∂1 + (q − x3)x2∂2 −

(
1 + x3

2
)
∂3

A1
4.10 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, x2∂1 − x1∂2 + ∂4;

A2
4.10 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, x2∂1 − x1∂2 + x4∂3;

A3
4.10 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, x2∂1 − x1∂2 + c∂3, c ∈ R

A4
4.10 ∂1, x2∂1, x1∂1 + ∂3, −x1x2∂1 −

(
1 + x2

2
)
∂2;

A5
4.10 ∂1, ∂2, x1∂1 + x2∂2, x2∂1 − x1∂2 + ∂3;

A6
4.10 ∂1, ∂2, x1∂1 + x2∂2, x2∂1 − x1∂2;

A7
4.10 ∂1, x2∂1, x1∂1, −x1x2∂1 −

(
1 + x2

2
)
∂2

This can be applied to the integrating of fourth-order differential equations of or some system
classes of four first-order differential equations and their classification.
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A description of the quantum superalgebra Uq[sl(n+ 1|m)] and hence (at q = 1) of the spe-
cial linear superalgebra sl(n+ 1|m) via a new set of generators, called Jacobson generators,
is given. It provides an alternative to the canonical description of Uq[sl(n+1|m)] in terms of
Chevalley generators. The Jacobson generators satisfy three linear supercommutation rela-
tions and define Uq[sl(n+ 1|m)] as a deformed Lie supertriple system. Fock representations
are constructed and the action of the Jacobson generators on the Fock basis is written down.
The Jacobson generators and the Fock representations allow for an interpretation in terms
of quantum statistics, and the properties of the underlying statistics are shortly discussed.

1 Introduction

The Lie superalgebra sl(n+ 1|m) is one of the basic classical simple Lie superalgebras in Kac’s
classification [1]. It can be considered as the superanalogue of the special linear Lie algebra
sl(n+ 1). The quantum superalgebra Uq[sl(n+ 1|m)] is a Hopf superalgebra deformation of the
universal enveloping superalgebra U [sl(n+ 1|m)] of sl(n+ 1|m).

Usually, Uq[sl(n + 1|m)] is defined by its Chevalley generators ei, fi, hi, i = 1, . . . , n + m,
subject to the Cartan–Kac relations and the Serre relations [2, 3, 4]. Beside these defining
relations, also the other Hopf superalgebra maps (comultiplication, co-unit and antipode) are
part of the definition. In the present talk, however, we do not use these other Hopf superalgebra
maps; so we shall concentrate on Uq[sl(n+ 1|m)] as an associative superalgebra.

The definition in terms of Chevalley generators has the advantage that the comultiplication,
co-unit and antipode are easy to give. Furthermore, certain representations can be constructed
explicitly (e.g. for the essentially typical representations a Gelfand–Zetlin basis exist for which
the action of the Chevalley generators is known [5]). Having certain physical applications in
mind, however, it is sometimes more useful to work with a different set of generators for Uq[sl(n+
1|m)].

The different set of generators for Uq[sl(n + 1|m)] given here are the Jacobson generators
(JGs) (denoted by a+

i , a−i and Hi, with i = 1, . . . , n + m). For the case of sl(n + 1), such
generators were originally introduced by Jacobson [6, 7]. The use of Jacobson generators has
a number of advantages.

First of all, in certain applications it is necessary to have a complete basis of Uq[sl(n+ 1|m)]
(following from the Poincaré–Birkhoff–Witt theorem). Such a basis is given in terms of the
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Cartan–Weyl elements. Although it is possible to express all Cartan–Weyl elements in terms of
the Chevalley generators, such expressions soon become rather unmanageable. In terms of the
Jacobson generators, the description of all Cartan–Weyl elements is very easy.

Secondly, the Jacobson generators allow for the definition of a simple class of representations,
the Fock representations of Uq[sl(n+1|m)]. In these representations, the Jacobson generators a+

i

and a−i share certain properties with ordinary creation and annihilation operators.
A disadvantage of the Jacobson generators compared to the Chevalley generators is that

the explicit expressions for the other Hopf (super)algebra maps (comultiplication, co-unit and
antipode) become very lengthy and complicated.

In Section 2 we define the Jacobson generators of Uq[sl(n + 1|m)] as a special subset of the
Cartan–Weyl elements. The description of all Cartan–Weyl elements in terms of the Jacobson
generators becomes very simple. In order to apply these results (e.g. in representations) one
must have a list of all (super)commutation relations between these Cartan–Weyl elements; in
terms of Jacobson generators, this means one has to determine certain triple relations. These
are given in Theorem 2. In Section 3 we define Fock representations for Uq[sl(n+ 1|m)], related
to the Jacobson generators. The Fock representations are labeled by a number p; when p is
a nonnegative integer, the Fock representation is finite-dimensional. These representations are
further analyzed. Following conditions required in a physical context, it is determined when
these Fock representations are unitary, see Theorem 4. In that case, an orthonormal basis of
the Fock space is given, together with the action of the Jacobson generators on these basis
elements. Finally, in Section 4 the Jacobson generators are interpreted as operators creating or
annihilating a “particle”, and the underlying quantum statistics is discussed.

2 Jacobson generators of Uq[sl(n + 1|m)]

The Hopf superalgebra Uq[sl(n+ 1|m)] is defined in the sense of Drinfeld [8], as a topologically
free C[[h]] module. As a superalgebra, Uq[sl(n+1|m)] is usually defined by means of its Chevalley
generators, subject to the Cartan–Kac relations and the Serre relations [2, 3, 4]. Here, we present
an alternative description of Uq[sl(n+ 1|m)] in terms of the so-called Jacobson generators. The
definition of JGs can be best presented in the framework of a set of Cartan–Weyl elements eij ,
i, j = 0, . . . , n + m of Uq[gl(n + 1|m)] [9]. The elements eij are the q-analogues of the defining
basis of gl(n+ 1|m); their grading is given by deg(eij) = θij = θi + θj , where

θi =
{

0̄ if i = 0, . . . , n,
1̄ if i = n+ 1, . . . , n+m.

We shall refer to eij as a positive root vector (resp. negative root vector) if i < j (resp. i > j).
For the formulation of the Poincaré–Birkhoff–Witt theorem, it is necessary to fix a total order
for the set of elements eij . Among the positive root vectors, this order is given by

eij < ekl, if i < k or i = k and j < l; (1)

for the negative root vectors eij one takes the same rule (1), and total order is fixed by choosing

positive root vectors < negative root vectors < eii.

The difference between Uq[sl(n+ 1|m)] and Uq[gl(n+ 1|m)] is in the elements of the Cartan
subalgebra. For Uq[gl(n + 1|m)] the Cartan subalgebra is generated by eii (i = 0, . . . , n + m).
For Uq[sl(n+ 1|m)] the Cartan subalgebra is generated by the elements Hi, with

Hi = e00 − (−1)θieii, i = 1, . . . , n+m. (2)
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We will use also the elements Li and L̄i, where

Li = qHi , L̄i = q−Hi , i = 1, . . . , n+m. (3)

The Cartan–Weyl elements of Uq[sl(n+ 1|m)] are now given by {Hi; i = 1, . . . , n+m}∪{eij ; i �=
j = 0, . . . , n+m}. The complete set of supercommutation relations between these Cartan–Weyl
elements is given by

[Hi, Hj ] = 0; (4)

[Hi, ejk] = (δ0j − δ0k − (−1)θi(δij − δik))ejk; (5)

for two positive root vectors eij < ekl:

[[eij , ekl]]
q
(−1)

θj δjl−(−1)
θj δjk+(−1)θi δik

= δjkeil +
(
q − q−1

)
(−1)θkθ(l > j > k > i)ekjeil; (6)

for two negative root vectors eij > ekl:

[[eij , ekl]]
q
−(−1)

θj δjl+(−1)
θj δjk−(−1)θi δik

= δjkeil −
(
q − q−1

)
(−1)θkθ(i > k > j > l)ekjeil; (7)

and finally for a positive root vector eij and a negative root vector ekl:

[[eij , ekl]] =
δilδjk
q − q−1

(
L

(−1)θi

j L̄
(−1)θi

i − L̄
(−1)θi

j L
(−1)θi

i

)
(8)

+
((
q − q−1

)
θ(j > k > i > l)(−1)θkekjeil − δilθ(j > k)(−1)θklekj + δjkθ(i > l)eil

)
LiL̄k

+ LjL̄l

(
−

(
q − q−1

)
θ(k > j > l > i)(−1)θjeilekj − δilθ(k > j)(−1)θijekj + δjkθ(l > i)eil

)
,

where

[a, b]x = ab− xba, {a, b}x = ab+ xba, [[a, b]]x = ab− (−1)deg(a) deg(b)xba,

θ(i1 > i2 > . . . > ir) =
{

1, if i1 > i2 > . . . > ir,
0, otherwise.

Define the Jacobson generators of Uq[sl(n+ 1|m)] to be the following Cartan–Weyl vectors:

a−i = e0i, a+
i = ei0, Hi, i = 1, . . . , n+m. (9)

Then from (8) one obtains:

[[a−i , a
+
j ]] = −(−1)θiLieji, (i < j); [[a−i , a

+
j ]] = −(−1)θjejiL̄j , (i > j). (10)

In terms of the JGs the definition of Uq[sl(n+ 1|m)] reads

Theorem 1. Uq[sl(n+ 1|m)] is a unital associative algebra with generators {Hi, a
±
i }i=1,...,n+m

and relations

[Hi, Hj ] = 0, [Hi, a
±
j ] = ∓(1 + (−1)θiδij)a±j ,

[[a−i , a
+
i ]] =

Li − L̄i
q − q̄

, Li = qHi , L̄i ≡ L−1
i = q−Hi , q̄ ≡ q−1,

[[[[aηi , a
−η
i+ξ]], a

η
k]]qξ(1+(−1)θi δik) = ηθkδk,i+ξL

−ξη
k aηi ,

[[aξ1, a
ξ
2]]q = 0, [[aξ1, a

ξ
1]] = 0, ξ, η = ± or ± 1. (11)
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The set of relations (11) is the minimal one defining the algebra Uq[sl(n + 1|m)]. This
description of Uq[sl(n + 1|m)] (resp. sl(n + 1|m)) is somewhat similar to the Lie triple system
description of Lie algebras, initiated by Jacobson [6, 7] and generalized to Lie superalgebras by
Okubo [10]. Therefore we have defined Uq[sl(n+ 1|m)] (resp. sl(n+ 1|m)) as a (deformed) Lie
supertriple system.

In order to be able to reorder the Cartan–Weyl elements, which appear when computing the
transformations of the Fock spaces, it is convenient to write down all triple relations between
the JGs (which certainly follow from the relations (11)).

Theorem 2. A set of Cartan–Weyl elements of Uq[sl(n + 1|m)] is given by Hi, a±i , [[a+
i , a

−
j ]]

(i �= j = 1, . . . , n+m). A complete set of supercommutation relations between these elements is
given by:

[Hi, Hj ] = 0; [Hi, a
±
j ] = ∓(1 + (−1)θiδij)a±j ; (12)

[[a−i , a
+
i ]] =

Li − L̄i
q − q−1

; (13)

[[aηi , a
η
j ]]q = 0 (i < j); (a±i )2 = 0 (i = n+ 1, . . . , n+m); (14)

[[[[aηi , a
−η
j ]], aηk]]qξ(1+(−1)θi δik) = ηθjδjkL

−ξη
k aηi + (−1)θkε(j, k, i)(q − q̄)[[aηk, a

−η
j ]]aηi

= ηθjδjkL
−ξη
k aηi + (−1)θkθj ε(j, k, i)qξ(q − q̄)aηi [[a

η
k, a
−η
j ]], (15)

where (j − i)ξ > 0, ξ, η = ± and

ε(j, k, i) =


1, if j > k > i;

−1, if j < k < i;
0, otherwise,

and we have used the notation q̄ = q−1.

3 Fock representations

We construct the Fock modules using the induced module procedure. G = Uq[sl(n + 1|m)],
with Cartan–Weyl elements Hi, a±i and [[a+

i , a
−
j ]] (i �= j = 1, . . . , n + m), has a subalgebra

A = Uq[gl(n|m)] with Cartan–Weyl elements Hi and [[a+
i , a

−
j ]] (i �= j = 1, . . . , n + m). Define

a trivial one-dimensional A module as follows:

[[a−i , a
+
j ]]|0〉 = 0, (i �= j = 1, . . . , n+m), (16)

Hi|0〉 = p|0〉, (17)

where p is any complex number. Let P be the (associative) subalgebra of G = Uq[sl(n + 1|m)]
generated by the elements of A and {a−i ; i = 1, . . . , n + m}. The one-dimensional module C|0〉
can be extended to a one-dimensional P module by requiring:

a−i |0〉 = 0, i = 1, . . . , n+m. (18)

Now the G module W̄p is defined as

W̄p = IndGP C|0〉.

Clearly W̄p is freely generated by the generators a+
i (i = 1, . . . , n+m) acting on |0〉. Therefore

a basis for W̄p is given by

|p; r1, r2, . . . , rn+m〉 ≡ (a+
1 )r1(a+

2 )r2 · · · (a+
n )rn(a+

n+1)rn+1(a+
n+2)rn+2 · · · (a+

n+m)rn+m |0〉, (19)

where ri ∈ Z+ for i = 1, . . . , n and ri ∈ {0, 1} for i = n+ 1, . . . , n+m.
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Theorem 3. The transformation of the basis (19) of W̄p under the action of the JGs reads:

Hi|p; r1, r2, . . . , rn+m〉 =

p− (−1)θiri −
n+m∑
j=1

rj

 |p; r1, r2, . . . , rn+m〉, (20)

a−i |p; r1, r2, . . . , rn+m〉 = (−1)θ1r1+θ2r2+···+θi−1ri−1qr1+···+ri−1 [ri]

p− n+m∑
j=1

rj + 1


× |p; r1, r2, . . . , ri−1, ri − 1, ri+1, . . . , rn+m〉, (21)

a+
i |p; r1, r2, . . . , rn+m〉 = (−1)θ1r1+θ2r2+···+θi−1ri−1 q̄r1+···+ri−1(1− θiri)

× |p; r1, r2, . . . , ri−1, ri + 1, ri+1, . . . , rn+m〉, (22)

where i = 1, . . . , n+m.

Proof. We sketch the proof. Equation (20) is an immediate consequence of [Hi, a
+
j ] = −(1 +

(−1)θiδij)a+
j , which is one of the last relations in (12). Also the action of a+

i on the basis
vectors is easy: (22) follows directly from (14). The proof of (21) follows from the following
relations [11]:

• [[A,B1B2 · · ·Bi−1BiBi+1 · · ·Bj ]]qb1+b2+···+bj

=
j∑
i=1

qb1+b2+···+bi−1(−1)α(β1+···+βi−1)B1B2 · · ·Bi−1[[A,Bi]]qbiBi+1 · · ·Bj ,

where α = deg(A) and βi = deg(Bi); (23)

• [[a−i , (a
+
j )r]] =


q̄2r − 1
q̄2 − 1

(a+
j )r−1[[a−i , a

+
j ]] when i < j,

q2r − 1
q2 − 1

(a+
j )r−1[[a−i , a

+
j ]] when i > j;

(24)

• [[a−i , (a
+
i )r]] =

(a+
i )r−1

q − q̄

(
q̄2r − 1
q̄2 − 1

Li −
q2r − 1
q2 − 1

L̄i

)
; (25)

• [[[[a−i , a
+
j ]], (a+

i )r]]qr = −(−1)θj
q̄2r − 1
q̄2 − 1

L̄ia
+
j (a+

i )r−1, i > j, (26)

• [[[[a−i , a
+
j ]], (a+

k )r]]qr = (−1)θj (q2r − 1)a+
j (a+

k )r−1[[a−i , a
+
k ]], i > k > j, (27)

• [[a−i , a
+
1 ]](a+

2 )r2 · · · (a+
n+m)rn+m |0〉

= −(−1)θ1+θ2r2+θ3r3+···+θi−1ri−1q2r2+···+2ri−1+ri+···+rn+m−p[ri]

× a+
1 (a+

2 )r2 . . . (a+
i−1)ri−1(a+

i )ri−1(a+
i+1)ri+1 · · · (a+

n+m)rn+m |0〉, i > 1. (28)

�

The action of the elements Hi and a±i (i = 1, . . . , n+m) on the basis vectors of W̄p, determined
in Theorem 3, imply that W̄p has an invariant submodule when p is a nonnegative integer. From
now on we shall assume that p ∈ Z+. Then we have

Corollary 1. The Uq[sl(n+ 1|m)] module W̄p has an invariant submodule Vp with basis vectors

|p; r1, r2, . . . , rn+m〉, with
n+m∑
i=1

ri > p.
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The quotient module Wp = W̄p/Vp is an irreducible representation for Uq[sl(n+1|m)]. The basis
vectors of Wp are given by (the representatives of)

|p; r1, r2, . . . , rn+m〉, with
n+m∑
i=1

ri ≤ p. (29)

Now we select a class of Fock modules important for physical applications. These are the
ones for which the standard Fock metric is positive definite, and for which the representatives
of a±i and Hi (i = 1, . . . , n+m) satisfy the Hermiticity conditions:

(a+
i )† = a−i , (a−i )† = a+

i , (Hi)† = Hi. (30)

For the Fock representation Wp, we can define a Hermitian form ( , ) by requiring

(|0〉 , |0〉) = 〈0|0〉 = 1, (31)

and by postulating that the Hermiticity conditions (30) should be satisfied, i.e.

(a±i v, w) = (v, a∓i w), ∀ v, w ∈Wp. (32)

Then any two vectors |p; r1, r2, . . . , rn+m〉 and |p; r′1, r′2, . . . , r′n+m〉 with (r1, r2, . . . , rn+m) �=
(r′1, r′2, . . . , r′n+m) are orthogonal and

(|p; r1, r2, . . . , rn+m〉, |p; r1, r2, . . . , rn+m〉) =
[p]!

[p−R]!

n+m∏
i=1

[ri]! =
[p]!

[p−R]!

n∏
i=1

[ri]!, (33)

where R = r1 + r2 + · · · + rn+m. The straightforward computations show that Hermiticity
conditions hold if q is a phase, i.e.

q = eiφ (−π < φ < π). (34)

Let us now further investigate when the Hermitian form ( , ) is an inner product. This means
that for every (r1, . . . , rn+m) with 0 ≤ R ≤ p, the value in (33) should be positive. In particular,
this implies that all the numbers

[p], [p− 1], [p− 2], . . . , [2], [1]

should be positive. However, since q = eiφ is a phase, we have

[k] =
qk − q−k

q − q−1
=

sin(kφ)
sin(φ)

.

The common domain where all functions

sin(2φ)
sin(φ)

,
sin(3φ)
sin(φ)

, . . . ,
sin(pφ)
sin(φ)

are positive is

−π
p
< φ <

π

p
.

Thus we have

Theorem 4. The irreducible Fock module Wp (p ≥ 2) is unitary if and only if q is a phase, i.e.
q = eiφ, with −π

p < φ < π
p .
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Observe that whether q is a root of unity or not does not have any effect on the irreducibility
or unitarity of the Fock module Wp, as long as the conditions of Theorem 4 are satisfied. Indeed,
suppose that q = eiφ is a root of unity with φ a rational multiple of π and −π

p < φ < π
p . Then the

smallest integer N for which qN = −1 is greater than p. As a consequence, the rhs in (33) is never
zero. This implies that there are no singular vectors among the weight vectors |p; r1, . . . , rn+m〉,
and thus irreducibility holds.

Under the conditions of Theorem 4, we can define an orthonormal basis of Wp :

|p; r1, r2, . . . , rn+m) =

√√√√√ [p−
n+m∑
l=1

rl]!

[p]![r1]! · · · [rn+m]!
|p; r1, r2, . . . , rn+m〉, (35)

where 0 ≤
n+m∑
l=1

rl ≤ p. In the new basis (35) the transformation formulas (20)–(22) read

(i = 1, . . . , n+m):

Hi|p; r1, r2, . . . , rn+m) =

p− (−1)θiri −
n+m∑
j=1

rj

 |p; r1, r2, . . . , rn+m), (36)

a−i |p; r1, . . . , rn+m) = (−1)θ1r1+···+θi−1ri−1

× qr1+···+ri−1

√√√√[ri]

[
p−

n+m∑
l=1

rl + 1

]
|p; r1, . . . , ri−1, ri − 1, ri+1, . . . , rn+m), (37)

a+
i |p; r1, . . . , rn+m) = (−1)θ1r1+···+θi−1ri−1 q̄r1+···+ri−1(1− θiri)

×

√√√√[ri + 1]

[
p−

n+m∑
l=1

rl

]
|p; r1, . . . , ri−1, ri + 1, ri+1, . . . , rn+m). (38)

4 Properties of the underlying statistics

In the present section we indicate that each Uq[sl(n + 1|m)] module Wp can be considered as
a state space, where a+

i (resp. a−i ) can be interpreted as operators creating (resp. annihilating)
“particles” with, say, energy εi. To this end consider a “free” Hamiltonian

H =
n+m∑
i=1

εieii. (39)

Then

[H, a±i ] = ±εia±i . (40)

This result together with equations (37)–(38) allows one to interpret a+
i as an operator creating

a particle with energy εi, or more precisely, creating a particle on the i-th orbital. The ope-
rator a−i annihilates a particle with energy εi, or equivalently annihilates a particle on the
i-th orbital. On every orbital i with i = n + 1, . . . , n + m there cannot be more than one
particle since (a+

i )2 = 0 for i = n + 1, . . . , n + m, whereas such a restriction does not hold
for the first n orbitals. These are Fermi like (resp. Bose like) properties. There is however
one essential difference. If the corresponding Fock module is characterized by p then no more

than p “particles” can be accommodated in the system,
n+m∑
i=1

ri ≤ p. Hence the number of
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particles that can be accommodated on a given orbital, keeping the number of particles on all
other orbitals fixed, depends on how many particles have already been accommodated in the

system. If
n+m∑
i=1

ri < p the particles behave similar to bosons and fermions, but are neither bosons

nor fermions since the maximum number of the particles in the system cannot exceed p. This
condition together with the restrictions for the orbitals with i = n+1, . . . , n+m is the analogue
of the Pauli principle for this statistics.
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On One Algebra of Temperley–Lieb Type
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An algebra generated by projections with relations of Temperley–Lieb type is considered.
Knowledge of Gröbner basis of the ideal allows to find a linear basis of the algebra. Some
questions of representation theory for this algebra were studied in [13]. Obtained in the
present paper are the additional relations, which hold in all finite-dimensional irreducible
∗-representations, although they do not hold in the algebra.

1 Introduction

Temperley–Lieb algebras generated by n projections p1, . . . , pn with relations

pipj = pjpi, |i− j| > 1, pipi±1pi = τpi, τ ∈ R,

appeared in [1, 2] in the context of ice-type models. On the other hand, they were applied
to studying of von Neumann algebras and problems of knots theory by V. Jones (see [3, 4]).
Representations of Temperley–Lieb algebras were studied and used by H. Wenzl, F.M. Goodman,
P.P. Martin (see, e.g., [5, 6, 7, 8, 9]) and other authors. Values of parameter τ such that the
representations exist were found, a description of irreducible representations was given, their
dimensions were calculated and other questions were considered.

In [13] we considered the analogous questions of representation theory for modification of
Temperley–Lieb algebra: algebra generated by projections p1, . . . , pn with relations

pipj = 0, |i− j| > 1, (i, j) �= (1, n) ; pipi±1pi = τpi, p1pnp1 = τp1, pnp1pn = τpn.

In the present paper we find the linear basis of this algebra and consider its properties. Fur-
thermore, some properties of the representations of the algebra are studied by using the results
of [13]. New relations in the finite-dimensional irreducible ∗-representations of the algebra allow
to prove that the representations obtained by the action of group Zn on the operators P1, . . . , Pn
are equivalent.

The paper is arranged as follows. In Section 2 we give main definitions and designations. A set
of values of parameter τ when the finite-dimensional ∗-representations exist and a description of
irreducible ∗-representations up to a unitary equivalence are presented (see [13]). In Section 3
we find the linear basis of algebra in question using the Diamond Lemma (see, e.g., [10, 11, 12])
and discovery additional relations in the finite-dimensional irreducible ∗-representations of the
algebra.

2 Description of all finite-dimensional irreducible
∗-representations of algebra TLτ,n,Γ

We are going to study ∗-algebra generated by n (n ≥ 3) projections with relations depending
on real parameter τ :

TLτ,n,Γ = C

〈
e, p1, . . . , pn | pi = p2

i = p∗i , pipjpi = γijpi,
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(γij) = Γ =



1 τ 0 · · · 0 τ
τ 1 τ 0 · · · 0

0 τ 1 τ
. . . 0

...
. . . . . . . . . . . .

...
0 0 · · · τ 1 τ
τ 0 · · · 0 τ 1


〉
.

The theorems giving information about all finite-dimensional ∗-representations of TLτ,n,Γ can
be found in [13], but we need some results about these representations here. First of all we
give the theorem about the set of the values of parameter τ when the ∗-representations exist
and the description of construction of operators of these representations. In the following we
consider only nontrivial finite-dimensional irreducible ∗-representations and name them simply
‘representations’. If π is a representation of algebra TLτ,n,Γ then Pi will denote π (pi) .

Theorem 1. Representations of algebra TLτ,n,Γ exist in finite-dimensional space H iff

τ ∈
[
0,

1
4 cos2 π

n

]
=: Σn.

Then, if τ = 0 all pi are orthogonal and if τ �= 0 then a basis of H exists such that operators of
the representation are as follows:

P1 = diag (1, 0, . . . , 0) ,

Pi =



0 · · · 0 0 0 0 · · ·
...

. . .
...

...
...

...
...

0 · · · 0 0 0 0 · · ·
0 · · · 0 τi−2

√
τi−2 − τ2

i−2 0 · · ·

0 · · · 0
√
τi−2 − τ2

i−2 1− τi−2 0 · · ·
0 · · · 0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·


, i = 2, . . . , n− 1,

where τi = τ
1−τi−1

, i = 1, . . . , n − 3, τ0 = τ and the number of zeroes on the top of diagonal is
equal to i− 2.

Pn =



τ l1 l2 · · · ln−3 λ µ

l1
l21
τ

l1l2
τ · · · l1ln−3

τ
l1λ
τ

l1µ
τ

l2
l1l2
τ

l22
τ · · · l2ln−3

τ
l2λ
τ

l2µ
τ

...
...

...
. . .

...
...

...

ln−3
l1ln−3

τ
l2ln−3

τ · · · l2n−3

τ
ln−3λ
τ

ln−3µ
τ

λ̄ l1λ̄
τ

l2λ̄
τ · · · ln−3λ̄

τ
|λ|2
τ

λ̄µ
τ

µ l1µ
τ

l2µ
τ · · · ln−3µ

τ
µλ
τ

µ2

τ


,

where li = (−1)i τ
i−1∏
j=0

τj√
τj−τ2

j

. λ is such that

ln−3 + λ

√
τn−3 − τ2

n−3

τn−3

ln−3 + λ̄

√
τn−3 − τ2

n−3

τn−3

 =
τ2

τn−3
,

and µ2 = τ − τ2 −
n−3∑
j=1

l2j − |λ|2, µ ≥ 0.
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Proof. The proof of this theorem can be found in [13]. �

Remark 1. If τ ∈ Σn \{0} then dimension of H is equal to n if λ, µ �= 0, to n−1 if λ �= 0, µ = 0
and to n− 2 if λ = µ = 0 (i.e. τn−3 = 1).

In the following we assume that τ �= 0.

Remark 2. Theorem 1 gives explicit construction of operators of representations. One can
easily check that different λ’s define inequivalent representations. So, we say that each irreducible
representation of ∗-algebra TLτ,n,Γ is given by the number λ.

3 Linear basis in the algebra TLτ,n,Γ

To found a linear basis in the algebra TLτ,n,Γ we use the Diamond Lemma (see, e.g., [10, 11, 12]).
Let Fn = C 〈e, p1, . . . , pn〉 be a free associative algebra and W be a set of words on the

alphabet {e, p1, . . . , pn} with homogeneous lexicographic order and minimal element e.
Let I be the ideal generated by

R =
{
p2
i − pi, pipi±1pi − τpi, p1pnp1 − τp1, pnp1pn − τpn, pipj |

|i− j| > 1, (i, j) �= (1, n) , (n, 1)} .

It is not difficult to prove that R is the reduced Gröbner basis of the ideal I. This implies
that the next theorem holds:

Theorem 2. A linear basis of the algebra TLτ,n,Γ is:

e, p1, p1p2, . . . , (p1p2 . . . pn)k, (p1p2 . . . pn)k p1 . . . pj , k ∈ N, j = 1, . . . , n− 1;

p2, p2p3, . . . , (p2p3 . . . pnp1)k , (p2p3 . . . pnp1)k p2 . . . pj , k ∈ N, j = 2, . . . , n;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pn, pnp1, . . . , (pnp1p2 . . . pn−1)k , (pnp1 . . . pn−1)k pn . . . pj , k ∈ N, j = n, 1, . . . , n− 2

and adjoint elements of these words.

Direct calculations imply that the basis of modification of Temperley–Lieb algebra has the
analogous property to the basis of Temperley–Lieb algebra:

Proposition 1. Product of any two basis elements of algebra TLτ,n,Γ is either zero or a power
of τ times another basis element.

Proposition 2. For any representation π the following relations hold:

P1P2 · · ·PnP1 = f (λ)P1, PiPi+1 · · ·PnP1 · · ·Pi−1Pi = f (λ)Pi, i = 2, . . . , n,

where

f (λ) =
(
τn−3ln−3 +

√
τn−3 − τ2

n−3λ̄

) n−4∏
j=0

√
τj − τ2

j .

Note that these relations are not valid in the algebra TLτ,n,Γ because left and right parts of
the equations are the elements of the linear basis of the algebra TLτ,n,Γ.

Corollary 1. The algebra TLτ,n,Γ is infinite algebra. But for any finite-dimensional irreducible
∗-representation π the algebra π (TLτ,n,Γ) is infinite algebra.
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Corollary 2. (Action on the set {P1, . . . , Pn} of the group Zn.) Let π, π̃ be the representations
of the algebra TLτ,n,Γ such that π (pi) = Pi, π̃ (p1) = Pi, π̃ (p2) = Pi+1, . . ., π̃ (pn−i+2) = P1,
. . ., π̃ (pn) = Pi−1 (i = 1, . . . , n). Then π and π̃ are equivalent.

Proof. Theorem 1 implies that π̃ is equivalent to the representation π̂ such that π̂ (pi) = Pi
(but a parameter λ̂ which defines this representation is possible different from the parameter λ
that defines the representation π), i.e., there exists an unitary operator C that

CPiC
−1 = P1, CPi+1C

−1 = P2, . . . , CP1C
−1 = Pn−i+2, . . . , CPi−1C

−1 = Pn.

From Proposition 2 it follows that

P1P2 · · ·PnP1 = f
(
λ̂
)
P1

that implies

PiPi+1 · · ·PnP1 · · ·Pi−1Pi = f
(
λ̂
)
Pi.

But

PiPi+1 · · ·PnP1 · · ·Pi−1Pi = f (λ)Pi

that implies f (λ) = f
(
λ̂
)

or λ = λ̂ what proves the statement of Corollary 2. �
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In this work we study involutions in finitely presented ∗-algebras which preserve the natural
filtration.

1 Introduction

Introducing additional structures is often useful in a study of algebraic objects, in particular
finitely presented algebras and their representations, – introducing topology in algebras gives
a comprehensive theory of Banach algebras or, more generally, a theory of locally convex alge-
bras; introducing an involution, which we can consider as some inner symmetry, calls into being
the theory of ∗-algebras; considering an involution together with the corresponding norm gives
the theory of C∗-algebras. Moreover, on the one hand, studying not all representations but only
those which “conserve” this additional structure (for example, ∗-representations) is simple (for
example, ∗-representations are indecomposable if and only if they is irreducible, see [1]) on the
other hand, this is often sufficient for applications.

In [1] the theory of ∗-representations of finitely presented ∗-algebras is studied, and the
involution in the considered ∗-algebras often preserves filtration (see Definition 1). In this
article we consider the following question. Let Fn be a free algebra with n generators x1, . . . , xn
and an identity e, and lets us also have a unital finitely presented algebra

A = C〈x1, . . . , xn | q1 = 0, . . . , qm = 0 〉,

where qk ∈ F, k = 1, . . . ,m. We can assume, without loss of generality, that all relations qk
are nonlinear, for otherwise, the algebra A is isomorphic to an algebra with a smaller number
of generators (roughly speaking, we can exclude generators that are linear combinations of
the others). We will denote by V (A) the linear subspace of A generated by the elements
x0 = e, x1, . . . , xn. Then the question is how many involutions which map V (A) into itself exist
in the algebra A such that the corresponding ∗-algebras are not ∗-isomorphic.

The answer is that such an involution is unique and so we can always suppose that the
generators are self-adjoint (see Theorem 1 and Proposition 1). Moreover, in some cases there is
a ∗-isomorphism between the corresponding ∗-algebras such as it “conserves” the relations (see
Theorem 1 and examples).

2 Main result

We will denote the free ∗-algebra with n self-adjoint generators zk by F∗n. Some other involution
will be denoted by �. It is given by defining its values on generators. We will denote the free
∗-algebra with such an involution by

F�n = C〈x1, . . . , xn |x�k = pk, k = 1, . . . , n 〉,

where pk ∈ Fn.
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Definition 1. We say that an involution � of a ∗-algebra A� preserves the natural filtration iff
the involution maps V(A�) into itself.

Theorem 1. Let an involution � of the ∗-algebra F�n preserve the natural filtration. Then there
is a ∗-isomorphism ϕ : F∗n → F�n. Moreover, ϕ(V (F∗n)) = V (F�n).

Proof. We can assume that the first n − l generators are self-adjoint and the others are not,
such otherwise, we can renumber the generators. We will prove the theorem by induction on
the number l of the generators that are not self-adjoint.

If l = 0 then there is nothing to prove, since all the generators are self-adjoint.
Let 1 � l � n. Put

yk =
xk + x�k

2
, k = 0, . . . , n.

It is evident that y�k = yk. Because the involution preserves the filtration, x�k ∈ V (F�n) and so
yk ∈ V (F�n).

If y0 = e, y1, . . . , yn are linearly independent then we define ϕ : F∗n → F�n on the generators
by ϕ(zk) = yk, k = 0, . . . , n, z0 = e. Since dimV (F�n) = n + 1 and y0, y1, . . . , yn are linearly
independent and lie in V (F�n), yk, k = 0, . . . , n, is a linear basis of V (F�n) and so

xk =
n∑
j=0

αjkyj , αjk ∈ C.

Then the homomorphism inverse to ϕ is defined on the generators by

ϕ−1(xk) =
n∑
j=0

αjkzj .

So ϕ is an isomorphism of the algebras F�n and F∗n. It is evident that ϕ is also a ∗-homomorphism
and ϕ(V (F∗n)) = V (F�n).

Let now y0 = e, y1, . . . , yn be linearly dependent. Then, since the first n − l generators are
self-adjoint, yj = xj for j = 0, . . . , n − l and, consequently, yj are linearly independent. Then
there exists k (n− l < k � n) such that

yk =
∑
j 	=k

λjyj , λj ∈ C.

And since yj are self-adjoint,

yk =
∑
j 	=k

λjyj , λj ∈ C.

If we put aj = (λj + λj)/2 then we get

yk =
∑
j 	=k

ajyj , aj ∈ R.

Renumbering the generators we can suppose that k = n− l + 1.
Put

F�1n = C〈 v1, . . . , vn | v�1j = vj , j = 1, . . . , k, v�1j = qj , j > k 〉,
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where

qj = pj

v1, . . . , vk−1,−2ivk +
∑
j 	=k

ajvj , vk+1, . . . , vn

 , j > k.

Define ψ : F�1n → F�n on generators by the formula ψ(vj) = xj , if j �= k, and

ψ(vk) =
i

2

xk −∑
j 	=k

ajxj

 .

It is evident that ψ is an isomorphism of the algebras F�1n and F�n. Let us show that ψ is
a ∗-homomorphism.

If j < k, then ψ(vj)� = x�j = xj = ψ(vj) = ψ(v�1j ).
If j > k, then ψ(vj)� = x�j = pj and again

ψ(v�1j ) = ψ(qj) = ψ

pj
v1, . . . , vk−1,−2ivk +

∑
j 	=k

ajvj , vk+1, . . . , vn


= pj

x1, . . . , xk−1, xk −
∑
j 	=k

ajxj +
∑
j 	=k

ajxj , xk+1, . . . , xn

 = pj = ψ(v�1j ).

Finally,

ψ(vk)� = − i
2

x�k −∑
j 	=k

ajx
�
j

 and ψ(v�1k ) = ψ(vk) =
i

2

xk −∑
j 	=k

ajxj

 .

So

ψ(v�1k )− ψ(vk)� = i

yk −∑
j 	=k

ajyj

 = 0,

i.e., ψ(v∗k) = ψ(vk)∗.
We have proved that F�n and F�1n are ∗-isomorphic. Further, by the definition of ψ we again

have ψ(V (F�1n )) = V (F�n). And now we have l− 1 generators in F�1n that are not self-adjoint and
so, by the inductive assumption, F�1n is ∗-isomorphic to F∗n and, consequently, F�n is ∗-isomorphic
to F∗n. �

3 Corollary and examples

In this section we will obtain a corollary of Theorem 1 and consider some examples.
Consider the ∗-algebra

A = C〈x1, . . . , xn |x�k = pk, k = 1, . . . , n, r1 = 0, . . . , rm = 0 〉,

where rk ∈ Fn, k = 0, . . . ,m. Let I be a ∗-ideal generated by r1, . . . , rm, i.e., A is a ∗-isomorphic
to the factor F�n/I.

By increasing the number of generators (not more than two times) and adding new relations
we always can construct a ∗-algebra which is ∗-isomorphic to A such that its generators are
self-adjoint. The corollary of Theorem 1 claims that if the involution is “good” then we can
leave the number of the generators and relations the same as in A and the length of words in
the relations does not grow.
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Proposition 1. Let the involution � preserves the filtration. Then the ∗-algebra A is ∗-
isomorphic to the ∗-algebra

B = C〈 z1, . . . , zn | z∗k = zk, k = 1, . . . , n, s1 = 0, . . . , sm = 0 〉,

where sk have the same degrees as rk, k = 1, . . . ,m.

Proof. Since the involution � preserves the filtration then, there exists a ∗-isomorphism ϕ :
F�n → F∗n. Denote by J = ϕ(I) the ∗-ideal generated by the relations s1 = ϕ(r1), . . . , sm = ϕ(rm).
It is evident that so defined sk have the same degrees as rk. Then we can put B = F∗n/J.

Let i be an injection of I into F�n and π a projection of the latter into A. Similarly, let i0 be
an injection of J into F∗n and π0 a projection into B. The restriction of ϕ to I will be denoted
by ϕ0. Then we get a commutative diagram of ∗-homomorphisms,

0 −−−−→ I i−−−−→ F�n
π−−−−→ A −−−−→ 0<ϕ0

<ϕ <ψ
0 −−−−→ J i0−−−−→ F∗n

π0−−−−→ B −−−−→ 0

where ψ is defined by the formula ψ(π(a)) = π0(ϕ(a)), for any a ∈ F�n.
Now we show that ψ is well-defined. Indeed, since π is surjective, ψ is defined for all elements

of A. If π(a) = 0 then a ∈ I and so ϕ(a) ∈ J, consequently, ψ(π(a)) = π0(ϕ(a)) = 0.
It is evident that ψ is surjective. Now we show that it is injective.Indeed, if ψ(π(a)) = 0, then

it means that π0(ϕ(a)) = 0 and so ϕ(a) ∈ J, consequently, a ∈ I, from where we get π(a) = 0.
It is also evident that ψ is a ∗-homomorphism.

So we have constructed a ∗-isomorphism of the ∗-algebras A and B. �

Actually we have “changed” the generators in A so that the new generators are self-adjoint.
But the next example shows that, generally speaking, the relations are changed too.

Example 1. Consider the ∗-algebra

Q2 = C〈 q1, q2 | q�1 = q2, q
�
2 = q1, q

2
1 = q1, q

2
2 = q2 〉.

A ∗-isomorphism ϕ : F�2 → F∗2 is defined by the formulas

ϕ(q1) = z1 + iz2, ϕ(q2) = z1 − iz2.

Then

ϕ(q21 − q1) = (z1 + iz2)2 − z1 − iz2 = z2
1 − z2

2 + i{z1, z2} − z1 − iz2,

similarly

ϕ(q22 − q2) = z2
1 − z2

2 − i{z1, z2} − z1 + iz2,

where { , } is the anticommutator.
It is evident that the ideal generated by these relations is also generated by the relations

z2
1 − z2

2 = z1 and {z1, z2} = z2.

So Q2 is ∗-isomorphic to the ∗-algebra

C〈 z1, z2 | z∗1 = z1, z
∗
2 = z2, z

2
1 − z2

2 = z1, {z1, z2} = z1 〉.

On the other hand, it is not difficult to show that there is no ∗-isomorphisms between Q2

and the ∗-algebra

C〈x1, x2 |x∗1 = x1, x
∗
2 = x2, x

2
1 = x1, x

2
2 = x2 〉.
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The next two examples show that there are algebras that are not free for which an analogue
of Theorem 1 is also true.

Example 2. Consider the ∗-algebra of polynomials in n variables, Pn. It is a factor of the free
algebra by the ideal I generated by the relations

[xj , xk] = 0, j, k = 1, . . . n,

where [ , ] is the commutator. All elements of the ideal I can be written as [p1, p2], where
p1, p2 ∈ Fn. Then, for any involution in Fn, [p1, p2]� = [p�2, p

�
1] ∈ I so I is a ∗-ideal. Let �

preserves the filtration. Then the ∗-ideal ϕ(I) consists of all elements which can be written as
[ϕ(p1), ϕ(p2)]. So it is generated by the relations

[zj , zk] = 0, j, k = 1, . . . n,

And we have the ∗-isomorphism of P ∗n and P �n .

Example 3. Consider one more algebra for which a theorem analogous to Theorem 1 holds.
Let

A = C〈 p, q | [[p, q], p] = 0, [[p, q], q] = 0 〉.

Let I be an ideal generated by the corresponding relations. Then it is evident that for any
a, b, c ∈ V (F�n) we have [[a, b], c] ∈ I.

Now, let us introduce in A an involution � which preserves the filtration. Let us show that
the ideal I is a ∗-ideal,

−[[p, q], p]� = [p, [p, q]]� = [[p, q]�, p�] = [[q�, p�], p�],

but p�, q� ∈ V (F�n) so [[p, q], p]� ∈ I. Similarly, [[p, q], q]� ∈ I.
Since � preserves the filtration, by Theorem 1 there is a ∗-isomorphism ϕ : F�2 → F∗2 and

there exist elements a1, a2 ∈ V (F�2) such that ϕ(a1) = z1 and ϕ(a2) = z2, where z1 and z2 are
generators of F∗2. Then the ∗-ideal ϕ(I) is generated by the relations

[[z1, z2], z1] = 0, [[z1, z2], z2] = 0.

So we have a ∗-isomorphism of A� and the ∗-algebra

C〈 z1, z2 | z∗1 = z1, z
∗
2 = z2, [[z1, z2], z1] = 0, [[z1, z2], z2] = 0 〉.

[1] Ostrovsky̆ı V.L. and Samŏılenko Yu.S., Introduction to the theory of representations of finitely presented
∗-algebras. I. Representations by bounded operators, Rev. Math. and Math. Phys., 1999, V.11, 1–261.
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We present a new form of supersymmetric quantum mechanics which is characterized by
presence of non-trivial central charges. We show that the corresponding extended SUSY
appears in a number of popular quantum mechanical models.

1 Introduction

Supersymmetric quantum mechanics (SUSY QM) [1] appeared first as a toy model for better
understanding of SUSY itself. However, it turns out that SUSY QM systems themselves are so
rich in structure and deal with new properties which became recently subjects per se studied by
many mathematicians and theoretical physicists. The basic problems and various applications
of SUSY quantum mechanics are discussed in a number of papers, refer, e.g., to surway [2].

Soon it appears that SUSY QM systems can admit more than two supercharges and so to have
richer symmetry called extended SUSY. Such extended SUSY has good physical grounds, since
there exists a number of realistic physical systems which admit more than two supercharges, see
e.g., [3, 4, 6, 7]. Moreover, it was demonstrated in [3, 6, 7] that the Schrödinger–Pauli and the
Dirac equations admit not only extended SUSY but also rather large algebras of discrete invo-
lutive symmetries isomorphic to gl(4,C) and gl(8,R) respectively. Thus it seams that extended
SUSY is closely connected to discrete symmetries.

In the present paper we continue in our investigations [3, 6, 7] and study QM systems which
admit extended SUSY. Moreover, we consider generalized extensions of symmetry superalgebras
generated by additional supercharges and even operators as well. We prove that the Coulomb,
Aharonov–Bohm–Colomb (ABC) and Aharonov–Casher systems admit extended SUSY with
six supercharges and central charge and, besides, they admit extended algebras of discrete
symmetries isomorphic to gl(8,R). All mentioned symmetries are responsible for degeneracy of
the corresponding energy spectra.

We introduce the concept of general SUSY QM systems with central charges, and prove that
many popular quantum mechanical models are perfect examples of them.

2 Quantum mechanics with extended SUSY

We say that the Schrödinger type equation

Hψ = Eψ (1)
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is supersymmetric and has N = 2n SUSY, if it admits a set of integrals of motion Q1, Q2, . . . , Qn
which commute with Hamiltonian H and satisfy the following relations

{Qa, Q̄b} = QaQ̄b + Q̄bQa = 2δabH, a, b = 1, 2, . . . , n,
{Qa, Qb} = {Q̄a, Q̄b} = 0 (2)

with δab being the Kronecker symbol and Q̄ = Q†.
For n = 1 we recognize in (2) the Witten superalgebra which is characteristic algebra ap-

pearing in SUSY QM models. This algebra contains two odd elements (supercharges) Q1 and Q̄1

and the only even element H, thus in this case we have N = 2 SUSY. For n > 1 one has a QM
model with the so-called extended SUSY. Realistic QM models admitting extended SUSY are
discussed in [3, 4, 6, 7].

Of course, relations (2) admit a formal generalization to the case when the number of even
elements is larger than 1. Then the corresponding defining relations can be transformed to the
following ones:

{Qa, Q̄b, } = 2δabH + Zab, a, b = 1, 2, . . . , n,
{Qa, Qb} = {Q̄a, Q̄b} = 0, (3)

where Zab are the so called central charges which commute with all elements Qa, Q̄a, H of the
superalgebra.

We shall show in Sections 3, 4 that such a generalization appears naturally for some popular
QM problems.

3 Extended SUSY for the Coulomb problem

First we shall consider the free Dirac equation

(γµpµ −m)ψ(x) = 0, (4)

where pµ = i ∂
∂xµ , µ = 0, 1, 2, 3, x = (x0, x1, x2, x3), γµ are the Dirac matrices.

It was shown in [3, 6] that equation (4) admits a 64-dimensional algebra of involutive discrete
symmetries. Basis elements of this algebra can be chosen in the following form

Γm, ΓmΓn, ΓmΓnΓp, I4, (5)

were m,n, p = 0, 1, . . . , 6, I4 is the 4× 4 unit matrix,

Γµ = iγ4γµθ̂µ (no sum over µ), Γ4 = iγ4θ̂, γ4 = γ0γ1γ2γ3,

Γ5 = γ4γ2cθ, Γ6 = Γ0Γ1Γ2Γ3Γ4Γ5, (6)

θ̂ and c are reflection and complex conjugation operators defined by the following relations:

θ̂µψ(x) = ψ(θµx), θ̂ψ(x) = ψ(−x), cψ(x) = ψ∗(x),
θ0x = (−x0, x1, x2, x3), θ1x = (x0,−x1, x2, x3), θ2x = (x0, x1,−x2, x3),
θ3x = (x0, x1, x2,−x3).

Operators (5) transform solutions of the Dirac equation into solutions and form a Lie algebra
isomorphic to gl(8,R). We notice that the set of operators (5) include reflections Γµ, Γ4 and
pure rotations ΓµΓν as well.
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The Dirac equation with non-trivial potentials

Lψ ≡ (γµπµ −m)ψ = 0, πµ = pµ − eAµ (7)

does not admit all symmetry operators (5) but only a part of them instead. Nevertheless, we
shall show that for some vector-potentials Aµ equation (7) admits extra symmetries which form
basses of extended algebras isomorphic to (5).

As an example consider the relativistic Coulomb system described by the Dirac equation (7)
with

A1 = A2 = A3 = 0, eA0 =
α

|x| (8)

and |x| =
(
x2

1 + x2
2 + x2

3

)1/2
.

Equation (7), (8) admits a specific integral of motion discovered by Johnson and Lippman [8].
We present this constant of motion in the following form

Q̂ = mα
σ · x
|x| + iD

(
σ · p + iγ4

α

|x|

)
. (9)

Here D = γ0

(
σ · J − 1

2

)
with J = x× p + σ/2 is the Dirac constant of motion, σ = iγ × γ/2.

Operators Q̂ and D commute with the Dirac Hamiltonian H = γ0γ · p + γ0m + α
|x| and

anticommute among themselves. They are odd elements of the five dimensional superalgebra
which contains also three even elements, namely H, Q̂2 and D2. The commutation relations for
odd-even and even-even elements have the form [A,B] = 0.

We notice that eigenvalues of Hamiltonian H can be expressed via eigenvalues of D and Q̂.
Indeed, using the relations

D2 = J2 +
1
4
, Q2 = D2

(
H2 +m2

)
− α2m2

and denoting eigenvalues of mutually commuting operators D2, Q2 and H by κ2, q2 and E
respectively, we obtain the following relation

E2 =
q2

κ2
+m2

(
1− α2

κ2

)
, κ = 0, 1, 2, . . . .

Using this expression we shall demonstrate that the Coulomb system defined in (7)and (8)
admits extended superalgebra which include six supercharges Qa, Q̄a, a = 1, 2, 3 and one central
charge Zab = δabZ where

Q1 = (1 + iΓ5Γ1Γ2)Q̂, Q̄1 = (1− iΓ5Γ1Γ2)Q̂,

Q2 = i(Γ1 + Γ5)Γ2Γ3)Q̂, Q̄2 = i(Γ1 −G5)Γ2Γ3)Q̂,

Q3 = Γ5(1 + iΓ1Γ3)Q̂, Q̄3 = Γ5(1− iΓ1Γ3)Q̂,

Z =
(
α2 −D2

)
m2/κ2, Ĥ = H2. (10)

Using the relations

[Γk, H] = [Γk, D] = 0, {Γk, Q} = {Γ5,Γa} = {Γ5, i} = 0, {Γa,Γb} = 2δab,

where k = 1, 2, 3, 5, a, b = 1, 2, 3, we find that operators (10) commute with H and satisfy super-
algebra (3). Thus, the Coulomb system admits N = 6 extended SUSY with non-trivial central
charge. This symmetry algebra is closely related to the 64-dimensional algebra of involutive
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symmetries described in [3, 6]. Indeed, for any q �= 0 we can define the following symmetry
operators of the stationary Dirac equation

Γ̂0 = iΓ1Γ2Γ3, Γ̂a = (Qa + Q̄a)/2q, Γ̂3+a = (Qa − Q̄a)/2iq, a = 1, 2, 3 (11)

which satisfy

{Γ̂K , Γ̂N} = 2gKN , K,N = 0, 1, . . . , 6.

The only nonzero elements of tensor gKN are g00 = g11 = g22 = g33 = −g44 = −g55 = −g66 = 1.
All linearly independent products of Γ̂K have the same form (5) as for Γµ and form again

a basis of algebra gl(8,R).

4 Extended SUSY for Aharonov–Bohm–Coulomb
and Aharonov–Casher systems

Let us search for extended SUSY of the system defined by the Dirac equation (7) with an
external field being a superposition of the Coulomb potential and the potential generated by
a solenoid directed along the third co-ordinate axis. Such configuration corresponds to the
so-called Aharonov–Bohm–Coulomb (ABC) system which has been studied by a number of
investigators (see, e.g., [9, 10]). The related vector-potential has the form

eA0 =
α

|x| , eA1 = ξ
x2

r2
, eA2 = −ξ x1

r2
, A3 = 0, (12)

where r2 = x2
1 + x2

2.
Using the fact that A1 and A2 are locally pure gauges we can prove that there exist constants

of motion for the ABC system which are analogues of Johnson–Lippman and Dirac constants of
motion for the Coulomb system. They have the following form

Q̂′ = mα
σ · x
x2

+ iD′
(

σ · p + iγ4
α

|x|

)
,

D′ = γ0

(
σ · J +

1
2

+
ξ

x2

(
σ3x

2 − x3σ · x
))

(13)

and commute with the corresponding Hamiltonian

H ′ = γ0γ · π + γ0m+
α

|x| .

Commutation and anticommutation relations for operators Q̂′, D′ and H ′ are the same as for
unprimed operators considered in the previous section. Thus we can construct two supercharges
Q = 1

κ
√

2
(1 + P )Q̂′, Q̄ = 1

κ
√

2
(1 − P )Q̂′ and central charge Zab = 2δab(α2 − D′2)m2/κ2 which

satisfy relations (3) together with Ĥ ′ = H ′2. Thus the ABC system admits extended SUSY with
one non-trivial central charge.

Additional involutive symmetries for this system can be found in the form

R12 = iγ1γ2θ̂1θ̂2, R31 = iγ3γ1θ̂3θ̂1, R = γ4γ0θ̂,

R23 = i exp(iϕ)γ2γ3θ̂2θ̂3, Ĉ = i exp(iϕ)γ2c. (14)

Here ϕ = 2 arctan x1
x2

, θ̂, θ̂a and c are reflection and complex conjugation operators defined in
the previous section.
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Operators (14) commute with the Dirac operator L of equation (7), with potentials (12) and
satisfy the following relations

{R, Q̂′} = {Ĉ, Q′} = {R, Ĉ} = {Ĉ, Rab} = {Rab, Rcd} = 0,
[Rab, R] = [Rab, Q′] = 0. (15)

Using (15) we can construct six supercharges for the ABC system, namely

Q′1 = (1 + ĈR12)Q′, Q′2 = (ĈR23 +R)Q′, Q′3 = Ĉ(1 +R31),

Q̄′1 = (1− ĈR12)Q′, Q̄′2 = (ĈR23 −R)Q′, Q̂′3 = Ĉ(1 +R31)Q′. (16)

Operators (16) and Ĥ ′ = Q′2 satisfy relations (3) and form a basis of N = 6 extended
superalgebra for ABC system. This system admits also the 64-dimensional algebra gl(8,R) of
involutive symmetries. Basis elements of this algebra can be obtained using formulae (11) with
Q′a, Q̄′a (16) instead of operators (10).

Let us consider now the relativistic Aharonov–Casher (AC) system [9, 12]. This system
includes chargeless particle with non-trivial electric quadrupole momentum, interacting with an
infinite homogeneously charged cylinder. It is described by the Dirac equation with anomalous
interaction instead of a minimal one:(

γµp
µ −m+

ik

m
γµγνF

µν

)
ψ = 0, (17)

where Fµν is the strength tensor of the external electromagnetic field generated by infinite
homogeneously charged cylinder which we suppose be directed along the third co-ordinate axis.

We shall consider more general system (17) with an external field of the following form

Fab = 0, F0a =
∂ϕ

∂xa
, a, b = 1, 2, 3,

where ϕ = ϕ(x) is a potential of the electric field which is an even function of spatial variables.
In the case ϕ =

√
x2

1 + x2
2 equation (17) reduces to the AC system.

The considered system admits N = 6 extended SUSY generated by the following supercharges

Q1 = (Γ1 + Γ0)H, Q̄1 = (Γ1 − Γ0)H,
Q2 = (Γ2 + Γ5)H, Q̄2 = (Γ2 − Γ5)H,
Q3 = (Γ3 + Γ6)H, Q̄3 = (Γ3 − Γ6)H, (18)

where Γ1, . . . ,Γ6 are discrete symmetries (6) and

H = γ0γαp
α +

ik

m
γαE

α + γ0m.

Operators (18) and Ĥ = H2 satisfy relations (3) with Zab ≡ 0 and so generate N = 6 SUSY
algebra for the AC system.

The AC system admits also the algebra gl(8,R) whose basis elements are given by rela-
tions (6), and so has the same involutive symmetry algebra as the free Dirac equation.

5 Stueckelberg systems

Relativistic Stueckelberg equation [13] describes quantum mechanical systems which have two
spin states corresponding to values of spin s = 1 and s = 0. It is a system of equations for an
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antisymmetric tensor field ψµν , a four-vector field ψµ and a scalar field ψ of the following form

pµψν − pνψµ = mψµν ,

pνψ
µν = pµψ +mψµ,

pνψ
ν = mψ. (19)

Introducing the minimal and anomalous interaction with an external e.m. field into (19) we
obtain the following system

πµψν − πνψµ = mψµν ,

πνψ
µν = πµψ +mψµ +

e

m
Fµνψ

ν ,

πνψ
ν = mψ. (20)

Here πµ = pµ − eAµ and Fµν = − i
e [πµ, πν ] is the strength tensor of the electromagnetic field.

A special form of anomalous interaction chosen in (20) yields to extended SUSY for this
equation. Other interactions for the Stueckelberg equation are discussed in [14].

Expressing ψµν , and ψ in (20) via ψµ we come to the second-order equation(
πνπ

ν −m2
)
ψµ + 2eFµνψν = 0. (21)

Its symmetries will be investigated in few steps.
We begin with the constant and homogeneous external magnetic field directed along the third

co-ordinate axis. The corresponding vector-potential and tensor Fµν have the form

A0 = A2 = A3 = 0, A1 = −Hx2, F0a = F23 = F31 = 0, F12 = H. (22)

Substituting (22) into (21) and representing ψν as

ψν = exp (iEt+ ip1x1 + ip3x3)ϕν(x2), x2 =
(

p1√
eH

+ y

)
equation (21) can be reduced to the form

E2ϕ =
(
m2 + p2

3 −
∂2

∂y2 + ω2y2 + 2S3ω

)
ϕ, (23)

where ω = eH, ϕ = column(ϕ0ϕ1ϕ2ϕ3) and

S3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 .

Equation (23) admits a large extended supersymmetry. First, we indicate two sets of con-
stants of motion which generate extended SUSY with non-trivial central charges. The basis
elements of the corresponding superalgebras have the following forms:

Q̃1 =
1
2

(σ1 + iσ2)(p+ iωy), ¯̃Q1 =
1
2

(σ1 − iσ2)(p− iωy),

Ĥ = − ∂2

∂y2
+ ω2y2 + 2S3ω + p2

3 +m2, Z̃ab = 2δab

(
p2
3 +m2 − 1

2
τ3ω

)
(24)
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and

Q̃′1 =
1
2

(τ1 + iτ2)(p+ iωy), ¯̃Q′1 =
1
2

(τ1 − iτ2)(p− iωy),

Ĥ ′ = Ĥ, Z̃ ′ab = 2δab

(
p2
3 +m2 − 1

2
σ3ω

)
. (25)

Here

σ1 =


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 , σ2 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 , σ3 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 ,

τ1 =


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

 , τ2 =


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

 , τ3 =


0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

 . (26)

It can be verified by a direct calculation that operators (24) and (25) commute with Ĥ and
are, therefore, constants of motion for equation (23). In addition, operators (24) and (25) satisfy
relations (3), so the Stueckelberg equation with the constant and homogeneous external magnetic
field admits extended SUSY with non-trivial central charges.

The superalgebras (24) and (25) can be jointed in frames of a more extended superalgebra
including ten elements. Four of them are odd elements (supercharges), namely, Qα, Q̄α, α = 1, 2:

Q1 =
1
2

(σ1p+ σ2ωy + iσ3(τ1p+ τ2ωy)) ,

Q̄1 = Q†1 =
1
2

(σ1p+ σ2ωy − iσ3(τ1p+ τ2ωy)) ,

Q2 =
1
2

(σ2p− σ1ωy + iσ3(τ2p− τ1ωy)),

Q̄2 = Q†2 =
1
2

(σ2p− σ1ωy − iσ3(τ2p− τ1ωy)) (27)

and six of them are even. They include the central charge Zab = 2δab(p2
3+m2), and five additional

elements of the form

Ĥ = − ∂2

∂y2
+ ω2y2 + 2S3ω + p2

3 +m2, I0 = ω(σ3 + τ3)/2,

I1 = ω(σ2τ1 − σ1τ2)/2, I± = ω (σ3 − τ3 ± (σ1τ1 + σ2τ2)) /4. (28)

Anticommutation relations for odd elements are given by the following formulae

{Qa, Q†b} = δab(H − Z − I0)− iεabI1, {Qa, Qb} = δabI−, (29)

where ε12 = −ε21 = 1, ε11 = ε22 = 0. The remaining (commutation) relations of odd elements
with even and even elements with even ones are of the form

[Qa, Ĥ] = [I0, Ĥ] = [I±, Ĥ] = 0, [Qa, I0] = −iεabQb, [Qa, I1] = Qa,

[Qa, I−] = 0, [Qa, I+] = −iεabQ†b, [I0, I1] = [I0, I±] = 0,
[I1, I±] = ±I±, [I+, I−] = I1. (30)

In addition Z commutes with all operators enumerated in (27), (28).
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Thus Stueckelberg particle interacting with a constant homogeneous external magnetic field
forms a system admitting extended superalgebra characterized by relations (29), (5). We will
further denote this algebra as A.

Consider now Stueckelberg equation for the case when external field is generated by a point
charge. The related vector-potential can be chosen in the form (8) and equation (21) reads(

p0 +
α2

|x|

)2

Ψ =
(

p2 +m2 + iα
(σa − τa)xa

|x|3
)

Ψ, (31)

where Ψ = column (ψ0, ψ1, ψ2, ψ3).
Rather surprisingly, equation (31) also admits extended invariance superalgebra, isomorphic

to A. This can be shown by writing Ψ in the form Ψ = exp(iEt)ϕ(x) (i.e., considering the
related eigenvalue problem) and introducing new space variables r = Ex. Equation (31) then
takes the form

µϕ = Ĥϕ,

where

Ĥ = p′2 + iα
(σa − τa)ra

|r|3 −
(
α

|r| − 1
)2

, and µ = −m
2

E2
.

The corresponding radial equation can be written as [15]:

µϕ(r) = Ĥϕ ≡

− d2

dr2
+


V1 0 0 0
0 V2 0 0
0 0 V3 0
0 0 0 V4


ϕ(r), (32)

where

V1 =
b2 − 1

4

r2
− 2α

r
, V2 = V3 =

(b+ 1)2 − 1
4

r2
− 2α

x
, V4 =

(b− 1)2 − 1
4

r2
− 2α

r
. (33)

It can be proven by a direct verification that equation (32) admits nine constants of motion,
namely

Q1 =


0 a1− ia1− 0
a1

+ 0 0 −ia2−
ia1

+ 0 0 a2−
0 −ia2

+ a2
+ 0

 , Q2 =


0 −ia1− a1− 0
ia1

+ 0 0 −a2−
−a1

+ 0 0 −ia2−
0 a2

+ ia2
+ 0

 ,

Q̄1 =


0 a1

+ −ia1
+ 0

a1− 0 0 +ia2
+

−ia1− 0 0 a2
+

0 ia2
+ a2− 0

 , Q̄2 =


0 +ia1

+ −a1
+ 0

−ia1− 0 0 a2
+

a1− 0 0 ia2
+

0 −a2− −ia2
+ 0

 ,

I0 = C


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 , I1 = iC


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,

I± = C


0 0 0 0
0 1 ±1 0
0 ±1 −1 0
0 0 0 0

 , Z = m2 + p2
3 (34)
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which satisfy relations (29) and (5). Here

a1
± = p′ ± i

(
b+ 1

2

x
+

α

b+ 1
2

)
, a2

± = p′ ± i

(
b− 1

2

x
+

α

b− 1
2

)
,

C =
αb

a2 − 1
4

, b2 =
(
j +

1
2

)2

and j is the quantum number defining the spectrum of total angular momentum J = r×p′+σ+τ
of a system in state Ψ, i.e., J2Ψ = j(j + 1)Ψ.

Thus the Stueckelberg equation with Coulomb potential is invariant with respect to extended
superalgebra whose generators are given in (34). As a consequence it admits two symmetry
superalgebras (24) and (25), and hence is characterized by extended SUSY with non-trivial
central charges. Using discrete involutive symmetries of the Stueckelberg equation it is possible
to construct extra supercharges which enlarge superalgebras (24) and (25) to N = 6 extended
SUSY.

6 Representations of superalgebra A
In order to describe other QM systems invariant with respect to superalgebra A which admit
extended SUSY we construct representations of this algebra realized by differential operators
defined on four-component vector-functions. The related supercharges and even elements of the
superalgebra can then chosen in the form (34) where

a±1 = p± iW1, a±2 = p± iW2, p = −i d
dx
. (35)

Here W1 and W2 are functions of x satisfying the following relation

W 2
1 −W 2

2 +W ′1 +W ′2 = C (36)

with C being a constant and prime denoting derivative of Wα with respect to x.
Operators (34), (35) satisfy relations (29), (5) for the case when W1, W2 are arbitrary func-

tions satisfying condition (36). Choosing W1 = W2 = ωx in (35) we obtain supercharges
for the Stueckelberg system with constant, homogeneous external magnetic field. The choice

W1 = b+ 1
2

x + α
b+ 1

2

, W2 = b− 1
2

x + α
b− 1

2

corresponds to the Stueckelberg–Coulomb system. Two

other choices, namely, W1 = −W2 = ωx and W1 = −W2 = b
x + α

b correspond to Dirac particle
in the constant, homogeneous external magnetic field and Coulomb field respectively, where all
states have additional two fold degeneracy.

7 Discussion

We have shown that extended SUSY with non-trivial central charges appears as internal symme-
try of many quantum mechanical systems. In particular we have proven that symmetry of the
relativistic Coulomb system as well as of the Aharonov–Bohm–Coulomb and Aharonov–Casher
systems can be described by the superalgebra including six supercharges. The Stueckelberg
systems systems are characterized even by more extended SUSY described by ten-dimensional
superalgebra with non-trivial central charges.

One more goal of our analysis was searching for realistic quantum mechanical systems which
are invariant with respect to algebra gl(8,R) of involutive discrete symmetries. This invariance
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algebra for the free Dirac equation was found in papers [3, 6]. In the present paper we prove
that this symmetry is valid also for the Coulomb, ABC and AC systems.

A natural question arises what are the practical consequences of the found symmetries. Using
the technique developed in [3, 7] it is possible to use gl(8,R) symmetry to decouple the related
Dirac equation and construct complete sets of solutions.

A standard application of SUSY consists in prediction and interpretation of degeneration of
energy spectra of the related QM systems. Energy levels for the exactly solvable Coulomb–Dirac
problem are degenerated with respect to quantum numbers sign j3 and signκ where j3 and κ
are eigenvalues of mutually commuting operators of the third component of the total angular
momentum J3 and D respectively. One more degeneration which is non-observable is connected
with the change of sign of the phase multiplier of the Dirac-Coulomb wave function. Extended
SUSY presents a specific interpretation of these degenerations. A particular importance of such
interpretation consists in the fact that such a degeneration appears for all the systems which
admit extended SUSY, e.g., for the AC system.

The other application of (extended) SUSY is to construct exact solutions of QM systems
with sharp invariant potentials using purely algebraic methods [2] which admit a straitforward
generalization to the case of a more general superalgebra (29), (5). The potentials (33) of the
Stueckelberg–Coulomb system are shape invariant which enables us to find easily its energy
eigenvalues. They can be written in the following form

Enκλ = m

[
1 +

α2(
n+ 1

2 + b+ λ
)2

] 1
2

,

where n = 0, 1, 2, . . ., λ = 0,±1, b =
√
κ2 − α2, |κ| = 1, 2, . . .

Finally we notice that representations of superalgebra A considered in the previous section
can be used in non-relativistic quantum mechanics. It seems to us that such generalized SUSY
quantum mechanics has better physical grounds than parasupersymmetric quantum mecha-
nics [16, 17] and n = N (N > 1) SUSY quantum mechanics [18], since it is realized in a number of
quite realistic QM systems. We plane to study possible applications of superalgebra in quantum
mechanics A elsewhere.
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After a short discussion of the intimate relation between the generalized statistics and su-
persymmetry, we review the recent results on the nonlinear supersymmetry obtained in
the context of the quantum anomaly problem and of the universal algebraic construction
associated with the holomorphic nonlinear supersymmetry.

Introduction

Nonlinear supersymmetry is a natural generalization of the usual linear supersymmetry [1, 2]. It
is realized variously in such different systems as the parabosonic [3] and parafermionic [4] oscil-
lator models, and the P, T -invariant models of planar fermions [5] and Chern–Simons fields [6].
It is also the symmetry of the fermion-monopole system [7, 8]. The algebraic structure of the
nonlinear supersymmetry resembles the structure of the finite W -algebras [9] for which the com-
mutator of generating elements is proportional to a finite order polynomial in them. In the
simplest case the nonlinear supersymmetry is characterized by the superalgebra of the form

[Q±, H] = 0, (Q±)2 = 0, {Q+, Q−} = Pn(H), (1)

where Pn(·) is a polynomial of the n-th degree. The nonlinear supersymmetry with such a su-
peralgebra was investigated for the first time by Andrianov, Ioffe and Spiridonov [10].

The pseudoclassical construction underlies the supersymmetric quantum mechanics of Witten
[1, 2] corresponding to the linear (n = 1) case of the superalgebra (1). Though the nonlinear
supersymmetry can also be realized classically, there is an essential difference from the linear
case: the attempt to quantize the nonlinear supersymmetry immediately faces the problem of
the quantum anomaly [3, 11]. It was shown [12] that the universal algebraic structure with
associated “integrability conditions” in the form of the Dolan–Grady relations [13] underlies the
so called holomorphic nonlinear supersymmetry [11]. This structure allows one to find a broad
class of anomaly-free quantum mechanical systems related to the exactly and quasi-exactly
solvable systems [14, 15, 16, 17, 18, 19], and gives a nontrivial centrally extended generalization
of the superalgebra (1) [12].

In this talk, after a short discussion of the intimate relation between the generalized statis-
tics and supersymmetry [3], we shall review the recent results on the nonlinear supersymmetry
obtained in the context of the quantum anomaly problem and of the universal algebraic con-
struction associated with the holomorphic nonlinear supersymmetry [11, 12].

Nonlinear supersymmetry in purely parabosonic systems

Some time ago it was shown that the linear supersymmetry can be realized without fermions
[20, 21, 22]. The nonlinear supersymmetry admits a similar realization revealing the close
relationship between the generalized statistics and supersymmetry [3]. The relationship can be
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observed in the following way. Let us consider a single-mode paraboson system defined by the
relations

[{a+, a−}, a±] = ±a±, a−a+|0〉 = p|0〉, a−|0〉 = 0,

where p ∈ N is the order of a paraboson [23]. Then the direct calculation shows that the pure
parabosonic system of the even order p = 2(k+1), k ∈ Z+, with the Hamiltonian of the simplest
quadratic form H = a+a− reveals a spectrum typical for the nonlinear supersymmetry: all its
states are paired in doublets except the k + 1 singlet states |2l〉 ∝ (a+)2l|0〉, l = 0, . . . , k. In
correspondence with this property, the system has two integrals of motion

Q+ = (a+)2k+1 sin2 π

4
{a+, a−}, Q− = (a−)2k+1 cos2 π

4
{a+, a−}, (2)

which together with the Hamiltonian form the nonlinear superalgebra (1) of the order n = 2k+1

with P2k+1(H) = H ·
k∏

m=1

(
H2 − 4m2

)
. This simplest system reflects the peculiar feature of the

parabosonic realization of supersymmetry: the supercharges are realized in the form of the
infinite series in a±, and the role of the grading operator is played here by R = (−1)N = cosπN ,
where N = 1

2{a+, a−} − 1
2p is the parabosonic number operator.

It is known that the deformed Heisenberg algebra with reflection

[a−, a+] = 1 + νR, {R, a±} = 0, R2 = 1, (3)

underlies the parabosons [24, 25]. This algebra possesses unitary infinite-dimensional represen-
tations for ν > −1, and at the integer values of the deformation parameter, ν = p − 1, p ∈ N,
is directly related to parabosons of order p [23, 24, 25]. On the other hand, at ν = −(2p + 1)
the R-deformed Heisenberg algebra has finite-dimensional representations corresponding to the
deformed parafermions of order 2p [25]. In the coordinate representation the operator R is
the parity operator and the operators a± can be realized in the form a± = 1√

2
(x ∓ iDν) with

Dν = −i
(
d
dx −

ν
2xR

)
. In the context of the Calogero-like models, the operator Dν is known

as the Yang–Dunkl operator [26, 27], where R is treated as the exchange operator. In the
coordinate representation the Hamiltonian H = a+a− and supercharges (2) read as [3]

H =
1
2

(
− d2

dx2
+ x2 +

ν2

4x2
− 1 + ν

(
1

2x2
− 1

)
R

)
, (4)

Q+ = (Q−)† =
1

23(k+ 1
2)

((
− d

dx
+ x+

ν

2x

)
(1−R)

)2k+1

(5)

with ν = 2k + 1. The system given by the Hamiltonian (4) can be treated as a 2-particle
Calogero-like model with exchange interaction, where x has a sense of a relative coordinate
and R has to be understood as the exchange operator [28, 29]. Therefore, at odd values of the
parameter ν, the class of Calogero-like systems (4) possesses a hidden supersymmetry, which
at ν = 1 is the linear (n = 1) supersymmetry in the unbroken phase, whereas at ν = 2k + 1,
the supersymmetry is characterized by the supercharges being differential operators of order
2k + 1 satisfying the nonlinear superalgebra (1). Recently the realization of the nonlinear
supersymmetry was extended within the standard approach with fermion degrees of freedom to
the case of multi-particle Calogero and related models [30].

Classical supersymmetry

Let us turn now to the classical formulation of the supersymmetry (1). For the purpose, we
consider a non-relativistic particle in one dimension described by the Lagrangian

L =
1
2
ẋ2 − V (x)− L(x)N + iθ+θ̇−, (6)
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where θ± are the Grassman variables, (θ+)∗ = θ−, N = θ+θ−, and V (x) and L(x) are two real
functions. The nontrivial Poisson–Dirac brackets for the system are {x, p}∗ = 1 and {θ+, θ−}∗ =
−i, and the Hamiltonian is

H =
1
2
p2 + V (x) + L(x)N. (7)

The Hamiltonian H and the nilpotent quantity N are the even integrals of motion for any
choice of the functions V (x) and L(x), and one can put the question: when the system (6) has
also local in time odd integrals of motion of the form Q± = B∓(x, p)θ±, where (B+)∗ = B−?
It is obvious that such odd integrals can exist only for a special choice of the functions V (x)
and L(x). Restricting ourselves to the physically interesting class of the systems given by the
potential V (x) bounded from below, we can generally represent it in terms of a superpotential
W (x): V (x) = 1

2W
2(x) + v, v ∈ R. Then all the supersymmetric systems are separated into the

three classes defined by the behaviour of the superpotential and the results can be summarized
as follows [11].

i) When the physical domain given by z = W (x)+ip includes the origin z = 0 (a < W (x) < b,
a < 0, b > 0), the corresponding supersymmetric system is characterized by the Hamiltonian
and the supercharges of the form

H =
p2

2
+

1
2
W 2(x) + v +W ′(x)

[
n+W (x)M

(
W 2(x)

)]
N, (8)

Q+ = (Q−)∗ = znei
∫ p
0 M(p2−y2+W 2(x))dyθ+, n ∈ Z,

where M(W 2) is an arbitrary regular function, |M(0)| < ∞. The appearance of the integer
parameter illustrates in this case the known classical “quantization phenomenon” [31]. The ap-
propriate canonical transformation reduces the system with these Hamiltonian and supercharges
to the form of the supersymmetric system with the holomorphic supercharges [11]:

H =
1
2
p2 +

1
2
W 2(x) + v + nW ′(x)θ+θ−, Q+ = (Q−)∗ = znθ+, n ∈ Z+. (9)

The integrals (9) obey the classical nonlinear superalgebra:{
Q−, Q+

}
∗ = −iHn, {Q±, H}∗ = 0. (10)

The presence of the integer number n in the Hamiltonian means that the instant frequencies of
the oscillator-like odd, θ±, and even, z, z̄, variables are commensurable. Only in this case the
regular odd integrals of motion can be constructed, and the factor zn in the supercharges Q±

corresponds to the n-fold conformal mapping of the complex plane (or the strip a < Re z < b)
on itself (or on the corresponding region in C).

ii) The physical domain is defined by the condition Re z ≥ 0 (or Re z ≤ 0) and also includes
the origin of the complex plane. But unlike the previous case, there are no closed contours
around z = 0. In this case the most general form of the Hamiltonian and the supercharge is

H =
p2

2
+

1
2
W 2(x) + v +W ′(x) [α+R(W (x))]N, Q+ = zαe

i
∫ ϕ

ϕ0
R(ρ cosλ) dλ

θ+, (11)

where α ∈ R, and we assume that the function R(W ) is analytical at W = 0 and R(0) = 0. By
the canonical transformation [11], the Hamiltonian and the supercharges can be reduced to

H =
1
2
p2 +

1
2
W 2(x) + v + αW ′(x)θ+θ−, Q+ = (Q−)∗ = zαθ+, α ∈ R+.
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iii) The physical domain is defined by the condition Re z > 0 (or Re z < 0), i.e. the origin of
the complex plane is not included. Though in this case the Hamiltonian and the supercharges
have a general form

H =
p2

2
+

1
2
W 2 + v +W ′(x)φ(W (x))N, Q+ = (Q−)∗ = f(H)ei

∫ ϕ
ϕ0
φ(ρ cosλ) dλ

θ+, (12)

where φ is some function, the appropriate canonical transformation reduces it to [11]

H =
1
2
p2 +

1
2
W 2(x) + v, Q± = θ±.

This means that classically the supersymmetry of any system with bounded non-vanishing su-
perpotential has a “fictive” nature.

In what follows we will refer to the nonlinear supersymmetry generated by the holomorphic
supercharges with the Poisson bracket (anticommutator) being proportional to the n-th order
polynomial in the Hamiltonian as to the holomorphic n-supersymmetry.

Though the form of the Hamiltonians (8), (11), and (12) can be simplified by applying in
every case the appropriate canonical transformation reducing the associated supercharges to the
holomorphic or antiholomorphic form, the quantization breaks the equivalence between the cor-
responding classical systems (even in the linear case n = 1) [11]. Moreover, alternative classical
forms for the Hamiltonians and associated supercharges are important because of the quantum
anomaly problem to be discussed below. Having in mind the importance of alternative classical
formulations of the nonlinear supersymmetry from the viewpoint of subsequent quantization,
one can look for the classical formulation characterized by the supercharges of the n-th degree
polynomial form in p [11]. The problem of finding such a formulation can be solved completely
in the simplest case n = 2, for which the supercharges are given by

Q± =
1
2

[
(± ip+W (x))2 +

c

W 2(x)

]
θ±, c ∈ R, (13)

while the Hamiltonian is

H =
1
2

[
p2 +W 2(x)− c

W 2(x)

]
+ 2W ′(x)N + v. (14)

Note that the Hamiltonian (14) has the Calogero-like form: at W (x) = x its projection to the
unit of Grassman algebra takes the form of the Hamiltonian of the two-particle Calogero system.
Depending on the value of the parameter c, classically the Calogero-like n = 2 supersymmetric
system (14) is symplectomorphic to the holomorphic n-supersymmetry with n = 0 (c > 0),
n = 1 (c < 0) or n = 2 (c = 0) [11].

Quantum anomaly and quasi-exactly solvable (QES) systems

According to the results on the supersymmetry in pure parabosonic systems, a priori one cannot
exclude the situation characterized by the supercharges to be the nonlocal operators represented
in the form of some infinite series in the operator d

dx . Since such nonlocal supercharges have to
anticommute for some function of the Hamiltonian being a usual local differential operator of
the second order, they have to possess a very peculiar structure. We restrict ourselves by the
discussion of the supersymmetric systems with the supercharges being the differential operators
of order n. Classically this corresponds to the system (9) with the holomorphic supercharges or
to the system (14).

In the simplest case of the superoscillator possessing the nonlinear n-supersymmetry and
characterized by the holomorphic supercharges of the form (9) with W (x) = x, the form of the
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classical superalgebra {Q+
n , Q

−
n } = Hn is changed for {Q+

n , Q
−
n } = H(H − �)(H − 2�) · · · (H −

�(n − 1)). Moreover, it was pointed out in [3] that for W (x) �= ax + b a global quantum
anomaly arises in a generic case: the direct quantum analogues of the superoscillators and the
Hamiltonian do not commute, [Q±n , Hn] �= 0. Therefore, we arrive at the problem of looking
for the classes of superpotentials and corresponding quantization prescriptions leading to the
anomaly-free quantum n-supersymmetric systems.

Let us begin with the quantum supercharges in the holomorphic form corresponding to the
classical n-supersymmetry,

Q± = (A∓)nθ±, where A± = ∓ �
d

dx
+W (x). (15)

Choosing the quantum Hamiltonian in the form (7), from the requirement of conservation of
the supercharges, [Q±, H] = 0, one arrives at the supersymmetric quantum system given by the
Hamiltonian [11]

H =
1
2

(
−�2 d

2

dx2
+W 2(x) + 2v + n�σ3W

′
)
, W (x) = w2x

2 + w1x+ w0. (16)

For any other form of the superpotential, the nilpotent operators (15) are not conserved. The
family of supersymmetric systems (16) is reduced to the superoscillator at w2 = 0 with the
associated exact n-supersymmetry [3]. For w2 �= 0, the n-supersymmetry is realized always in
the spontaneously broken phase since in this case the supercharges (15) have no zero modes
(normalized eigenfunctions of zero eigenvalue).

One can also look for the supercharges in the form of polynomial of order n in the oscillator-
like operators A± defined in (15):

Q± =
(
A∓

)n
θ± +

n−1∑
k=0

qn−k
(
A∓

)k
θ±, (17)

where qk are real parameters which have to be fixed. As in the case of the supercharges (15),
the requirement of conservation of (17) results in the Hamiltonian (16) but with the exponential
superpotential [11]:

W (x) = w+e
ωx + w−e−ωx + w0, ω2 = − 24q

n (n2 − 1)
, (18)

where all the parameters w±,0 are real, while the parameter ω is real or pure imaginary depending
on the sign of the real parameter q, and for the sake of simplicity we put � = 1. In the limit
ω → 0 this superpotential is reduced to the quadratic form (16) via the appropriate rescaling of
the parameters w±,0.

The family of n-supersymmetric systems given by the superpotential (18) is tightly related
to the so called quasi-exactly solvable problems [15, 16, 17, 18, 19]. Indeed, both of the Hamil-
tonians constituting the supersymmetric Hamiltonian of the form (16) with the exponential
superpotential belong to the sl(2,R) scheme of one-dimensional QES systems [15, 16, 17]. Be-
sides, the QES family given by the superpotential (18) is related to the exactly solvable Morse
potential for some choice of the parameters [11].

The n = 2 non-holomorphic supersymmetry corresponding to equations (13), (14) occupies
an especial position. Like the linear supersymmetry, it admits the anomaly-free quantum formu-
lation in terms of an arbitrary superpotential. Indeed, the quantization of the supersymmetric
system (14) leads to [11]

H =
1
2

[
−�2 d

2

dx2
+W 2 − c

W 2
+ v + 2�W ′σ3 + ∆(W )

]
, (19)
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Q+ = (Q−)† =
1
2

[(
�
d

dx
+W

)2

+
c

W 2
−∆(W )

]
θ+, (20)

∆ =
�2

4W 2

(
2W ′′W −W ′2

)
. (21)

Looking at the quantum Hamiltonian (19) and supercharges (20), we see that the presence of the
quadratic in �2 term (21) in the operators H and Q+ is crucial for preserving the supersymmetry
at the quantum level. Therefore, one can say that the quantum correction (21) cures the problem
of the quantum anomaly since without it the operators Q± would not be the integrals of motion.
The supercharges (20) satisfy the relation {Q+, Q−} = (H − v)2 + c, and the structure of the
lowest bounded states in the cases c > 0, c < 0 and c = 0 for v = 0 is reflected in the table and
on the figure (for the details see Ref. [11]).
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Figure. The four types of the spectra for the n = 2 supersymmetry for bounded states.

Table. The structure of the lowest states for the n = 2 supersymmetry.

c > 0 c = 0 c < 0

a) Completely broken phase, there are no singlet states + + +

b) One singlet state in either bosonic or fermionic sector + +

c) Two singlet states with E = 0, one is in fermionic
sector, another is in bosonic sector + +

d) Two singlet states in one of two sectors +

From this structure one can see, in particular, that the quantum theory “remembers” its
classical origin: the case c > 0 corresponding classically to the holomorphic n = 0 supersymmetry
gives the systems in the completely broken phase for any superpotential providing the existence
of bounded states.

In conclusion of the discussion of the nonlinear supersymmetry for the 1D quantum systems,
we note that for the first time the close relationship between the nonlinear supersymmetry and
QES systems was observed in Ref. [11]. Recently, it was demonstrated [32] that the so called
type A N -fold supersymmetry [33] being a generalization of the one-dimensional holomorphic
supersymmetry is, in essence, equivalent to the one-dimensional QES systems associated with
the sl(2,R) algebra.

Nonlinear supersymmetry on plane in magnetic field

The nonlinear holomorphic supersymmetry we have discussed has a universal nature due to the
algebraic construction underlying it and revealed in Ref. [12]. This universality allows us, in
particular, to generalize the above analysis to the case of the two-dimensional systems.
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The classical Hamiltonian of a charged spin-1/2 particle (−e = m = 1) with gyromagnetic
ratio g moving on a plane and subjected to a magnetic field B(x) is given by

H =
1
2
P2 + gB(x)θ+θ−, (22)

where P = p + A(x), A(x) is a 2D gauge potential, B(x) = ∂1A2 − ∂2A1. The variables
xi, pi, i = 1, 2, and complex Grassman variables θ±, (θ+)∗ = θ−, are canonically conjugate
with respect to the Poisson–Dirac brackets, {xi, pj}∗ = δij , {θ−, θ+}∗ = −i. For even values
of the gyromagnetic ratio g = 2n, n ∈ N, the system (22) is endowed with the nonlinear n-
supersymmetry. In this case the Hamiltonian (22) takes the form

Hn =
1
2
Z+Z− +

i

2
n

{
Z−, Z+

}
∗ θ

+θ−, Z± = P2 ∓ iP1, (23)

which admits the existence of the odd integrals of motion

Q± = 2−
n
2

(
Z∓

)n
θ± (24)

generating the nonlinear n-superalgebra (10). The n-superalgebra does not depend on the
explicit form of the even complex conjugate variables Z±. Therefore, in principle, Z± can be
arbitrary functions of the bosonic dynamical variables of the system.

The nilpotent quantity N = θ+θ− is, as in the 1D case, the even integral of motion. When
the gauge potential A(x) is a 2D vector, the system (23) possesses the additional even integral
of motion L = εijxipj . The integrals N and L generate the U(1) rotations of the odd, θ±,
and even, Z±, variables, respectively. Their linear combination J = L + nN is in involution
with the supercharges, {J,Q±}∗=0, and plays the role of the central charge of the classical n-
superalgebra. As we shall see, at the quantum level the form of the nonlinear n-superalgebra (10)
is modified generically by the appearance of the nontrivial central charge in the anticommutator
of the supercharges.

A spin-1/2 particle moving on a plane in a constant magnetic field represents the simplest case
of a quantum 2D system admitting the nonlinear supersymmetry. Such a system corresponds
to the n-supersymmetric quantum oscillator [12]. As in the case of the one-dimensional theory,
the attempt to generalize the n-supersymmetry of the system to the case of the magnetic field of
general form faces the problem of quantum anomaly. The generalization is nevertheless possible
for the magnetic field of special form [12].

To analyse the nonlinear n-supersymmetry for arbitrary n ∈ N, it is convenient to introduce
the complex oscillator-like operators

Z = ∂ +W (z, z̄), Z̄ = − ∂̄ + W̄ (z, z̄), (25)

where the complex superpotential is defined by ReW = A2(x), ImW = A1(x), and the notations
z = 1

2(x1 + ix2), z̄ = 1
2(x1 − ix2), ∂ = ∂z, ∂̄ = ∂z̄ are introduced.

The magnetic field is defined by the relation [Z, Z̄] = 2B(z, z̄). The n-supersymmetric Hamil-
tonian has the form

Hn =
1
4

{
Z̄, Z

}
+
n

4
[
Z, Z̄

]
σ3. (26)

For n = 1 we reproduce the usual supersymmetric Hamiltonian. Unlike the linear supersym-
metry, the nonlinear holomorphic supersymmetry exists only when the operators (25) obey the
relations[

Z,
[
Z,

[
Z, Z̄

]]]
= ω2

[
Z, Z̄

]
,

[
Z̄,

[
Z̄,

[
Z, Z̄

]]]
= ω̄2

[
Z, Z̄

]
. (27)
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Here ω ∈ C and ω̄ = ω∗. Using equation (27), one can prove algebraically by the mathematical
induction that for the system (26) the odd operators defined by the recurrent relations

Q+
n+2 =

1
2

(
Z2 −

(
n+ 1

2

)2

ω2

)
Q+
n , Q+

0 = θ+, Q+
1 = 2−

1
2Zθ+, (28)

are the integrals of motions, i.e. they are supercharges. One can make sure [11] that in the 1D case
these operators generate the nonlinear supersymmetry with the polynomial superalgebra (1).

In the representation (25) the conditions (27) acquire the form of the differential equations
for magnetic field:(

∂2 − ω2
)
B(z, z̄) = 0,

(
∂̄2 − ω̄2

)
B(z, z̄) = 0. (29)

The general solution to these equations is

B(z, z̄) = w+e
ωz+ω̄z̄ + w−e−(ωz+ω̄z̄) + weωz−ω̄z̄ + w̄e−(ωz−ω̄z̄), (30)

where w± ∈ R, w ∈ C, w̄ = w∗. On the other hand, for ω = 0 the solution to equation (29) is
the polynomial,

B(x) = c
(
(x1 − x10)2 + (x2 − x20)2

)
+ c0, (31)

with c, c0, x10, x20 being some real constants. Though the latter solution can be obtained
formally from (30) in the limit ω → 0 by rescaling appropriately the parameters w±, w, the cor-
responding limit procedure is singular and the cases (30) and (31) have to be treated separately.

Since the conservation of the supercharges is proved algebraically, the operators Z, Z̄ can
have any nature (the action of Z, Z̄ is supposed to be associative). For example, they can have
a matrix structure. With this observation the nonlinear supersymmetry can be applied to the
case of matrix Hamiltonians [34, 35, 36].

Thus, the introduction of the operators Z, Z̄ allows us to reduce the two-dimensional holo-
morphic n-supersymmetry to the pure algebraic construction. It is worth noting that in the
literature the algebraic relations (27) are known as Dolan–Grady relations. The relations of
such a form appeared for the first time in the context of integrable models [13].

The essential difference of the n-supersymmetric 2D system (26) from the corresponding 1D
supersymmetric system is the appearance of the central charge

Jn = −1
4

(
ω2Z̄2 + ω̄2Z2

)
+ ∂BZ̄ + ∂̄BZ −B2 +

n

2
∂̄∂Bσ3, (32)

[Hn, Jn] = [Q±n , Jn] = 0. The anticommutator of the supercharges contains it for any n > 1. For
example, the n = 2 nonlinear superalgebra is

{
Q−2 , Q

+
2

}
= H2

2 +
1
4
J2 +

|ω|4

64
. (33)

The systems (26) with the magnetic field (30) of the pure hyperbolic (w = 0) or pure trigono-
metric (w± = 0) form can be reduced to the one-dimensional problems with the nonlinear
holomorphic supersymmetry [12].

Let us turn now to the polynomial magnetic field (31). One can see that this case re-
veals a nontrivial relation of the holomorphic n-supersymmetry of the 2D system to the non-
holomorphic 1D N -fold supersymmetry of Aoyama et al [33].

In the system (26) with the polynomial magnetic field (31) the central charge has the form

Jn =
1
4c

(
∂B(z, z̄)Z̄ + ∂̄B(z, z̄)Z −B2(z, z̄) +

n

2
∂̄∂B(z, z̄)σ3

)
. (34)
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It can be obtained from the operator (32) in the limit ω → 0 via the same rescaling of the
parameters of the exponential magnetic field which transforms (30) into (31). The essential
feature of this integral is its linearity in derivatives.

The polynomial magnetic field (31) is invariant under rotations about the point (x10, x20).
Therefore, one can expect that the operator (34) should be related to a generator of the axial
symmetry. To use the benefit of this symmetry, one can pass over to the polar coordinate system
with the origin at the point (x10, x20). Then the magnetic field is radial, B(r) = cr2 + c0. The
supercharges have the simple structure: Q+

n = 2−
n
2Znθ+ = (Q−n )†. As in the case ω �= 0, the

anticommutator of the supercharges is a polynomial of the n-th degree in Hn, {Q−n , Q+
n } =

Hn
n + P (Hn, Jn), where P (Hn, Jn) denotes a polynomial of the (n− 1)-th degree. For example,

for n = 2 one has

{Q−2 , Q+
2 } = H2

2 + cJ2.

For the radial magnetic field it is convenient to use the gauge

Aϕ =
1
4
cr4 +

1
2
c0r

2, Ar = 0. (35)

In this gauge the Hamiltonian (26) reads

Hn = − 1
2

(
∂2
r + r−1∂r − r−2

(
A2
ϕ(r)− 2iAϕ(r)∂ϕ − ∂2

ϕ

))
+
n

2
B(r)σ3, (36)

while the central charge (34) takes the form Jn = − i∂ϕ − c20
4c + n

2σ3. Thus, the integral Jn
is associated with the axial symmetry of the system under consideration. The simultaneous
eigenstates of the operators Hn and Jn have the structure

Ψm(r, ϕ) =

(
ei(m−n)ϕχm(r)

eimϕψm(r)

)
. (37)

Since the angular variable ϕ is cyclic, the 2D Hamiltonian (36) can be reduced to the 1D
Hamiltonian. The kinetic term of the Hamiltonian (36) is Hermitian with respect to the measure
dµ = rdrdϕ. In order to obtain a one-dimensional system with the usual scalar product defined
by the measure dµ = dr, one has to perform the similarity transformation Hn → UHnU

−1,
Ψ → UΨ with U =

√
r. Since the system obtained after such a transformation is originated

from the two-dimensional system, one should keep in mind that the variable r belongs to the
half-line, r ∈ [0,∞). After the transformation, the reduced one-dimensional Hamiltonian acting
on the lower (Bose) component of the state (37) reads as

H(2)
n = − 1

2
d2

dr2
+
c2

32
r6 +

c0c

8
r4 +

1
8

(
c20 − 2c(2n−m)

)
r2 +

m2 − 1
4

2r2
− 1

2
(n−m)c0. (38)

This Hamiltonian gives the well-known family of the quasi-exactly solvable systems [15, 16, 34,
19]. The superpartner H(1)

n acting on the upper (Fermi) component of the state (37) can be
obtained from H(2)

n by the substitution n→ −n, m→ m− n.
The reduced supercharges have the form

Q+
n = 2−

n
2Znθ+ = (Q−n )†, Zn =

(
A− n− 1

r

)(
A− n− 2

r

)
· · ·A,

where A = d
dr +W (r) and the superpotential is

W (r) =
1
4
cr3 +

1
2
c0r +

m− 1
2

r
.
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The operators Q±n , H(i)
n , i = 1, 2, generate the non-holomorphic type A N -fold supersymmetry

discussed in [33]. The supersymmetry is exact for c > 0 (c < 0) and corresponding zero modes
of the supercharge Q+

n (Q−n ) can be found. The relation of the N -fold supersymmetry with the
cubic superpotential to the family of QES system (38) with the sextic potential was also noted
in Ref. [37].

Resume

To conclude, let us summarize the main results of our consideration of the nonlinear supersym-
metry.

• Generalized statistics and supersymmetry are intimately related.

• Linear supersymmetry at the classical level is a particular case of a classical supersymmetry
characterized by the Poisson algebra being nonlinear in Hamiltonian.

• Any classical 1D supersymmetric system is symplectomorphic to the supersymmetric sys-
tem of the canonical form characterized by the holomorphic supercharges. There are three
different classes of the classical canonical supersymmetric systems defined by the behaviour
of the superpotential.

• The anomaly-free quantization of the classical 1D holomorphic n-supersymmetry is possi-
ble for the quadratic and exponential superpotentials.

• The nonlinear supersymmetry is closely related to the quasy-exactly solvable systems.

• The n = 2 supersymmetric Calogero-like systems (14) admit the anomaly-free quantization
for any superpotential; the specific quantum term (∼ �2) “cures” the quantum anomaly
problem.

• The anomaly-free quantization of the classical 2D holomorphic n-supersymmetry fixes the
form of the magnetic field to be the quadratic or exponential one.

• Realization of the holomorphic n-supersymmetry in 2D systems leads to the appearance
of the central charge entering nontrivially into the superalgebra.

• The holomorphic nonlinear supersymmetry can be related to other known forms of non-
linear supersymmetry via the dimensional reduction procedure.

• There is the universal algebraic foundation associated with the Dolan–Grady relations
which underlies the holomorphic n-supersymmetry.

The universal algebraic structure underlying the holomorphic nonlinear supersymmetry opens
the possibility to apply the latter for investigation of the wide class of the quantum mechanical
systems including the models described by the matrix Hamiltonians, the models on the non-
commutative space, and integrable models [38].
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Concepts of supersymmetry and parasupersymmetry known for the one-dimensional statio-
nary Schrödinger equation are generalized to the time-dependent equation. Our approach is
based on differential transformation operators for the non-stationary Schrödinger equation
called Darboux transformation operators and on chains of such operators. As an illustration
new exactly solvable time-dependent potentials are derived.

1 Introduction

Supersymmetry has been introduced in quantum mechanics by Nicolai [1] and later by Witten [2].
It was realized afterwards that this approach is really a particular case of transformation ope-
rators method well known in mathematics (see e.g. [3]) when it is applied to the stationary
Schrödinger equation and when the transformation operator has a differential form [4]. In
particular, when the transformation operator is a first order differential operator this approach
is equivalent to the one studied by Darboux in 1882 [5]. When the same method is applied to
the transformed equation one gets a chain of transformations. We shall see further that the
algebraic structure underlying such a chain is parasupersymmetry.

In this lecture I am planning to show how this approach may be generalized to the time-
dependent case, i.e. to the time-dependent Schrödinger equation. This generalization is straight-
forward. Therefore I will develop the time-dependent constructions in parallel lines with the
time-independent ones. The left-hand lines of the most formulae will be devoted to the stationary
(known) results and the right-hand lines will show their time-dependent generalization.

2 Time-dependent Darboux transformations
and time-dependent supersymmetry

The main idea of the transformation operators method is so called intertwining relation (see
e.g. [4]). Let us suppose that one knows the solutions of the Schrödinger equation (stationary
or non-stationary)

h0ψE = EψE , (i∂t − h0)ψ = 0, (1)

h0 = −∂2
x + V0(x), x ∈ [a, b].

For the stationary case they are supposed to be known for all real and if necessary complex
values of the parameter E.

To solve another Schrödinger equation

h1ϕE = EϕE , (i∂t − h1)ψ = 0, (2)

h1 = −∂2
x + V1(x), x ∈ [a, b]
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one may introduce so called transformation operator which I will denote by L. The defining
relation for this operator is the intertwining relation

Lh0 = h1L, L(i∂t − h0) = (i∂t − h1)L. (3)

Therefore it is also called intertwiner. It is clear from (3) that ϕ = Lψ is a solution to (2)
provided ψ is a solution to (1). The equation (1) is called the initial equation, the Hamilto-
nian h0 is the initial Hamiltonian and the potential V0 is the initial potential. The equation (2),
Hamiltonian h1 and the potential V1 are transformed entities.

In the simplest case one can try to find the operator L as a first order differential operator

L = L0(x) + L1(x)∂x, L = L0(x, t) + L1(x, t)∂x.

Note that for the time-dependent case I do not include to L the derivative with respect to time.
If it would be included to it, L should become a second order operator since it follows from (1)
that i∂t = −∂2

x+V0 but we want to have the operator L only as a first order differential operator.
If one introduces the potential difference A = h1 − h0 = V1(x)− V0(x) then the intertwining

relation reduces to the system of differential equations for A and for the coefficients of the
operator L. Note that this system can be integrated both in stationary and in non-stationary
cases. I give here only the final result

L = −ux(x)
u(x)

+ ∂x, L = L1(t)
(
−ux(x, t)
u(x, t)

+ ∂x

)
. (4)

Here u is a solution to the initial equation

h0u(x) = αu(x), (i∂t − h0)u(x, t) = 0.

The main difference between time-dependent and time-independent cases is that for the time-
independent case the coefficient L1 is an arbitrary constant which always may be put equal to
equal to 1, but for the time-dependent case it is an arbitrary function of time.

The potential difference depends on the function u but for the time-dependent case it depends
also on the function L1(t). For the time-independent case the function u can always be chosen
real for all real values of the parameter E whereas for the time-dependent case this function
takes essentially complex values. Our main idea for the time-dependent case is to dispose of
the arbitrary function L1(t) for satisfying the reality condition for the potential difference. As
it happens this is possible only if the function u is subject to an additional condition which we
call the reality condition of the new potential or simply the reality condition

[log u/u]xxx = 0.

The bar means the complex conjugation. Under this condition the function L1(t) becomes real

L1(t) = exp
[
2

∫
dt Im (log u)xx

]
(5)

and for the potential difference one gets

A(x) = −
[
log u2(x)

]
xx
, A(x, t) = −

[
log |u(x, t)|2

]
xx
. (6)

We see from (4), (5), (6) that the potential difference and the transformation operator are
defined only by the function u. Therefore we call it the transformation function. As it follows
from (6) a sole condition which should be imposed on u is the absence of zeros for x belonging to
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the interval (a, b) where the initial Schrödinger equation is solved. No boundary or asymptotic
condition should be imposed on it.

Note, that when the potential V0 is independent of time, one can take u(x, t) in the form

u(x, t) = u(x)e−iαt.

In this case the reality condition is satisfied and the function L1 = const. The time-dependent
transformation reduces just to the known time-independent one.

Once one knows the operator L one can introduce so called Laplace adjoint to it which is
defined by the formal relations

(c∂x)+ = −c∂x, c ∈ C, (AB)+ = B+A+.

Then

L+ = −ux(x)
u(x)

− ∂x, L+ = −L1(t)
(
ux(x, t)
u(x, t)

+ ∂x

)
and

(i∂t − h0)+ = i∂t − h0.

The conjugation of the intertwining relations gives us corresponding relations for L+

h0L
+ = L+h1, (i∂t − h0)L+ = L+(i∂t − h1).

These relations mean that the operator L+ realizes the transformation in the inverse direction,
i.e. from the solutions of the transformed equation to the solutions of the initial one. It is clear
now that the superposition L+L transforms solutions of the initial equation into solutions of the
same equation and hence this is a symmetry operator for the initial Schrödinger equation. By
the same reason the operator LL+ is a symmetry operator for the transformed equation. For
the stationary case there exists only one second order differential symmetry operator, this is the
Hamiltonian (may be displaced by a constant). For the non-stationary case the Hamiltonian in
general is not an integral of motion. So, our transformation is possible only for such systems
which have symmetry operators either of the second order in ∂x or of the first order in ∂x and ∂t.
In other words

L+L = h0 − α, L+L = g0 − α (7)

and

LL+ = h1 − α, LL+ = g1 − α. (8)

We denote by g0 and g1 corresponding symmetry operators for the nonstationary Schrödinger
equation. These relations may be treated as factorizations of the operators g0 (h0) and g1 (h1).

It follows from (7) and (8) that for the non-stationary case the following intertwining relations
take place

Lg0 = g1L, g0L
+ = L+g1. (9)

Moreover, when a Hilbert space is introduced and formally adjoint operator coincides with
the adjoint with respect to an inner product, the operators L+L and LL+ are nonnegative.
Hence, the symmetry operators g0 (h0) and g1 (h1) are bounded from below. Furthermore, by
constructions one has Lu = 0. It follows from here and (7) that g0u = αu.
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The intertwining relations and factorization properties may be rewritten in another form.
Let us introduce the following matrices

H =
(
h0 0
0 h1

)
, G =

(
g0 0
0 g1

)
and

Q+ =
(

0 L+

0 0

)
, Q =

(
0 0
L 0

)
.

It is easy to see now that the factorization property may be rewritten in the form

Q+Q+QQ+ = H− αI, Q+Q+QQ+ = G − αI,

where I is the unity 2× 2 matrix, and the intertwining relations result in

QH−HQ = 0, QG − GQ = 0.

We see from here that the operators H, Q, Q+ or G, Q, Q+ form a simplest superalgebra. In
the time-dependent case the operators G, Q, Q+ depend on time. Therefore we have a time-
dependent superalgebra.

The operators L and L+ have non-trivial kernels. Nevertheless if one introduces the space
of the solutions of the initial equation, T0, and the space of the solutions of the transformed
equation, T1, one can establish a one-to one correspondence between these spaces. Let us
decompose the spaces T0,1 into a direct sums

T0,1 = T 0
0,1 ⊕ T 1

0,1, T 1
0 = kerL+L, T 1

1 = kerLL+.

The spaces T 1
0,1 are two-dimensional. It is clear by constructions that u ∈ T 1

0 . The equation
L+L = 0 except for u has another solution linearly independent with u which has the form

ũ = uL−2
1

∫
dx

uu
.

It is easy to show that the function v = Lũ = 1/(L1u ) is such that L+v = 0. This means
that v ∈ kerLL+. Another solution of the equation LL+ = 0 linearly independent with v has
the form ṽ = vL−2

1

∫
1/(vv ) dx and L+ṽ = u. Once we know the basis functions u, ũ ∈ T 1

0

and v, ṽ ∈ T 1
1 we can define a linear one-to-one correspondence between T 1

0 and T 1
1 by defining

the correspondence between the bases: u ←→ ṽ and ũ ←→ v. The equations L+Lψ = 0
and LL+ϕ = 0 has no solutions when solving on T 0

0 and T 1
0 respectively. These operators are

hence invertible on these spaces. This means that they establish the one-to-one correspondence
between T 0

0 and T 1
0 . So, we have established the one-to one correspondence between T0 and T1.

This correspondence is very useful for finding all square integrable solutions of the transformed
equation. It is easy to see that the function ϕ = Lψ is square integrable provided so is ψ ∈ T 0

0

and when ψ is not square integrable ϕ is not either. Hence, to find all square integrable solutions
of the transformed equation it remains to analyze the functions v and ṽ.

As I have mentioned, u should be a nodeless solution of the initial Schrödinger equation and
the operator g0 is bounded from below. Let E0 be its lower bound. Then, according to the
oscillator theorem u may be nodeless only if α ≤ E0. When g0 has a discrete spectrum, E0 may
be associated with the ground state level. If we take α = E0 then neither v nor ṽ are square
integrable and this level will be absent in the spectrum of g1. All other levels of g0 are unchanged
in the course of the Darboux transformation. When α < E0 there are two possibilities. The
first one corresponds to the case when the function v = 1/(L1u ) is square integrable. In this
case the operator g1 has an additional discrete spectrum level with respect to g0. In the second
case neither v nor ṽ are square integrable and g1 has exactly the same spectrum as g0, i.e. they
are strictly isospectral.
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3 Chains of transformations and parasupersymmetry

Once we know the potential V1 we can take it as V0 and realize the Darboux transformation
once again, etc. In such a way we obtain a chain of exactly solvable symmetry operators

h0 → h1 → · · · → hN , g0 → g1 → · · · → gN (10)

and a chain of first order transformation operators

L0,1 → L1,2 → · · · → LN−1,N .

If one is not interested in the intermediate operators, one can expunge all the intermediate
transformation functions from the final result and express it only in terms of solutions of the
initial equation. Moreover, in this case one does not have to impose the reality condition on the
intermediate potentials. This leads to the following formulae for solutions of the transformed
equation

ϕ = L0N (t)W (u1, u2, . . . , uN )

∣∣∣∣∣∣∣∣
u1 u2 · · · ψ
u1x u2x · · · ψx
· · · · · · · · · · · ·
u

(N)
1x u

(N)
2x · · · ψ

(N)
x

∣∣∣∣∣∣∣∣ . (11)

Here g0uk = αkuk. For the stationary case L0N (t) = 1 and this formula reduces to the known
Krum–Krein formula [6, 7]. The formula (11) defines an N -order transformation operator ϕ =
L0,Nψ, L0,N = LN−1,NLN−2,N−1 · · ·L0,1. This operator is an intertwiner for the symmetry
operators g0 and gN . The operators L0,N and its adjoint L+

0,N factorize now a polynomial of the
operators g0 and gN

L+
0,NL0,N =

N∏
k=1

(h0 − αk), L+
0,NL0,N =

N∏
k=1

(g0 − αk), (12)

L0,NL
+
0,N =

N∏
k=1

(hN − αk), L0,NL
+
0,N =

N∏
k=1

(gN − αk). (13)

Let us consider a chain in which all elements are good. Such chains are known as completely
reducible ones. For this chain one can consider nth order transformation operators

Lp,p+n = Lp+n−1,p+nLp+n−2,p+n−1 · · ·Lp,p+1, n ≤ N

and their adjoint. They factorize polynomials of the symmetry operators gp and gp+n

L+
p,p+nLp,p+n =

n∏
k=1

(gp − αp+k), Lp,p+nL
+
p,p+n =

n∏
k=1

(gp+n − αp+k)

and they are intertwiners for gp and gp+n and for the Schrödinger equations with the Hamilto-
nians hp and hp+n.

Let us introduce now the diagonal matrix operators

H = diag (h0, h1, . . . , hN ), G = diag (g0, g1, . . . , gN )

and nilpotent supercharges

Q+
p ,q = Lp,qep,q, Qp,q = L+

p,qeq,p,
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where ep,q is (N + 1) × (N + 1) matrix with a single non-zero entry which is equal to one and
stands at the intersection of pth column and qth row.

Instead of the chain of the Schrödinger equations one can write now the single equation
(supersymmetric Schrödinger equation)

(iI∂t −H)Ψ(x, t) = 0.

Intertwining relations between transformation operators and i∂t−hp are equivalent to the com-
mutation of the supercharges Qp,q with iI∂t − H. This means that all Qp,q are integrals of
motion for the system with the superhamiltonian H. The condition of the complete reducibility
leads to the following non-linear algebra

Qs,pQp,q = Qs,q, N + 1 ≥ q > p > s,

Q+
p,p+nQp,p+n+m =

n∏
i=1

(G0 − αp+i)Qp+n,p+n+m, p+ n+m ≤ N + 1,

Qp−n−m,pQ+
p−n,p =

n∏
i=1

(G0 − αp+i−1)Qp−n−m,p−n, p− n−m ≥ 0, p ≤ N + 1,

Qp,p+nQ+
p,p+nQp,p+n =

n∏
i=1

(G0 − αp+i)Qp,p+n, p+ n ≤ N + 1, n,m = 1, 2, . . .

Similar non-linear algebras are known for the stationary Schrödinger equation as parasuperal-
gebras (see e.g. [8, 9]). The operators involved in this algebra depend on time. Hence one has
here a time-dependent parasuperalgebra.

4 Time-dependent exactly solvable potentials

4.1 Harmonic oscillator with a time varying frequency

Consider first a time-dependent generalization of the harmonic oscillator

h0 = −∂2
x + ω2(t)x2. (14)

Some solutions of the Schrödinger equation with such a Hamiltonian are well-known but we
will need other solutions for using as transformation functions. To get them we will use the
method of separation of the variables in its general formulation as R-separation of variables
well-described in the book by Miller [10]. This method is based on classification of orbits in
adjoint representation of a symmetry group for a given equation.

Symmetry algebra of the Schrödinger equation with the Hamiltonian (14) is the well-known
Schrödinger algebra. Consider first representation of this algebra suitable for our purpose.

Operators a = ε∂x − i
2 ε̇x, a+ = ε̄∂x + i

2
˙̄εx, aa+ − a+a = 1

4 , where ε = ε(t) is a solution of
a classical equation of motion for the Harmonic oscillator with a time-varying frequency ε̈(t) +
4ω2(t)ε(t) = 0 are creation and annihilation operators and together with the identity operator
close the Heisenberg–Weil algebra. All operators of the Schrödinger algebra are constructed in
terms of a and a+

K1 = a− a+, K−1 = −i(a+ a+), K0 = i,

K−2 = −i(a+ a+)2, K2 = −i(a− a+)2, K0 = −2
[
a2 − (a+)2

]
.

Symmetry operators are classified by the orbits of adjoint representation of the symmetry
group. It is well-known that in the case under consideration there exist five different orbits. We
shall consider every orbit successively.
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Two orbits with representatives J1 = K1 and J1 = K2 give the same solution of the
Schrödinger equation

ψ = γ−1/2 exp
[
iλx

8γ
+
ix2γ̇

4γ
− iλ2δ

64γ

]
, (15)

2γ = ε+ ε̄, 2iδ = ε− ε̄, ε̇ε̄− ε ˙̄ε =
i

2
.

Using the function (15) we construct the transformation function

u = γ−1/2 cosh
λx

8γ
exp

[
ix2γ̇

4γ
− iλ2δ

64γ

]
, L1(t) = γ = (ε+ ε)/2,

which gives us the following potential

V1 = ω2(t)x2 − λ2

32γ2
cosh−2 λx

8γ
.

When ω = 0 it reduces to the well-known one soliton potential. Therefore it may be considered
as a non-stationary generalization of the one soliton potential. The Fig. 1 shows the behavior
of this potential for ω = 1/2 (stationary case) and γ = 1

2 cos t. At the bottom of the harmonic
oscillator parabola one can see an additional minimum of the varying depth.

Figure 1. Potential with a time-dependent anharmonic member.

Using the same function (15) one can construct the transformation function of a more general
form

u = uλ + uλ̄ = γ−1/2 cosh
(
νx

8γ
+ µν

δ

32γ

)
exp

[
ix2γ̇

4γ
− iµx

8γ
+ i

(
ν2 − µ2

) δ

64γ

]
,

λ = −µ− iν, L1(t) = γ

which gives the following potential

V1 = ω2(t)x2 − ν2

32γ2
cosh−2

(
νx

8γ
+ µν

δ

32γ

)
. (16)

When ω = 0 this potential reduces to the known non-stationary soliton potential which gives
rise to a one soliton solution to the Kadomtsev–Petviashili (two-dimensional KdV) nonlinear
equation. The next figure shows the plot of this potential at different time-moments. Here an
additional minimum of a varying depth oscillates between the parabola walls.

The next orbit is presented by the operator J2 = K2 − K1. Corresponding solution of the
Schrödinger equation has the form

ψ = δ−1/2 exp

(
ix2 δ̇

4δ
− ix

γ

2δ1
+ i

γ3

6δ3
+ iλ

γ

δ

)
Q

(
2−1/2

(
x

δ
− γ2

2δ2

)
− 22/3λ

)
,
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Figure 2. Potential with a time-dependent anharmonic member at different time moments.

where γ = ε+ ε̄, iδ = ε− ε̄, and Q(z) is the Airy function satisfying the equation Qzz(z) = zQ(z).
Exactly solvable potential is expressed in this case in terms of the Airy function. To obtain a real
and regular on the whole real line potential one can realize a second order transformation with
the mutually conjugated transformation functions uλ and u

λ
. For ω = 0 the plot of one of these

potentials is shown by the Fig. 3.
The fourth orbit has the representative J3 = K2 −K−2 and creates the following solution of

the Schrödinger equation

ψ = γ−1/4
(ε
ε

)λ/2
exp

(
i
γ̇x2

8γ

)
Q

(
x

2
√
γ

)
, γ = εε,

where Q(z) is the parabolic cylinder function satisfying the equation Qzz(z)−
(
z2/4 + λ

)
Q(z) =

0. At λ = −n− 1/2 one gets the discrete basis functions of corresponding Hilbert space

ψn = Nnγ
−1/4

(
ε

ε

)n/2+1/4

exp
(

2iγ̇ − 1
16γ

x2

)
Hen

(
x

2
√
γ

)
,

where Hen(z) = 2−n/2Hn(z/
√

2) are Hermite polynomials.
The same functions with λ = n+ 1/2 are suitable for the Darboux transformations and they

generate the following potential differences

Am,l2 =
1

2γ

[
1 +

f ′′ml(z)
fml(z)

−
(
f ′ml(z)
fml(z)

)2
]
,

fml(z) = qm(z)ql+1(z)− ql(z)qm+1(z), z = x/(2
√
γ)

which are well-defined for m = 0, 2, 4, . . ., l = m+1,m+3, . . .. For m = 2 and l = 5 the behavior
of the transformed potential is shown by the Fig. 4.

Figure 3. Potential generated with the help of
the Airy function.

Figure 4. Potentials V m,l
2 (x, t) at m = 2 and

l = 5.
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One can take a general solution of the equation for the parabolic cylinder functions as trans-
formation function. For example, when λ = 1/2 one has

u = γ−1/4
(ε
ε

)
exp

(
2iγ̇ + 1

16γ
x2

)[
C + erf

(
x

2
√

2γ

)]
,

which gives the following potential

V1 = ω2(t)x2 − 1
4γ

[
1− 2zQ−1(z)e−z

2/2 − 2Q−2(z)e−z
2
]
,

Q(z) =
√
π

2

[
C + erf

(
z√
2

)]
, z =

x

2
√
γ
, |C| > 1.

For ω = const �= 0 these potentials reduce to the known isospectral potentials with an equidistant
spectrum. For ω = 0 their behavior is shown by the Fig. 5. The cases a) and b) differ by the
values of parameters the potential depends on.

Figure 5. Time-dependent generalization of isospectral potentials.

4.2 Singular oscillator with a time dependent frequency

Consider now the following Hamiltonian:

h0 = −∂2
x + ω2 (t)x2 + gx−2.

Symmetry algebra of the Schrödinger equation with this Hamiltonian is su(1.1) ∼ sl(2,R). We
use the following representation for this algebra:

[K+ = 2
[(
a+

)2 − ε2gx−2
]
, K− = 2

[
a2 − ε2gx−2

]
,

K0 =
1
2

(K−K+ −K+K−) =
1
2

[K−,K+] .

Consider solutions of the Schrödinger equation which are eigenstates of K0: K0ϕλ(x, t) =
λϕλ(x, t). When λ = n+ k, n = 0, 1, 2, . . . we have a discrete basis of the Hilbert space

ϕn(x, t) = 21/2−3k

√
n!

Γ (n+ 2k)
γ−k

(
ε

ε

)n+k

x2k−1/2

× exp
[
i
x2γ̇

8γ
− x2

16γ

]
L2k−1
n

(
x2

8γ

)
, k =

1
2

+
1
4

√
1 + 4g, γ = εε.

To construct spontaneously broken supersymmetric model we need transformation functions
u(x, t) such that neither u(x, t) nor u−1(x, t) are from the Hilbert space and u(x, t) is nodeless
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for all real values of t and x > 0. These conditions are fulfilled for the functions

up(x, t) = γ−k
(
ε

ε

)−p−k
x2k−1/2 exp

[
i
x2γ̇

8γ
+

x2

16γ

]
L2k−1
p

(
−x2

8γ

)
,

K0up(x, t) = −(p+ k)up(x, t).

These transformation functions create the following exactly solvable family of potential diffe-
rences A(x, t) = ω2(t)x2 + gx−2 − V1(x, t):

A(x, t) = Ap(x, t) =
1

4γ
− 4k − 1

x2
− 1

8

(
xL2k

p−1 (z)

γL2k−1
p (z)

)2

+
x2L2k+1

p−2 (z) + 4γL2k
p−1 (z)

8γ2L2k−1
p (z)

, z = −x
2

8γ
.

To construct a model with exact supersymmetry we need transformation functions u(x, t) such
that u−1(x, t) is square integrable on semiaxis x ≥ 0 and satisfies the zero boundary condition at
the origin for all values of t. The following solution of the Schrödinger equation may be chosen
in this case:

up(x, t) = γk−1

(
ε

ε

)k−p−1

x3/2−2k exp
[
i
x2γ̇

8γ
+

x2

16γ

]
L1−2k
p

(
−x2

8γ

)
,

K0up (x, t) = (k − p− 1)up (x, t) .

It is not difficult to establish the possible values of p. If p is even it may takes the values
p < 2k− 1 and p = [2k] + 1, [2k] + 3, . . .. For odd p values we may use only p = [2k], [2k] + 2, . . .,
where [2k] ≡ entire (2k). For regular potential differences we obtain

Ap (x, t) =
1

4γ
+

4k − 3
x2

− 1
2

(
xL2−2k

p−1 (z)

2γL1−2k
p (z)

)2

+
x2L3−2k

p−2 (z) + 4γL2−2k
p−1 (z)

8γ2L1−2k
p (z)

.
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A new Einstein–Hilbert type action of superon-graviton model (SGM) for space-time
and matter is obtained based upon the geometrical arguments of the higher symmetric
(SGM) space-time. SGM action is invariant under [global NL SUSY] ⊗ [local GL(4,R)] ⊗
[local Lorentz]⊗ [global SO(N)]. The explicit form of SGM action is given in terms of the
fields of the graviton and superons by using the affine connection formalism. Some character-
istic structures of the gravitational coupling of superons are manifested (in two dimensional
space-time) with some details of the calculations. SGM cosmology is discussed briefly.

1 Introduction

To explore the new physics and the new framework for the unification of space-time and matter
beyond the standard mode (SM), new (gauge) symmetries and new particles yet to be observed
are introduced in the model building. Supersymmetry [1, 2] may be the most promising notion
beyond SM, especially for the unification of space-time and matter.

In the previous paper [3] we have introduced a new fundamental constituent with spin 1/2
superon and proposed superon-graviton model (SGM) as a model for unity of space-time and
matter. In SGM, the fundamental entities of nature are the graviton with spin-2 and a quintet
of superons with spin-1/2. They are the elementary gauge fields corresponding to the local
GL(4,R) and the global nonlinear supersymmetry (NL SUSY) with a global SO(10), respec-
tively. All observed elementary particles including gravity are assigned to a single massless
irreducible representation of SO(10) super-Poincaré (SP) symmetry and reveal a remarkable
potential for the phenomenology, e.g. the three-generations structure of quarks and leptons, sta-
bility of proton, mixings, etc. [3]. And except graviton they are supposed to be the (massless)
composite-eigenstates of superons of SO(10) SP symmetry [4] of space-time and matter. The
uniqueness of N = 10 among all SO(N) SP is pointed out. The arguments are group theoretical
so far.

In order to obtain the fundamental action of SGM which is invariant at least under lo-
cal GL(4,R), local Lorentz, global NL SUSY transformations and global SO(10), we have
performed the similar arguments to Einstein general relativity theory (EGRT) in the SGM
space-time, where the tangent (Riemann-flat) Minkowski space-time is specified by the coset
space SL(2,C) coordinates (corresponding to Nambu–Goldstone (N–G) fermion) of NL SUSY
of Volkov–Akulov (V–A) [2] in addition to the ordinary Lorentz SO(3, 1) coordinates [3], which
are locally homomorphic groups. As shown in Ref. [5] the SGM action obtained by the geomet-
rical arguments of SGM space-time is naturally the analogue of Einstein–Hilbert (E–H) action
of GR and has the similar concise expression. (The similar systematic arguments are applicable
to spin 3/2 N–G case [6].)

In this article, after a brief review of SGM for the self contained arguments we expand
SGM action in terms of the fields of graviton and superons in order to see some characteristic
structures of our model and to show some details of the calculations. For the sake of simplicity
the expansion is performed by the affine connection formalism.
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Finally some hidden symmetries and a potential cosmology, especially the birth of the universe
are mentioned briefly.

2 Fundamental action of superon-graviton model (SGM)

SGM space-time is defined as the space-time whose tangent(flat) space-time is specified by
SO(1, 3) Lorentz coordinates xa and the coset space SL(2,C) coordinates ψ of NL SUSY of Vol-
kov–Akulov (V–A) [2]. The unified vierbein waµ and the unified metric sµν(x) ≡ wa

µ(x)waν(x)
of SGM space-time are defined by generalizing the NL SUSY invariant differential forms of V–A
to the curved space-time [5]. SGM action is given as follows [5]

LSGM = − c3

16πG
|w|(Ω + Λ), (1)

|w| = detwaµ = det(eaµ + ta
µ), ta

µ =
κ

2i

10∑
j=1

(ψ̄jγa∂µψj − ∂µψ̄jγaψ
j), (2)

where κ is an arbitrary constant of V–A up now with the dimension of the fourth power of length,
ea
µ and ψj (j = 1, 2, . . . , 10) are the fundamental elementary fields of SGM, i.e. the vierbein

of (EGRT) and the superons of N–G fermion of NL SUSY of Volkov–Akulov [2], respectively.
Λ is a cosmological constant which is necessary for SGM action to reduce to V–A model with
the first order derivative terms of the superon in the Riemann-flat space-time. Ω is a unified
scalar curvature of SGM space-time analogous to the Ricci scalar curvature R of EGRT. SGM
action (1) is invariant under the following new SUSY transformations

δψi(x) = ζi + iκ(ζ̄jγρψj(x))∂ρψi(x), (3)

δeaµ(x) = iκ(ζ̄jγρψj(x))D[ρe
a
µ](x), (4)

where ζi, (i = 1, . . . , 10) is a constant spinor, D[ρe
a
µ](x) = Dρe

a
µ−Dµe

a
ρ and Dµ is a covariant

derivative containing a symmetric affine connection. The explicit expression of Ω is obtained
by just replacing eaµ(x) in Ricci scalar R of EGRT by the vierbein wa

µ(x) = ea
µ + ta

µ of the
SGM curved space-time, which gives the gravitational interaction of ψ(x) invariant under (3)
and (4). The overall factor of our model is fixed to −c3

16πG , which reproduces E–H action of GR
in the absence of superons(matter). Also in the Riemann-flat space-time, i.e. eaµ(x) → δa

µ,
it reproduces V–A action of NL SUSY[2] with κ−1

V–A = c3

16πGΛ in the first order derivative
terms of the superon. Therefore our model (SGM) predicts a (small) non-zero cosmological
constant, provided κV–A ∼ O(1), and posesses two mass scales. Furthermore it fixes the coupling

constant of superon (N–G fermion) with the vacuum to
(

c3

16πGΛ
) 1

2 (from the low energy theorem
viewpoint), which may be relevant to the birth of the universe.

It is interesting that our action is the vacuum (matter free) action in SGM space-time as read
off from (1) but gives in ordinary Riemann space-time the E–H action with matter (superons)
accompanying the spontaneous supersymmetry breaking.

The commutators of new SUSY transformations induce the generalized general coordinate
transformations

[δζ1 , δζ2 ]ψ = Ξµ∂µψ, (5)
[δζ1 , δζ2 ]eaµ = Ξρ∂ρeaµ + eaρ∂µΞρ, (6)

where Ξµ is defined by

Ξµ = 2ia(ζ̄2γµζ1)− ξρ1ξ
σ
2 ea

µ(D[ρe
a
σ]). (7)
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We have shown that our action is invariant at least under [7]

[global NL SUSY]⊗ [local GL(4,R)]⊗ [local Lorentz]⊗ [global SO(N)], (8)

which is isomorphic to N = 10 extended (global SO(10)) SP symmetry through which SGM
reveals the spectrum of all observed particles in the low energy [4]. In contrast with the ordinary
SP SUSY, SGM SUSY may be regarded as a square root of a generalized GL(4,R). The usual
local GL(4,R) invariance is obvious by the construction.

The simple expression (1) invariant under the above symmetry may be universal for the gravi-
tational coupling of Nambu–Goldstone (N–G) fermion, for by performing the parallel arguments
we obtain the same expression for the gravitational interaction of the spin-3/2 N–G fermion [6].

Now to clarify the characteristic features of SGM we focus on N = 1 SGM for simplicity
without loss of generality and write down the action explicitly in terms of taµ (or ψ) and gµν

(or eaµ). We will see that the graviton and superons (matter) are complementary in SGM and
contribute equally to the curvature of SGM space-time. Contrary to its simple expression (1),
it has rather complicated and rich structures.

We use the Minkowski tangent space metric 1
2{γa, γb} = ηab = (+,−,−,−) and σab =

i
4 [γa, γb]. (Latin (a, b, . . .) and Greek (µ, ν, . . .) are the indices for local Lorentz and general
coordinates, respectively.) By requiring that the unified action of SGM space-time should reduce
to V–A in the flat space-time which is specified by xa and ψ(x) and that the graviton and
superons contribute equally to the unified curvature of SGM space-time, it is natural to consider
that the unified vierbein waµ(x) and the unified metric sµν(x) of unified SGM space-time are
defined through the NL SUSY invariant differential forms ωa of V–A [2] as follows:

ωa = waµdx
µ, (9)

waµ(x) = eaµ(x) + taµ(x), (10)

where eaµ(x) is the vierbein of EGRT and taµ(x) is defined by

taµ(x) = iκψ̄γa∂µψ, (11)

where the first and the second indices of taµ represent those of the γ matrices and the general
covariant derivatives, respectively. We can easily obtain the inverse waµ of the vierbein waµ in
the power series of taµ as follows, which terminates with t4 (for 4 dimensional space-time):

wa
µ = ea

µ − tµa + tρat
µ
ρ − tρat

σ
ρt
µ
σ + tρat

σ
ρt
κ
σt
µ
κ. (12)

Similarly a new metric tensor sµν(x) and its inverse sµν(x) are introduced in SGM curved
space-time as follows:

sµν(x) ≡ waµ(x)waν(x) = waµ(x)ηabwbν(x) = gµν + tµν + tνµ + tρµtρν , (13)
sµν(x) ≡ wa

µ(x)waν(x) = gµν − tµν − tνµ + tρµtνρ + tρνtµρ + tµρtνρ − tρµtσρt
ν
σ

− tρνtσρt
µ
ρ − tµσtρσt

ν
ρ − tνρtσρt

µ
σ + tρµtσρt

κ
σt
ν
κ + tρνtσρt

κ
σt
µ
κ

+ tµσtρσt
σ
ρt
ν
σ + tνσtρσt

σ
ρt
µ
σ + tρκtσκt

µ
ρt
ν
σ. (14)

We can easily show

wa
µwbµ = ηab, sµνwa

µwb
ν = ηab. (15)

Furthermore they have generalized GL(4,R) transformations under (3) and (4) [5, 7]. It is
obvious from the above general covariant arguments that (1) is invariant under the ordinaly
GL(4,R) and under (3) and (4).
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By using (10), (12), (13) and (14) we can express SGM action (1) in terms of eaµ(x) and ψj(x),
which describes explicitly the fundamental interaction of graviton with superons. The expansion
of the action in terms of the power series of κ (or taµ) can be carried out straightforwardly. After
the lengthy calculations concerning the complicated structures of the indices we obtain

LSGM = − c3Λ
16πG

e|wV-A| −
c3

16πG
eR+

c3

16πG
e

[
2t(µν)Rµν +

1
2

{
gµν∂ρ∂ρt(µν) − t(µν)∂

ρ∂ρg
µν

+ gµν∂ρt(µσ)∂
σgρν − 2gµν∂ρt(µν)∂

σgρσ − gµνgρσ∂κt(ρσ)∂
κgµν

}
+ (tµρtρν + tνρt

ρµ + tµρtνρ)Rβµ −
{

2t(µρ)t(νρ)Rµν + t(µρ)t(νσ)Rµνρσ

+
1
2
t(µν)

(
gρσ∂µ∂νt(ρσ) − gρσ∂ρ∂µt(σν) + · · ·

)}
+

{
O

(
t3

)}
+

{
O

(
t4

)}
+ · · ·+

{
O

(
t10

)} ]
, (16)

where e = det eaµ, t(µν) = tµν + tνµ, t(µν) = tµν + tνµ, and |wV–A| = detwab is the flat space
V–A action [2] containing up to O

(
t4

)
and R and Rµν are the Ricci curvature tensors of GR.

Remarkably the first term can be regarded as a space-time dependent cosmological term and
reduces to V–A action [2] with κ−1

V–A = c3

16πGΛ in the Riemann-flat eaµ(x) → δa
µ space-time.

The second term is the familiar E–H action of GR. These expansions show the complementary
relation of graviton and (the stress-energy tensor of) superons. The existence of (in the Riemann-
flat space-time) NL SUSY invariant terms with the (second order) derivatives of the superons
beyond V–A model is manifested. For example, such terms of the lowest order appear in O

(
t2

)
and have the following expressions (up to the total derivative terms)

+εabcdεaefg∂ct(be)∂f t(dg). (17)

Existence of such derivative terms in addition to the original V–A model are already pointed
out and exemplified in part in [8]. Note that (17) vanishes in 2 dimensional space-time.

Here we just mention that we can consider two types of the flat space in SGM, which are
not equivalent. One is SGM-flat, i.e. waµ(x) → δa

µ, space-time and the other is Riemann-flat,
i.e. eaµ(x) → δa

µ, space-time, where SGM action reduces to − c3Λ
16πG and − c3Λ

16πG |wV–A| − c3

16πG
(derivative terms), respectively. Note that SGM-flat space-time may allow Riemann space-
time, e.g. taµ(x) → −eaµ + δa

µ realizes Riemann space-time and SGM-flat space-time. The
cosmological implications are mentioned in the discussions.

3 SGM in two dimensional space-time

Now we go to two dimensional SGM space-time to simplify the arguments without loss of genera-
lity and demonstrate some details of the computations. It is well known that two dimensional
GR has no physical degrees of freedom (due to the local GL(2,R)). SGM in SGM space-time
is also the case. However the general covariant arguments shed light on the universal characte-
ristic features of the theory in any space-time dimensions. Especialy for SGM, it is also useful
to see explicitly the superon-graviton coupling in (two dimensional) Riemann space-time which
is realized spontaneously from SGM space-time. We adopt the affine connection formalism.
Knowledge of the complete structure of SGM action including the surface terms is useful to
linearize SGM into the equivalent linear theory and to find the symmetry breaking of the model.

Following EGRT the scalar curvature tensor Ω of SGM space-time is given as follows

Ω = sβµΩα
βµα = sβµ

[{
∂µΓλβα + ΓαλµΓλβα

}
− { lower indices (µ↔ α)}

]
, (18)
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where the Christoffel symbol of the second kind of SGM space-time is

Γαβµ =
1
2
sαρ {∂βsρµ + ∂µsβρ − ∂ρsµβ} . (19)

The straightforward expression of SGM action (1) in two dimensional space-time (which is 36

times more complicated than the 2 dimensional GR) is given as follows

L2dSGM = − c3

16πG
e

{
1 + taa +

1
2

(
taat

b
b − tabt

b
a

)} (
gβµ − t̃(βµ) + t̃2(βµ)

)
×

[{
1
2
∂µ

(
gασ − t̃(ασ) + t̃2(ασ)

)
∂β̇

(
gσ̇α̇ + tσ̇α̇ + t2σ̇α̇

)
+

1
2

(
gασ − t̃(ασ) + t̃2(ασ)

)
∂µ∂β̇

(
gσ̇α̇ + tσ̇α̇ + t2σ̇α̇

)}
− { lower indices (µ↔ α)}

+

{
1
4

(
gασ − t̃(ασ) + t̃2(ασ)

)
∂λ̇

(
gσ̇µ̇ + tσ̇µ̇ + t2σ̇µ̇

)
×

(
gλρ − t̃(λρ) + t̃2(λρ)

)
∂β̇

(
gρ̇α̇ + tρ̇α̇ + t2ρ̇α̇

)}
− { lower indices (µ↔ α)}

]

− c3Λ
16πG

e|wV–A|, (20)

where we have put

sαβ = gαβ + t(αβ) + t2(αβ), sαβ = gαβ − t̃(αβ) + t̃2(αβ),

t(µν) = tµν + tνµ, t2(µν) = tρµtρν ,

t̃(µν) = tµν + tνµ, t̃2(µν) = tµρt
ρν + tνρt

ρµ + tµρtνρ, (21)

and the Christoffel symbols of the first kind of SGM space-time contained in (19) are abbreviated
as

∂µ̇gσ̇ν̇ = ∂µgσν + ∂νgµσ − ∂σgνµ,

∂µ̇tσ̇ν̇ = ∂µt(σν) + ∂νt(µσ) − ∂σt(νµ),

∂µ̇t
2
σ̇ν̇ = ∂µt

2
(σν) + ∂νt

2
(µσ) − ∂σt

2
(νµ). (22)

By expanding the scalar curvature Ω in the power series of t which terminates with t4, we have
the following complete expression of two dimensional SGM,

L2dSGM = − c3Λ
16πG

e|wV–A| −
c3

16πG
e|wV–A|

[
R− 2t̃(µν)Rµν +

1
2

{
gµν∂ρ∂ρt(µν)

− t(µν)∂ρ∂ρgµν + gµν∂ρt(µσ)∂
σgρν − 2gµν∂ρt(µν)∂

σgρσ − gµνgρσ∂κt(ρσ)∂κgµν

}
+ t̃2(βµ)Rβµ + t̃(βµ)t̃(ασ)Rµασβ −

1
2
t̃(βµ)

{
gασ∂µ∂βt(ασ) − ∂σ∂βt(σµ)

+ ∂µt̃
(ασ)∂βgσα − ∂µg

ασ∂βt(σα) + ∂αg
ασ∂βt(σµ) − ∂αt̃

(ασ)∂βgσµ + 2∂ρt(σµ)∂
σgβρ

− 2gασ∂λt(σµ)∂
λgαβ + gασgλρ∂µt(λσ)∂

βgρα − 2gασ∂ρt(σα)∂βgρµ

+ gασ∂λt(σα)∂
λgµβ

}
− gβµ∂µ

(
gασ∂βt

2
(σα) + t̃2(ασ)∂βgσα − t̃(ασ)∂β t̃(σα)

)
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− t̃(ασ)
(

2∂βt(σµ) − ∂σt(µβ)

)
+ gβµ∂α

{
gασ

(
2∂βt2(σµ) − ∂σt

2
(µβ)

)
+ t̃2(ασ) (2∂βgσµ − ∂σgµβ)

}
+ 2∂αgλµgβλ

(
2∂µt2(αβ) − ∂αt

2
(βρ)g

µρ
)

+ 2t̃2(λρ)∂λgσµgβµ (2∂σgβρ − ∂ρgαβ)− 2t̃(λρ)∂λgσµgασ
(

2∂µt(ρα) − ∂ρt(αβ)g
βµ

)
+ ∂ρt(σµ)g

βµ
(

2∂σt(βρ) − ∂ρt(αβ)g
ασ

)
+ t̃(ασ)t̃(λρ)

{
∂βgλσ∂βgρα

+ 2∂λgσµgµβ (∂αgβρ − ∂ρgαβ)
}
− 2t̃(λρ)∂λt(σµ)g

βµ (2∂σgβρ − ∂ρgαβg
ασ)

− ∂ρgσαg
σα

(
2∂µt2(ρµ) − ∂ρt

2
(µβ)g

βµ
)
− ∂ρt2(σα)

(
2∂µgρµgσα − ∂λgµβg

µβ
)

− t̃2(λρ)∂λgσαg
σα

(
2∂µgρµ − ∂ρgµβg

µβ
)
− t̃2(ασ)∂ρgσα

(
2∂µgρµ − ∂ρgµβg

µβ
)

− t̃(λρ)∂λgσαg
ασ

(
2∂µt(ρµ) − ∂ρt(µβ)g

βµ
)
− t̃(ασ)∂ρt(σα)

(
2∂µgρµ − ∂ρgµβg

βµ
)

+ gασ∂ρt̃(σα)

(
2∂µt(ρµ) − ∂ρt(µβ)g

βµ
)

+ t̃(ασ)t̃(λρ)∂λgσαg
ασ

(
2∂µgρµ − ∂ρgµβg

βµ
)

− t̃(λρ)∂λt(σα)g
ασ

(
2∂µgρµ − ∂ρgµβg

βµ
)
− t̃(ασ)∂ρgσα

(
2∂µt(ρµ) − ∂ρt(µβ)g

βµ
)

+
1
2
t̃2(βµ)

{
gασ∂µ∂βt(ασ) − ∂σ∂βt(σµ) + ∂µt̃

(ασ)∂βgσα − ∂µg
ασ∂βt(σα) + ∂αg

ασ∂βt(σµ)

− ∂αt̃
(ασ)∂βgσµ + 2∂ρt(σµ)∂

σgβρ − 2gασ∂λt(σµ)∂
λgαβ + gασgλρ∂µt(λσ)∂

βgρα

− 2gασ∂ρt(σα)∂βgρµ + gασ∂λt(σα)∂
λgµβ

}
− 1

2
t̃(βµ)

{
∂µ

(
gασ∂βt

2
(σα) − t̃(ασ)∂β t̃(σα)

)
+ ∂µt̃

2(ασ)∂βgσα + ∂α

{
gασ

(
2∂βt2(σµ) − ∂σt

2
µβ

)
− t̃(ασ)

(
2∂βt(σµ) − ∂σt(µβ)

) }
+ ∂αt̃

2(ασ) (2∂βgσµ − ∂σgµβ) + 2∂αgλµgβλ
(

2∂µt2(αβ) − ∂αt
2
(βρ)g

µρ
)

+ 2t̃2(λρ)∂λgσµgβµ (2∂σgβρ − ∂ρgαβ)− 2t̃(λρ)∂λgσµgασ
(

2∂µt(ρα) − ∂ρt(αβ)g
βµ

)
+ ∂ρt(σµ)g

βµ
(

2∂σt(βρ) − ∂ρt(αβ)g
ασ

)
+ t̃(ασ)t̃(λρ)

{
∂βgλσ∂βgρα

+ 2∂λgσµgµβ (∂αgβρ − ∂ρgαβ)
}
− 2t̃(λρ)∂λt(σµ)g

βµ (2∂σgβρ − ∂ρgαβg
ασ)

− ∂ρgσαg
σα

(
2∂µt2(ρµ) − ∂ρt

2
(µβ)g

βµ
)
− ∂ρt2(σα)

(
2∂µgρµgσα − ∂λgµβg

µβ
)

− t̃2(λρ)∂λgσαg
σα

(
2∂µgρµ − ∂ρgµβg

µβ
)
− t̃2(ασ)∂ρgσα

(
2∂µgρµ − ∂ρgµβg

µβ
)

− t̃(λρ)∂λgσαg
ασ

(
2∂µt(ρµ) − ∂ρt(µβ)g

βµ
)
− t̃(ασ)∂ρt(σα)

(
2∂µgρµ − ∂ρgµβg

βµ
)

+ gασ∂ρt̃(σα)

(
2∂µt(ρµ) − ∂ρt(µβ)g

βµ
)

+ t̃(ασ)t̃(λρ)∂λgσαg
ασ

(
2∂µgρµ − ∂ρgµβg

βµ
)

− t̃(λρ)∂λt(σα)g
ασ

(
2∂µgρµ − ∂ρgµβg

βµ
)
− t̃(ασ)∂ρgσα

(
2∂µt(ρµ) − ∂ρt(µβ)g

βµ
) }

+ ∂β
{ (

t̃2(ασ)∂βt(σα) − t̃(ασ)∂βt
2
(σα)

) }
− gβµ∂α

{
t̃2(ασ)

(
2∂βt(σµ) − ∂σt(µβ)

)
− t̃(ασ)

(
2∂βt2(σµ) − ∂βt

2
(µβ)

) }
+

1
2

{
gασ (∂λgσµ + ∂µgλσ − ∂σgµλ) t̃2(λρ)gβµ

(
∂βt(ρα) + ∂αt(βρ) − ∂ρt(αβ)

)
+ gασ

(
∂λt(σµ) + ∂µgλσ − ∂σt(µλ)

)
t̃2(λρ)t(λρ)gβµ (∂βgρα + ∂αgβρ − ∂ρgαβ)

− gασ (∂λgσµ + ∂µgλσ − ∂σgµλ) t̃(λρ)gβµ
(
∂βt

2
(ρα) + ∂αt

2
(βρ) − ∂ρt

2
(αβ)

)
− gασ

(
∂λt

2
(σµ) + ∂µt

2
(λσ) − ∂σt

2
(µλ)

)
t̃(λρ)gβµ (∂βgρα + ∂αgβρ − ∂ρgαβ)



536 K. Shima

+ t̃(ασ) (∂λgσµ + ∂µgλσ − ∂σgµλ) t̃(λρ)gβµ
(
∂βt(ρα) + ∂αt(βρ) − ∂ρt(αβ)

)
− gασ

(
∂λt(σµ) + ∂µgλσ − ∂σt(µλ)

)
t̃(λρ)gβµ

(
∂βt(ρα) + ∂αt(βρ) − ∂ρt(αβ)

)
− t̃(ασ)

(
∂λt(σµ) + ∂µgλσ − ∂σt(µλ)

)
gλρgβµ

(
∂βt(ρα) + ∂αt(βρ) − ∂ρt(αβ)

)
− gασ∂λgσαt̃

2λρgβµ
(

2∂βt(ρµ) − ∂ρt(µβ)

)
+ gασ∂λt(σα)t̃

2(λρ) (2∂βgρµ − ∂ρgµβ)

+ gασ∂λgσαt̃
(λρ)gβµ

(
2∂βt2(ρµ) − ∂ρt

2
(µβ)

)
+ gασ∂λt

2
(σµ)t̃

(λρ)gβµ (2∂βgρµ − ∂ρgµβ)

− t̃(ασ)∂λgσαt̃
(λρ)gβµ

(
2∂βt(ρµ) − ∂ρt(µβ)

)
+ gασ∂λt(σα)t̃

(λρ)gβµ
(

2∂βt(ρµ) − ∂ρt(µβ)

)
+ t̃(ασ)

(
∂λt(σα) + ∂αgλσ − ∂σt(αλ)

)
gλρgβµ

(
∂βt(ρµ) + ∂µt(βρ) − ∂ρt(µβ)

) }
− t̃(βµ)

{1
2

{
∂µt̃

(ασ)∂βt
2
(σα) − ∂µt̃

2
(ασ)∂βt(σα) + t̃(ασ)∂µ∂βt

2
(σα)

− ∂αt̃
(ασ)

(
2∂βt2(σµ) − ∂σt

2
(µβ)

)
+ ∂αt̃

2
(ασ)

(
2∂βt(σµ) − ∂σt(µβ)

)
− t̃(ασ)∂α

(
2∂βt2(σµ) − ∂σt

2
(µβ)

) }
+

1
4

{
gασ

(
∂λt(σµ) + ∂µt(λσ) − ∂σt(µλ)

)
gλρ

(
∂βt

2
(ρα) + ∂αt

2
(βρ) − ∂ρt

2
(αβ)

)
− gασ

(
∂λt(σµ) + ∂µgλσ − ∂σt(µλ)

)
t̃(λρ)

(
∂βt(ρα) + ∂αt(βρ) − ∂ρt(αβ)

)
+ gασ

(
∂λt

2
(σµ) + ∂µt

2
(λσ) − ∂σt

2
(µλ)

)
gλρ

(
∂βt(ρα) + ∂αt(βρ) − ∂ρt(αβ)

)
− t̃(ασ)

(
∂λt(σµ) + ∂µt(λσ) − ∂σt(µλ)

)
gλρ

(
∂βt(ρα) + ∂αt(βρ) − ∂ρt(αβ)

)
− gασ∂λt(σα)g

λρ
(

2∂βt2(ρµ) − ∂ρt
2
(µβ)

)
+ gασ∂λt(σα)t̃

(λρ)
(

2∂βt(ρµ) − ∂ρt(µβ)

)
− gασ∂λt

2
(σα)g

λρ
(

2∂βt(ρµ) − ∂ρt(µβ)

)
+ t̃(ασ)∂λt(σα)g

λρ
(

2∂βt(ρµ) − ∂ρt(µβ)

) }}
+ gβµ

{1
2

{
∂µt̃

2(ασ)∂βt
2
(σα) + t̃2(ασ)∂µ∂βt

2
(σα) − ∂αt̃

2(ασ)
(

2∂βt2(σµ) − ∂σt
2
(µβ)

)
− t̃2(ασ)∂α

(
2∂βt2(σµ) − ∂σt

2
(µβ)

) }
+

1
4

{
gασ

(
∂λt

2
(σµ) + ∂µt

2
(λσ) − ∂σt

2
(µλ)

)
gλρ

(
∂βt

2
(ρα) + ∂αt

2
(βρ) − ∂ρt

2
(αβ)

)
− gασ

(
∂λt(σµ) + ∂µt(λσ) − ∂σt(µλ)

)
t̃(λρ)

(
∂βt

2
(ρα) + ∂αt

2
(βρ) − ∂ρt

2
(αβ)

)
+ gασ

(
∂λt(σµ) + ∂µt(λσ) − ∂σt(µλ)

)
t̃2(λρ)

(
∂βt(ρα) + ∂αt(βρ) − ∂ρt(αβ)

)
− gασ

(
∂λt

2
(σµ) + ∂µt

2
(λσ) − ∂σt

2
(µλ)

)
t̃(λρ)

(
∂βt(ρα) + ∂αt(βρ) − ∂ρt(αβ)

)
− t̃(ασ)

(
∂λt(σµ) + ∂µt(λσ) − ∂σt(µλ)

)
gλρ

(
∂βt

2
(ρα) + ∂αt

2
(βρ) − ∂ρt

2
(αβ)

)
+ t̃(ασ)

(
∂λt(σµ) + ∂µt(λσ) − ∂σt(µλ)

)
t̃(λρ)

(
∂βt(ρα) + ∂αt(βρ) − ∂ρt(αβ)

)
+ t̃2(ασ)

(
∂λt(σµ) + ∂µt(λσ) − ∂σt(µλ)

)
gλρ

(
∂βt(ρα) + ∂αt(βρ) − ∂ρt(αβ)

)
− gασ∂λt

2
(σµ)g

λρ
(

2∂βt2(ρµ) − ∂ρt
2
(µβ)

)
+ gασ∂λt(σα)t̃

(λρ)
(

2∂βt2(ρµ) − ∂ρt
2
(µβ)

)
− gασ∂λt(σα)t̃

2(λρ)
(

2∂βt(ρµ) − ∂ρt(µβ)

)
+ gασ∂λt

2
(σµ)t̃

(λρ)
(

2∂βt(ρµ) − ∂ρt(µβ)

)
+ t̃(ασ)∂λt(σα)g

λρ
(

2∂βt2(ρµ) − ∂ρt
2
(µβ)

)
− t̃(ασ)∂λt(σα)t̃

(λρ)
(

2∂βt(ρµ) − ∂ρt(µβ)

)
− t̃2(ασ)∂λt(σα)g

λρ
(

2∂βt(ρµ) − ∂ρt(µβ)

) }}]
, (23)
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where Rµνρσ, Rµν and R are the curvature tensors of Riemann space and |wV–A| = {1 + taa +
1
2(taatbb − tabt

b
a)} is V–A model in two dimensional flat space.

4 Discussions

We have shown that contrary to its simple expression (1) in unified SGM space-time the comp-
lete expansion of SGM action posesses the very complicated and rich structures describing the
graviton-superon interactions in Riemann space-time, even in two dimensional space-time.

The SGM in four dimensional space-time has far much more complicated structures, which
may be unavoidable features for a unified theory to describe the rationale of beings of all ele-
mentary particles. Note that the total number of elementary particles in SGM is at most a few
hundreds and most of them are (heavy) massive.

Here we just emphasize that SGM action in SGM space-time is a nontrivial generalization
of E–H action in Riemann space-time despite the liner relation waµ = eaµ + taµ. In fact, by
the redefinitions(variations) eaµ → eaµ + δeaµ = eaµ − taµ and δea

µ = −eaνebµδebν = +tµa the
inverse waµ = ea

µ−tµa+tρatµρ−tρatσρtµσ+tρatσρtκσtµκ does not reduce to eaµ, i.e. the nonlinear
terms in tµa in the inverse waµ can not be eliminated. Because taµ is not a vierbein. Such a
redefinition breaks the metric properties of waµ and wa

µ. Note that SGM action posesses two
inequivalent flat spaces, i.e. SGM-flat waµ → δaµ and Riemann-flat eaµ → δaµ. The expansion
of SGM action in terms of eaµ and taµ is a spontaneous breakdown of space-time from SGM
space-time to Riemann space-time connecting with Riemann-flat space-time.

Concerning the above-mentioned two inequivalent flat-spaces (i.e. the vacuum of the gravi-
tational energy) of SGM action we can interprete them as follows. SGM action (1) written
by the vierbein wa

µ(x) and metric sµν(x) of SGM space-time is invariant under (besides the
ordinary local GL(4,R)) the general coordinate transformation [7] with a generalized parameter
iκ(ζ̄γµψ(x)) (originating from the global supertranslation in SGM space-time [2]). As proved
for E–H action of GR (the positive definitness of Einstein–Hilbert actionwas proved by E. Wit-
ten [10]), the energy of SGM action of E–H type is expected to be positive (for positive Λ).
Regarding the scalar curvature tensor Ω for the unified metric tensor sµν(x) as an analogue of
the Higgs potential for the Higgs scalar, we can observe that (at least the vacuum of) SGM
action (i.e. SGM-flat waµ(x) → δaν space-time), which allows Riemann space-time and has a
positive energy density with the positive cosmological constant c3Λ

16πG indicating the spontaneous
SUSY breaking, is unstable (i.e. degenerates) against the supertransformation (3) and (4) with
the global spinor parameter ζ in SGM space-time and breaks down spontaneously to Riemann
space-time waµ(x) = eaµ(x)+ taµ(x) with N–G fermions superons corresponding to superGL(4,R)

GL(4,R) .
(Note that SGM-flat space-time allows Riemann space-time.) Remarkably the observed Rie-
mann space-time of EGRT and matter(superons) appear simultaneously from (the vacuum of)
SGM action by the spontaneous SUSY breaking.

The investigation of the structures of the vacuum of Riemann-flat space-time (described by
N = 10 V–A action with derivative terms like (17)) plays an important role to linearize SGM
and to derive SM as the low energy effective theory of SGM, which remain to be challenged.
Such (higher) derivative terms can be rewritten in the tractable forms similar to (17) up to the
total derivative terms.

As for the linearization, the linearization of the flat-space N = 1 V–A model was already
carried out [9]. They proved that the linear SUSY action of a scalar supermultiplet with SUSY
breaking is equivalent to V–A action under SUSY invariant constraints obtained by the system-
atic arguments. Recently we have shown explicitly that the action of U(1) vector supermultiplet
with Feyet–Iliopoulos term is equivalent to N = 1 V–A model [11]. It is remarkable that the
renormalizable low energy effective U(1) gauge theory is derived from the highly nonlinear theo-
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ry by systematic arguments. While, in the linearization of SGM (i.e. V–A model in curved
space-time) it should be taken into consideration further that the algebra (gauge symmetry)
would be changed from (8) to broken SO(10) SP symmetry.

From the physical point of view the linearization of the flat-space N = 2 V–A model is
very important as a toy model, for it may be equivalent to the following Higgs–Kibble–Dirac
Lagrangian (composed of N = 2 SP off-shell multiplet)

LHKD =
1
4
F 2

µν + ψ̄γµD
µψ +

1
2

(∂µφi)
2 + 2gφiψ̄ψ − 2gDφi2 +

1
2

(
D2 + |F |2

)
, (24)

where Fµν is a gauge field, ψ is a Dirac field, φi (i = 1, 2) is a real scalar field and the fields D,
and F are auxiliary fields. This, speculative so far, is remarkable, for the (U(1)) gauge field
including the gauge coupling constant is expressed in terms of the superons and the the funda-
mental coupling constant of V–A model including the order parameter of the symmetry breaking.
A nonlinear N = 2 SUSY equivalent to N = 2 SUSY Yang–Mills theory investigated by Seiberg
and Witten [12] may be a realistic case. Furthermore the baryon abundance of the universe
should be explained by the spontaneous symmetry breaking of the linearized (low energy) effec-
tive theory.

Finally we just mention the hidden symmetries characteristic to SGM. It is natural to expect
that SGM action may be invariant under a certain exchange between eaµ and taµ, for they
contribute equally to the unified SGM vierbein waµ as seen in (10). In fact we find, as a simple
example, that SGM action is invariant under the following exchange of eaµ and taµ [13] (in
4 dimensional space-time).

eaµ −→ 2taµ, taµ −→ eaµ − taµ, ea
µ −→ ea

µ. (25)

The physical meaning of such symmetries remains to be studied. Also SGM action has Z2

symmetry ψj → −ψj but not eaµ → −eaµ.
Beside the composite picture of SGM it is interesting to consider (elementary field) SGM with

the extra dimensions and their compactifications. The compactification of wAM = eAM + tAM ,
(A,M = 0, 1 . . . , D − 1) produces rich spectrum of particles and (hidden) internal symmetries
and may give a new framework for the unification of space-time and matter.
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Quantum algebras Uq(sun) used as the algebras of flavour symmetry (usually described by
SU(n)) to study static properties of hadrons lead to intriguing results. In this contribution
we focus on the peculiar properties manifested by different q-deformed structures (e.g., the
braided line, the quantum algebras Uq(su2) and Uq(sun), n ≥ 3) in the special limit of
q = −1. Similarities (complete or partial) with supersymmetry that emerge in this special
limit are discussed.

1 Introduction

Our goal is to pay special attention to the exotic situation that arises if, within the application
of quantum algebras Uq(sun) [1, 2] to phenomenological description (see [3, 4] and refs. therein)
of basic static properties of hadrons – vector mesons as well as baryons, one restricts itself to
the peculiar case q = −1 of the deformation parameter. In the paper, we first briefly mention
the two more or less realistic appearances of supersymmetry (SUSY) algebras applied directly
in the sector of hadron mass spectrum. Note that the first appearance of SUSY in the context
of hadron physics goes back to Miyazawa’s paper [5]. It employs a kind of superalgebra which
is connected with internal symmetry and extends the usual SU(3) scheme by means of baryon
number changing currents. In that paper, the author has succeeded to derive, based on a super-
algebra, the mass sum rules other than the celebrated Gell-Mann–Okubo (GMO) one, that is,
mN +mΞ = 3

2mΛ + 1
2mΣ. On the contrary, the spectrum generating (or dynamical) superalgebra

used in [6] incorporated a superization of space-time symmetry and gave a possibility to analyse
the towers of excited states, for each ground state baryon (e.g., nucleon) or vector meson (e.g.,
ρ-meson). We discuss these two examples in Section 2. Then, Sections 3 and 4 are devoted to
the very instructive examples of q-deformed structure which, if one sends q → −1, show either
exact SUSY (the case of braided line whose relation to SUSY is considered in Section 3), or the
features only reminiscent of supersymmetry, see Section 4. In the 5th section we deal with the
peculiar case of q = −1 concerning the quantum algebras Uq(sun) which appear in the context
of their use as the algebras describing flavor symmetries of hadrons and enabling to derive new,
very precise mass relations. In this scheme, the restriction to the limit q = −1 is physically
motivated.

2 Dynamical supersymmetry and hadron mass spectrum

In [5] the two copies of superalgebra, namely,

[Fi, Fj ] = ifijkFk, [Fi, Gj ] = ifijkGk, {Gi, Gj} = dijkFk,

[F̄i, F̄j ] = ifijkF̄k, [F̄i, Ḡj ] = ifijkḠk, {Ḡi, Ḡj} = −dijkF̄k, (1)

have been introduced. For their realization, the conventional 3× 3 Hermitian matrices λi (i =
0, 1, 2, 3, 8 for the Fi, F̄i, and i = 4, 5, 6, 7 for the Gi, Ḡi) have been utilized. By means of
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symmetry breaking terms (C3b
3b , C

a3
a3 and C33

33 in the notation of [5]) which provide mass splitting
between quarks and diquarks (i.e., SUSY breaking), as well as splitting between isomultilplets
(breaking of SU(3) to SU(2)), instead of the standard GMO mass relation the formulas

mN +mΞ = mΛ +mΣ, mY ∗
0

= mΣ, 2mK∗ = mρ +mφ, mρ = mω (2)

for baryons and for vector mesons have been obtained.
A completely different scheme for treating hadron mass spectrum developed in [6] employs

a particular dynamical superalgebra Osp(1|4) connected with space-time symmetries. The dy-
namical superalgebra with generators Sµν , Γµ, Qα respects the chain

Osp(1|4)Sµν ,Γµ,Qα ⊃ SO(3, 2)Sµν ,Γµ ⊃ SO(3, 1)Sµν ,

where for the subalgebras SO(3, 1)Sµν and SO(3, 2)Sµν ,Γµ the generators Sµν and Γµ obey

[Sµν , Sρσ] = −i(ηµρSνσ + ηνσSµρ − ηνρSµσ − ηµσSνρ), (3)
[Sµν ,Γρ] = −i(ηµρΓν − ηνρΓµ), [Γµ,Γν ] = −iSµν . (4)

The relations involving anticommuting charges Qα and Q̄β = −(QTC)β , namely

[Sµν , Qα] = −1
2

(
σsµν

) β

α
Qβ , [Γµ, Qα] = −1

2
(γµ) β

α Qβ ,

{Qα, Q̄β} = −1
2

(σµν)αβ Sµν + (γµ)αβ Γµ,

along with (3), (4), complete the symmetry algebra to the superalgebra Osp(1|4)Sµν ,Γµ,Qα .
To construct the Hamiltonian, supercharges should be incorporated (like in supersymmetric

quantum mechanics), through the term 1
2n

n∑
α=1

{Qα, Q†α}. The resulting Hamiltonian

H = v

PµPµ − 1
α′

1
4

4∑
β=1

{Qβ , Q†β} − m̃2
0


is to be completed by Casimirs of subalgebras in the chain Osp(1|4) ⊃ SO(3, 2)Sµν ,Γµ ⊃ SO(3)Sij

×SO(2)Γ0 . In its final form, the Hamiltonian reads

H = v

(
PµP

µ − 1
α′
P̂µΓµ − λ2Ŵ + βĈSO(3,2) − m̃2

0

)
(5)

and, correspondingly, hadron mass spectrum is described by the formula [6]

m2 = − 1
α′
µ+ λ2j(j + 1) + β

(
2− 2s2

)
+ m̃2

0. (6)

In this expression, 1/α′ (related to the slope of Regge trajectory), λ2, and β are empirical system
parameters; µ resp. j(j + 1) are eigenvalues of P̂µΓµ resp. Ŵ ; s labels SO(3, 2) representations,
and m̃0 is the background mass.

Comparison of the mass formula (6) with experimental data, using the particular representa-
tion D

(
3
2 ,

1
2

)
⊕D(2, 1) of the dynamical superalgebra, shows that the series (tower) of excited

states over the lowest lying 1− vector mesons ρ or ω and the 1
2

+ nucleon’s tower (its resonances)
fit the data very well if one sets: 1

α′ (meson) ∼ 1
α′ (nucleon) and λ2(meson) ∼ λ2(nucleon). It is

this fact that was interpreted in [6] as a kind of empirical evidence for supersymmetry in the
hadron mass spectra. This observation may be considered as an extension of the well-known
success of dynamical supersymmetries in nuclear physics [7] to the level of hadrons.
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3 q-deformed oscillator at q → −1 and supersymmetry

In [8] it was shown that the q-deformed calculus on the braided line [9] (tightly connected
with q-deformed oscillator), in the nontrivial particular case of q = −1 exhibits supersymmetric
properties. In this section we discuss some details of this correspondence, following [8].

The braided (or q-deformed) line is defined [9] in terms of a single non-commuting variable θ
which obeys a Hopf algebra structure operating with coproduct,

∆θ = θ ⊗ 1 + 1⊗ θ, (7)
(1⊗ θ)(θ ⊗ 1) = qθ ⊗ θ, (θ ⊗ 1)(1⊗ θ) = θ ⊗ θ. (8)

as well as a counit and antipode. Note that it is the first relation in (8) that determines the
nontrivial (for q �= 1) braiding.

With [X,Y ]z ≡ XY − zY X, denoting θ = 1⊗ θ and δθ = ε = θ ⊗ 1 as in Ref. [9], yields

[ε, θ]q−1 = 0 and ∆θ = ε+ θ.

Here the latter equality corresponds to (7); it encodes the action upon θ of the left translation
by ε, Lεθ : θ �→ ε+ θ. As seen, ε and θ anticommute when q = −1.

To construct a differential calculus on the braided line, one introduces a left derivation ope-
rator with respect to θ, obeying [εDL, θ] = ε, so that

[DL, θ] = 1,
d

dθ
θ = 1. (9)

Likewise, one can introduce right shifts Rηθ : θ �→ θ+ η by odd parameter η so that [θ, η]q−1 =
[η, θ]q = 0 (again, θ and η anticommute if q = −1). The right derivative operator satisfies
[θ,DR] = 1 and also the relation

DR = −q−(1+N)DL (10)

involving the number operator N defined according to

[N, θ] = θ, [N,DL] = −DL. (11)

The differential calculus defined by (9)–(11) at generic q is called q-calculus.
With the identification θ = a†, DL = qN/2a, the q-calculus is related to the q-deformed

harmonic oscillator [10]

aa† − q∓1/2a†a = q±N/2. (12)

The entity q1/2 and its power
(
q1/2

)N
in (12) are of importance since, from (12), by exploiting

Hermitian conjugacy one comes to the formulas aa† = [N +1]q1/2 and a†a = [N ]q1/2 valid for the
q-deformed oscillator [10] of Biedenharn and Macfarlane. Here [A]z ≡

(
zA − z−A

)
/

(
z − z−1

)
.

Let +A,q ≡ (1− qA)/(1− q). A function of θ given by the expansion f(θ) =
∞∑
m=0

Cmθ
m/+m,q!

admits the derivative d
dθf(θ) =

∞∑
m=0

Cmθ
m/+m− 1,q! implying that

[
DL,

θm

+m,q!

]
qm

=
θm−1

+m− 1,q!
.

The difficulties appearing in the limit q → −1 already at m = 2 (since +2,q = 0 in this limit)
are tamed by setting q = −1 + iy and letting y → 0. Then, the definition

t := lim
q→−1

(
iθ2/+2,q!

)
(13)
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implying that, with θ2 = 0 imposed, the limit of the ratio in (13) should be finite and nonzero,
imports the additional variable t as a necessary ingredient of the braided line if q → −1. As
shown in [8], in this limit the terms of the form θ2r+p/+2r + p,q! also can be handled by means
of t. Due to this, any function f(θ) on the braided line (generic q), reduces in the limit q → −1
to a ‘superfield’ given by the function f(t, θ).

It can be shown that [D2
L, t] = i and, with the definition

{DL,DL} = 2i∂t or ∂t = −iD2
L,

the relation [∂t, t] = 1 is valid. The operator DL then becomes the supercharge, DL ≡ Q, of
one-dimensional supersymmetry, and one comes to the relations:

Q = ∂θ + iθ∂t, {Q,Q} = 2i∂t.

Likewise, the operator D = DR = (−1)NDL becomes the (super)covariant derivative so that

D = ∂θ − iθ∂t, {D,D} = −2i∂t, and {Q,D} = 0.

Another interesting result derived in [8] is the coproduct for t with unusual θ-dependent term:

∆t = t⊗ 1 + 1⊗ t+ iθ ⊗ θ.

Thus, proper treatment of braided line in the peculiar limit q → −1 shows that, in this limit,
an additional variable t related to θ2 (see (13)), as well as to higher powers, must arise. As
a result, the braided line at q → −1 is made up of the two variables θ and t which span the
one-dimensional superspace, SUSY being the translational invariance along this line.

4 Example of Zachos, based on the q = −1 limit of Uq(su2)

Quantum algebra Uq(su2) [1, 2] is generated by the elements I+, I−, I0, obeying the relations

[I0, I±] = ±I±, [I+, I−] = [2J0]q ≡
(
q2J0 − q−2J0

)
/

(
q − q−1

)
,

∆(J0) = J0 ⊗ 1 + 1⊗ I0, ∆(J±) = J± ⊗ q−J0 + q+J0 ⊗ J± (14)

and the relations that involve antipode and counit (which will not be used here).
As shown in [11], this quantum algebra exhibits an intriguing features at the level of its

representations when the deformation parameter q = −1. Let us consider this example.
Using coproduct, one can form composites of two spin 1

2 doublets according to 2⊗2 = 3⊕1:

singlet ←→ α = |q1/2 ↑↓ −q−1/2 ↓↑〉,

triplet ←→


β = | ↑↑〉,
∆(J−)β = 1√

2
|q1/2 ↑↓ +q−1/2 ↓↑〉,

(∆(J−))2β = | ↓↓〉.

For q = 1, the singlet state is antisymmetric whereas each of the triplet states is symmetric.
Now let q = −1. In this case the multiplets turn into

α = |i ↑↓ −1
i
↓↑〉 (symmetric),

β = | ↑↑〉 (symmetric),

∆(J−)β =
1√
2
|i ↑↓ +

1
i
↓↑〉 (antisymmetric),

(∆(J−))2β = | ↓↓〉 (symmetric). (15)
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It is seen from (15) that the coproduct operation ∆(J−) changes the symmetry of wave func-
tion. That is, rasing and lowering operators in the coproduct act as statistics-altering operators.
Although the constituents of the states haven’t been converted to fermions, this alteration of
the symmetry of wave function is reminiscent of SUSY. It is instructive to compare this struc-
ture with N = 2 supersymmetric quantum mechanics, stressing both similarities and peculiar
features.

Consider (graded) direct product of two copies of SUSY QM algebras:

SS† + S†S = 1, ss† + s†s = 1, S†S† = s†s† = SS = ss = 0,

sS + Ss = 0, s†S† + S†s† = 0, sS† + S†s = 0, s†S + Ss† = 0. (16)

This graded Lie algebra can be obtained, using appropriate Wigner–Inonü contraction, from the
simple Lie superalgebra SU(2|1) (realizable in terms of Gell-Mann SU(3) λ-matrices so that
{λ1, λ2, λ3, λ8} constitute even generators whereas {λ4, λ5, λ6, λ7} constitute odd generators).

One can realize the algebra (16) on two boson states |B〉, |b〉, and two fermion states |F 〉,
|f〉, as: S |B〉 = |F 〉, s|b〉 = |f〉, S†|F 〉 = |B〉, s†|f〉 = |b〉. The (nullifying) rest of actions reads:
S |F 〉 = S|b〉 = s|B〉 = s†|F 〉 = s†|b〉 = S†|f〉 = S†|B〉 = s|f〉 = 0. With their use,

s|Bb+ bB〉 = |Bf + fB〉, Ss|Bb+ bB〉 = |Ff − fF 〉. (17)

Thus, ∆(J−) in (15) switches the symmetry of wave function like the even (bosonic) operator
Ss = −sS, see (17), but only the latter is nilpotent due to nilpotency of S, s. The other
important difference consists in the structure and dimensionality of multiplets. Namely, for
q = −1 these remain the same as in the classical case of su(2) Lie algebra. On the other hand,
for graded Lie algebra the representations are of different dimensions (compare, e.g., SU(2|1)
and SU(3)). Hence, the conclusion: this q = −1 case implies a kind of quasi-supersymmetry.

5 GMO formula and Uq(sun) at q = −1

One can either utilize representation-theoretic aspects of the quantum algebra Uq(sun) or, al-
ternatively, construct the mass operator using q-tensor operators. In the latter case [12], main
ingredients of the Hopf algebra structure of Uq(sun) (comultiplication ∆ and antipode S) play
the role. The ∆ and S are defined [1, 2] on the Uq(sun) generators E±i and Hi as

S
(
E±i

)
= −qHi/2E±i , S(Hi) = −Hi, S

(
qHi/2

)
= q−Hi/2, S(1) = 1,

∆
(
E±i

)
= E±i ⊗ qHi/2 + q−Hi/2 ⊗ E±i , ∆(Hi) = Hi ⊗ 1 + 1⊗Hiq

−Hi/2. (18)

The adjoint action of Uq(sun) defined [2] as adAB =
∑
A(1)BS(A(2)) with A,B ∈ Uq(sun) and

A(1), A(2) determined from ∆(A) =
∑
A(1) ⊗A(2), with the account of (18) reads:

adHiB = HiB1 + 1BS(Hi) = HiB −BHi,

adE±
i
B = E±i Bq

−Hi/2 − q−Hi/2BqHi/2E±i q
−Hi/2.

The q-tensor operators [13] transforming under the adjoint action of Uq(su3) as 3 and 3∗, consist
of the triples (V1, V2, V3) and (V1̄, V2̄, V3̄), respectively. Let [X,Y ]q ≡ XY − qY X. It can be
shown that the particular triple of elements from Uq(su4)

V1 = [E+
1 , [E

+
2 , E

+
3 ]q]q q−H1/3−H2/6,

V2 = [E+
2 , E

+
3 ]q qH1/6−H2/6, V3 = E+

3 q
H1/6+H2/3 (19)
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transform as 3 under Uq(su3), V1 corresponds to the highest weight vector, the pair (V1, V2) is
Uq(su2) (iso)doublet and V3 its singlet. Likewise one constructs from elements of Uq(su4) the
triple (V1̄, V2̄, V3̄) that transforms as 3∗ under adjoint action of Uq(su3), where V3̄ corresponds
to the highest weight vector, the pair (V1̄, V2̄) is isodoublet and V3̄ is Uq(su2) singlet.

The mass operator M̂ = M̂0+M̂8 involves M̂0, as Uq(su3) scalar, and the term M̂8 transform-
ing as the I = 0, Y = 0 component of tensor operator of 8-irrep of Uq(su3). The irrep 8 occurs
twice in the decomposition 8⊗8 = 1⊕8(1)⊕8(2)⊕10∗⊕10⊕27. Then, usage of Wigner–Eckart
theorem for Uq(sun) quantum algebras [13] applied to q-tensor operators transforming as irrep 8
of Uq(su3), turns the mass operator into M̂ = M̂0 + M̂8 = M01 + αV

(1)
8 + βV

(2)
8 . Here 1 is the

identity operator, V (1)
8 and V

(2)
8 are two fixed tensor operators with non-proportional matrix

elements, each transforming as the I = 0, Y = 0 component of irrep 8 of Uq(su3); M0, α and β
are some constants depending on details (dynamics) of the model.

If |Bi〉 is a basis vector of representation 8 space which corresponds to some (1/2)+ baryon,
then the mass of this baryon is calculated as

MBi = 〈Bi|M̂ |Bi〉 = 〈Bi|
(
M01 + αV

(1)
8 + βV

(2)
8

)
|Bi〉. (20)

The decompositions 3⊗ 3∗ = 1⊕ 8, 3∗ ⊗ 3 = 1⊕ 8 imply that the operators V3V3̄ and V3̄V3

formed from V3 in (19) and V3̄ are just the two isosinglets V (1)
8 , V (2)

8 needed in (20). Hence, the
mass operator in (20) can be rewritten (redefining M0, α, β) in the equivalent form

M̂ = M01 + αV3V3̄ + βV3̄V3 = M̂ = M01 + αE+
3 E
−
3 q

Y + βE−3 E
+
3 q

Y , (21)

where the hypercharge Y = (H1 + 2H2)/3 has been introduced.
To calculate matrix elements (20) using (21) we embed the octet 8 in a particular irrep of

Uq(su4); embedding it, e.g., in 15 (adjoint) irrep of Uq(su4), we get the octet baryon masses

MN = M0 +βq, MΣ = M0, MΛ = M0 +[2]q[3]−1
q (α+β), MΞ = M0 +αq−1 (22)

(obviously, the expressions for MN , MΞ are not invariant under q → q−1). Excluding M0, α
and β from (22) results in the following q-analogue of GMO formula for octet baryons:

[3]qMΛ +MΣ = [2]q
(
q−1MN + qMΞ

)
. (23)

Using empirical masses, the deformation parameter q is fixed by fitting: for each of the
q1,2 = ±1.035, q3,4 = ±0.903

√
−1, the q-deformed mass relation (23) holds within experimental

uncertainty (although for q3, q4 the constants α and β in (22) must be pure imaginary).
The right hand side of equation (23) is invariant under q → q−1 only if q = q−1, that is, if

q = ±1. Behind the ‘classical’ GMO mass formula which obviously follows from (23) at q = 1 and
corresponds to the nondeformed unitary symmetries SU(4) ⊃ SU(3) ⊃ SU(2), there is also an
unusual ‘hidden symmetry’ reflecting the singular q = −1 case of Uq(su4) ⊃ Uq(su3) ⊃ Uq(su2)
algebras, undefined in this case. The relevant objects, however, exist as operator algebras [12].
Let us describe them in the part corresponding to n = 2 and n = 3.

At generic q, q �= −1, the algebra Uq(su2) is generated by the elements E+, E− and H, which
satisfy the relations

[H,E±] = ±2E±, [E+, E−] = [H]q. (24)

In the limit q → 1 it reduces to the nondeformed su2. We take the representation spaces of the
latter in order to construct operator algebras for the case q = −1. To each su2 representation
space given by j (which takes integral or half-integral nonnegative values) with basis elements
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|jm〉, m = −j,−j + 1, . . . , j, there corresponds an operator algebra generated by the operators
defined according to the formulas

H|jm〉 = 2m|jm〉, E+|jm〉 = αj,m|jm+ 1〉, E−|jm〉 = αj,m−1|jm− 1〉, (25)

where

αj,m =

{ √
−(j −m)(j +m+ 1), j is an integer,√
(j −m)(j +m+ 1), j is a half-integer.

So defined operators E+, E− and H on the basis elements |jm〉 satisfy the relations (compare
with (24)), one of which depends on whether j is an integer or a half-integer:

[H,E±] = ±2E±, [E+, E−] =

{
−H, j is an integer;
H, j is a half-integer.

(26)

To treat the (singular) case q = −1 of Uq(su3) it is more convenient to deal with Uq(u3).
We take a representation space Vχ, labelled by {m13,m23,m33} ≡ χ, of the nondeformed u3

and the Gel’fand–Tsetlin basis with the basis elements |χ;m12,m22;m11〉 in each Vχ. Define the
operators E+

1 , E−1 , H1, E+
2 , E−2 , H2 that form the operator algebra of the χ-type by their action

according to the formulas (let us denote σ1,3 ≡ m11 +m13 +m23 +m33):

H2|χ;m12,m22;m11〉 = (2m12 + 2m22 −m13 −m23 −m33 −m11)|χ;m12,m22;m11〉,
E+

2 |χ;m12,m22;m11〉 = aχ,m11(m12,m22) |χ;m12 + 1,m22;m11〉
+ bχ,m11(m12,m22) |χ;m12,m22 + 1;m11〉,

E−2 |χ;m12,m22;m11〉 = aχ,m11(m12 − 1,m22) |χ;m12 − 1,m22;m11〉r
+ bχ,m11(m12,m22 − 1) |χ;m12,m22 − 1;m11〉,

where

aχ,m11(m12,m22) =
(

(−1)σ1,3
(m13 −m12)(m23 −m12−1)(m33 −m12−2)(m11 −m12−1)

(m22 −m12 − 1)(m22 −m12 − 2)

)1/2

,

bχ,m11(m12,m22) =
(

(−1)σ1,3
(m13 −m22 + 1)(m23 −m22)(m33 −m22 − 1)(m11 −m22)

(m12 −m22 + 1)(m12 −m22)

)1/2

.

Action formulas for the operators E±1 and H1 are completely analogous to formulas (25) above
(with account of m11 −m22 = 2j, 2m11 −m12 −m22 = 2m).

The presented action formulas for the operators that form the operator algebra of the χ-type
show that their matrix elements are, to some extent, similar to the ‘classical’ matrix elements
(i.e. to the matrix elements of the irrep χ operators for su(n)). However, there is an essential
distinction: now we observe the important phase factors (namely, (−1)m11+m13+m23+m33 under
the square root in aχ,m11 and bχ,m11) which depend on χ and a specified basis element. No such
basis-element dependent factors exist in the su(n) case.

Let us illustrate such treatment with the particular example of operator algebra appearing
in the singular q = −1 case of Uq(su3) and corresponding to the octet representation of su3. We
give here explicitly only those action formulas for E±1 and E±2 in which matrix elements differ
from their corresponding ‘classical’ counterparts:

E−1 |Σ+〉 =
√
−2|Σ0〉, E−1 |Σ0〉 =

√
−2|Σ−〉, E+

1 |Σ−〉 =
√
−2|Σ0〉,

E+
1 |Σ0〉 =

√
−2|Σ+〉, E−2 |n〉 =

1√
−2

|Σ0〉+
√
−3/2|Λ〉, E−2 |Λ〉 =

√
−3/2|Ξ0〉,
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E−2 |Σ0〉 =
1√
−2

|Ξ0〉, E+
2 |Ξ0〉 =

1√
−2

|Σ0〉+
√
−3/2|Λ〉, E+

2 |Λ〉 =
√
−3/2|n〉,

E+
2 |Σ0〉 =

1√
−2

|n〉.

To complete this operator algebra, we must add the rest of action formulas for E±1 and E±2 (i.e.,
action on those basis elements) which coincide with the ‘classical’ ones, as well as the action
formulas for H1, H2 (these latter also coincide with ‘classical’ formulas).

Likewise, for Uq(su3) at q = −1 an operator algebra corresponding to any other irrep of su3

can be given. The treatment is obviously extendible to Uq=−1(sun), n > 3.
Let us also remark that SUSY-based mass relation mρ = mω, see (2), is obtainable from a

q-deformed structure. Indeed, it follows from the q-analog of vector meson mass relation,

mω8 + (2[2]q/[3]q − 1)mρ = (2[2]q/[3]q)mK∗

(which was derived [14] using Uq(sun) quantum algebras), if one fixes q as 4th root of unity:
q =

√
−1 (then, [2]q = 0). The intriguing interplay between SUSY and the special cases q = −1

and q =
√
−1 of the q-algebras Uq(sun) deserves further detailed study.
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We give infinite dimensional and finite dimensional examples of F−fold Lie superalgebras.
The finite dimensional examples are obtained by an inductive procedure from Lie algebras
and Lie superalgebras.

1 Introduction

It is generally held that supersymmetry is the only non-trivial extension of the Poincaré algebra.
This point of view is based on the two theorems [1, 2]. However, as usual, if some of the
assumptions of these two no-go theorems are relaxed symmetry beyond supersymmetry can be
constructed [3–23] In all these possible extensions of the Poincaré symmetry, new generators are
introduced. The basic structure underlying these extensions is related to algebraic structures
which are neither Lie algebras, nor Lie superalgebras. In this contribution we would like to give
some results concerning fractional supersymmetry (FSUSY) [6–23], one of the possible extensions
of supersymmetry, and the associated algebraic structure, the so-called F−Lie algebra [21]. Such
a structure admits a ZF grading, the zero-graded part defining a Lie algebra, and an F−fold
symmetric product (playing the role of the anticommutator in the case F = 2) allows one to
express the zero graded part in terms of generators of the non zero graded part. In Section 2
the basic definition of F−Lie algebras will be given. In Section 3, some examples of infinite
dimensional F−Lie algebras will be explicitly constructed. In Section 4, some examples of finite
dimensional F−Lie algebras will be explicitly constructed with the classification of the usual
Lie (super)algebras as a guideline.

2 F−Lie algebras

A natural mathematical structure, generalizing the concept of Lie superalgebras and relevant
for the algebraic description of fractional supersymmetry was introduced in [21] and called an
F−Lie algebra. We do not want to go into the detailed definition of this structure here and will
only recall the basic points, useful for our purpose. More details can be found in [21].

Let F be a positive integer and q = e2i
π
F . We consider now a complex vector space S which

has an automorphism ε satisfying εF = 1. We set Ak = Sqk , 1 ≤ k ≤ F − 1 and B = S1 (Sqk is
the eigenspace corresponding to the eigenvalue qk of ε). Hence,

S = B ⊕A1 ⊕ · · · ⊕AF−1.

We say that S is an F−Lie algebra if:



Fractional Supersymmetry and F−fold Lie Superalgebras 549

1. B, the zero graded part of S, is a Lie algebra.

2. Ai (i = 1, . . . , F − 1), the i graded part of S, is a representation of B.

3. There are symmetric multilinear B−equivariant maps

{ , . . . , } : SF (Ak) → B.

In other words, we assume that some of the elements of the Lie algebra B can be expressed
as F−th order symmetric products of “more fundamental generators”. It is easy to see
that

{ε(a1), . . . , ε(aF )} = ε ({a1, . . . , aF }) , ∀ a1, . . . , aF ∈ Ak.

The generators of S are assumed to satisfy Jacobi identities (bi ∈ B, ai ∈ Ak, 1 ≤ k ≤ F −1):

[[b1, b2] , b3] + [[b2, b3] , b1] + [[b3, b1] , b2] = 0,
[[b1, b2] , a3] + [[b2, a3] , b1] + [[a3, b1] , b2] = 0,
[b, {a1, . . . , aF }] = {[b, a1] , . . . , aF }+ · · ·+ {a1, . . . , [b, aF ]} ,
F+1∑
i=1

[ai, {a1, . . . , ai−1, ai+1, . . . , aF+1}] = 0. (1)

The first three identities are consequences of the previously defined properties but the fourth is
an extra constraint.

More details (unitarity, representations, etc.) can be found in [21]. Let us first note that no
relation between different graded sectors is postulated. Secondly, the sub-space B ⊕ Ak ⊂ S
(k = 1, . . . , F −1) is itself an F−Lie algebra. From now on, F−Lie algebras of the types B⊕Ak
will be considered.

3 Examples of infinite dimensional F−Lie algebras

It is possible to construct an F−Lie algebra starting from a Lie algebra g and a g−module D.
The basic idea is the following. We consider g a semi-simple Lie algebra of rank r. Let h

be a Cartan sub-algebra of g, let Φ ⊂ h� be the corresponding set of roots and let fα be the
one-dimensional root space associated to α ∈ Φ. We choose a basis {Hi, i = 1, . . . , r} of h and
elements Eα ∈ fα such that the commutation relations become[

Hi, Hj

]
= 0,

[
Hi, E

α
]

= αiEα,

[
Eα, Eβ

]
=


ε{α, β}Eα+β if α+ β ∈ Φ,
2α.H
α.α

if α+ β = 0,

0 otherwise.

(2)

We now introduce {α(1), . . . , α(r)}, a basis of simple roots. The weight lattice ΛW (g) ⊂ h�

is the set of vectors µ such that 2α.µ
α.α ∈ Z and, as is well known, there is a basis of the weight

lattice consisting of the fundamental weights {µ(1), . . . , µ(r)} defined by 2µ(i).α(j)

α(j).α(j)
= δij . A weight

µ =
r∑
i=1

niµ(i) is called dominant if all the ni ≥ 0 and it is well known that the set of dominant

weights is in one to one correspondence with the set of (equivalence classes of) irreducible finite
dimensional representations of g.
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Recall briefly how one can associate a representation of g to µ ∈ h�, µ =
r∑
i=1

niµi, ni ∈ C. We

start with a vacuum |µ〉 such that

Eα|µ〉 = 0, α > 0,

2
α(i).H

α2
|µ〉 = ni|µ〉, i = 1, . . . , r. (3)

The space obtained from |µ〉 by the action of elements of g:

Vµ =
{
E−α(i1) · · ·E−α(ik) |µ〉, α(i1), . . . , α(ik) > 0

}
,

clearly defines a representation of g. Taking the quotient of Vµ by its maximal g−stable subspace,
the representation Dµ of highest weight µ is obtained. If the ni are positive integers, this is the
irreducible finite dimensional representation of g corresponding to the dominant weight µ.

To come back to our original problem, consider a finite dimensional irreducible representa-

tion Dµ, with highest weight µ =
r∑
i=1

niµi, ni ∈ N. The basic idea is to try to define a structure

of an F−Lie algebra on S = B ⊕ A1 = (g⊕Dµ)⊕D µ
F

since, roughly speaking, the representa-
tions Dµ and D µ

F
can be related:

SF
(
Dµ/F

)
∼ Dµ. (4)

Indeed | µF 〉⊗F ∈ SF
(
D µ

F

)
and |µ〉 ∈ Dµ both satisfy equation (3). However, the representation

Dµ is finite dimensional but the sub-representation of SF
(
D µ

F

)
generated by | µF 〉⊗F is infinite di-

mensional [21, 22]. Thus, the main difficulty in such a construction is to do with the requirement
of relating an infinite dimensional representation Dµ/F to a finite dimensional representation Dµ
in an equivariant way, i.e. respecting the action of g. One possible way of overcoming this diffi-
culty is to embed Dµ into an infinite dimensional (reducible but indecomposable) representation
[21, 22, 23]. Another possibility is to embed g into an infinite dimensional algebra (dubbed V (g))
[21, 23, 24]) and extend the representations Dµ and D µ

F
to representations of V (g).

There is another difficulty related to such a construction. If one starts with Dµ1 , the vector
representation of so(1, d−1), the representation Dµ1

F
cannot be exponentiated (see e.g. [25]) and

does not define a representation of the Lie group SO(1, d− 1) (the universal covering group of
SO(1, d−1)) except when d = 3, where such representations describe relativistic anyons [18, 26].

4 Example of finite dimensional F−Lie algebras

In the previous section, we indicated how one can construct infinite dimensional examples of
F−Lie algebras. In this section, with the classification of Lie (super)algebras as a guideline, we
will give an inductive construction of finite dimensional F−Lie algebras.

In what follows S is a 1−Lie algebra means:

1. S = g0⊕g1, with g0 a Lie algebra and g1 is a representation of g0 isomorphic to the adjoint
representation;

2. there is a g0− equivariant map µ : g1 → g0 such that [f1, µ(f2)]+[f2, µ(f1)] = 0, f1, f2 ∈ g1.

The basic result is the following theorem:

Theorem 1. Let g0 be a (complex) Lie algebra and g1 a representation of g0. Suppose given
(i) the structure of an F1−Lie algebra on S1 = g0⊕ g1;
(ii) the structure of an F2−Lie algebra on S2 = C⊕ g1.

Then S =
(
g0⊗ C

)
⊕ g1 can be given the structure of an (F1 + F2)−Lie algebra.
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Proof. There exists (i) a g0−equivariant map µ1 : SF1 (g1) −→ g0 and (ii) a g0−equivariant
map µ2 : SF2 (g1) −→ C, the second map is just a symmetric F th

2 −order invariant form on g1.
Now, consider µ : SF1+F2 (g1) −→ g0 ⊗ C ∼= g0 defined by ∀ f1, . . . , fF1+F2 ∈ g1:

µ(f1, . . . , fF1+F2)

=
1
F1!

1
F2!

∑
σ∈SF1+F2

µ1(fσ(1), . . . , fσ(fF1
))⊗ µ2(fσ(fF1+1), . . . , fσ(fF1+F2

)). (5)

with SF1+F2 the group of permutations of F1 + F2 elements. By construction, this map is
a g0−equivariant map from SF1+F2 (g1) −→ g0, thus the first three Jacobi identities (1) are
clearly satisfied. The last Jacobi identity is more difficult to check and is directly related to
the last Jacobi identity for the F1−Lie algebra S1 by a factorisation property. Indeed (with
F = F1 + F2) if one calculates:

F∑
i=0

[fi, µ (f0, . . . , fi−1, fi+1, . . . , fF )] ,

and selects terms of the form (with σ ∈ SF1+F2+1))

µ1

(
fσ(1), . . . , fσ(fF1

)

)
⊗ µ2

(
fσ(fF1+1), . . . , fσ(fF1+F2

)

)
,

using µ2

(
fσ(fF1+1), · · · , fσ(fF1+F2

)

)
∈ C the identity reduces to

F1∑
i=0

[
fσ(i), µ1

(
fσ(1), . . . , fσ(i−1), fσ(i+1), . . . , fσ(fF1

)

)]
⊗ µ2

(
fσ(fF1+1), . . . , fσ(fF1+F2

)

)
= 0.

This follows from the corresponding Jacobi identity for the F1−Lie algebra S1. Now proceeding
along the same lines for the other terms, a similar factorisation works. Thus the fourth Jacobi
identity is satisfied and S is an (F1 + F2)−Lie algebra. �

Here there are some families of examples:
1. S1 = g ⊕ Ad(g)( a 1−Lie algebra); S2 = C ⊕ Ad(g) (a Lie superalgebra if g admits an

equivariant quadratic form).
2. If g = g0 ⊕ g1 is a Lie superalgebra (basic of type I or II or Q(n) [27]) we associate to g

an “augmented” Lie superalgebra as follows:

g = g0 ⊕ g1 −→


S = B ⊕ F = g0 ⊕ g1 if g is of type I,
S = B ⊕ F = g0 ⊕ (g1 ⊕ g1) if g is of type II,
S = B ⊕ F = g0 ⊕ g1 if g = Q(n).

(6)

The non-zero graded part of these “augmented” Lie superalgebras always admits a g0 invariant
quadratic form and hence S2 = C⊕F is a Lie superalgebra:

For the type I superalgebras we have g1 = D⊕D∗ (see [27]), and so one has a natural map:
S2 (D⊕D∗) −→ C.

For the type II superalgebras, we recall that g1 admits an invariant antisymmetric bilinear
form and hence g1 = D is self-dual [27]. Therefore, there is an invariant quadratic form on
F = g1 ⊕ g1.

For the strange superalgebra Q(n), g0 = sl(n + 1), the representation g1 is the adjoint
representation of g0 (see [27]) and hence admits an invariant quadratic form (the Killing form).

The existence of an invariant bilinear form on g1 (i.e. before the “augmentation” (6)) means
that there is a g0−equivariant mapping S±2(g1) −→ C (where S+

2(g1) (resp. S−2(g1)) represent
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the two-fold symmetric (antisymmetric) tensor product of g1). We denote generically this tensor
by δαβ when it is symmetric and Ωαβ when it is antisymmetric. This can equivalently be
rewritten in a basis of g1, Fα ∈ g1

{Fα, Fβ} = δαβ , for the type I superalgebras and for Q(n),
[Fα, Fβ ] = Ωαβ , for the type II superalgebras. (7)

with { , } (resp. [ , ]) the symmetric (resp. antisymmetric) bilinear forms.
However, after the “augmentation ”(6) in the case of Lie superalgebra of type II, the mapping

S2 (F) −→ C (i.e. the quadratic form on F) reads

{Fiα, Fjβ} = εijΩαβ , (8)

with Fiα ∈ g1 ⊕ g1. The index α represents the g1 degrees of freedom, the index i (i = −1, 1)
the two copies of g1 and εij the two dimensional antisymmetric tensor.

To conclude, we will give an example of a 3−Lie (resp. 4−Lie) algebra, associated to a 1−Lie
algebra (resp. superalgebra).

Example 1. Let g0 be a Lie algebra and g1 the adjoint representation of g0 and S3 = g0⊕ g1.
We introduce Ja, Aa, a = 1, . . . ,dim(g0) a basis of S3. We denote tr(AaAb) = gab the Killing
form. The trilinear bracket of the 3−Lie algebra S3, associated to the Lie algebra g, is:

{Aa, Ab, Ac} = gabJc + gacJb + gbcJa. (9)

If g = sl(2), this is the 3−Lie algebra constructed in [28].

Example 2. As a second example we give the formulae for the quadrilinear bracket of the
4−Lie algebra constructed from the orthosymplectic superalgebra. Starting from osp(m|2n) =
(so(m)⊕ sp(2n)) ⊕ (m,2n), we define osp(m|2n; 4) = (so(m)⊕ sp(2n)⊕ u(1)) ⊕ ((m,2n)+⊕
(m,2n)−) .

Let Fqiα (q = −1,+1, 1 ≤ i ≤ m, 1 ≤ α ≤ 2n) denote the odd part, Jij the so(m)
generators, Sαβ the sp(2n) generators and h the u(1) generator (Jij are antisymmetric and Sαβ
are symmetric). The invariant tensor on so(m) is given by the symmetric tensor δij and on
sp(2n) by the antisymmetric tensor Ωαβ , hence the invariant tensor for osp(m|2n) is given by
δijΩαβ . Thus, the quadrilinear bracket of the 4−algebra takes the form

{Fq1i1α1 , Fq2i2α2 , Fq3i3α3 , Fq4i4α4}
= εq1q2δi1i2Ωα1α2 (δq3+q4δi3+i4Sα3α4 + δq3+q4Ωα3α4Ji3i4 + aδq3+q4εi3i4Ωα3α4h)
+ εq1q3δi1i3Ωα1α3 (δq2+q4δi2+i4Sα2α4 + δq2+q4Ωα2α4Ji2i4 + aδq2+q4εi2i4Ωα2α4h)
+ εq1q4δi1i4Ωα1α4 (δq2+q3δi2+i3Sα2α3 + δq2+q3Ωα2α3Ji2i3 + aδq2+q3εi2i3Ωα2α3h)
+ εq2q3δi2i3Ωα2α3 (δq1+q4δi1+i4Sα1α4 + δq1+q4Ωα1α4Ji1i4 + aδq1+q4εi1i4Ωα1α4h)
+ εq2q4δi2i4Ωα2α4 (δq1+q3δi1+i3Sα1α3 + δq1+q3Ωα1α3Ji1i3 + aδq1+q3εi1i3Ωα1α3h)
+ εq3q4δi3i4Ωα3α4 (δq1+q2δi1+i2Sα1α2 + δq1+q2Ωα1α2Ji1i2 + aδq1+q2εi1i2Ωα1α2h) , (10)

with a ∈ C.

Remark 1. It should be noticed that F−Lie algebras associated to Lie algebras (resp. to Lie
superalgebras) are of odd (resp. even) order.

5 Conclusion

In this paper a sketch of the construction of F−Lie algebras associated to Lie (super)algebras
was given. More complete results, such as a criteria for simplicity, representation theory, matrix
realisations etc., will be given elswhere.
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We derive the basic principles of Electromagnetism and general relativity from a common
(geometrical) starting formulation we call START, from its geometrical structure as a Space–
Time–Action Relativity Theory. Gravitation results from the epistemological approach of
defining a test particle which explores the physical world in such a form that its trajectory
indicates the influence of the rest of the system. Electromagnetism defines a collection
of test particles, we call carriers, in interaction among themselves and with the rest of the
system. General Relativity is then derived from a symmetry transformation of the quadratic
space geometry corresponding to space–time and action and the philosophical principles of
Einstein’s general relativity theory.

1 Introduction

We present a deductive approach to General Relativity (GR) Theory, deriving it from the
quadratic space geometry corresponding to the, in our approach fundamental concepts, of space,
of time, and of action and from the philosophical principles of Einstein’s general relativity theory.
Our basic and more fundamental idea is that the physical world can be described as a distri-
bution of action density in space–time. The properties of matter fields and their interaction
are represented by the mathematical properties of this distribution. Action is considered as
a fundamental variable, not as a quantity resulting from some calculation.

In [6, 7, 12] we analyzed a classical theory of fields in (complex) space–time geometry and ar-
rived to the conclusion that this geometry corresponds to a unified space–time–action geometry.
We started from three basic assumptions: a) The use of space–time as a basic frame of refer-
ence; b) The introduction of physical phenomena as an action density function over space–time;
and c) The geometrical (vectorial) union of space, time, and action in a quadratic space where
a relativistic condition (dS)2 = 0 defines both kinematics and dynamics. The basic principles
of this Space–Time–Action Relativity Theory (START) are used to derive General Relativity.

In the construction of General Relativity the procedure is to perform a symmetry transfor-
mation which modifies the space–time components, and then the metric, by the allocation of the
appropriate amount of action corresponding to the additional action attributed to a test particle
as a result of the interaction with the rest of the world. This transformation is made at the
level of the quadratic form. This kind of transformations which transfer action into equivalent
space–time to modify the metric tensor will be interpreted by the observer as those changes in
the metric corresponding to its clocks running slower and the space intervals becoming larger,
as is customary in the analysis of general relativity.
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1.1 Carriers, Action, Space and Time

Action, as a fundamental variable, is distributed among a set of carrier (of action) fields. An
action density a(x, t) is the fundamental concept defining all three space (parametrized by x),
time (parametrized by t) and action density (parametrized by an scalar analytical function
a(x, t)) as primitive concepts from which all other physical quantities will be derived or at
least related directly or indirectly. The density of a carrier field can be defined through a set of
scalar constants such that the integral of the product of these constants and the density gives
the experimentally attributed value of a property for that carrier. A carrier field identified will
have a density ρ(x, t) and if the property is Q we will obtain the definition Q =

∫
q(x, t)dx =∫

Qρ(x, t)dx for all t, which defines that Q is a constant property (in space and time) for that
field. The set of properties {Q} characterizes a carrier field and in turn establishes the conditions
for a density field to correspond to an acceptable carrier.

We already stated that in our theory space and time are fundamental, primordial, concepts.
The geometrical unification of these concepts into a space–time coordinate x = (x, ct) and an
interval ds2 requires the introduction of a universal constant: the speed of light c. As we will
also use action as a fundamental concept we need another universal constant κ = d0/h which we
will construct from a fundamental distance d0 and a fundamental unit of action we will choose
to be Planck’s action constant h. In this form we will have a five dimensional, START, manifold
3 + 1 + 1 with all dimensions in units of length. To agree with standard formulations energy
E = ∂a/∂t and momentum pi = ∂a/∂xi are the fundamental rates of change of the primitive
concept of action. It is also appropriate to say that the concept of matter, hitherto formally
undefined, will acquire proper formal definition in the context of the different structural theories.
Then the START theory presented here corresponds to a geometrization beyond Minkowski’s
fundamental paper. In fact that author, introducing the space-time interval squared ds2, adds:
“the axiom signifies that at any world-point the expression c2dt2 − dx2 − dy2 − dz2 always has
a positive value, or, what comes to the same thing, that any velocity v always proves less than c”.
In our full geometrization scheme action change dK = P · dX is introduced through a series
|dK|2 of quadratic terms

dS2 − ds2 = − |dK|2 = −
{(
E2/c2

)
c2dt2 − p2

xdt
2 − p2

ydt
2 − p2

zdt
2
}
, (1)

joined in one unified geometrical quadratic form dS2. The dK vector, the directional in space-
time change of action, is a new theoretical quantity formally defined by (1). It acquires additional
relevance because action density will be described as a sum of contributions over carriers, a =∑
c
ac .We are constructing a systematic deductive approach to Physics and it is essential that

we derive many of the basic useful structures which have been used.
For a given observer the carrier field c is defined to have an energy density 1

Nc
Ecρ(x,t)

c with Ec
a constant in space and Nc the integer number of carrier units of type c. The density ρc(x, t) is
required to obey

∫
V ρc(x, t)dx = Nc in the system volume V .

Action is in our approach a coordinate (expressed in units of distance) and one of the prop-
erties of a distribution describing, in relation to an observer, the contents of the physical world
in space–time. The concept of Physical Phenomena refers to the existence and change of this
distribution. Physics corresponds to the description of the action distribution and its changes
in relation to a given observer.

The action density function in space–time a(X), or energy density in space for a given ob-
server, can be considered as a density of action trajectories in space–time. For elementary
carriers the trajectories would be elementary trajectories. Both the density function a(X) and
the splitting among carrier fields will be considered analytically well behaved functions.

The energy is E =
∑
c
Ec a sum of constants for a given observer, assumed to be distributed

among the different carriers {c} and can furthermore be described as a sum of contributions
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per carrier. The simplest, almost universal, type of distribution per carrier type is into the
constitution energy E0, the position dependent kinetic energy Ek(X), and the position dependent
sum of potential energies Ev(X)

Ec = Ec0 + Eck(X) + Ecv(X) + Ec∆(X). (2)

It is precisely this distribution (2) which defines the carrier for a given observer. Ec0 defines the
basic carrier, Eck(X) the state of motion relative to the observer, and Ecv(X) the relation between
that carrier and the rest of the system as defined by the observer. The Ec∆(X) term is required
to make Ec a position independent constant, this is needed to have a meaningful definition of the
carriers of type c. The action is considered to be distributed among interacting carriers, and the
concept of charges of the carriers has been introduced. Consider the simplest possibility that
this action does not depend on the direction, and that at a given distance from the source, in
concentric spheres, the total force field per charge should be independent of the distance from
the charge then

FQ = F (r)4πr2 =
Q

ε04πr2
4πr2 = Q/ε0 (3)

which expresses that a definite capability is attributed to a charge Q. The factor 1/ε0 represents
any additional condition that the observer has to include to match its definitions.

We use in the analysis a tetrad of, observer dependent, basis vectors {e0, e1, e2, e3}, with
e20 = −e21 = −e223

= −e23 = 1 and the definition property eµeν = −eνeµ. We also use the
notation e0j = e0ej = ej (i, j, k = 1, 2, 3) and e5 = e0e1e2e3 = e0123. For a given observer
a space–time d’Alembertian operator � has the property e0� = 1

c∂t +∇ = 1
c∂t + ei∂i, with ∇

the (ordinary space) Laplacian operator for that observer.
a) In space–time–action the action density a(x, t) is inhomogeneously distributed, corre-

sponding to the different material objects to which this action corresponds, in a possible relative
motion in the spatial directions with speeds 0 ≤ v ≤ c. Distributions which move with relative
velocities 0 ≤ v < c with respect to a given observer are called matter-like.

b) The matter-like energy distributions are to be considered as sources of (infinite extension,
in principle) decaying deformations of action distribution of several types. This second property
is not given a priori but it is a consequence of the description of the objects, as developed in
the previous section, shown below.

c) We introduce now a third fundamental concept: energy–momentum carriers, the definition
of identical carriers as a density in a space volume Vs such that at time t = t′∫

Vs

ρbdx = nb, h

∫
Vs

∂tabdx =
∫
Vs

ρbεbdx = nbεb = Eb, (4)

and Et′ =
[ ∑
b

Eb

]
t′

for a collection {b} of (by construction) independent types of carriers.

In agreement with our freedom of description we could also allow the nb not to be integers,
provided Et′ is not changed. Here

ε = mcc
2 + kin

[
ρ
(N)
0 (x)

]
+ V (x) + W int,xc

[
ρ

(N)
0 (x)

]
+ ε0

[
ρ

(N)
0 (x)

]
, (5)

the constitutional energy of the carriers mcc
2, actual local kinetic energy per carrier kin

[
ρ
(N)
0 (x)

]
,

external potential energy per carrier (in its simplest form) V (x). Second W int,xc

[
ρ

(N)
0 (x)

]
to

define independent carriers and finally a local energy term ε0

[
ρ
(N)
0 (x)

]
to compensate for any

difference in the sum of the previous ones with respect to ε. The last two terms define in
practice an actual carrier in the system (a pseudo-carrier in condensed matter physics language)
as different from an isolated carrier.
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2 Space–Time–Action Relativity Theory

Our basic and more fundamental idea [6, 7, 8, 10, 11, 12] is that the physical world can be
described as a distribution of action density in space–time. The properties of matter fields and
their interaction are represented by the mathematical properties of this distribution. Action is
considered as a fundamental variable, not as a quantity resulting from some calculation.

We use the traditional indices 0, 1, 2, 3 for the joint time and space coordinates xµ, also,
the vectors eµ in the geometry of space–time. They generate GST a 16 dimensional space–
time geometry of multivectors. A special property of the pseudo-scalar (and also volume or
inverse volume) in space–time e5 = e0e1e2e3, and of the linearly independent combination e4 ⇒
ije5, is that e5eµ = −eµe5 (from eµeν = −eνeµ, µ �= ν). Its use allows the construction of
a geometrical framework for the description of physical processes: a unified space–time–action
geometry GSTA = GST⊗C, mathematically a vector space with a quadratic form. The auxiliary
element j commutes with all eµ : eµj = jeµ. In the GSTA geometry the coordinates are real
numbers.

2.0.1 Formal presentation

The ideas developed in START (Space–Time–Action Relativity Theory) are derived from the
systematic use of the following principles and postulates [10, 11, 12].

First Principle: Principle of Relativity. Constancy of the value of the observed velocity
of light in vacuum. Independently of the state of movement of the source or of the observer
(Poincaré–Einstein Relativity {Poincaré 1904, Einstein 1905 [1]}). The Principle of Relativity
in full also requires that the laws of Physics should have the same form for all observers.

First Postulate. There is a geometry, corresponding to space–time, where the First Prin-
ciple is satisfied (Minkowski space–time with local pseudo-Euclidean structure). Here it is clear
that the velocity of light is a fundamental geometrical parameter and the First Principle could
be rephrased to assign a unit value to it.

Second Principle: Principle of Existence. Constancy of the action corresponding to a phy-
sical system and in particular to an elementary physical phenomenon. Independently of the state
of movement of the phenomenon or of the observer. Each observer considers the physical entity
as an amount of action A contained in a given space-time volume VST, A is a relativistic invariant
in the sense of Minkowski’s discussion.

Second Postulate. There is a geometry corresponding to the union of space–time and
action where the First and Second Principles are satisfied (pseudo-Euclidean structure).

Main Theorem KT: Complex Structure Theorem. The geometry where the Second Postu-
late is satisfied is a five-dimensional basis geometry, mathematically corresponding to a particular
complexification of space–time. The relation between a 5-dimensional geometry and the com-
plexification of the basis set has been briefly presented in the introduction and will be discussed
below.

Third Principle: Principle of Quantization. The exchanges in action always occur as
integer multiples of h. (This has to be a constitutive part of the units and practical use of KT
theorem). This makes Planck’s principle a universal principle which requires the definition of
the entities we have called action carriers, because if there are not differentiated action carriers
there is not a proper definition of the exchanges of action. This is also a guide and a limitation
in the definition of the action carriers and of the equivalent length associated to the time interval
in which the system with total action A is defined.

Fourth Principle: Principle of Choice. The distribution of action in space–time corre-
sponding to a physical system is unique and any description of this distribution should be
equally acceptable. The acceptability of a description, in relation to the Third Principle, is
interpreted here as implying an optimization of the action distribution among the available
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number of START cells of action and a mechanism to allow the system of carriers to arrive to
this optimized state.

Third Postulate. The equivalent acceptable descriptions, for a physical system of carriers,
are related by isometries and gauge transformations in the space–time–action geometric space
corresponding to the Second Postulate.

Proof of KT. We have the kinematical concept of trajectory (µ, ν = 0, 1, 2, 3) with a quad-
ratic form

ds2 = gµνdx
µdxν , (6)

generated by the dxµ and we want to include as a fifth coordinate the dynamical concept of
action and its distribution at each space–time point X = xµeµ, use the real scalar quantity

dA(X) = pµ(X)dxµ which defines pµ(X) = ∂A(X)/∂xµ, (7)

here pµ(X) is a distribution itself, write pµ(X) = tan Θ(X,µ) and join formally, defining the
(hyper)complex numbers j2 = −1 and i2 = −1, into

dSµ = dxµ(1 + jκ0i tan Θ(X,µ)), (8)

to obtain from the real quadratic form (in units of distance square)

dS2 = gµνdx
µdxν

(
1− κ2

0 tan Θ(X,µ) tan Θ(X, ν)
)
, (9)

or, in five-dimensional-like formulation

dS2 = guvdx
udxv = ds2 − κ2

0 |dK(X)|2 , u, v = 0, 1, 2, 3, 4, (10)

where κ2
0 |dK(X)|2 corresponds to the sum of the squares of action contributions. Both quantities

i and j are necessary to explicitly show the complex structure and give simultaneously the
desired metric. This has introduced a new 4 − D vector function (remark: eµ and ieµ are
linearly independent vectors)

dK(X) = dK(X)µieµ =
∑
µ

tan Θ(X,µ)dxµieµ,

dKµ =
(
∂A

∂xµ

)
dxµ = tan Θ(X,µ)dxµ.

It is important to notice that it is not the actual value of the action density which is dynamically
important but its space-time variations. Even more important for dynamics is that, when the
action density is considered a sum a =

∑
c
ac over carriers, the contributions to dK =

∑
c

(dK)c

per carrier could be non-zero even is the sum could itself be null. That is the dynamics could
be purely relative dynamics. The basic dynamical equation is proposed to be

δ

∫
dS2 = 0, (11)

in a joint minimization of trajectory and action. The universal constant κ0, the ratio of a
fundamental distance to the fundamental unit of action, expresses the action as an equivalent
distance in such a form that (dx4)2 = |(κ0dK)|2, with gmn = diag(1,−1,−1,−1,−1) defines the
metric of the equivalent five dimensional geometry basis vectors. �

For the units to be used in the unified geometry consider the definition (m0 electron rest
mass, c speed of light, h = 2π� Planck’s constant, e electron charge, r0 classical electron radius
and α = e2/�c)

rCompton =
�

2m0c
=
r0
2α
, κ0 =

d0

h
= 4πrCompton/h =

1
m0c

. (12)
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The classical limit of the unification of action to space–time is obtained when κ0 →∞ in a form
similar to the classical limit of the unification of space and time being obtained when c → ∞.
Note κ0 % c.

From our definitions we are considering two quantities: energy
∫
dV ∂t a(X) and the cor-

responding momenta
∫
dV ∂xi a(X). One of the basic relations in relativistic dynamics is the

transformation of the above quantities with respect to observers in relative motion with a relative
velocity v12.

For observer 1 E = mc2 =
∫
dV ∂t a(X), if by definition for this observer that object is at

rest and then the energy corresponds to a mass m and no momenta are involved.
For observer 2 the same relations hold. The energy for this observer will be E ′=m′c2 =∫
dV ′∂t′ a′(X ′), larger than E

E ′ = ∂

∂t′
A =

mc2√
1− v2

c2

→ with lim(v 	 c) → mc2 +
1
2
mv2 + · · · , (13)

and he can call the energy E ′ the sum of the rest (mass) energy E and the kinetic energy Ek.

2.1 Dynamical principles as symmetries

In space–time–action geometry the main dynamical principle should be that all elementary tra-
jectories be minimal. That is, from our definition of carriers above where dA = {εc

∫
ρc(X)dx}dt,

a minimization of a total action A ( in the case when we admit that the κ0 % 1 predo-
minates) or a minimization of a START trajectory. Defining the (square of the) differential
(dS)2 = (ds)2 − (da)2, where (ds)2 = gµνdx

µdxν is the space–time differential and (da)2 the
action differential, the minimal principle

δ(dS)2 = 0, (14)

could be separated into a kinematical principle similar to the one of (general) relativity and an
additional principle of minimum action

δ(ds′)2 = 0, δ(da′)2 = 0, (15)

(ds′)2 = (ds)2 −
[
(da)2 − (da′)2

]
, (16)

as a modified space–time interval square which, in fact, corresponds to considering a curved
effective space–time as will be shown below. The action interval square (da′)2 corresponds to
some ‘inactive’ part of the action in relation to a given geometrical description.

3 Maxwell and Newton equations from START

Let us formally show that the Maxwell equations in their standard textbook form are analytical
properties of the third derivatives of the action density attributed to a test carrier (with ‘electric’
charge).

In the reference frame of a given observer the induced action density, denoted by ae(X), per
unit charge (⇒ puch) of a test carrier at space–time point X = xµeµ (here the greek indices
µ = 0, 1, 2, 3 and x0 = ct whereas the space vectors q = qiei = qie

i, i = 1, 2, 3 are written in bold
face letters), the related energy density Ee(X) and the total (external plus induced) momentum
density pe, per unit charge of the test carrier, would be

Ee(X) =
∂ae(X)
∂t

, pe = pe,ie
i =

(
∂ae(X)
∂xi

+ ∆Rpe,i

)
ei, (17)
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and the, by definition, electric field intensity E is the force (puch) corresponding to this terms

E =
(
∂Ee(X)
∂xi

+
∂pe,i
∂t

)
ei = ∇Ee(X) +

∂pe
∂t

,

with time dependence

∂E

∂t
=

(
∂2Ee(X)
∂t∂xi

+
∂2pe,i
∂t∂t

)
ei = 2

∂3ae(X)
∂t∂xi∂t

ei +
∂2 (∆Rpe,i)

(∂t)2
ei.

By definition of interacting carriers, we have added in (17) the term ∆Rpe,ie
i as the effect of the

conservation of interaction transverse momenta between the field representing the rest of
the carriers with that sort of charges. This is by definition the origin, in START, of a magnetic
field intensity B = Bke

k that will appear as the curl of the momentum (puch) of an interaction
field acting on a carrier of type b. The axial vector

B =
(
∂pe,i(X)
∂xj

)
ej × ei = ∇× pe,

∂B

∂t
=
∂2pe,i(X)
∂t∂xj

ej × ei.

Otherwise the space variation of E, including the interaction transverse momenta,

∇E = ∇ ·E +∇×E, (18)

will then also include a transversal (rotational) term

∇×E =
∂2pe,j(X)
∂xi∂t

ei × ej = −∂B

∂t
, (2nd Maxwell Equation)

relation which is the direct derivation in START of this well known Maxwell equation. The
scalar term ∇ ·E being a divergency of a vector field should be defined to be proportional to a
source density

∇ ·E =
1
ε0
ρ =

∑
i

(
∂3ae(X)
∂xi∂xi∂t

)
=

∂

∂t
∇2ae(X), (1st Maxwell Equation)

and will be given full physical meaning below. For the space variation of B we have

∇B = ∇ ·B +∇×B.

The first term vanishes identically in our theory because it corresponds to the divergence of the
curl of a vector field

∇ ·B = 0, (3rd Maxwell Equation)

while the last term, using U × V ×W = V (U ·W )− (U · V )W

∇×B = ∇
(
∇2ae(X)

)
−∇2pe = µ0

(
J + ε0

∂E

∂t

)
, (4th Maxwell Equation)

where the additional dimensional constant µ0 is needed to transform from time units (used in
the conceptual definition of a current J = ∇

(
∇2ae(X)

)
/µ0) into distance units and in fact

ε0µ0 = c−2.
The derived Maxwell equations are formally equivalent to the original Maxwell equations.
Both the 4th Maxwell Equation, defining J , related to a Lorentz transformation of the 1st

Maxwell Equation, defining ρ, can immediately be integrated using geometric analysis tech-
niques, the standard approach being of fundamental conceptual consequences in START. The
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space divergence of a non-solenoidal vector field like E is immediately interpreted as its ‘source’
given that ∆E = (∇ ·E)S∆x, and this equation is integrated using the standard geometric
theorem that the volume integral of a divergency ∇·E equals the surface integral of the normal
(to the surface) component of the corresponding vector field n · E. Where n is a unit vector
perpendicular to the surface S (in the text-book formula below S = 4πr2 corresponding to an
integration sphere of radius r containing a spherically symmetric source density ρ(r) generating
a force field per unit charge E = E(r)r

r ) of the integration volume V = 4πr3/3:∫
V

(∇ ·E) dV =
∫
V

4π
ε0
ρ(r′)r′2dr′ =

1
ε0
Q =⇒ E = E(r)

r

r
=

Q

4πε0r2
r

r
.

In the case of the, generated by a current, magnetic force field intensity B, being a space
bivector, it is also a direct geometrical consequence that its source can (must) be a current
vector density J . For a small (l	 r) current source at the origin of coordinates: (in the sphere
rt(θ, φ) • rct = 0,

(
rt

)2 =
(
rct

)2 = 1)∫
V

4πµ0Jδ
(
r′

)
r′2dr′ = µ0Mrct = 4πr2fB(r)rct =⇒ B = B(r)rt =

µ0M

4πr2f
rt.

3.1 Newtonian gravity

The analysis above depends only on the assumption of the decomposition of the action and of the
energy momentum into contributions per carrier. The solution of the first Maxwell equation,
when applied to gravitation considering the mass M = E/c2, implies (as shown above) the
Newtonian gravitational potential equation per unit test mass m:

E = V = −GM
r
, that is E = −GM

r2

the usual relations in the textbook formulation of Newtonian gravity. The constantG = 1/4πε(g)0 .
If we define c2µ(g)

0 ε
(g)
0 = 1 then µ

(g)
0 = 4πG/c2.

4 General relativity and the test particle

The Schwarzschild solution. In our present theory there are two fundamental carrier struc-
tures: the massless fields and the massive electron field with basic relation

E2 = (E0 + ∆E)2 , E2 − E2
0 = (pc)2, (19)

where ∆E is any gauge-free energy contribution and E0 = m0c
2 the energy, at rest relative to

some observer, considered to be the mass of the carrier.
The concept of test particle in general relativity in the Schwarzschild solution is compatible

with the Newtonian limit for the interaction gravitational energy

∆E (r) = −m0
GM

r
, (20)

where M is the total mass of ‘the system’ of radius rs we are exploring with the test particle
and, conceptually, with the START use of the action square difference, writing E = E0 + ∆E for
large (classical limit) values of r > rs

E2 − E2
0 = E2

0 + 2E0∆E + (∆E)2 − E2
0 = (pc)2

= 2E0∆E + (∆E)2 → −2m0c
2m0

GM

r
+

(
m0

GM

r

)2

, (21)
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this corresponds to the energy and radial momentum terms in (da)2−(da′)2 if (da′)2 = (m0c
2dt)2,

and substituting in (16) using κ0 = 1/m0c and space spherically symmetric coordinates t, r, θ,
φ we obtain

(dS)2 =

(
1− 2

GM

c2r
+

(
GM

c2r

)2
)
c2 (dt)2

−
(

1 +
2GM
c2r

−
(
GM

c2r

)2
)

(dr)2 − r2
[
(dθ)2 + sin2 θ (dφ)2

]
, (22)

which is the Schwarzschild metric in the limit of r % GM/c2.
It is customary to write [15] the interval square using in our case f (r) = 1 + b2 (r) and

h (r) = 1− b2(r)

f (r) =

(
1− 2

GM

c2r
+

(
GM

c2r

)2
)

and h (r) =

(
1 +

2GM
c2r

−
(
GM

c2r

)2
)
, (23)

for c2r % GM we obtain the Schwarzschild relation f ∼= h−1.
The result (22) shows that our approach provides a conceptual understanding of the role of

sources carriers and test particles in general relativity. It also shows the possibility of extending
the analysis to circumstances more difficult to consider within the traditional approaches.

Once we have obtained the Schwarzschild metric we can now find the curved hypersur-
face in START corresponding to the curved space–time where the test particles are
assumed to move. Formally we need to define a set of vectors eµ, µ = 0, 1, 2, 3, gµν =
diag (1,−1,−1,−1), and their reciprocal, in terms of a vierbein using the Minkowski space
reference vectors. From (22) it is clear (see [15]) how to construct an orthonormal system of
vectors.

One of the possible symmetries in START is the transformation of position vectors y in
START to a new set {y = xueu; u = 0, 1, 2, 3, 4}

y′ = f(y) = x′ue′u. (24)

which describes the curvature of the space–time part necessary for representing physical inter-
actions, at the expense of defining ‘test’ carriers.

4.0.1 General relativity in START

From our previous analysis, the structure equivalent to Einstein’s general relativity is the fol-
lowing:

• In the flat space–time–action geometry a distribution of action is given and analyzed as
corresponding to the total matter and interaction fields (radiation) content.

• Basically one obtains the structure corresponding to general relativity by the process of
transforming this 1 + 3 + 1 geometrical description into an equivalent 1 + 3 description
given by a curved space–time.

• Even if the projection of the surface in five dimensions as a four-dimensional space corre-
sponds to the curved space–time of general relativity, the physical meaning of this curved
space–time is given by defining the trajectories of ‘test’ particles as the geodesics in this
4-D space.

The analysis we have presented here corresponds to changing the status of general relativity
from a physical model to a part of a deductive theory.
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4.0.2 A charged carrier as a test particle in general relativity

A charged particle at rest which is acted on by gravitational and electromagnetic interactions
will have for the (attributed) total energy (at distances large enough such that the collection of
masses with which the test carrier interacts are collectively represented by the volume integral
of a mass density M(r)) in the presence of the mass M =

∫
DM(r)dv, the following description:

ε = m0c
2 −m0

GM

r
+ e

Q

r
.

Substituting this in (19)–(23) will change the functions f (r) and h (r) into

f(r) = 1− 2
GM

c2r
+

(
GM

c2r

)2

− e

m0
Q
GM

c4r2
+ 2

eQ

m0c2r
+

(
eQ

m0c2r

)2

,

h(r) = 1 + 2
GM

c2r
−

(
GM

c2r

)2

+
e

m0
Q
GM

c4r2
− 2

eQ

m0c2r
−

(
eQ

m0c2r

)2

.

The analysis of these functions would lead to the following conclusions:

1. Besides the attractive gravitational term there is a (quadratic) repulsive term which will
dominate at intermediate distances. Time coordinates do not become imaginary or dis-
continuous.

2. The electric part of the interaction depends explicitly in the e/m0 ratio of the test particle,
and it can then not be a universal behavior of a test particle.

Otherwise, when the relations corresponding to general relativity are derived from START,
those entering into the experimental proofs of the validity of general relativity (considered this
far) are not changed and retain their validation status.

4.1 The mathematical structure of general relativity from START

Once we have seen that an electron used as a test particle in the START geometry allows us to
obtain the Schwarzschild metric we can now proceed to a systematic derivation of the structure
of general relativity from START.

The main considerations are the following.

a) General relativity is a geometric theory describing the trajectories of test particles as the
natural trajectories, geodesics, in curved space–time geometry.

b) The curved space–time is obtained by incorporating, within STA, equivalent distances
from the action part into the ST part. That is, general relativity is a theory where the
geometry describes everything that is to be described, through the curved space–time, and
the test particle is only an auxiliary in this description.

c) The quadratic form obtained was afterwards analyzed using intrinsic geometrical tech-
niques to have a purely geometrical theory. The basic equations, everywhere in space,
are the transfer of the intervals corresponding to the relevant action (squared) to the flat
quadratic form of space–time.

d) We can directly consider that the quadratic form defines the metric tensor of the new
geometry, and then use the definition of the curvature from the metric tensor in the
generated curved space–time, to obtain a relation between the curvature and the energy–
momentum–stress tensor.
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The metric in GR. Once we have created the equivalent curved space–time the metric
in GR is given through the use of the line element (here gµν = gGR

µν from the choice of action
allocation to geometry and g0

µν corresponds to flat space–time)

dS2 = gµνdx
µdxν = g0

µν (1 + ∆gµν) dxµdxν , (25)

which in turn defines local vector frames (up to a gauge transformation)

eGRµ = h (eµ) , such that gµν = eGR
µ · eGR

ν ,

with h (x) a vector-valued function of vectors usually represented through a vierbein hνµ.
In practice the metric appears as an independent field in START which is defined according

to the Principle of Choice of Acceptable Descriptions, then once it is chosen the condition of
flat STA is that the total curvature vanishes. Otherwise (from the integral of the selected
contributions to action)

κ0
δA

δgµν (x)
≡ κ0

2
Tµν (x) , (26)

(the factor 1
2 is needed for convention reasons); also, from the Ricci scalar curvature R which

results from the chosen line elements

δR
δgµν (x)

= Rµν − 1
2gµνR, with Rµν − 1

2gµνR+
κ0

2
Tµν = 0 (27)

to obtain the equivalent to the GR basic equation.

4.2 Rumer (Kaluza–Klein) theory deduced from START

The Rumer form of the Kaluza–Klein–Einstein–Bergmann theory is deduced from START when
besides deriving the metric tensor from the square of the line element dS, as the symmetric part
of dS2, the antisymmetric, then imaginary, elements are kept and considered in turn as as real
elements of an extended metric tensor in a 5-D geometry. That is consider again the complex
line element and compute again the complex square, keeping now the scalar and the bivector
parts

(dS)2 = dS2 + eµνdx
µdxνijκ0(p(X,µ)− p(X, ν))

where the antisymmetric product of two vectors, the bivectors eµν are also the generators of
spin angular momentum.

From the principles of General Relativity of considering the changes in energy-momentum
for the test particle, consider that in the case of an electromagnetic interaction the test particle
of charge e receives and additional energy momentum p(X,µ) = eAµ (X)

ijκ0p(X,µ) = ij
e

m0c
Aµ (X)

using the action equivalent distance κ0 = 1/m0c.
Besides the many papers which have been written about the Kaluza–Klein proposition and

their extension to the idea of hyper-space with one additional dimension (at least) for each
additional interaction included, the direct inclusion of action as a fifth dimension was proposed
as early as the 1949–1956 by the Russian physicist Y.B. Rumer [13, 14] under the name of
“Action as a spatial coordinate. I–X”. In the work of Rumer the main foreseen application is to
the case of optics in what he called 5-optics. We should remember that in this case the action
dA = 0 and then the fifth coordinate turns out to be identically null.
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5 Hypothesis and principles in START

The set of hypothesis and principles which are explicitly included are:

Physics is the science which describes the basic phenomena of Nature within the procedures
of the Scientific Method.We consider that the mathematization of the anthropocentric
primary concepts of space, time and the existence of the physical objects (action carriers),
is a suitable point of departure for creating intellectual structures which describe Nature.

We introduce a set of principles: Relativity, Existence, Quantization and Choice as the opera-
tional procedure, and a set of 3 mathematical postulates to give this principles a formal,
useful, structure.

In START, because of its equivalent complex structure and its quadratic forms we have,
besides the geometrical space–time Poincaré group P of transformations leaving the finite dif-
ference

(
dx0

)2 − (dx)2 invariant, an additional set of transformations related to the complex
structure. The additional operations are: a translation in the e4 direction, three rotations in
the eie4, i = 1, 2, 3 planes and one ‘boost’ in the e0e4 plane.

It is clear that most of the here presented relations are known relations as far as we are deriving
the structures and theories from START.
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Electron scattering off hadronic systems is used to motivate an algebraic approach to had-
ronic physics. Point form relativistic quantum mechanics, in which all interactions are in
the four-momentum operator, along with current operators, is shown to form an infinite
dimensional algebra, the representations of which would then generate the observables in
electron scattering, namely form factors and structure functions. Several examples of such
algebras are given.

1 Electron scattering and point form
relativistic quantum mechanics

Electron scattering provides an important tool for investigating the structure of hadrons, both
at the nuclear and quark levels. The cross sections measured by experimentalists, for example in
inclusive scattering, are exhibited in such a way that they indicate the degree to which an object
being probed is not a point particle. The measure of an object not being pointlike is given by
sums of squares of form factors. It is well known that the number of independent form factors
in elastic scattering is equal to 2s+ 1, where s is the spin of the object. Associated with each of
the 2s+1 form factors is a static property of the object, such as its charge or magnetic moment,
obtained by evaluating the appropriate form factor at zero momentum transfer, Q2 = 0. If every
form factor for a spin s object were a constant as a function of Q2, the object would be a genuine
point particle. If form factors are not constant as functions of Q2, the object has an internal
structure, which is revealed in electron scattering experiments as deviations from pointlike cross
sections.

Form factors are matrix elements of electromagnetic current operators and provide the link
to electron scattering experiments. In order to compute such form factors it is necessary to know
both how the objects are described in terms of their constituents, and the nature of the currents
of the constituents. Two examples of form factor calculations will be given in the following two
sections, one the elastic deuteron form factor in terms of proton and neutron constituents, the
other nucleon form factors with three quark constituents.

The goal of this paper is to present an algebraic formulation of electron scattering, algebraic
in the sense that the operators describing hadronic dynamics and currents close under commu-
tation. The context for such a formulation is point form relativistic quantum mechanics [1], in
which all of the hadronic dynamics is put into the four-momentum operator and the Lorentz
generators are all kinematic.

It is then convenient to write the Poincaré commutation relations, necessary for the theory
to be properly relativistic, not in terms of the ten generators, but rather in terms of the four-
momentum operators that contain the interactions, and global Lorentz transformations:

[Pµ, Pν ] = 0, (1)

UΛPµU
−1
Λ =

(
Λ−1

)ν
µ
Pν , (2)
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where UΛ is a unitary operator representing the Lorentz transformation Λ. These rewritten
Poincaré relations will be called the point form equations, and are the fundamental equations
that have to be satisfied for the system of interest. The mass operator is given by M =

√
P · P

and must have a spectrum that is bounded from below.
The simplest example of the point form equations is given by the irreducible representations

of the Poincaré group for a single particle of mass m and spin j. If |p, σ〉 is an eigenstate of
four-momentum p (with p · p = m2) and spin projection σ, then

Pµ|p, σ〉 = pµ|p, σ〉, (3)

UΛ|p, σ〉 =
∑

|Λp, σ′〉Dj
σ′,σ(RW ), (4)

with RW a Wigner rotation defined by RW = B−1(Λv)ΛB(v), and B(v) a canonical spin (ro-
tationless) boost (see reference [2]) with argument v = p/m. Many-particle operators with the
same transformation properties as the single particle ones are conveniently obtained by introdu-
cing creation and annihilation operators. Let a†(p, σ) be the operator that creates the state |p, σ〉
from the vacuum. If a(p, σ) is its adjoint, these operators must satisfy the following relations:

[a(p, σ), a†(p′, σ′)]± = Eδ3(p− p′)δσ,σ′ , (5)

Uaa
†(p, σ)U−1

a = eip·aa†(p, σ), (6)

Pµ(fr) =
∑ ∫

d3p

E
pµa
†(p, σ)a(p, σ), (7)

UΛa
†(p, σ)U−1

Λ =
∑

a†(Λp, σ′)Dj
σ′,σ(RW ). (8)

Here Pµ(fr) is the free four-momentum operator and plays a role analogous to the free Hamilto-
nian in nonrelativistic quantum mechanics. Again it is straightforward to show that Pµ satisfies
the point form equations. Ua in equation (6) is the unitary operator representing the four-
translation a.

To prepare for the construction of interacting four-momentum operators, out of which the
interacting mass operators will be built, it is convenient to introduce velocity states, states with
simple Lorentz transformation properties. If a Lorentz transformation is applied to a many-
particle state, |p1, σ1, . . . , pn, σn〉 = a†(p1, σ1) · · · a†(pn, σn)|0〉, then it is not possible to couple
all the momenta and spins together to form spin or orbital angular momentum states, because
the Wigner rotations associated with each momentum are different. However, velocity states,
defined as n-particle states in their overall rest frame boosted to a four-velocity v will have the
desired Lorentz transformation properties:

|v, ki, µi〉 := UB(v)|k1, µ1, . . . , kn, µn〉 (9)

=
∑

|p1, σ1, . . . , pn, σn〉
∏

Dji
σi,µi

(RWi), (10)

UΛ|v, ki, µi〉 = UΛUB(v)|k1, µ1, . . . , kn, µn〉 = UB(Λv)URW
|k1, µ1, . . . , kn, µn〉

=
∑

|Λv,RW ki, µ
′
i〉

∏
Dji
µ′i,µi

(RW ). (11)

Unlike the Lorentz transformation of an n-particle state, where all the Wigner rotations of
the D functions are different, in equation (11) it is seen that the Wigner rotations in the D
functions are all the same and given by equation (4). Moreover the same Wigner rotation
also multiplies the internal momentum vectors, which means that for velocity states, spin and
orbital angular momentum can be coupled together exactly as is done nonrelativistically (for
more details see reference [2]). The relationship between single particle and internal momenta
is given by pi = B(v)ki,

∑ ki = 0 and RWi in equation (10) by replacing p by ki and Λ by B(v)
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in equation (4). From the definition of velocity states it then follows that

Vµ|v, ki, µi〉 = vµ|v, ki, µi〉, (12)

Mfr|v, ki, µi〉 = mn|v, ki, µi〉, (13)

Pµ(fr)|v, ki, µi〉 = mnv
µ|v, ki, µi〉, (14)

with mn =
∑ √

m2
i + ki

2
the mass of the n-particle velocity state and Pµ(fr) = MfrVµ. On velo-

city states the free four-momentum operator has been written as the product of the four-velocity
operator times the free mass operator, which is the so-called Bakamjian–Thomas construction [3]
in the point form.

To introduce interactions, write Pµ = MVµ, M = Mfree + MI . Such a four-momentum ope-
rator will satisfy the point form equations if the velocity state kernel, 〈v′, ki

′
, µ′i|MI |v, ki, µi〉 is

independent of v and rotationally invariant (which is the same as the nonrelativistic condition
on potentials). With such a four-momentum operator, the point form equations become a mass
eigenvalue equation:

MΨ = mΨ, (15)

which gives the bound and scattering wavefunctions.
Besides the mass operator, the other quantity needed to compute form factors is a current

operator. Current operators must satisfy general properties such as Poincaré covariance and
current conservation. In the point form the current operator at the space-time point 0 plays
a special role in that it determines the Poincaré covariance and conservation properties at an
arbitrary space-time point x. In fact it is easy to see that if Jµ(0) satisfies

UΛJµ(0)U−1
Λ = (Λνµ)−1Jν(0),

[Pµ, Jµ(0)] = 0,

then Jµ(x) := eiP ·xJµ(0)e−iP ·x is Poincaré covariant and is conserved.
Form factors are current operator matrix elements. If the states are chosen to be eigen-

states of the four-momentum operator, then the covariance properties of the states and current
operators make it possible to greatly simplify the structure of the form factors. As shown in
reference [4] current operators are irreducible tensor operators of the Poincaré group, so that
a generalized Wigner–Eckart theorem can be used to decompose current matrix elements into
Clebsch–Gordan coefficients times reduced matrix elements, which are the invariant form fac-
tors. There is a natural frame in which the Clebsch–Gordan coefficients are one, namely the
Breit frame, indicated by p(st) (st=standard=Breit) below:

〈p′j′σ′I ′|Jµ(0)|pjσI〉 =
∑

Λµν (p′, p)Dj′
σ′r′(R

′
W )F νr′r

(
Q2

)
Dj
rσ(R−1

W ), (16)

〈p′(st)j′r′I ′|Jµ(0)|p(st)jrI〉 = Fµr′r(Q
2), (17)

p′(st) = m′(cosh ∆, 0, 0, sinh ∆), p(st) = m(cosh ∆, 0, 0,− sinh ∆),

Q2 = (p′(st)− p(st))2 = (m′ −m)2 − 4m′m sinh ∆2,

p′ = Λ(p′, p)p′(st), p = Λ(p′, p)p(st).

Λ(p′, p) is a Lorentz transformation that carries the two standard four-momenta to arbitrary
four-momenta, while the Wigner rotations in equation (16) are formed from these four-momenta
with Λ(p′, p).

It can then be shown that the invariant form factors in equation (17), indexed by the spin
projection labels r′ and r, always give the correct number of independent form factors [4]. In fact
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Fµ=0
r′r (Q2) is a diagonal matrix giving the electric form factors, Fµ=1,2

r′r
(
Q2

)
is an off-diagonal

matrix giving the magnetic form factors, and Fµ=3
r′r

(
Q2

)
= 0 is an expression of current con-

servation in the Breit frame. To actually compute an invariant form factor using equation (17)
a choice for the current operator must be made; usually one begins with a one-body current
operator, resulting in what is called the point form spectator approximation (PFSA) [5]. This
means that the four-momenta of the unstruck constituents do not change, which has the con-
sequence that the momentum transfer to the struck constituent is greater than the momentum
transfer to the object as a whole. As will be seen in the next sections, this has important
consequences for the behavior of the form factors as a function of the momentum transfer Q2.

With the assumption of a one-body current operator, equation (17) can be written more
explicitly as

Fµr′r
(
Q2

)
=

∑ ∫
J d3kiJ ′d3k′iΨ

∗
m′j′r′(k′i, µ

′
i)u(p′1σ

′
1)γµu(p1σ1)F

(
(p′1 − p1)2

)
× Ei	=1δ

3(p′i − pi)δσ′σΨmjr(kiµi), (18)

where Ψ is an eigenfunction of the mass operator, J and J ′ are Jacobian factors, and the delta
functions express the fact that the momenta of the unstruck constituents do not change. The
one-body current matrix element in equation (18) has been chosen for a spin 1/2 particle with
form factor F .

2 Elastic deuteron form factors

To compute elastic deuteron form factors using the point form it is necessary to have a mass
operator that will generate the deuteron wave functions. To make use of the many nonrelativis-
tic potentials that are able to give good deuteron wave functions, the mass operator, a sum of
relativistic kinetic energy and interaction, is squared and then rewritten in the form of a non-
relativistic Schrödinger equation [6]:

M = 2
√
m2
N + k2 +Mint, M2 = 4

(
m2
N + k2

)
+ 4mNVN−N , (19)

M2Ψ =
(

4m2
N + 4k2 + 4mNVN−N

)
Ψ = m2

DΨ,(
k2

mN
+ VN−N

)
Ψ =

(
m2
D

4mn
−mN

)
Ψ; (20)

in this work the Argonne v18 and Reid’93 potentials were used to obtain the deuteron wave
functions.

Since the nucleons that make up the deuteron themselves have internal structure, it is nec-
essary to choose form factors for them. In this calculation the one-body current operators
were determined by form factors given by Gari, Krümpelmann [7] and Mergell, Meissner, and
Drechsel [8].

The results of these calculations have been published in reference [5]. Collaborators are
T. Allen and W. Polyzou, with much help from F. Coester and G. Payne. A comparison of our
results with those of other calculations is given by F. Gross [9], where it is seen that the structure
function falls off too fast in comparison with experimental data, while the results for the tensor
polarization agree reasonably well with data. These results show the need for including two-body
currents in the form factor calculations, a subject which is discussed elsewhere [10].
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3 Nucleon form factors

To compute nucleon form factors the mass operator is obtained in a rather different way as
compared with the deuteron mass operator. In this case the three quark mass operator comes
from a “semi-relativistic” Hamiltonian, the sum of relativistic kinetic energy, linear confinement
potential and hyperfine interaction (Goldstone Boson Exchange model [11]):

H −→ M =
∑ √

m2 + k2
i +

∑
V (conf) +

∑
V (HF ).

That is, the “semi-relativistic” Hamiltonian can be reinterpreted as a point form mass operator
and the eigenfunctions previously calculated can be used to compute form factors. Thus, the
bound state problem for three quarks, MΨ = mΨ, gives the wave functions and a good spectro-
scopic fit (Glozman, et al [12]). Finally the current operator is a point-like Dirac current with
no anomalous magnetic moment.

When these eigenfunctions and current operators are put into equation (18), excellent agree-
ment with data is obtained. The form factor graphs and static properties can be found in
reference [13]. Collaborators in this project include S. Boffi, L. Glozman, W. Plessas, M. Radici,
and R. Wagenbrunn. It should be noted that form factors for the weak interactions have also
been calculated and give excellent agreement with experiment [14].

4 Algebraic formulation of electron scattering

As shown in previous sections the two quantities needed to calculate electron scattering observ-
ables in the point form are the hadronic four-momentum operator Pµ, satisfying P †µ = Pµ and
the electromagnetic current operator Jµ(0). To rewrite these quantities in an algebraic form it
is more convenient to work with the Fourier transform of the current operator

Jµ(Q) =
∫
d4xeiQ·xJµ(x), (21)

with J†µ(Q) = Jµ(−Q), for then two of the fundamental commutation relations are

[Pµ, Pν ] = 0, (22)
[Pµ, Jν(Q)] = QµJν(Q). (23)

These operators must also satisfy Lorentz transformation properties, with the four-momentum
operator transforming as a four-vector (equation (2)) and the current operator as a four-vector
density. To get an algebraic structure, [Jµ(Q), Jν(Q′)] should close. Since equation (22) is
a point form equation required by Poincaré covariance, and equation (23) is a consequence of
the translational covariance of current operators it is clear that the crucial commutator relation is
the one involving the two currents. While the commutator of two currents closing is reminiscent
of the current algebra of the 1960’s (see for example [15]), the crucial difference is that the
currents are not regarded as the fundamental degrees of freedom, to be used in a Hamiltonian;
rather in combination with equations (22), (23), the four-momentum operator and the current
operator form a closed algebraic system, the representations of which should give the observables
of electron scattering.

These observables include the structure tensor for inclusive scattering,

Wµν(p,Q) =
∑ ∫

d4Q′〈pjσ|[Jµ(Q), Jν(Q′)]|pjσ〉, (24)
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and form factors for exclusive scattering,

Fµ(Q2) = 〈p′j′σ′|Jµ(Q)|pjσ〉. (25)

Further, it follows from equation (23) that Jµ(Q) acts as a raising (lowering) operator on
eigenstates of Pµ, and for certain values of the momentum transfer Q, acts as an annihilation
operator on the ground state:

Jµ(Q)|pgndjσ〉 = 0 (26)

for (pgnd +Q)2 < m2
gnd.

Such an algebraic structure of {Pµ, Jµ(Q)} is reminiscent of a Cartan algebra, with the diag-
onal operators and the raising and lowering operators (see for example [16, 17]). Such algebras
also have automorphism groups; in the case of the present algebra, the Lorentz transformations
are a subgroup of the automorphism group. Finally the annihilation property, equation (26) is
analogous to positive energy, or discrete series representations of finite dimensional Lie algebras.

A well known example from two dimensional field theory is the Virasoro algebra [17]:

[Lm, Ln] = (m− n)Lm+n +
c

12
m

(
m2 − 1

)
δm+n,0, (27)

where L0 ≈ Pµ is interpreted as a mass or energy and Lm	=0 ≈ Jµ(Q) the space component
of a current in discrete variables. There is no analogue of equation (22) unless the product of
two Virasoro algebras is used, in which case the interpretation of L0 becomes the light front
operators P± = P0±P1. But equation (23) is already contained in equation (27) when the index
m is set equal to zero. When both m and n are nonzero in equation (27), the commutator gives
the closure of two current operators.

As a second example consider a “U(N)” model for spinless particles of mass m, with creation
and annihilation operators satisfying [a(p), a†(p′)] = Eδ3(p− p′), and out of which the following
operators can be built:

Pµ =
∫
d3p

E
pµa
†(p)a(p), (28)

Jµ(x) =
∫
d3p1

E1

d3p2

E2
F

(
(p1 − p2)2

)
(p1 + p2)µei(p1−p2)·xa†(p1)a(p2), (29)

Jµ(Q) = F
(
Q2

) ∫
d3p1

E1

d3p2

E2
δ4(p1 − p2 −Q)(p1 + p2)µa†(p1)a(p2); (30)

both the free four-momentum operator (28) and the Fourier transform of the current opera-
tor (30) are formed from operators of the form a†iaj , which forms the Lie algebra of the unitary
group, hence the name “U(N)” model. From the definition given of these operators, it can now
be shown by direct calculation that equations (22), (23) hold, for an arbitrary form factor F

(
Q2

)
.

The key equation is the commutator of the two currents. Using equation (30) suggests the
following possibility:

[J†µ(Q), Jν(Q)] = 4F
(
Q2

)2 (PµQν + PνQµ), (31)

[Jµ(Q), Jν(Q′)] = 2
F

(
Q2

)
F

(
Q

′2
)

F ((Q+Q′)2)
(
Q′µJν

(
Q+Q′

)
−QνJµ

(
Q+Q′

))
, (32)

for Q + Q′ �= 0. Equation (31) is the analogue of the Cartan algebra commutator, where the
commutator of a raising operator with its adjoint gives a diagonal operator, while equation (32)
is similar to the Virasoro algebra (27), when m + n �= 0. Note also that equation (31) has no
central extension, as is the case with the Virasoro algebra.



Point Form Relativistic Quantum Mechanics 575

5 Conclusion

Motivated by the analysis of electron scattering experiments, an algebraic formulation of had-
ronic systems has been given in the context of point form relativistic quantum mechanics. The
point form is one of the forms of relativistic quantum mechanics proposed by Dirac, in which
all of the interactions are in the four-momentum operator, and the Lorentz generators are all
kinematic (free of interactions). As shown in the introduction the other operator besides the four-
momentum operator needed to compute form factors and structure functions that provide the
link to experimental data is the electromagnetic current operator. While it suffices to know the
current operator at the space-time point zero for computing form factors, to uncover an algebraic
structure, it is more useful to consider the Fourier transform of the current operator Jµ(Q),
where the independent variable Q is the four-momentum transfer. From the definition of Jµ(Q)
it follows that it acts as a raising or lowering operator on eigenstates of the four-momentum
operator.

The key commutator is between two current operators, and here there is no direct guide from
hadronic physics. Two examples of algebraic structures were given in the previous section, but
there is much work to be done to find physically interesting examples. One possibility is to work
with free hadronic systems and then deform the current commutators to produce interactions.

Both Pµ and Jµ(Q) have definite transformation properties under Lorentz transformations,
which suggests that the Lorentz transformations belong to an automorphism group, just as the
symmetric group is the automorphism group for the U(N) algebras.

A final important issue concerns the representations of such algebraic structures, for it is
the representations that provide the actual form factors and structure functions. Since for
certain values of Q, Jµ(Q) acts as an annihilation operator on the ground state (see equa-
tion (26)), the representations of interest should be “discrete series” types of representations
(see for example [16, 17]) and it should be possible to generalize the techniques for generating
such representations to those needed here.
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We are changing Einstein’s axiom system for special relativity and propose a new funda-
mental theory in relativistic physics. We do not assume that all inertial coordinate systems
are equivalent (Einstein’s first postulate), but we keep the second axiom, that the speed of
light c is the same in all inertial frames. Some key results are [7]:
- The limiting energy and momentum of any particle as its speed approaches the speed of
light, are finite and proportional to its rest mass.
- These upper bounds give the minimum lengths and time intervals of a particle in the sense
of uncertainty and the ultraviolet cutoffs in the renormalization in quantum field theories.
- Photons, and all other particles moving at the speed of light have nonzero rest mass. They,
however, obey the corresponding (modified) equations with vanishing mass terms.
We prove results of the new theory which can give answers and solutions to the following
problems and difficulties in modern physics: Divergence difficulties in quantum field theories,
“zero over zero” operations in momenta-energy calculations, failure in finding Higgs particles
in gauge theories, singularities in general relativity.

1 Introduction

In modern physics, there exist some problems and difficulties:
(1) Singularities in general relativity. “. . . it is my opinion that singularities must be ex-

cluded” (Einstein [4, p. 164]). And because of this, he underlines that “One may not therefore
assume the validity of the equations for very high density of field and of matter . . . ” (Einstein
[4, p. 129]).

(2) Divergence difficulties in quantum field theories, which, “. . . are symptomatic of a chronic
disorder in the small-distance behavior of the theory” (Bjorken and Drell [2, p. 4]), and “In any
case the existence of divergent quantities leads one to suspect trouble in the theory at large
momenta or, equivalently, small distances” (Bjorken and Drell [1, p. 154]). Because of the irra-
tional calculation, ∞−∞, in renormalizations, Dirac, a founder of renormalizations, repeatedly
asserted [3] that fundamental physics, relativity and quantum theory, must be reformed.

(3) The finite momenta-energies of particles moving at speed of light are given by the opera-
tion “zero over zero”. For example, the finite energies of photons are given by

E = hν =
0√

1− c2/c2
c2 =

0
0
c2

which can be of any value for ν can be of any value.
(4) The inconsistency of gauge invariances for short range interactions with nonzero rest

masses of the corresponding gauge particles. The Higgs mechanism seems to be helpful in trying
to reach consistency, but there is no experimental evidence which indicates the existence of Higgs
particles. Moreover, too many parameters caused by the mechanism make the theory look like
a phenomenological rather than a basic theory, as T.D. Lee [5] pointed out. S. Weinberg [8] as the
first person who used the Higgs mechanism to establish a unified gauge theory for electromagnetic
and weak interactions, proposed a model without the Higgs mechanism in 1981, several years
after he won the Nobel prize for that work. Some physicists believe that they will be able to
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find Higgs particles in the superconducting super collider. But Weinberg [9], speaking of the
proposed SSC accelerator, says “I refuse to believe that fundamental physics will stop at that
point . . .We do not know these underlying laws . . .We may never know the ultimate laws of
nature”.

In this paper, we will change Einstein’s axiom system and propose a new fundamental physics
based on a new axiom structure. Einstein’s theory of relativity is based in its entirety on two
postulates [4]:

P1: The laws of physics take the same form in all inertial frames.
P2: The speed of light c is the same in all inertial frames.
From these two postulates Einstein derived that the laws of motion are invariant under

Lorentz transformations, in particular

dS′2 = dS2 for any inertial frames S, S′, and dx′µ = αµνdx
ν ,

where αµν are the matrix elements of the Lorentz transformation from S to S′. Einstein pointed
out [4, p. 35] that assuming only P2 one can allow more general transformations than Lorentz
transformations of the form dS′2 = λ(v)dS2, where λ(v) is a function of the relative velocity v
of the inertial frames. If in addition one assumes P1 he showed that λ(v) = const = 1. In other
words the Lorentz transformations are a necessary result of Einstein’s axioms P1 and P2.

In this paper we study the consequences if we abandon the first postulate P1 but keep the
second postulate P2. We do not assume that two inertial coordinate systems are still “equivalent”
when their relative velocity is high enough, and we allow the limiting deviations (as V → c)
of the new theory from the current one to be large enough. This will lead us to more general
linear transformations which leave the speed of light invariant and the new equations of laws of
physics will be invariant under these transformations, called c-invariant transformations. We
will derive the corresponding c-invariant equations of particle mechanics, the c-invariant Klein–
Gordon, Proca and Maxwell equations and their interactions. No matter whether the deviations
from the classical Einstein theory can be verified experimentally or not, we prove theoretical
results of the new theory which can give us answers and solutions to the problems and difficulties
mentioned above. For details we refer to [7].

2 c-invariant groups

We introduce a new type of general linear transformations leaving the speed of light invariant.
Their algebraic structure is not the one of a group but of a groupoid (see Section 3); we call it
a c-invariant group . In Section 3 we will discuss this algebraic structure. These transformations
will generalize the Lorenz transformations from the classical theory.

Let Σ be the set of all inertial coordinate system and set for S ∈ Σ

dS2 = dxµdxµ =
(
dx1

)2 +
(
dx2

)2 +
(
dx3

)2 − c2dt2. (1)

We are not considering dS as a distance element as in general geometrical models of flat
space-time but rather as a formal definition because the generalized transformations we will
consider will not be a symmetry of this dS2 but for a different quantity which will define our
geometry.

Consider the following coordinate transformations connecting two inertial coordinate systems
S, S′ ∈ Σ:

dx′µ = f
1/2
S (VS′S)α(µν)(VS′S)dxν ≡ Tµν (S′S)dxν , (2)

where VS′S is the velocity of S′ relative to S (measured in S) and fS(VS′S) is a positive function,
called the transformation factor from S to S′, and α(µν)(VS′S) are the matrix elements of the
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Lorentz transformation from S to S′ (we use the index notation α(µν) to indicate that α(µν) is not
covariant under the new transformations) and Tµν (S′S) ≡ fS(VS′S)α(µν)(VS′S) are the matrix
elements of the corresponding more general linear transformation. In general the map fS might
depend on S, especially when the relative velocity of the coordinate systems is high enough.
Thus we have the transformation rule

dS′2 = fS(VS′S)dS2, for all S, S′ ∈ Σ. (3)

These transformations leave the speed of light invariant; indeed let ui = dxi/dt, i = 1, 2, 3 be
the coordinate velocity in S then for u = c in S and u′ = c′ in S′ we have dS′2 = dx′µdx′µ =
(c′1dt′)2 + (c′2dt′)2 + (c′3dt′)2 − c2(dt′)2 =

(
c′2 − c2

)
(dt′)2 = fS(VS′S)dS2 = fS(VS′S)dxµdxµ = 0,

hence c′ = c.

Remark 1. These transformations are not conformal transformations, because dS2 and dS′2

are not two metrics; see Definition 1.

We now study the important properties of these new transformations Tµν (S′S). For any
S, S′, S′′ ∈ Σ we have dS′′2 = fS′(VS′′S′)dS′2 = fS′(VS′′S′)fS(VS′S)dS2 and dS′′2 = fS(VS′′S)dS2,
hence

fS′(VS′′S′)fS(VS′S) = fS(VS′′S). (4)

In particular, we get fS(VS′S)fS′(VSS′) = 1, (dS′2 = fS(VS′S)dS2 = fS(VS′S)fS′(VSS′)dS′2)
which implies f−1

S (VS′S) = fS′(VSS′). For the matrix representation we find that they satisfy
the consistency condition

Tµσ (S′′S′)T σν (S′S) = Tµν (S′′S), for all S, S′, S′′ ∈ Σ, (5)

that means f1/2
S′ (VS′′S′)α(µσ)(VS′′S′)f1/2

S (VS′S)α(σν)(VS′S) = f
1/2
S (VS′′S)α(µν)(VS′′S) for all S, S′,

S′′ ∈ Σ.
More abstractly we write the consistency condition (5) as

T (S′′S′)T (S′S) = T (S′′S), for all S, S′, S′′ ∈ Σ, (6)

whose algebraic meaning we will explain in Section 3.
Let S0 ∈ Σ be a fixed but arbitrary inertial frame, then for any S ∈ Σ,

dS2
0 = fS(VS0S)δ(µν)dx

µdxν

(the Kronecker symbol δ(µν) is not covariant under the general transformations). Define

σµν ≡ fS(VS0S)δ(µν) (7)

then from straightforward calculations we have

Proposition 1. σµνdxµdxν is invariant under the transformations T (SS0) for all S ∈ Σ, i.e.

σµνdx
µdxν = dS2

0 , for all S ∈ Σ. (8)

Definition 1. Let So be a fixed absolutely isotropic inertial frame, i.e. there exists a function
g such that fSo( X) ≡ g(| X|). We define the distance element by

dS2
o = fS(VSoS)dS2 = fS(VSoS)δ(µν)dx

µdxv ≡ σµνdx
µdxν , (9)

where σµν ≡ fS(VSoS)δ(µv) is the metric tensor for general flat space-time. Note that Minkowski’s
space time is a special case with fS(VSoS) ≡ 1 for all S ∈ Σ.
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The Lorentz transformations (both homogeneous and inhomogeneous) are special cases of
our more general transformations, namely those with transformation factors equal to 1.

The transformation factor in (3) depends on the velocity VS′S between S and S′, so we
regard fS as a function on R3 for any given inertial frame S ∈ Σ. We call fS the factor function
of S. More precisely, for S ∈ Σ let fS : R3 → R+, fS(V ) = fS(v1, v2, v3), V = viei, be a function
on R3, where {ei, i = 1, 2, 3} is the orthonormal basis of S. If for any S′ ∈ Σ, fS(VS′S) =
fS(V )|�V=�VS′S

, then fS is called the factor function of S, which gives the transformation factors
from S to all other inertial coordinate systems S′ ∈ Σ.

Theorem 1. If the factor function of one S ∈ Σ is given then the factor functions of all other
inertial coordinate systems S′ ∈ Σ are determined.

Proof. Let ⊕ denote the addition of velocity vectors. For any S, S′, S′′ ∈ Σ we have VS′′S =
VS′S ⊕ VS′′S′ and the consistency condition becomes fS′(VS′′S′) = fS(�VS′′S′⊕�VS′S)

fS(�VS′S)
. With V ′ ≡

VS′′S′ , we find fS′(V ′) = fS(V ′ ⊕ VS′S)/fS(VS′S), for all V ′, 0 ≤ V ′ < c, and all S, S′ ∈ Σ. This
expresses the factor function fS′ of any S′ ∈ Σ in terms of the factor function fS of S. �

Let Vec = {V ∈ R3|0 ≤ V < c} and S ∈ Σ. We denote the set of all factor functions
generated by fS by

FS =

{
fS′ ∈ C(Vec,R+)|S′ ∈ Σ, fS′(V ′) =

fS(V ′ ⊕ VS′S)

fS(VS′S)
, for all V ′ ∈ Vec

}
.

Proposition 2. For any S, S′ ∈ Σ with VS′S �= 0 we have fS = fS′ if and only if fS(V ) ≡ 1.

3 Algebraic structure of the transformations T (S′S)

Let R4 = R×R×R×(icR) and let ε = {εα|α ∈ J} be the collection of all events, where J is some
index set. The event εα has coordinates Xα in the S frame: Xα ∈ R4, Xα =

(
x1
α, x

2
α, x

3
α, x

4
α

)
,

x4
α ≡ ictα. Denote X = {Xα ∈ R4|α ∈ J} and let T (S′S) : X → X′ = {X ′

α ∈ R4|α ∈ J}
be a mapping such that X ′α = T (S′S)(Xα) for all α ∈ J . Then the consistency condition
for the set {T (S′S)|S, S′ ∈ Σ} is T (S′′S′)T (S′S) = T (S′′S), for all S, S′, S′′ ∈ Σ. With
this (2) becomes dX ′ = T (S′S)dX = f

1/2
S (VS′S)α(VS′S)dX where α(VS′S) is the matrix for the

Lorentz transformation from S to S′. We call the matrix [Tµν (S′S)] =
[
f

1/2
S (VS′S)α(µν)(rVS′S)

]
=[

f
1/2
S (VS′S)α(VS′S)

]
the matrix representation for the mapping T (S′S).

More abstractly we have the following algebraic situation: Let A be a collection of sets and
for any Aα, Aβ ∈ A let T (AαAβ) be a transformation from Aβ to Aα. Denote by TA the set of all
such transformations defined in A. The product of two such transformations T (AαAβ)T (AσAγ)
is only defined if Aβ = Aσ, in which case T (AαAβ)T (AβAγ) is called the physical product where
the two transformations are successive from Aγ to Aβ , then from Aβ to Aα.

Definition 2. A set of transformations TA is called a physical group if it is closed under the
physical product; in other words if the transformations satisfy the consistency condition

T (AαAβ)T (AβAγ) = T (AαAγ), for all Aα, Aβ , Aγ ∈ A. (10)

Proposition 3. A) For every α the set Tα ≡ {T (AαAβ)|Aβ ∈ A} ⊂ TA, has a left unit element
and for every β the set Tβ ≡ {T (AαAβ)|Aα ∈ A} has a right unit element.

B) For every element of a physical group there exist a right and a left inverse, which are
identical to each other.

C) The physical product is associative.
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Theorem 2. Let S ∈ Σ and fS be given. The set TS = {T (S′S′′) = f
1/2
S′′ (VS′S′′)α(VS′S′′) |

S′, S′′ ∈ Σ, fS′′ ∈ FS} (where α(VS′S′′) is the matrix of the Lorentz transformation from S′′ to
S′) is a physical group, called a c-invariant group.

4 Model case of factor functions

We give an example of factor functions which shows how these ideas can be realised and which
can serve as a model. Let S0 ∈ Σ be a fixed inertial frame and fix a parameter N > 0. Define
fS0(V ) = fS0(V ) ≡

(
1− (V/c)N

)−1, V = |V | < c. This factor function of S0 generates a

set FS0 =
{
fS(V ) = fS0

(�V⊕�VSS0
)

fS0
(�VSS0

)

∣∣∣ S ∈ Σ
}

, where fS0

(
V ⊕ VSS0

)
=

(
1−BN

)−1 with B =(
1 + V · VSS0/c

2
)−1

[(
1 + V · VSS0/c

2
)2
−

(
1− V 2

SS0
/c2

) (
1− V 2/c2

)]1/2

.

The Lorentz model is nothing but the limiting case of this model as N →∞.

5 Dynamics

Now let us derive the equations of fundamental laws of nongravitational physics which are
invariant under the c-invariant groups. We call these equations c-invariant. We will see that
the transformation factors will appear in these equations. When we let all the transformation
factors be 1, then all the equations will go back to their counter-parts in the Lorentz invariant
theory. When we take some c-invariant groups with transformation factors having the same
limiting behavior, some important theoretical results will be obtained.

5.1 c-invariant classical mechanics

Let S∗ be the instantaneous rest frame of a particle and let u = VS∗S be the instantaneous
velocity of the particle measured in the S-frame. The interval of proper time is

dτ =
√
−dS∗2/c2 =

[
−fS(VSΣ)dS2/c2

]1/2
= f

1/2
S (u)γ−1dt, where γ ≡ 1√

1− u2/c2

is called the Lorentz factor. Define the 4-velocity Uµ ≡ dxµ /dτ = f−1/2(u)γdxµ /dt and the
4-momentum Pµ ≡ moUµ.

The particle mechanics invariant under the c-invariant groups is

Fµ = mo
dUµ

dτ
=
dPµ

dτ
, (11)

where mo is the rest mass of the particle and Fµ is the 4-force determined by electromagnetical
and gravitational fields through the corresponding formula. Denote P = (P 1, P 2, P 3) and
P 4 = iE/c, then P = mof

−1/2
S (u)γu and with λ ≡ f

−1/2
S (u)

E = mof
−1/2
S (u)γc2 = moλγc

2. (12)

Thus, PµPµ = P 2 − E2/c2 = −m2
oc

2f−1
S (u), and hence E2 = P 2c2 +m2

oc
4f−1
S (u).

5.2 c-invariant quantum mechanics

The de Broglie wave of a free particle is

ψ = A exp(i�−1Λ−1Pµxµ) (13)
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where the transformation property of A is determined by the spin of the particle and Λ is
defined as Λ ≡ fS0(VSS0) with S0 being a fixed absolutely isotropic inertial frame, (i.e. there
exists a function g such that fSo( X) = g(|X|)). The phase is invariant under c-invariant groups;
indeed Λ−1Pµxµ = fS(VS0S)Pµxµ = fS(VS0S)δ(µν)Pµxν = σµνP

µxν , where Λ−1 ≡ f−1
S0

(VSS0) =
fS(VS0S).

Generally, we have

Theorem 3. Let Aµ and Bµ be a contravariant and a covariant 4-vector under c-invariant
groups respectively. Then Λ−1Aµ and ΛBµ are covariant and contravariant 4-vectors under
c-invariant groups respectively.

Proposition 4. The c-invariant Klein–Gordon equation for free spin zero particles in the obser-
ver-frame S is(

�− c2�−2m2
)
ψ = 0, where � = ∂µ∂µ, with ∂µ ≡ Λ∂µ (14)

and

m ≡ moλΛ−1/2, with λ ≡ f
−1/2
S (u), and Λ ≡ fS0(VS0S). (15)

We call m the apparent mass of the particle in S.

Proof. For any free particle with spin zero, we have ψ = A exp
(
i�−1Λ−1Pµxµ

)
, where A is

a scalar. It is clear that ψ obeys (14) for one can easily check

�ψ = Λ
(
i�−1Λ−1

)2
PµPµψ = �−2m2

0c
2λ2Λ−1ψ = m2c2�−2ψ (16)

which holds for any S ∈ Σ since Λ−1Pµxµ is an invariant and A is a scalar. �

Moreover, we have

Theorem 4. The apparent mass m is an invariant under c-invariant groups, i.e. m′ = m.

Proof. This is true simply because

m = moλΛ−1/2mof
−1/2
S (u)f−1/2

S0
(VSS0) = mof

−1/2
S0

(VS∗So),

which is independent of the choices of the observer-frame S. �

For the Lorentz group we have λ = 1 and Λ = 1 for all S ∈ Σ, hence m = mo and the
c-invariant Klein–Gordon equation goes back to the Lorentz invariant Klein–Gordon equation.

Proposition 5. The c-invariant Proca equation for free particles with spin 1 is(
�− c2�−2m2

)
ψµ = 0, where ψµ = Aµ exp

(
i�−1Λ−1Pµxµ

)
(17)

with Aµ being a 4-vector.

We see that moλ instead of mo appears in c-invariant equations of law of motion, Klein–
Gordon and Proca equations (later we will see also in the c-invariant Dirac equation), where
λ = f

−1/2
S (u) = f

−1/2
S (VS∗S) and S∗ is the instantaneous rest frame of the particle.
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5.3 Limit u → c

Now we consider the limit as u→ c, i.e. write c = cn (|n| = 1) and let

NS(n) ≡ lim
�u→c�n

λγ, λ ≡ f
−1/2
S (u). (18)

Our fundamental assumption is the following: There exists an inertial frame S ∈ Σ, such
that

NS(n) ≡ lim
�u→c�n

λγ ≡ lim
�u→c�n

f
−1/2
S (u)γ <∞. (19)

Under this assumption we have the Theorems 5, 6, 7 and the Results 1, 2, 3.

Theorem 5. If NS(n) <∞ for all n with |n| = 1 for some S ∈ Σ, then NS′(n′) = lim
�u′→c�n′

λ′γ′ <

∞ for all n′ with |n′| = 1, for all S′ ∈ Σ, where λ′ = f
−1/2
S′ (u′) and γ′ =

(
1− u′2/c2

)−1/2
.

Theorem 6. Let S ∈ Σ and denote ΣS = {S′ ∈ Σ|VS′S = 0}. Then whenever there exists an
So ∈ Σ such that fSo is isotropic, then fS′

o
is isotropic for each S′o ∈ ΣSo and fS is not isotropic

for each S ∈ Σ \ ΣSo.

In case NS(n) <∞ for all n with |n| = 1 and all S ∈ Σ, we get the following results:

Result 1. The contravariant ultraviolet cut-offs are

Λµ(n) ≡ lim
�u→c�n

Pµ = mocNS(n)(n, i),

where we use the notion Aµ = (a, b) to indicate that Ai = ai, i = 1, 2, 3 and b = A4.
We assume that there exists an So ∈ Σ such that fSo is isotropic. Then in case λγ is bounded

the upper bound of the 4-momentum for a particle observed in any S ∈ Σ exists, and at least
in case λγ is nondecreasing, it is given by

Λµ ≡ max
�n ∈ R3

|�n| = 1

Λµ(n) = f
1/2
So

(VSSo)

√
1− V 2

SSo
/c2

1− VSSo/c
N0

which gives the minimum nonzero lengths and time-intervals for particles in the sense of un-
certainty, indicating a true meaning of “discrete” or “quantized” space-time and of any model
for non-pointlike elementary particles, e.g. strings. Furthermore, photons and all the particles
moving at speed c must have nonzero rest masses which are given by a l’Hospital type limit. For
example, consider a photon with energy E in S ∈ Σ which moves along the direction n. Then
its nonzero rest mass is

mo =
Ec2

lim
�u→c�n

λγ
=

Ec2

NS(n)
�= 0.

In Einstein’s relativity, λ ≡ 1, NS(n) = ∞ and E = hν, hence mo = 0 while E = hν =
0c2/

√
1− c2/c2 = 0c2/0 can be of any value for ν can be of any value. There is no limit process

as there is in our theory.
In case NS(n) < ∞ for all n and all S ∈ Σ, for photons, E = Λhν (we will show this later),

which can be given by (12) through a l’Hospital-type limit process:

E = Λhν = moc
2 lim
�u→c�n

λγ = moc
2NS(n),
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where mo = c−2(NS(n))−1Λhν is the nonzero rest mass of the photons with frequency ν and
moving along the unit direction n. It is impossible to make photons and any particles moving
with speed c be at rest. Hence, the so-called “rest mass” of a particle moving with speed c is
just a coefficient of proportionality between NS(n) and the energy of the particle measured in
the S frame, and is independent of S for it is a scalar under c-invariant groups but dependent
on both its energy and direction of motion.

Result 2. Since γ →∞ as u→ c, our assumption NS(n) <∞ leads to

lim
u→cλ ≡ lim

u→c f
−1/2
S (u) = 0 for all S ∈ Σ. (20)

Thus, every scalar or vector particle moving at speed c has zero apparent mass, i.e., m ≡
moλΛ−1/2 = 0. Then they obey the corresponding equations with vanishing mass terms by
which the gauge invariances are characterized.

5.4 c-invariant classical electrodynamics

We can now study the equations of classical electrodynamics. The c-invariant classical electro-
dynamics is given by

∂µF
µν
em = −4πc−1Jν and fµem = c−1FµνemJν , (21)

where

Fµνem ≡ ∂µAν − ∂νAµ = Λ2(∂µAν − ∂νAµ) ≡ Λ2F emµν

and Jµ = Λ−1Jµ, Jµ ≡ ρ∗Uµ with ρ∗ ≡ dq∗/dV ∗, where dq∗, dV ∗ and ρ∗ are charge element,
volume element and charge density measured in S∗ ∈ Σ (the instantaneous rest frame of the
charged particle). We call ρ∗ the proper charge density which is frame-invariant as the proper
time interval. We keep the assumption that charges are frame-invariant. Then dq∗ = dq and
ρ∗ = dq/dV ∗. The kinematic effects of moving rods under c-invariant groups give dV ∗ =
(f1/2
S (VS∗S))3γdV = λ−3γdV . Hence ρ∗ = λ3γ−1ρ. Now denote Aµ ≡ ( A, iφ) which means

A ≡ (A1, A2, A3), iφ ≡ A4 and E ≡ −∇φ− c−1∂ A/∂t, B ≡ ∇× A.
Then it is easy to check that (21) leads to

Proposition 6. The c-invariant Maxwell equations are:

∇ · B = 0,

∇× E = −c−1∂ B/∂t,

∇ · E = 4πρ,

∇× B = c−1∂ E/∂t+ 4πc−1 J, (22)

where ρ = Λ−1λγρ∗ = Λ−1λ4ρ, and J ≡ ρu.

Also (21) leads to a Lorentz-type force

F em(µ) = q( E + β × B, i E · β), β ≡ u/c, (23)

where

F em(µ) ≡
dτ

dt
Fµem ≡ λ−1γ−1

∫
fµemdV

∗.

Without difficulty, we obtain F space
(µ) = moc(1 + AS · β)−1 dλ

dt γ
−1(− AS , i), AS ≡ VSSo/c, with

F space
(µ) ∼ N−2

o . When No is large enough, F space
(µ) does not cause any practically measurable

effect.
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5.5 c-invariant quantum electrodynamics

We can now combine the previous results.

Proposition 7. The c-invariant Dirac equation for a free particle with spin 1
2 is(

γµ∂µ + c�−1Λ−1/2m
)
ψ = 0. (24)

where γµ are the Dirac matrices.

Result 3. Equation (24) tells us that neutrinos moving at speed c must have vanishing apparent
mass and nonzero rest mass in every c-invariant theory with finite NS(n) and hence satisfy the
c-invariant Dirac equation with vanishing mass term and a two-component theory.

We now study the electromagnetic coupling. In the presence of electromagnetic fields we
obtain[

γµ
(
∂µ − iqc−1�−1Aµ

)
+ c�−1Λ−1/2m̂

]
ψ = 0, (25)

where m̂ ≡ moΛ−1/2λ̂ ≡ moΛ−1/2f
−1/2
S (̂u).

The replacement Pµ �→ −i�Λ∂µ− qc−1ΛAµ = −i�∂µ− qc−1Aµ and the identity u = c2 PE−1

give ̂u = −c2(i�∇ + qc−1Λ−1 A)/(i�∂t − Λ−1qφ) =c2 PmE−1
m , where the two operators Pm and

E−1
m must be regarded as commutative. For an eigenfunction of the energy operator E−1

m with
eigenvalue E we have E−1

m ψ = (E − qφ)−1ψ and

PmE
−1
m ψ = (E − qφ)−1 Pmψ,

(
PmE

−1
m

)2
ψ = (E − qφ)−2 P 2

mψ, ect.

For the electron in a hydrogen atom being at rest in any S ∈ Σ, we have ̂u = cR∇ where
R ≡ −i�Λc/(E + Λ−1e2/r). For example, taking our model case

λ ≡ f
−1/2
S (u) = f

−1/2
S (VS∗S) = f

−1/2
So

(VS∗So)/f−1/2
So

(VSSo)

= Λ1/2
√

1− βNo = Λ1/2

{
1−

[
1− Γ−2(1 + AS · u/c)−2

(
1− u2/c2

)]N/2}1/2

one finds

λ̂ ≡ f
−1/2
S (̂u) = Λ1/2

{
1−

[
1− Γ−2(1 +R AS · ∇)−2

(
1−R2∇2

)]N/2}1/2

,

where Γ ≡ (1−A2
S)−1/2. The first approximation is λ̂ = 1−N

2 ΛΓ−2AN−2
s R AS ·∇ = 1− DS ·(R∇),

where DS ≡ 1
2NΛAN−2

S

(
1−A2

S

)
AS . Since fS(V ) is almost 1 within the velocity range of the

particles in the accelerators and u 	 c for electrons bound in atoms, we have a very good
approximation:

λ̂ ≈ 1, m̂ ≈ moΛ−1/2.

So we obtain an approximate equation for electrons bound in an atom which is at rest in an
inertial frame S:(

−i�cα · ∇+ γ4mocΛ−1
)
ψ(r) =

(
Λ−1E + Λ−2Ze2/r

)
ψ(r),

whose N ·R approximation is E = moc
2
(
1− 1

2n2 Λ−4Z2α2
)
, n = 1, 2, 3, . . . and

ν(i→ f) = moc
2h−1Λ−5 1

2
Z2α2

(
n−2
f − n−2

i

)
,

(
α ≡ e2�−1c−1

)
(26)
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which gives the frequency spectrum of the photons emitted from the atom and observed in S;
(the notion (i→ f) meaning from initial to final state).

Now let us consider frequency shifts. Label

Kµ ≡ ( K, iω/c) ≡ �−1Λ−1Pµ ≡ �−1Λ−1(P , iE/c), ω = 2πν,

which is the covariant wave vector of a particle. By use of the transformation rule for a covariant
4-vector, we obtain

ν/ν ′ = f
1/2
S (VS′S)

(
1− n · VS′S/c

)−1 (
1− V 2

S′S/c
2
)1/2

, (n = P/|P |). (27)

If the particle is a photon, (27) gives the formula of frequency shifts. It is interesting that
taking the point of view of an emission theory can also give (27). Let u and u′ be the velocities
of the same photon (as a “bullet”) observed in the S and S′ respectively. From the velocity
addition law, we know that u = u′ = c. However, the same velocity addition law gives

lim
�u→c�n

(
1− u2/c2

) (
1− u′2/c2

)−1 =
(

1− n · VS′S/c
)2 (

1− V 2
S′S/c

2
)−1

. (28)

Thus, (12), (27), and (28) give

ν/ν ′ = f
1/2
S (VS′S)(1− n · VS′S/c)−1

√
1− V 2

S′S/c
2,

which is identical with (27). Of course, light sources are not Galileo–Newton’s “guns”.
Let S1 be the instantaneous rest frame of a moving atom and ν1(S1)(i→ f) be the spectrum

of photons emitted from the atom and observed in the S1-system. Using (26) one can write

ν1(S1)(i→ f) = moc
2h−1Λ−5

1

1
2
Z2α2

(
n−2
f − n−1

i

)
, Λ1 ≡ fSo(VS1So).

Let ν(S1)(i → f) be the spectrum of the same photons observed in S. Using (27) one can
obtain the frequency shifts of the spectrum:

ν(S1)(i→ f) = fS(VS1S)
(

1− n · VS1S/c
)−1 (

1− V 2
S1S/c

2
)1/2

ν1(S1)(i→ f).

The new formula for Doppler shifts is given by

ν(S1)(i→ f)
ν(i→ f)

= f
−9/2
S (VS1S)

(
1− n · VS1S/c

)−1 (
1− V 2

S1S/c
2
)1/2

. (29)

When the source-speed VS1S is high enough, (29) is most sensitive by comparison to the possible
deviation of the values of transformation factors from 1, because the transformation factor
fS(VS1S) appears in the formula with the exponent −9/2. To test (29), we suggest accelerating
lithium ions to sufficiently high speed and then observing their light spectrum. This will be
a crucial test if NS(n) is not too large. In principles, such experiment will find the function
form of the factor function of a laboratory-system S. Then according to Theorem 1 the factor
function of S will determine the function forms of the factor functions of all inertial coordinate
systems. In particular, letting S′ = So and VS′′So = Vo, we find the consistency condition that

fSo(Vo) = fS(Vo ⊕ VSoS)/fS(VSoS), (30)

which must be exactly independent of the direction of Vo since fSo is isotropic. The unique
solution VSoS which makes the right side of (30) independent of the direction of Vo is the
velocity of the special and exactly isotropic inertial frame So relative to S and −VSoS is just the
special velocity of the laboratory-system S relative to the special and exactly isotropic inertial
frame So. Furthermore, the following theorem is trivially true.
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Theorem 7. If NS(n) ≡ lim
�u→c�n

Λγ ≡ lim
�u→c�n

f
−1/2
S (u)γ < ∞, then there exists a ub < c such that

fS(V ) deviates markedly from 1 when V > ub, i.e. the deviation of fS(V ) from 1 is large enough
in the case V > ub and will easily be tested by experiment if only the corresponding energy Eb is
within the power of accelerators man can or will be able to build.

Our unique results are mainly described in Result 1, 2 and 3, which are based on the assump-
tion

lim
�u→c�n

f
−1/2
S (u)γ <∞. (31)

We emphasize the following

Theorem 8. If ub is high enough and Eb is large enough, then there will never be direct crucial
experimental evidence except for indirect evidence, which would be able to tell us Einstein rela-
tivity principle, Einstein symmetry and the relevant results, and our assumption with Result 1, 2
and 3 are true or not.

6 Conclusion

The equations of laws of physics invariant under c-invariant groups are the analogue of the
classical Lorentz invariant equations but with the transformation factors appearing in the equa-
tions; especially those from the instantaneous rest frames of particles and the special inertial
coordinate system to an arbitrarily given observer – inertial-system. All the equations will go
back to their counterparts in the Lorentz invariant theory, if one takes the Lorentz group. The
Lorentz invariant theory is that with all the transformation factors equal to 1.

In comparison with Newton’s principle, Einstein’s theory of relativity is a refinement of the
classical Newton theory. It is necessary to know what are the phenomena which are most
sensitive to the change of an axiom and those which are not affected at all, in order to avoid
doing useless experiments and center attention on those phenomena which are proved to be most
sensitive in comparison to the change. Evidently, one wants to verify ones faith in the Einstein
symmetry and his first postulate, which claims that when

moc
2√

1− V 2
S′S/c

2
= Ẽ = M̃c2

the S and S′-system are still equivalent, one needs a new theory based on the changed axiom-
structure. Only such a new theory can provide the information about sensitivity of various
phenomena to the change of the axiom system and a possibility to examine different faiths
carefully by indicating the most sensitive phenomena by comparison phenomena and relevant
crucial tests. Even if in Theorem 8 ub is too close to c such that Eb is too large to give any
practically measurable deviations of the new theory from the current one within the energy
region the objects of experiment will be able to reach, the following theoretical results are still
valued if only

lim
�u→c�n

f
−1/2
S (u)γ �= ∞.

(1) The upper limit of the momentum-energy of a particle in any observer-inertial-system
is finite. The upper bounds give natural and real ultraviolet cut-offs manifestly contravariant,
and the minimum lengths and time intervals of particles in the sense of uncertainty indicating
a true meaning of “discrete” or “quantized” space-time and of any model for non-pointlike
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elementary particles. The unreasonable operations, “infinities minus infinities”, will become
“finite quantities minus finite ones” in the renormalizations due to the cut-offs.

(2) All particles with nonzero energies must have nonzero rest masses. The finite 4-momenta
of the particles moving with speed c are given by l’Hospital-type limits rather than by the
irrational calculation, “zero over zero”, without acceptable limit process in Einstein’s theory.
All the particles moving with speed c obey the corresponding equations with vanishing mass
terms. The nonzero rest masses of neutrinos consist with a two-component theory and the
nonzero rest masses of photons and other free gauge particles consist with the gauge invariances
characterized by vanishing mass terms if these particles move with speed c.

Generally, in any theory invariant under a c-invariant group there are gauge invariances for
the gauge particles moving with speed c, which are characterized by the vanishing mass terms,
no matter whether “the first postulate” is absolutely valid and the free gauge particles possess
zero rest masses. The gauge invariances root in the frame-invariance of the finite transmission
rate of interactions. The gauge particles obeying the corresponding gauge invariances possess
their nonzero rest masses only in the theories invariant under those c-invariant groups which
give the ultraviolet cut-offs.

A new gravitational theory whose zero-field limitation will give the non-Minkowski metric
will be established in the future. The difference between it and the general relativity will not
be big, but hopeful of success in removing the singularities (which, according to Einstein, must
be removed), due to the upper bounds of the densities of particle groups.

Einstein underlines that one should not extend his general relativity to where the gravitational
field is very strong and the density of matter is very large [4, p. 129]. In the absence of gravitation,
is the Lorentz invariance an absolute truth? We certainly do not assert so. W. Rindler [6]
expounds profoundly the nature of physical laws: “. . . even the best of physical laws do not
assert an absolute truth, but rather an approximation to the truth . . . no amount of experimental
agreement can ever “prove” a theory, partly because no experiment can ever be infinitely accurate,
and partly because we can evidently not test all relevant instances . . .Although special relativity
is today one of the most firmly established theories in physics . . . it is well to keep an open mind
even here. . . . some law of special relativity may one day be found to fail . . . every theory is
only a model . . . theories should not stagnate in complacency.” Also, T.D. Lee [5] said that
it seems more than likely that our present understanding is transitory and our basic concepts
and theories will further undergo major changes. Because of the irrational operations, infinities
minus infinities in the renormalizations of the Lorentz invariant quantum field theories, Dirac [3]
asserted that the foundations of the current theory must be reformed. In this paper, we actually
reform the corner-stone of the current fundamental theory.
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The suggested formulation of the laws governing the physics of gravitation provides new
phenomenological considerations for a mathematical method of elucidating and measuring
phenomena. A systematic treatment with broader conceptual framework, than the conven-
tional formalism is presented advancing new physical relationships and fundamental con-
stants that are based on known fundamental constants, physical relationships and high
precision measurements.

1 Introduction

We discuss foundational principles of characterizing and formulating the laws governing the
physics of gravity. The suggested formulation of the laws governing the physics of gravitation
provides new phenomenological considerations/correlations for a mathematical method of eluci-
dating and measuring phenomena. A systematic treatment with broader conceptual framework,
than the conventional formalism is presented advancing new physical relationships and funda-
mental constants that are based on known fundamental constants, physical relationships and
high precision measurements. Theory (symmetries, scale-invariance, singularities, the Principle
of the One-and-the Many) [1], measurements (fundamental constants in quantum electrody-
namics [2], and nucleon-meson dynamics [3]) are united. Simple algebra of logical/measurable
evidence to predict: 1) physical relationships/quantities, 2) fundamental physical constants, and
3) the basic units of quantities, for the laws governing the physics of gravity are utilized. The sug-
gested representation permits mathematical characterization/testing of new phenomena based
on measurements [2], enabling one to calculate/determine new physical relationships [1, 3] and
the nature of unmeasured reality. New quantities (**) and relationships (*) for the: (gravitational
flux density, penetrability, potential density, field quantum, resonance condition, gravitance)**
and (gravitational field strength, Newton’s gravitational constant, mass [flux], gravitational po-
tential, gravitational force)* are suggested. For comparative purposes, the Earth’s dimensions
and the values of the electron, proton, and neutron constants, as they relate to the fundamental
equations of gravitation are given.

Symmetry is a very useful tool in the group theoretical physics [4]. It has been suggested
by some authors (Lie [5], Lorenz [6], Einstein [7], Poincaré [8], Heaviside [9], Bateman [10],
Cunningham [11], Rainich [12]), that symmetries of Maxwell and Dirac equations, as well as,
supersymmetry (a symmetry that connects elementary particles of integer/half-integer spin in
common symmetry multiplets, Weinberg [13]), and other differential equations of quantum me-
chanics [14], produce immensely valuable fundamental results. We suggest: in addition to [4–14]
approaches, symmetries (in particular group symmetries) be integrated with fundamental con-
stants and the laws of physics in scale-invariant relationships [1] (see Tables 2, 3, 4), resulting
in a very effective phenomenological means to: 1) discover new phenomena; 2) formulate, verify,
and elucidate the foundation of physics and astrophysics in general [15], and in particular the
broad range nature of gravitation [1, 2, 3]. The suggested formulation places a restriction on
the possible solutions of the laws governing the physics of ‘gravity’, permitting general rela-
tionships than those allowable by usual interpretation. Facilitating system of equations within
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the formalism of wave mechanics [16, 17], an “observer”, for continuous characterization and
measurement of phenomena.

The validity of any fundamental equation rests in its agreement with experiment. The severe
constraint of invariance, normalization and scale changes [3, 15], and the symmetry principle,
enables one to advance toward the invariable foundation of physics (the Highest Common Factor:
nature of invariable/unmeasured reality, where, as we have seen [1, 2, 3], the standard formalism
is incomplete) and compute equations from a wide range of probabilities. There is only one
system of Poincaré-invariant partial differential equations of first order, for two real vectors E
and H. This is the system, which translates to Maxwell’s equations [4]. It is feasible to “derive”
the Dirac, Schrödinger, electromagnetic field [14], and other equations [2, 16, 17] in a comparable
manner. It is this rigorous constraint that causes energy quantization. Correspondingly, the
equations of Newton, Maxwell, Poincaré, Laplace, d’Alembert, Euler–Lagrange, Lame, and
Hamilton–Jacobi have a very high symmetry [4]. It is this high symmetry which is the property
distinguishing these equations from other ones considered by physicists and mathematicians.

2 General principles

Central to our methodology is the singularity ‘1’ (the Principle of the Initial Conditions of mea-
surement: the dimensionless point, discussed in [1, 2, 3, 18, 19]. Just as each number, on the
mathematical scale, has a unifying principle (zero) as its’ starting frame of reference, so each
physical quantity (and the laws of physics), on the physics scale of quantities ([1] equation (2),
or [18] equation (4)), has a unifying principle as its’ starting frame of reference: the initial
conditions of measurement, as in 1 = E/mc2. The ‘1’ serves also as the experimental underpin-
ning, normalization condition, and the scale-invariant equilibrium frame of reference for E and
mc2 [1]. In this same vein, E serves as surrogate (proxy) equilibrium, and scale-invariant frame
of reference for m and c2 [18]. The surrogate equilibrium frame of reference (singularity) defines
the Principle of the Final Condition of measurement, with an equality (‘=’), as in E = mc2.

The ‘1’ and the equality ‘=’ are dimensionless points (law of physics singularities γ = 0)
with vast power to describe the nature of invariable/unmeasured reality. The ‘1’ and the ‘=’
represent the a priori principle of physics (invariance), and a natural location for the “collapse of
the wave function”, the points of inversion and measurement, also called the “quantum jump” or
the point of amplification, which manifests a sharp increase in output signal when (via variation
of the magnetic field) the Zeeman splitting frequency is varied through the cavity resonant
frequency. It is the ‘1’ and the ‘=’ that place a restriction on the possible solutions of the
Schrödinger equation: a restriction [3] that leads to energy quantization. In the logarithmic,
or the natural log scale, the equilibrium frame of reference (invariance) ‘1’ → 0, i.e. γ = 0
(1 = 100 = e0 = x0) [1].

The concept of the zero (‘0’), goes back around 300 BC to Babylonians, who used two
slanted wedges to represent an empty space. In mathematics the concept of the zero has been
developed. However, in the formalism of physics, the notion of the singularity (a priori) has not
been adequately defined/developed with mathematical/experimental formalism. Namely, what
its positional notation (the Principle of Position [18]) or fundamental nature is, how it behaves
with physical quantities/fundamental constants, or how it may be generalized. The quantum
interpretation is not characterizing the nature of singularity, but the relationship between reality
and its representation, the proxy wave ψ.

Mathematics is our universal language. When validated by experiment, mathematics becomes
our generalized language of the laws of physics. We know how zero interrelates with numbers,
and those numbers with one another. These descriptions take form of the laws governing their
interactions. The effect of such laws brings zero and numbers closer together. It changes our
understanding of numbers themselves. If you look at a singularity γ = 0 you see a single
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dimensionless point; but glimpse through the singularity and you will see the universe [1, equa-
tions (2)–(12)]. At γ = 0 the concept of space-time loses its meaning. Einstein’s equations are
violated (i.e., collapse of the wave function: the essence of Gödel’s Incompleteness Theorem of
1930), with reality becoming indeterminable to the observer, and that human beings will ever
expose all ultimate secrets of the universe. For zero (singularity) to be the possibility of universal
significance with what it gives power to, we must understand how to add/subtract with it, for a
start, replacing it with variety of words for the same thing with concise rules for zero/numbers.

In the Copenhagen interpretation, all the unexplained transitions among the classical/quan-
tum physics occur at the boundary connecting measuring/quantum system. We suggest that
physical quantities, atoms, and galaxies are the ‘quantum entities’ and ‘observers’ (John Whee-
ler’s participators): Georg Cantor’s sets, with their own structure and physical laws, that have
order (the Principle of Order [18]), endless hierarchy of infinities and sequence (the Principle of
Position [18]). As a final point, the whole universe may be drawn in as observers: participators:
sets: physical quantities, while the boundary between measuring and quantum system is the ‘1’
and the ‘=’ points in the unmeasured reality.

Einstein (1924), Dirac (1937), Teller (1948), Landau (1955), Brans and Dicke (1961), DeWitt
(1964), Isham, Salam and Stratdhdee (1971), Salam and Wigner (1972), and others have sug-
gested a variety of approaches leading to a relation between gravitation, electromagnetism, and
cosmology. To formulate the nature of ‘gravitation’ (so that from any given physical conditions
equations relating the physical quantities may be deduced or vice versa), we systematize the laws
of physics and the fundamental physical constants (of quantum electrodynamics and nucleon-
meson dynamics [2, 3, 15]) through the singularity ‘1’ in the Principle of the One-and-the Many
and the Logarithmic Slide-Rule for Physical Relationships (LSPR) [1, 18, 19, 20].

3 The Principle of the One-and-the-Many

The Principle of the One-and-the-Many rests on the Principle of the Initial Conditions and
the Principle of the Final Conditions of measurement wherein conceivable property of the one
(individual quantity qk) is also a property of the many (a number of qk’s: group quantity Qk).
If we regard a number of identical balls as many (Georg Cantor’s sets), having a unity between
them, then it is feasible to roll up the balls (or the null, empty sets) and mathematically unite
them together, thereby moving from the many into the one. Indeed, unity and multiplicity are
two inverse views of the same phenomena (Table 1). It is instructive to consider that in any
equilibrium, it is impossible to have a group of balls without having individual balls and vice
versa ([1, equation (2)] or [18, equation (4)]).

Note 1. The nature of space has dominated our thinking. Customarily, a discrete bundle of
energy is called a quantum. Our work [1, 18] indicates that physical quantities are comprised
of discrete bundles of the ‘1’ (singularities): a number invariant qk points of empty space: Final
Equilibrium (Invariance) state. In suggested formalism, empty space (the Highest Common
Factor) is an invariant physical structure with properties of its own. In addition, each singularity
has two inverse points of view. That is, as in (1), the qk of ‘1’: the point: singularity, and the Qk
of ‘1’: the empty space: Cantor’s/Gödel’s/Cohen’s Continuum (where the universe and the
laws of physics materialize: Plato’s “receptacle, and in a manner the nurse, of all generation”:
Einstein’s (1924) “Continuum which is equipped with physical properties; for the general theory
of relativity”) are inverted viewpoints of the same reality. Namely, the inverse of one zero
dimension point (where the log of 1 is zero) is the many zero dimension points (where the inverse
of log 1 is the Absolute Infinity [1, 18]. Between these two inverse landscapes encoded potential
possibilities exist. That is, in the Principle of the One/Many, the individual phenomenon qk is
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an inverted group phenomena Qk, where

1 = Qkqk, (1)

and qk is either equal to, or less than (≤) 1, or 1 is equal to, or less than (≤) Qk, where

qk ≤ 1 ≤ Qk. (2)

The qk and Qk values are determined by physical constants. Consider the following illustrative
examples, in Table 1, of individual and collective phenomena in the One-and-the-Many Principle
(proposed new gravitation quantities are highlighted with bold letters):

Table 1. The “1” and the One-and-the-Many principle through the laws of physics.

qk: Individual Quantity Qk: Group Quantity
Period of harmonic motion T Frequency f (= 1/T ), where Tf = 1
Conductance G Resistance R (= 1/G), where GR = 1
Inductance L Reluctance r (= 1/L), where Lr = 1
Resistivity ρ Conductivity σ (= 1/ρ), where ρσ = 1
Compton wavelength λc Number of waves n (= 1/λc), where λcn = 1
Magnetic flux quantum Φ0 = h/2e Josephson constant 2e/h, where (Φ0)(2e/h) = 1
Quantized Hall conductance e2/h von Klitzing constant RK = h/e2, where (e2/h)(RK) = 1
Gravitational penetrability z0 Gravitational Constant G (= 1/z0), where (z0)(G) = 1
Gravitational field quantum Γ́ Gravitational field strength g (= 1/Γ́), where (Γ́)(g) = 1
Gravitational resonance cond. LC Gravitational potential density ϑ (= 1/LC),

where (LC)(ϑ) = 1

The singularity/Continuum are of absolute uncertainty (point of inversion: a natural loca-
tion for the collapse of the wave function, while the mathematical formalism of the Heisenberg
uncertainty relationships (expressed in terms of the building blocks of nature, i.e., energy/time)
is of relative uncertainty. At a singularity the laws of science and our ability to predict, break
down [1, 18]. The Heisenberg uncertainty relationships demonstrate the workings of a singu-
larity, as expressed in equations (1) and (2). Similarly, because of the ‘1’/‘=’ in (1), a particle
cannot be expressed by a wave packet, in which both the momentum and the position have
arbitrary ranges. They must be scale-invariant [2, equations (36)–(40)]. As we make the range
of one of them larger the range of the other becomes smaller, according to equation (1). Here
the quantum uncertainty is not tied to one particular quantity but slides from quantum en-
tity to quantum entity (the Principle of Position [18]: a rainbow appears at a different time in
a different place with different intensity for each observer [19].

Physical quantities (or meaning), on the other hand, are created by limits. Namely, meaning
illustrates the unit interval between (‘1’/‘=’) points (singularities) [18]. To represent a physi-
cal quantity: natural unit-of-measurement (the Principle of Natural-Unit-of-Measurement [18]:
Georg Cantor’s non-empty set) in the Continuum two scale-invariant points in equilibrium
(‘1’/‘=’) are required. The unit interval (i.e., of open and closed lines, or Edward Witten’s
strings) between points (nodes) in the Continuum can be established via the fundamental physi-
cal constants, or with two quantities in terms of which a third quantity is described. For example,
velocity is characterized in terms of m/sec. By analogy to mathematical zero’s role, as a shifter
in value (i.e., 83 to 80003), the ‘1’/‘=’ states in the Continuum are said to be quantized (natural
grouping: the Principle of Quantization [18]). This means, ultimately the ‘1’ (the Continuum)
and the equality ‘=’ states are scale-invariant, dimensionless, and quantized. It also suggests:
Coleman et al. [21], the invariance of the Continuum is the invariance of the Universe, which is
discussed elsewhere [18].

The concept of dimension is fundamental to all of mathematics and physics. With a series
leaps of insight, the work of Euclid (defining a point); Eudoxus (introducing the concept of
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a potential infinity: enabling Newton, Leibniz, Gauss, Euler, and others approach zero/infinity,
thus facilitating development of a limit); Bolzano–Weierstrass (showing that infinite sequences in
a bounded space contain limit points); Galileo (leaping from potential infinity to actual infinity:
an infinite set can be equal in number of elements to the smaller subset of itself); Cantor
(arriving at actual infinity, and learning important truths about it, starting with sets); Peano
(characterized as the empty set); Hahn–Banach (giving conditions where a linear functional can
be extended to the full space that shares boundedness conditions with the functional); Zermelo
(helping to design axioms of set theory), Gödel (proposing the incompleteness theorem); Cohen
(concluding that the Continuum is beyond the lower infinities), and others, unlocked a door to
the Absolute Infinity.

Cantor gave his sequence κ0,κ1,κ2,κ3, . . . of alephs (infinities) the name taf, π, to mean
finality: every infinite cardinal had to be an aleph — belonging to the system π that includes
all alephs. From the Principle of the One/Many, we see through the laws of physics, equa-
tion (1), and Table 1, a point and the Absolute Infinity are the inverse of each other. Using
Cantor’s sets, in the One/Many group, we have: κ0 = 1/π, where the point is ‘1’ : κ0, and
the Continuum is ‘1’ : π. Therefore, as with zero/numbers, and numbers with one another,
the suggested interpretation brings singularity, physical quantities and the fundamental phys-
ical constants closer together: changing our understanding of the quantities themselves. The
observer’s experience is expressed in the classical language of actualities (physical quantities),
while the invariable/unmeasured quantum realm is not represented as a wavewise superposition
of possibilities, or taf, π, but with the ‘1’. This offers a more general framework, than that
provided by the standard interpretation for ‘gravity’ physics. In particular, when we consider
the gravitational/mass relationships in nuclear/earth’s dimensions, gravity no longer is gravity,
because of scale invariance, becomes strong or weak force [1, equation (30)].

The LSPR operates on the same mathematical principle as a logarithmic slide-rule for num-
bers [1, 19, 20]. A logarithmic slide-rule has zero/numbers. A LSPR has the ‘1’ and physical
quantities. The LSPR generates experimentally verified equations of the laws of physics and
fundamental physical constants. Furthermore, a LSPR will, in simple equations, give form to
(i.e., predict) new (unknown: ‘hidden’ variables, Bohm [22]) physical relationships/constants.
A more comprehensive discussion on the Principle of the Initial Conditions (‘1’), the Principle
of the One-and-the-Many, and the LSPR, can be found in [1, 18]. Conventional symbols and
the SI units (in which they are usually quoted) are deployed.

Measuring a physical quantity signifies comparing the quantity with a standard quantity (unit
of measurement) of the same scale and nature. To make the relationships more accessible to
physicists who work with gravitational phenomena, model building, and to facilitate new/more
encompassing gravitational experiments and precision measurements (of the basic physical re-
lations/constants), we restate the meaning of these equations by providing several relationships
for the same phenomena. These equations advance the development through direct observation
of new experimental investigations in gravity, enabling one to formulate additional systems of
units and their conversion factors of physics.

4 The gravitational field strength g

The gravitational field strength g (= F /m), in m · s−2, at a point of the gravitational force F ,
in N, per unit mass m, in kg, can be written as the angular gravitational potential [1, equa-
tion (37)]

g = Vg/S, (3)

where Vg is the gravitational potential, in J · kg−1, and S is the length unit, in m · rad−1.
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Note 2. The unit radian (rad), for plane angle, has historically been designated as a supple-
mentary unit [1]. In 1980, the International Committee for Weights and Measures determined
that the unit radian and steradian are equivalent to the number one 1 and may be omitted in
the expression for derived units. For completeness of presentation, due to the angle of rotation,
expressed in radiant per cycle, is a physical quantity, which like other quantities enters into phy-
sical relationships, it is included here. Furthermore, as stated earlier, to represent a quantity,
two dimensionless points are necessary.

Notice, deploying constants from [2] in equation (2), the g and Vg quantities, in equation (3),
for the electron, are larger than ‘1’, therefore, they are Qkq quantities. Additionally, the S
quantity, for the electron in [2], is smaller than ‘1’, therefore, it is a qk quantity. To make
equation (3) for students more logical, we could describe (3) in Qkq terms (i.e., g = Vg times
the number of separation points 1/S), or as a quantum qk expression.

Therefore, following this approach, we can write equation (3) as a relationship of the gravi-
tational flux density M , where M = m/S2, kg · m−2 · rad−1, and the Newtonian constant of
gravitation G, in m3 · kg−1 · s−2, whereas

g = MG. (4)

Moreover, entering equation (4) as a relationship of pressure P , in Pa, and the gravitational flux
density, gives us

g = P/M . (5)

Combining equations (4) and (5), provides

g = (GP )1/2. (6)

5 The gravitational constant G

The Gravitational Constant G, in m3 ·kg−1 · s−2, is routinely stated in terms of the gravitational
force F , that two particles of masses m1 and m2 separated by a distance S exert on each other,
where F = Gm1m2/S

2. We characterize the universal constant G by way of the gravitational
field strength g and the gravitational flux density M , as shown in equation (4), G = g/M . The
Newtonian constant of gravitation G can also be given in terms of the gravitational potential Vg
and the linear mass density µ (= m/S), where the mass per-unit-length of µ is in kg · m−1.
Thus,

G = Vg/µ. (7)

This then leads us to a third method representing equation (7) using the length S and the
gravitance Ω = m/Vg, in kg2 · J−1, equation (21). Accordingly,

G = S/Ω. (8)

Combining equations (4) with (5) gives

G = P/M2 = 1/χM2, (9)

whereby χ is compressibility in m2 ·N−1.

Note 3. The Newtonian constant of universal gravitation is the constant of proportionality
within an equation relating to the attraction force between any two bodies (particles) separated
by distance S. In a scale-invariant setting of nuclear dimensions, transformation of physical
quantities and scale changes (renormalizability) take place [1, 3, 15, 16]. The dimensional values
of quantities (i.e., G, S, m, F ) are no longer gravitational values of the Earth, but nuclear
values. This can be seen, by defining the gravitational constant G from the law of periods.
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Note 4. As suggested earlier, the Continuum is invariant. Separation between points, in the
Continuum, determines the meaning of the natural unit-of-measurement (i.e., physical quan-
tity) [18], making the laws of physics invariant. Considering Note 3 and the lack of scale-
invariance in general relativity [18], reduce the general relativity to a limited construct, that
is, says Hoyle, Burbidge and Narlikar [23]: “the equations of general relativity are not scale-
invariant. They are the special form to which the scale-invariant equations reduce with respect
to a particular scale, namely that in which particle masses are everywhere the same”.

6 The gravitational potential Vg

The Gravitational Potential Vg, at a point, is the potential energy per unit test mass, in J ·kg−1.
The gravitational potential is usually determined using Vg = −Gm/S. The Vg can also be
depicted as the linear stopping power, where Vg = gS. Furthermore, the gravitational potential
can be expressed as an area A, in m2, and the angular speed (rotation rate) ω, in rad · s−1, where

Vg = Aω2. (10)

Equation (10) is, in addition related to purely electric and magnetic quantities by

Vg = 1/ε0µ0. (11)

For ε0 and µ0 terms see the gravitational penetrability, in Section 7. Equation (10) can also
be characterized by the gravitational field strength and the gravitational potential density ϑ, in
rad2 · s−2 (Section 10), where

Vg = g2/ϑ. (12)

Also,

Vg = g2/ω2. (13)

7 The gravitational penetrability

Analogous to the (electric) permittivity of vacuum ε0 (= C/S), in F · m−1, where C is the
capacitance in farad (F), and the (magnetic) permeability of vacuum µ0 (= L/S), in H · m−1,
where L is the inductance in henry (H), we propose a new physical quantity, the (gravitational)
penetrability of free space (vacuum) z0 (= Ω/S), equation (22), expressed in kg · s2 · m−3. The
gravitational penetrability is the inverse of the gravitational constant G

z0 = 1/G. (14)

Combining the angular rotation rate and the density d (= m/V0), in kg · m−3, where V0 is
volume, in m3. We can write equation (14) as

z0 = d/ω2. (15)

Equation (14) can also be stated in terms of the mass m, gravitational potential Vg, and the
separation S, where

z0 = m/VgS. (16)

Or, in terms of work W , in J, volume and the gravitational field strength,

z0 = W/V0g
2. (17)
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8 The gravitational flux density

Comparable to the electric flux density D (= ε0E), in C · m−2, and the magnetic flux density
B (= µ0H), in T (Wb ·m−2), we derived the gravitational flux density M , in kg ·m−2 · rad−1,
where

M = z0g. (18)

Equation (18) can be represented as a relationship of the pressure and the gravitational field
strength, M = P/g, or the gravitational field strength and the gravitational constant G, where
M = g/G. In addition, the gravitational flux density can be given by the mass m and a unit of
length S, where,

M = m/S2. (19)

Equation (19) can also be described in terms of the Hooke’s law proportionality spring constant k,
in force per unit length, and the gravitational potential, where

M = k/Vg. (20)

9 The gravitance

Comparable to the capacitance (C = e/V ) in the electric domain and the inductance (L = φ/i)
in the magnetic domain we suggest the gravitance Ω, stated in kg2 · J−1, in the gravitational
domain to be:

Ω = m/Vg, (21)

where e is the electric flux (elementary charge), in C, φ is the magnetic flux, in Wb, V is the
electric potential, in V, and i is the magnetic potential, in A. The gravitance can also be found
from (8), where Ω = S/G. Combining (8) with (14) we obtain,

Ω = Sz0. (22)

Also, the gravitance can be written by uniting equations (11) and (21), where

Ω = ε0µ0m. (23)

10 The gravitational potential density

Comparable to the magnetic potential (current) density j (= i/A), in A ·m−2, and the electric
potential (voltage) density (= V/A), in V ·m−2, we suggest the gravitational potential density ϑ,
expressed in rad2 · s−2, where

ϑ = Vg/A. (24)

Equation (24) can, in addition, be characterized via the gravitational field strength and S, where

ϑ = g/S. (25)

Furthermore, equation (25) can be written as the time t, in s · rad−1, where

ϑ = 1/t2. (26)

We can also find the gravitational potential density through the gravitational flux density and
gravitance

ϑ = M/Ω. (27)
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11 The gravitational force

Analogous to the electromagnetic field which exerts sideways electric F y = V S×D and magnetic
F z = iS ×B forces, we suggest that a sideways gravitational force F x, in N, is exerted in the
gravitational field subjected to the gravitational flux density, whereby,

F x = VgS ×M , (28)

where, V S = e/ε0; iS = φ/µ0; and VgS = m/zo = mG. For a second approach, consider that
F y = eH, F z = φH, then

F x = mg, (29)

where the electric field strength E is in V ·m−1, and the magnetic field strength H is in A ·m−1.
Notice that the electric, magnetic and gravitational forces are in equilibrium at singularity (‘=’):
F y = F z = F x. Further, in electromagnetic traveling waves when the lines of E are parallel
to the y-axis, and the lines of B are parallel to the z-axis, we suggest that, the lines of M are
parallel to the x-axis. Our observation indicates that E, B and M are perpendicular to one
another. In addition, consistent with equation (11) Vg = 1/ε0µ0, and therefore is on the velocity
axis. Furthermore, E, B and M are in phase (they achieve their maxima at the identical time,
and they are zero at the same time).

12 The gravitational resonance condition

In our discussion of resonances, a damped LC circuit oscillating at natural frequency ω =
(LC)−1/2, is described in terms of gravitational quantities as the gravitational resonance condi-
tion. We derived the LC condition by way of the gravitance and the gravitational flux density,
where

LC = Ω/M . (30)

Also, equation (30) can be written as a relationship of the area and the gravitational potential [1,
equation (23)],

LC = A/Vg. (31)

In addition, equation (30) can be expressed by the gravitational potential and the gravitational
field strength, where

LC = Vg/g
2. (32)

Combining equations (31) with (32) gives

LC = S/g. (33)

Furthermore,

LC = 1/ϑ. (34)
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13 The gravitational field quantum

The One-and-the-Many Principle, can be utilized with the gravitational field strength g to find
the gravitational field quantum Γ́, in s2 ·m−1, where

Γ́ = 1/g. (35)

Earlier we expressed the gravitational field strength in Qk language. Equation (36) is a quantum
qk expression, where the gravitational field quantum equals the gravitational potential quantum
(1/Vg) times the separation quantum S,

Γ́ = (1/Vg)S. (36)

Additionally, the gravitational field quantum Γ́ and the velocity v can be used to describe the
time quantum t, we find

t = Γ́v. (37)

For the electron t = 1.1812×10−22 seconds2. Derivation/higher accuracy constants can be found
in [2, equation (10)]. In Tables 2, 3 and 4 we list gravitational (x), electric (y) and magnetic (z)
correlation between the quantities and their relationships.

Table 2. Symmetries of electric, magnetic and gravitational quantities.
1 F /e = Electric field strength E

F /φ = Magnetic field strength H
F /m = Gravitational field strength g = S/LC

2 W/e = Electric potential V = ES
W/φ = Magnetic potential i = HS
W/m = Gravitational potential Vg = gS = A/LC

3 e/A = Electric flux density D = Y C
φ/A = Magnetic flux density B = JL
m/A = Gravitational flux density M = ϑΩ = Ω/LC

4 V/A = Electric potential (voltage) density Y = E/S
i/A = Magnetic potential (current) density J = H/S
Vg/A = Gravitational potential (m) density ϑ = g/S = 1/LC

5 e/V = Capacitance C = e2/W = D/Y
φ/i = Self inductance L = φ2/W = B/J
m/Vg = Gravitance Ω = m2/W = MLC = M/ϑ

6 F /E = Electric flux e = W/V
F /H = Magnetic flux φ = W/i
F /g = Gravitational flux (mass) m = W/Vg

Table 3. Symmetries of gravitational (x), electric (y) and magnetic (z) quantities.
x y z

1 Ω = m/Vg C = e/V L = φ/i
2 zo = Ω/S ε0 = C/S µ0 = L/S
3 M = z0g D = ε0E B = µ0H
4 G = g/M 1/ε0 = E/D 1/µ0 = H/B
5 F x = mg F y = eE F z = φH

14 Results and discussion

One of the most significant advances in the field of physics was the scientific method: the proce-
dure physicist use to gain knowledge. To quantify the experiment’s results, measurement of phe-
nomena has been essential to the scientific method. We suggest comparatively simple systematic
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Table 4. Comparison of the electron, proton, neutron, and earth calculations and constants.

Quantity Symbol Earth Electron Proton Neutron Units
Mass m 5.972× 1024 9.109× 10−31 1.673× 10−27 1.675× 10−27 kg
Gravitational
constant G 6.674× 10−11 3.494× 1033 7.922× 1029 7.909× 1029 m3 · kg−1 · s−2

Gravitational
field strength g 9.807 2.538× 1030 1.262× 1027 1.260× 1027 m · s−2

Gravitational
potential Vg 6.252× 107 8.988× 1016 1.293× 1015 1.292× 1015 J · kg−1

Gravitational
penetrability z0 1.498× 1010 2.862× 10−34 1.262× 10−30 1.264× 10−30 kg · s2 ·m−3

Gravitational
flux density M 1.469× 1011 7.265× 10−4 1.593× 10−3 1.593× 10−3 kg · rad2 ·m−2

Gravitance Ω 9.553× 1016 1.014× 10−47 1.294× 10−42 1.296× 10−42 kg2 · J−1

Gravitational
potential density ϑ 1.538× 10−6 7.1673× 1043 1.232× 1039 1.229× 1039 rad2 · s−2

Gravitational
force Fx 5.857× 1025 2.312× 100 2.111× 100 2.110× 100 N
Gyroradius S 6.378× 106 3.541× 10−14 1.025× 10−12 1.025× 10−12 m · rad−1

Gravitational
field quantum Γ́ 1.019× 10−1 3.940× 10−31 7.924× 10−28 7.937× 10−28 s2 ·m

treatment/methodology of how, by unifying theory (algebra of logical and measurable evidence)
with measurement (known fundamental constants/laws of physics), and an indirect procedure
of physical constant and fundamental quantity formation (symmetry, scale-invariance, et al.),
improved understanding in the observation/measurement, the formulation of physical laws and
the development of a theory that is used to predict new phenomena can yield otherwise un-
obtainable results. Fortunately, the Continuum is invariant ‘1’. Known laws of physics and
fundamental physical constants (obtained through high precision measurements of the Contin-
uum, i.e., separation between ‘1’ and ‘=’) are reducible to mathematical relations/operations,
which are constant, and which can be used to penetrate, define, calculate, and predict more
accurate measurements [2] of fundamental quantities (Table 2), values of the physical constants,
‘a priori’ numerical computations, discovery of new phenomenon, and looking or thinking about
a problem in a totally different way.

Based on these elementary considerations and systematic procedures, one of the important
objects of this note consists in suggesting very simple formulas, physical relationships, funda-
mental constants, and experimental tests for gravity physics. As far as we know, there are
less than 5000 physical relationships that have been verified, in the last 400 years by science.
Using five constants [2], computers, and the suggested methodology, we obtained over 100,000
physical relationships, and more than 20 new physical quantities, some of which are presented
here as gravity physics. Whether the formulas, elucidation of their properties, and correlation
depicted in the present note is consistent with experimental facts is an open question. How-
ever, the approach is based on experimental data (known constants and laws of physics) and
the agreement of the values in Appendix A and B is very strong evidence in support of this
methodology of measurement-based, mathematical procedure for obtaining these results. Also, it
might be pointed out, the remarkable agreement between other analogous formulas generated
in similar manner [2, 4], and the experiments, can leave but little doubt that the suggested
phenomenological relationships constitute gravity phenomena.

Further, the experimental support of the approach indicates very convincingly that the integ-
ration of a scattered and immense body of fundamental physical phenomena into a more systema-
tic order is possible [1, 19, 20]. It should be noted, at the present stage of physics we are not
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able to predict accurately new gravitational quantities or fundamental constants of nucleon-
meson dynamics [3]. Should experiments corroborate the suggested relationships/constants,
physicist would gain a phenomenological leap in our understanding of the Continuum ‘1’, through
a simple mathematical method for the measurements of phenomena, formulation of physical
laws from the generalization of the phenomena and the development of theories that is used
to predict new phenomena. Furthermore, because the Continuum is invariant and there are
infinite potentialities within it, measurements between ‘1’ and ‘=’ seems likely to continue
(characterizing fundamental quantities/constants, revealing hitherto ignored physical effects,
inducing inverted populations to radiate in concert (through the Principle of One/Many), i.e.,
generate coherent states of the gravitational field, laser technology, et al.), I see no let up in the
bread-and-butter business of measuring and theoretical prediction of phenomena. Conversely,
I expect accelerated advancement and greater opportunities in all branches of science.

Appendix A. Sample derivations and calculations

In [2] we have provided the derivation of the fundamental constants in quantum electrodynamics,
and in [3] the fundamental physical constants of nucleon-meson dynamics. Now, we will discuss
the derivation of Earth’s dimensions.

To obtain the standard acceleration of gravity g we utilized the 1998 CODATA (the Com-
mittee on Data for Science and Technology, the international arbiter of metrology) set of rec-
ommended values of the basic constants and conversion factors of physics [24]. The preliminary
value of G comes from higher precision measurement of the gravitational constant by Jens Gund-
lach and Stephen Merkowitz at the University of Washington, (Seattle), reported at APS April
2000 meeting in Long Beach (Ca) [25]. The gravitational flux density M is a derivative of
M = g/G, while the gravitational penetrability, of equation (14), is z0 = 1/G.

The Earth has an equatorial radius of 6.378 × 106 m, a polar radius of 6.357 × 106 m,
and a mean radius of 6.371 × 106 m. The Earth’s gravitational field (polar surface gravity)
varies from place to place on it’s surface, with the main variation occurring with latitude,
averaging approximately 9.8322 m · s−2at the poles, and at the Equator (equatorial surface
gravity) 9.7303 m · s−2 (includes rotation). We deployed the standard acceleration of gravity
value 9.80665 m · s−2, the Earth mass m of 5.97223(±0.00008) × 1024 kg, and the Newtonian
constant of gravitation values of G 6.674215 ± 0.000092 × 10−11 m3 · kg−1 · s−2, to find the
Earth’s value of the length of the semi-major axis S, via S2 = m/M and M = g/G. This
method yields the length of the semi-major axis of S 6.37541× 106 m. The length of the semi-
major axis can customarily be determined by the arc method. The determinations of dimensions
of the Earth ellipsoid from arc measurements yield 6.37816 × 106 m for the semi-major axis.
Similarly, utilizing the G, g, and the Earth ellipsoid from arc measurements, of 6.37816× 106 m
value in equations (19) and (4), where m = S2g/G, we attain 5.97734× 1024 kg for the Earth’s
mass. Because we were studying the same problem from two different points, for the two
approaches to be compatible, the present measurements (of the length of the semi-major axis or
the Earth’s mass) could be refined, i.e., g, G, and S measurements would have to use identical
initial conditions (‘1’).

Appendix B. Comparison of the electron, proton, neutron,
and earth calculations and constants

For comparative purposes we have computed the electron [2], proton and neutron [3] length
units. Notice the proton and the neutron length of the semi-major axis S is approximately 30
times larger than that of the electron.
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The gravitance value is obtained via equation (22) (Ω = Sz0), the gravitational potential via
(Vg = Sg), and the gravitational potential density by equation (25) (ϑ = g/S). In Table 4 we
list values of the electron, proton, neutron, and Earth calculations and constants, as they relate
to ‘gravitational’ relationships.
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The worldvolume geometry of flat and curved Dp-branes embedded in flat and curved back-
ground spaces in the zero slope limit of Seiberg and Witten is studied.

1 Introduction

Dp branes in the Type II superstring theory with nonzero NS-NS B fields have the interesting
features. When B field is switched off the system of the D0-D6 BPS branes is nonsupersymmet-
ric. But it becomes supersymmetric when a suitable constant B field is turned on.

In the absence of the B field the system of D0-D4 branes is supersymmetric. But the presence
of the B field changes the properties of supersymmetry. The D0-D4 system of branes remaines
supersymmetric only if the B field is anti-self-dual [1].

An identification of the Dp-brane charges with K-theory classes holds in the case of vanishing
B field. In the presence of a B field the arguments of [2] have to be modified. The point is that
a gauge field in the presence of a B field is rather a connection over a noncommutative algebra
than over a vector bundle. Therefore it is natural to suspect that Dp-brane charges must be
identified with K-theory classes of some noncommutative algebra. It is the principal property of
Dp-branes with switched B fields is following: theirs worldvolume geometry is noncommutative.

The noncommutative geometry studies geometric spaces (and their generalizations) using
noncommutative algebras of functions on them. The noncommutative torus is one of the most
important examples of the manifolds in noncommutative geometry. The noncommutative geom-
etry of the worldsheet plays an important role in the study of the string theory. These problems
have attached much attention [3, 4, 5, 6].

But most of them were dealing with the case of a constant B field in the flat background.
Connes, Douglas, Schwarz [3] have shown that the matrix theory of M theory compactified on
a T 2 with a background three form potential, C−12 is related to gauge theory on a noncommu-
tative torus. Douglas and Hull [4] have studied Dp-branes on T 2 with the constant NS-NS two
form field, B, and have shown that the effective worldvolume theory will be noncommutative
gauge theory on the noncommutative torus.

When a Dp-brane is placed into a background which carries a non-vanishimg constant B
field the algebra of functions on its classical worldvolume is deformed. The involving of this con-
stant B field background can be described by replacing the ordinary product of functions on the
worldvolume of the Dp-branes by the Moyal product, which is associative and noncommutative.
This case corresponds to the embedding of a flat Dp-brane into a flat background.

In the zero slope limit α′ → 0 of Seiberg and Witten this case is extended to the one in
which ω = B + F is such that dω = 0. Here F is the strength of some U(1) gauge field on
a Dp-brane. In this case the ordinary product of functions on the worldwolume of a Dp-brane
is replaced by the Kontsevich star product which is also associative and noncommutative. This
case corresponds to the embedding of a curved Dp-brane into a flat background.

There are several attempts to extend this consideration to open strings in a general back-
ground. In the terminology of Dp-branes it corresponds to the embedding of the curved Dp-
branes in the curved backgrounds. The last corresponds to the case dω = dB = H �= 0. The
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ordinary product of the algebra of functions on a Dp-brane is replaced by the Kontsevich star
product. But in this case it is noncommutative and nonassociative. The algebra of functions on
it defines “a noncommutative and nonassociative manifold”.

In this article we shall study the noncommutative and homotopy associative algebras of
functions on Dp-branes defining on them noncommutative and homotopy associative structures
of the manifold. We shall clarify the role of their K-theory classes in the labeling of unequivalent
unstable Dp-brane configurations.

2 Open string description of Dp-brane
in parallelizable backgrounds

The bosonic part of the action for a fundamental open string ending on a Dp-brane in the
background of a NS-NS B field is

S =
1

4πα′

∫
Σ
gab(X)dXa ∧ �dXb

+
i

4πα′

∫
Σ
Bab(X)dXa ∧ dXb +

i

2πα′

∫
∂Σ
ds(∂sXaAa(X)), (1)

or

S =
1

4πα′

∫
Σ
gab(X)dXa ∧ �dXb +

i

4πα′

∫
Σ

(Bab(X) + Fab(X))dXa ∧ dXb, (2)

where F (X) = dA(X). The action (2) of the open string is invariant under both gauge trans-
formations for the one-form gauge field A → A + dΛ, B → B and for the two-form gauge field
B → B + dΛ, A→ A− Λ.

From now on we will consider the Dp-brane in the weakly curved backgrounds [7]. We shall
restrict ourselves to the case of maximal branes and assume that Σ has the topology of the disk.

In order to use (2) for calculation of the correlation functions it is useful to introduce Riemann
normal coordinates at the origin in which we have [7]

gab(x) = gab −
1
3
Rabcdx

cxd + · · · , (3)

Bab(x) = Bab +
1
3
Habcx

c +
1
4
∇dHabcx

cxd + · · · . (4)

With the help of (3) and (4) the action (2) can be represented in approximation in small curved
devivation from the flat closed string background

SB = S0 + S1, (5)

S0 =
1
2
gab

∫
Σ
dXa ∧ �dXb + i

∫
Σ

(Bab + Fab(X))dXa ∧ dXb, (6)

S1 =
i

6
Habc

∫
Σ
XadXb ∧Xc. (7)

Let us denote ω(x) = Bab + Fab(x) and consider

S0 + S1 =
1
2
gab

∫
Σ
dXa ∧ �dXb + i

∫
Σ
ωabdX

a ∧ dXb +
i

6
Habc

∫
Σ
XadXb ∧Xc. (8)

The simplest way to prove the noncommutativity of a Dp-brane is to quantize the open string
ending on it. In the zero slope limit α′ → 0 [1] the closed string metric g scales to zero and



604 I.M. Burban

since dω = 0 we can use the Cattaneo and Felder path integral representation of the Kontsevich
deformation quantization product [8] to calculate of the correlation functions corresponding
to S0. If we choose n functions f1, . . . , fn positioned at ordered points τ1, . . . , τn on the boundary
∂Σ of the string worldsheet, then path integral∫

[dX]e−S0(X)f1(X(τ1)) · · · fn(X(τn)) (9)

defines the n-point correlation functions corresponding S0 [6, 9]

〈f1 · · · fn〉 =
∫
V (B)dx(f1 ∗ · · · ∗ fn), (10)

V (B) =
√

detB and ∗ is the Moyal star product (we put F (x) = 0)

f � g = fg +
i

2
αab∂af∂bg −

i

8
αacαbd∂a∂bf∂c∂dg +O

(
α3

)
, α = B−1.

Analogously, the path integral∫
[dX]e−S0(X)−S1(X)f1(X(τ1)) · · · fn(X(τn)) �

∫
[dX]e−S0(X)[1 + ν + µ], (11)

ν = − i
6
Habcx

c

∫
Σ
dζa ∧ dζb, (12)

µ = − i
6
Habc

∫
Σ
ζadζb ∧ dζc, (13)

defines n-point correlation functions corresponding to S0 + S1 [7]. The integral (11) as a result
of the path integration is decomposed into three parts. The first part gives the nonperturbed
correlation function∫

f1 ∗ · · · ∗ fn, (14)

the second ones coming from the two-vertex ν gives

V +
∑
i<j

Vij , (15)

V =
1
3
Habcθbc

∫
xa ∗ (f1 ∗ · · · ∗ fn), (16)

Vij =
i

6
Habcθ

aãθab̃
∫
xc ∗ (f1 ∗ · · · ∗ ∂ãfi ∗ · · · ∗ ∂b̃fj ∗ · · · ∗ fn). (17)

The third part coming from the three-vertex µ is given by the expression∑
i<j<k

S

(
τji
τik

)
Wi<j<k, (18)

Wijk = − 1
12
Habcθ

aãθbb̃θcc̃
∫
f1 ∗ · · · ∗ ∂ãfi ∗ · · · ∗ ∂b̃fj ∗ · · · ∗ ∂c̃fk ∗ · · · ∗ fn, (19)

S(x) = 1− 2L(x), and L(x) is the Rogers dilogarithm [10].
It is useful to change the notation and represent functions as operators, the ∗ product as the

operator multiplication and integral
∫

as Tr:

xa → Xa, fi → Fi,

∫
V (ω) → Tr, θaã∂ãf → −i[Xa, F ], θab → −i[Xa, Xb].
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In these notations the formulas (16), (17), (19) are represented as

V = −2i
3
Habc Tr

(
XaXbXcF1 · · ·Fn

)
, (20)

Vij = − i
6
Habc Tr

(
XcF1 · · · [Xa, Fi] · · · [Xb, Fj ] · · ·Fn

)
, (21)

Wijk = − i

12
Habc Tr

(
F1 · · · [Xa, Fi] · · · [Xb, Fj ] · · · [Xc, Fk] · · ·Fn

)
. (22)

The foregoing construction can be generalized to the case where ωab = Bab + Fab(x).
As has shown in [7] to this end it is necessary to replace

Wijk → Wijk = Wijk −
1
n

(Wij −Wik +Wjk), (23)

Wij =
i

24
Habc Tr

(
F1 · · · [[Xa, Xb], Fi] · · · [Xc, Fj ] · · ·Fn

)
− i

24
Habc Tr

(
F1 · · · [Xa, Fi] · · · [[Xb, Xc], Fj ] · · ·Fn

)
. (24)

The correct generalization V of V (F1, . . . , Fn) [7] together with (23) gives the final result for
the n-point correlation function in this case

V =
∑
i,j,k

SijkWijk. (25)

3 Nonassociative algebra of functions
on worldvolume of Dp-brane

According to [8] the generalization of the symplectic form ωab = Bab to the one ω̃ab(x) =
ωab + Fab(x) gives in the zero slope limit [1] the correlation functions

〈f1(X(τ1)) · · · fn(X(τn))〉 =
∫
V (ω)dn+1xf1 ∗ · · · ∗ fn, (26)

where now ∗ is the Kontsevich star product (because dω(x) = 0) [11]

(f ∗ g)(x) = exp
[
i

2
αab

∂

∂xa
∂

∂yb

]
f(x)g(y)|x=y (27)

or

f ∗ g = fg +
i

2
αab∂af∂bg −

1
8
αacαbd∂a∂bf∂c∂dg

− 1
12
αad∂dαbc(∂a∂bf∂cg − ∂bf∂a∂cg) +O

(
α3

)
. (28)

Hence,

(f ∗ g) ∗ h− f ∗ (g ∗ h) =
1
6

(
αil∂lα

jk + αjl∂lα
ki + αkl∂lα

ij
)
∂if∂jg∂kh+O

(
α3

)
. (29)

If α is invertible and d
(
α−1

)
= dω = 0, from (29) it follows the associativity of the ∗ product.

As it was shown in the previous section the ∗ product (28) with ω̃ab(x) = Bab+ 1
3Habcx

c gives
the correlation functions defined by (26). But in this case the product becomes nonassociative
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(because dα̃ = H �= 0). It is denoted by •. The associator of the product • of functions is
defined by the equation

(f • g) • h− f • (g • h) =
1
6
αiaαjbαkcHabc∂if∂jg∂kh+ · · · . (30)

Because Habc �= 0 the product • is not associative. The two products ∗ and • given by the
Kontsevich expansion (28) in terms of ωab and ω̃ab(x) = ωab(x) + 1

3Habcx
c, respectively, are

connected between themselves by the relation

f • g = f ∗ g +
i

12
Habc

{
xc, [xa, f ]∗ ∗ [xb, g]∗

}
∗
, (31)

or in the operator form

F •G = FG− i

12
Habc

{
Xc[Xa, F ][Xb, G]

}
. (32)

One can find more general relation

f1 • (f2 • · · · • (fn−1 • fn) · · · ) = f1 ∗ f2 ∗ · · · ∗ fn +
∑
i<j

Vij . (33)

4 Homotopy associative structure of algebra
of functions on Dp-brane

With the help of the methods of the preceding section we can obtain the exact expressions of
the first correlation functions of the model. The two-point correlation function is given by

P2(f1, f2) =
∫
f1f2

(
1 +

1
3
Habcx

aθbc
)
. (34)

The three-point correlation function is written

P3(f1, f2, f3) =
∫
f1 ∗ f2 ∗ f3 +

1
3
BbcK

abc

∫
f1 ∗ ya ∗ f2 ∗ f3

− i

6
Kabc

∫
(−∂af1 ∗ yc ∗ ∂bf2 ∗ f3 − ∂af1 ∗ yc ∗ f2 ∗ ∂bf3 + f1 ∗ yc ∗ ∂a ∗ f2∂b ∗ f3) , (35)

where Kabc = θaãθbb̃θcc̃ and ya = Babx
b. Every n-point correlation function can be represented

in the operator form Pn[F1, . . . , Fn]. It depends on the n− 3 conformal moduli of the insertion
points τ1, . . . , τn of the functions F1, . . . , Fn. The one-point correlation function

P1[F ] = Tr (F ) +
2i
3
Habc Tr

(
XaXbXcF

)
(36)

defines operator P [F ] := P1[F ]. With the help of the operator P one can represent the correlation
functions

P1[F1] = P [O1(F1)(τ1)], P2[F1, F2] = P [O2(F1, F2)(τ1, τ2)],
P3[F1, F2, F3] = P [O3(F1, F2, F3)(τ1τ2τ3)],
P4[F1F2F3F4] = P [O4(F1, F2, F3, F4)(τ1, τ2, τ3, τ4)],

where

O1[F1] = F1, (37)
O2[F1, F2](τ1, τ2) = F1 • F2, (38)
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O3[F1, F2, F3](τi) = L(1− x)(F1 • F2) • F3 + L(x)F1 • (F2 • F3), x =
τ21
τ31

, (39)

O4[F1, . . . , F4](τi) = L

[(
1− x

y

)(
1− 1− y

1− x

)]
(F1 • F2) • (F3 • F4)

+ L

[(
1− x

y

)(
1− x

1− y

)]
((F1 • F2) • F3) • F4 + L

[
x

y

(
1− y

1− x

)]
F1 • (F2 • (F3 • F4))

+ L

[
x

y
(1− y)

]
(F1(•F2 • F3)) • F4 + L

[
x

(
1− y

1− x

)]
F1((•F2 • F3) • F4),

x =
τ21
τ41

, y =
τ31
τ41

. (40)

The function Q5[F1, F2, F3, F4, F5](x, y, z) is written by means of the sum of product of functions
F1, F2, F3, F4, F5 of 14 terms corresponding the different ways to insert parenthesis:

{(((F1 • F2) • F3) • F4) • F5, ((F1 • F2) • F3)(•F4 • F5), (F1 • F2)((•F3 • F4) • F5),
((F1 • F2) • (F3 • F4)) • F5, (F1 • (F2 • F3)) • F4) • F5, (F1 • (F2 • F3)) • (F4 • F5),
(F1 • ((F2 • F3) • F4)) • F5, F1 • (((F2 • F3) • F4) • F5), (F1 • (F2 • (F3 • F4)) • F5,

F1 • ((F2 • (F3 • F4)) • F5), F1 • (F2((•F3 • F4) • F5)), (F1 • F2) • (F3 • (F4 • F5)),
F1 • (F2 • (F3 • (F4 • F5))), F1 • ((F2 • F3) • (F4 • F5))}. (41)

For correlation functions of the higher order this procedure can be continued. There exists
conjecture that every correlation function Pn[F1, . . . , Fn] can be represented in the form

Pn[F1, . . . , Fn](τi) = P [On(F1, . . . , Fn)(τi)]. (42)

The functions On(F1, . . . , Fn)(τi) define mappings of the algebra of functions on the Dp-brane
onto itself. For example, the role of the mappings On we can see, for example, in the case O3.
The homotopy properties of the mapping

O3[F1, F2, F3](x) : [0, 1]× C∞(M)×3 → C∞M (43)

is ensured by the equation (39) and by the properties of the Rogers dilogarithm L(x):

L(x) + L(1− x) = 0, L(0) = 0, L(1) = 1. (44)

The mapping (43) connecting of the products (F1 •F2) •F3 and F • (F3 •F3), corresponding by
two different ways to stay the parenthesis in the product F1•F2•F3 is the homotopy equivalence.
The mapping O3(m) defines the A3 homotopy associative structure on the nonassociative algebra
C∞(M). It is obvious that homotopies On[F1, . . . , Fn] play the same role for higher product as
O3[F1, F2, F3] for F1 • F2 • F3.

The concepts of the homotopy spaces and the strong homotopy algebras are due to Sta-
sheff [12], where it is shown that a topological space has homotopy type of a loop space if and
only if it is strong homotopy associative one. The strong homotopy algebras has been found
at number of the unexpected places: in the topological conformal field theory, in Morse theory.
The “nonassociative manifold” is defined by means of a strong homotopy algebra of functions
on them.

5 Charges of Dp-branes

Soon after Polshinski’s identification of Dp-branes as nonperturbative objects in the perturbative
string theory that carry R-R charge, Witten [2] suggest that the D-branes charges should take
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the values in a K-theory of the spacetime. The groups K0(M), K1(M) are associated with
Dp-branes in IIA, IIB string theory, respectively. The presence of the B field introduces the
corrections in evaluation of the charges. The charges of the Dp-branes in the topological case
are dependent on the cohomolgy class [H] ∈ H3(M,Z) of the strength H = dB.

Let Kj(M, EH) = Kj(C0(M, EH)), j = 0, 1, denotes K•-groups of C∗-algebra C0(M, EH)
generated by the continuous sections vanishing on the infinity of the unique local trivial gauge
bundle EH whose structure depends on Dixmier–Douady invariant [H].

It is destinguished three cases:

1. [H] = 0, (B = 0, H = 0) [2].

EH is the gauge bundle with fibre Cn and gauge group AutCn = U(n).

2. [H] = 0, (B �= 0, H = 0) [15].

EH is the gauge bundle with fibre Mn(C), the matrix algebra of n× n dimension and the
gauge group AutMn(C) = SU(n)/Zn. In this case C0(M, EH) is called by the Azumaya
algebra.

3. [H] �= 0, (B �= 0, H �= 0) [15].

EH is the gauge bundle with fibre K, algebra of compact operators in a Hilbert space
and the gauge group AutK = lim

n→∞SU(n)/Zm. In this case C0(K, EH) is called by the
Rosenberg algebra.

In the bosonic string theory the physical interpretation of K-theory classes is less clear then in
type II superstring theory, since the branes carry no conserved charges and, likely, are unstable.
Conjecture is that these K-theory classes of the algebra of functions on the Dp-branes label
unequivalent unstable Dp-brane configurations.
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We consider in detail the Euclidean propagator in quantum-mechanical models which include
the existence of non-equivalent instantons. For such a purpose we resort to the semiclassical
approximation in order to take into account the fluctuations over the instantons themselves.
The physical effects of the multi-instanton configurations appear in terms of the alternate
dilute-gas approximation.

1 Introduction

The tunnelling phenomenon represents one of the most outstanding effects in quantum theory.
Starting from the pioneering work of Polyakov on the subject [1], the semiclassical treatment
of the tunnelling is presented in terms of the Euclidean version of the path-integral formalism.
The basis of this approach relies on the so-called instanton calculus. As usual the instantons
themselves correspond to localised finite-action solutions of the Euclidean equation of motion
where the time variable is essentially imaginary. In short, one finds the appropiate classical
configuration to evaluate the term associated with the quadratic fluctuations. On the other
hand the functional integration is solved by means of the gaussian scheme except for the zero-
modes which appear in connection with the translational invariances of the system. As expected
one introduces collective coordinates so that ultimately the gaussian integration is performed
along the directions orthogonal to the zero-modes. A functional determinant includes an infinite
product of eigenvalues so that a highly divergent result appears in this context. However one
can regularize the fluctuation factors by means of the conventional ratio of determinants.

Next let us describe in brief the instanton calculus for the one-dimensional particle as can
be found in [2]. Our particle moves under the action of a confining potential V (x) which yields
a pure discrete spectrum of energy eigenvalues. If the particle is located at the initial time
ti = −T/2 at the point xi while one finds it when tf = T/2 at the point xf , the well-known
functional version of the non-relativistic quantum mechanics allows us to write the transition
amplitude in terms of a sum over all paths joining the world points with coordinates (−T/2, xi)
and (T/2, xf ). If we incorporate the change t → −iτ , known in the literature as the Wick
rotation, the Euclidean formulation of the path-integral reads

〈xf | exp(−HT )|xi〉 = N(T )
∫

[dx] exp {−Se[x(τ)]} ,

where H represents as usual the Hamiltonian, the factor N(T ) serves to normalize the amplitude
while [dx] indicates the integration over all functions which fulfil the corresponding boundary
conditions. In addition the Euclidean action Se corresponds to

Se =
∫ T/2

−T/2

[
1
2

(
dx

dτ

)2

+ V (x)

]
dτ (1)
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whenever the mass of the particle is set equal to unity. Now we take care of the octic poten-
tial V (x) given by

V (x) =
ω2

2
(
x2 − 1

)2 (
x2 − 4

)2
.

When considering that ω2 % 1 the energy barriers are high enough to split the physical
system into a sum of harmonic oscillators. The particle executes small oscillations around each
minima of the potential located at x = ±1 and x̃ = ±2. The second derivative of the potential
at these points, i.e. V ′′(x = ±1) = 36ω2 and V ′′(x̃ = ±2) = 144ω2, gives the frequencies of the
harmonic oscillators at issue.

As regards the discrete symmetry x → −x which the potential V (x) enjoys, we observe
how the four minima are non-equivalent since no connection is possible between the two sets
represented by x = ±1 and x̃ = ±2. We would like to make the description of the tunnelling
phenomenon to describe how the symmetry cannot appear spontaneously broken at quantum
level. The expectation value of the coordinate x evaluated for the ground-state is zero as cor-
responds to the even character of the potential V (x).

2 The one-instanton amplitude

In this section we would like to discuss the transition amplitude between the points xi = 1 and
xf = 2. For such a purpose we need the explicit form of the topological configuration with xi = 1
at ti = −T/2 while xf = 2 when tf = T/2. To get the instanton xc1(τ) which connects the points
xi = 1 and xf = 2 with infinite euclidean time, we can resort to the well-grounded Bogomol’nyi
bound [3]. The situation is solved by integration of a first-order differential equation which
derives from the zero-energy condition for the motion of a particle under the action of −V (x).
In short

xc1(τ) = 2 cos

[
π

3
− 1

3
arccos

(
e−12ω(τ−τc) − 1
e−12ω(τ−τc) + 1

)]
, (2)

where τc indicates the point at which the instanton makes the jump. Equivalent solutions are
obtained by means of the transformations τ → −τ and xc1(τ) → −xc1(τ). The instanton
calculus allows the connection between adjoint minima of the potential. We notice therefore
the existence of a second instanton interpolating between xi = −1 and xf = 1. The classical
Euclidean action S1 associated with the topological configuration at issue is computed according
to (1) so that S1 = 22ω/15. Next the standard description of the one-instanton amplitude
between xi = 1 and xf = 2 takes over

〈xf = 2| exp(−HT )|xi = 1〉

= N(T )
{

Det
[
− d2

dτ2
+ ν2

]}−1/2
{

Det
[
−

(
d2/dτ2

)
+ V ′′[xc1(τ)]

]
Det [− (d2/dτ2) + ν2]

}−1/2

exp(−S1),

where as usual we have multiplied and divided by the determinant of a generic harmonic oscillator
of frequency ν. The so-called regularization term is interpreted as a new amplitude given by

〈xf = 0| exp(−HhoT )|xi = 0〉 = N(T )
{

Det
[
− d2

dτ2
+ ν2

]}−1/2

. (3)

Now the explicit evaluation of (3) is made according to the method explained in [4]. To sum
up

〈xf = 0| exp(−HhoT )|xi = 0〉 =
(ν
π

)1/2
(2 sinh νT )−1/2 .
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The existence of a zero-mode x0(τ) in the spectrum of the stability equation requires the
introduction of a collective coordinate. The zero eigenvalue reflects the translational invariance
of the system so that there is one direction in the functional space of the second variations which
results incapable of changing the action. The explicit form of the zero-mode x0(τ) corresponds
to the derivative of the topological configuration itself, i.e.

x0(τ) =
1√
S1

dxc1
dτ

.

The integral over the zero-mode becomes equivalent to the integration over the center of the
instanton τc. If the change of variables is incorporated our ratio of determinants corresponds
to [2] {

Det
[
−

(
d2/dτ2

)
+ V ′′[xc1(τ)]

]
Det [− (d2/dτ2) + ν2]

}−1/2

=

{
Det′

[
−

(
d2/dτ2

)
+ V ′′[xc1(τ)]

]
Det [− (d2/dτ2) + ν2]

}−1/2√
S1

2π
dτc,

where as usual Det′ stands for the so-called reduced determinant once the zero-mode has been
removed. Next we take advantage of the Gelfand–Yaglom method of computing ratios of de-
terminants where only the knowledge of the large-τ behaviour of the classical solution xc1(τ)
is necessary [2]. If Ô and P̂ represent a couple of second order differential operators whose
eigenfunctions vanish at the boundary, the quotient of determinants is given in terms of the
zero-energy solutions f0(τ) and g0(τ) so that

Det Ô
Det P̂

=
f0(T/2)
g0(T/2)

whenever the eigenfunctions fulfil the initial conditions

f0(−T/2) = g0(−T/2) = 0,
df0

dτ
(−T/2) =

dg0
dτ

(−T/2) = 1.

As the zero-mode g0(τ) of the harmonic oscillator of frequency ν is given by

g0(τ) =
1
ν

sinh[ν(τ + T/2)]

we need the form of the solution f0(τ) associated with the topological configuration written
in (2). Starting from x0(τ) we can write a second solution y0(τ) according to

y0(τ) = x0(τ)
∫ τ

0

ds

x2
0(s)

.

As regards the asymptotic behaviour of x0(τ) and y0(τ) we have that

x0(τ) ∼ C exp(−12ωτ) if τ →∞,

x0(τ) ∼ D exp(6ωτ) if τ → −∞

together with

y0(τ) ∼ exp(12ωτ)/24ωC if τ →∞,

y0(τ) ∼ − exp(−6ωτ)/12ωD if τ → −∞,

where the constants C and D can be obtained from the derivative of (2). Taking the linear
combination of x0(τ) and y0(τ) given by

f0(τ) = Ax0(τ) +By0(τ)
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the incorporation of the initial conditions allows us to write that

f0(τ) = x0(−T/2)y0(τ)− y0(−T/2)x0(τ).

Now we can extract the asymptotic behaviour of f0(τ), i.e.

f0(T/2) ∼ D

24ωC
exp(3ωT ) if T →∞.

Next we need to consider the lowest eigenvalue of the stability equation. From a physical
point of view we can explain the situation as follows: the derivative of the topological solution
does not quite satisfy the boundary conditions for the interval (−T/2, T/2). When enforcing
such a behaviour, the eigenstate is compressed and the energy shifted slightly upwards. In doing
so the zero-mode x0(τ) is substituted for the fλ(τ), i.e.

−d
2fλ(τ)
dτ2

+ V ′′[xc1(τ)]fλ(τ) = λfλ(τ)

whenever

fλ(−T/2) = fλ(T/2) = 0.

Going to the lowest order in perturbation theory we find

fλ(τ) ∼ f0(τ) + λ
dfλ
dλ

∣∣∣∣
λ=0

so that

fλ(τ) = f0(τ) + λ

∫ τ

−T/2
[x0(τ)y0(s)− y0(τ)x0(s)]f0(s)ds.

The asymptotic behaviour of the zero-modes together with the condition fλ(T/2) = 0 allow
us to write that

λ = 12ωD2 exp(−6ωT ).

The evaluation of this quotient of determinants requires a choice for the parameter ν so that
the frequency of the harmonic oscillator of reference is the average of the frequencies over the
non-equivalent minima located at x = 1 and x̃ = 2. In other words ν = 9ω. When considering
the well-grounded double-well model the two minima of the potential are equivalent so that the
aforementioned average is not necessary. However in this case the Gelfand–Yaglom method fixes
the frequency ν in order the ratio of determinants to be finite. In addition we have that (see (2))

C =
4
√

3ω√
S1

, D =
16ω

3
√
S1
.

Now we can write the one-instanton amplitude between the points xi = 1 and xf = 2, i.e.

〈xf = 2| exp(−HT )|xi = 1〉 =
(

9ω
π

)1/2

(2 sinh 9ωT )−1/2
√
S1K1 exp(−S1)ωdτc,

where K1 represents a numerical factor given by

K1 = 16

√
15
√

3
11π

.
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In doing so we get a transition amplitude just depending on the point τc at which the instanton
makes the jump. This regime seems plausible whenever√

S1K1 exp(−S1)ωT 	 1

a nonsense condition when T is large enough. However in this situation we can accommo-
date configurations constructed of instantons and anti-instantons which mimic the behaviour of
a trajectory just derived from the euclidean equation of motion.

To finish this section we take care of the second instanton of the octic model. The one-
instanton amplitude between xi = −1 and xf = 1 is based on the topological configuration
xc2(τ)

xc2(τ) = 2 cos
[
π

3
+

1
3

arccos
(
e12ωτ − 1
e12ωτ + 1

)]
whose classical euclidean action corresponds to S2 = 76ω/5. This second instanton reminds the
case of the double-well potential since connects equivalent minima of the potential. The form
of the ratio of determinants at issue should be{

Det′
[
−

(
d2/dτ2

)
+ V ′′[xc2(τ)]

]
Det [− (d2/dτ2) + 36ω2]

}−1/2

=
√
S2K2ωdτc,

where K2 corresponds to

K2 = 12

√
15

38π
.

3 The multi-instanton amplitude

In this section we discuss the complete amplitude which incorporates the physical effect of
a string of instantons and anti-instantons along the τ axis. The octic potential represents a more
complicated case since we need to include the whole scheme of non-equivalent instantons. We
wish to evaluate the functional integral by summing over all such configurations with n instantons
and anti-instantons centered at points τ1, . . . , τn whenever

−T
2
< τ1 < · · · < τn <

T

2
.

We can carry things further and assume as usual that the action of the string of instantons
and anti-instantons is given by the sum of the n individual actions. This method is well-known in
the literature where it appears with the name of dilute-gas approximation [5]. The translational
degrees of freedom yield an integral like∫ T/2

−T/2
ωdτn

∫ τn

−T/2
ωdτn−1 · · ·

∫ τ2

−T/2
ωdτ1 =

(ωT )n

n!
.

When considering the transition amplitude between xi = 1 and xf = 2 the total number n
of topological configurations must be odd. We can split n (odd) into the sum of two contri-
butions n1 (odd) and n2 (even) which represent the different possibilities associated with the
existence of non-equivalent instantons. Then we have n1 topological configurations just interpo-
lating between x = 1 and x̃ = 2 or x = −1 and x̃ = −2. Identical situation appears in connection
with n2 where now the initial and final points of the trip are x = ±1. Now we need to include
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a combinatorial factor F to count the different possibilities that we have of distributing the n in-
stantons. Except for the last step which corresponds to the instanton analyzed in the previous
section, we deal with a closed path of topological configurations starting and coming back to the
point x = 1. As regards the instantons (anti-instantons) belonging to the first type we observe
the formation of pairs due to the location of the four minima of the potential along the real
axis. Therefore we have (n1 − 1)/2 + n2 holes to fill bearing in mind that once the (n1 − 1)/2
pairs of instantons and anti-instantons are distributed no freedom at all remains to locate the
topological configurations associated with n2. In short

F =
(

(n1 − 1)/2 + n2

(n1 − 1)/2

)
.

At this point we can discuss the complete transition amplitude we are looking for in terms
of the so-called instanton density, i.e.

di =
√
SiKi exp(−Si), i = 1, 2.

To be precise

〈xf = 2| exp(−HT )|xi = 1〉

=
(

9ω
π

)1/2

(2 sinh 9ωT )−1/2
∑
n1,n2

[d1ωT ]n1 [d2ωT ]n2
F

n!
. (4)

The best way of dealing with the double sum of (4) should be the following

S =
∞∑
r=0

[d1ωT ]2r+1

(2r + 1)!

r∑
q=0

(
r + q
r − q

)
(d2/d1)2q,

where we can handle the sum S̃ concerning the variable q taking advantage of [6]

r∑
q=0

(−1)q
(
r + q

2q

)
= sec[arcsin(x/2)] cos[(2r + 1) arcsin(x/2)]

including the transformation x→ ix to obtain that

S̃ =
cosh[(2r + 1) arg sinh(s/2)]

cosh[arg sinh(s/2)]
,

where s stands for the relative instanton density given by s = d2/d1. In terms of a new variable z
defined as

z = arg sinh(s/2)

it is the case that a typical value of r provides us with the final expression for S̃, i.e.

S̃ =
exp[(2r + 1)z]√

4 + s2
.

In other words

S =
sinh[d1ωT exp(z)]√

4 + s2
.
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In doing so the complete amplitude between the points xi = 1 and xf = 2 reads

〈xf = 2| exp(−HT )|xi = 1〉 =
(

9ω
π

)1/2

(2 sinh 9ωT )−1/2 sinh[d1ωT exp(z)]√
4 + s2

.

To sum up, we have explained the method of dealing with quantum-mechanical models which
exhibit a more complicated structure of non-equivalent classical vacua in comparison with the
well-grounded cases of the double-well or periodic sine-Gordon potentials where the equivalence
of all the minima of V (x) is taken for granted [5]. As regards the octic potential the topological
solutions of the system inherit the property of non-equivalence. The global effect of the multi-
instanton configurations is discussed in terms of the alternate dilute-gas approximation.
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We consider tensor-bispinor equation, which describes doublets of particles with spin 3
2 ,

nonzero masses and anomalous interaction with electromagnetic field. Using this equation
we find the energy levels of the particle with spin 3

2 in constant magnetic field, crossed electric
and magnetic fields. We show that it is possible to introduce anomalous interaction in such
way that energy levels are real for all values of magnetic field and arbitrary gyromagnetic
ratio g.

1 Introduction

After the discovery of the acausality of the Rarita–Schwinger equation [1] various equations have
been adopted for the description of spin 3

2 particles. But these equations also have different
defects. Some of these defects are acausal propagation of solutions, complex energies, incorrect
value of the gyromagnetic ratio etc [2, 3, 4].

In the present paper we propose the equation for doublets of massive particles with spin 3
2

interacting with external electromagnetic field, which do not have many of defects enumerated
above. In our case the wave function of particle with spin 3

2 is described by irreducible anti-
symmetric tensor-bispinor of rank 2. We generalize results [5, 6, 7] for the case of linear and
quadratic anomalous interactions with electromagnetic field. Finally we consider the motion of
particle with spin 3

2 in crossed magnetic and electric fields.

2 Tensor-bispinor equation with minimal interaction
in electromagnetic field

Here we describe particles with spin 3
2 in terms of irreducible antisymmetric tensor-bispinor Ψµν

(Ψµν = −Ψνµ). In the case of free particle, Ψµν is a 24-component tensor-bispinor, Ψµν
α = −Ψµν

α ,
which has two tensorial indexes µ, ν = 0, 1, 2, 3 and a spinorial index α = 0, 1, 2, 3. We suppose
Ψµν
α satisfies the following covariant condition

γµγνΨµν = 0, (1)

where γµ are Dirac matrices acting on spinor index α which is omitted. Ψµν must also satisfy
the Dirac equation

(γλpλ −m)Ψµν = 0, (2)

where pµ = i ∂
∂xµ . Commuting γµγν and (γλpλ−m) we come to the secondary constraint for Ψµν

pµγνΨµν = 0. (3)

It is possible to show that conditions (1), (3) reduce the number of independent components
of Ψµν to 16. Equations (1)–(3) describe a doublet of particles with spin 3

2 and mass m [8, 9].
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In order to introduce interaction with electromagnetic field, we rewrite system (1)–(3) as
a single equation

(γλpλ −m)Ψµν +
1
12

(pµγν − pνγµ)[γρ, γσ]Ψρσ

− 1
12

[γµ, γν ](pργσ − pσγρ)Ψρσ +
1
24

[γµ, γν ]γλpλ[γρ, γσ]Ψρσ = 0. (4)

The minimal interaction can be introduced in equation (4) in standard way

pµ −→ πµ = pµ − eAµ, (5)

where Aµ is the vector-potential of electromagnetic field. As a result we obtain

(γλπλ −m)Ψµν +
1
12

(πµγν − πνγµ)[γρ, γσ]Ψσρ

− 1
12

[γµ, γν ](πργσ − πσγρ)Ψρσ +
1
24

[γµ, γν ]γλπλ[γρ, γσ]Ψρσ = 0. (6)

Contracting (6) with γµγν and with πµγν − πνγµ we come to the constraints

γµγνΨµν = 0, πµγνΨµν =
ie

m
(Fµν − γλγνFµλ)Ψµν , (7)

where Fµν is the tensor of electromagnetic field Fµν = i(pµAν − pνAµ). Substituting (7) in (6)
we obtain an equation for Ψµν

(γλπλ −m)Ψµν − ie

6m
(γµγν − γνγµ)(Fρλ − γσγλFρσ)Ψρλ = 0. (8)

Equation (8) is equivalent to introduced in [7]. It can be shown by using the substitution

Ψab =
1
2
εabc

(
Φ(1)
c + Φ(2)

c

)
, Ψ0c =

i

2

(
Φ(2)
c − Φ(1)

c

)
, (9)

(a, b, c = 1, 2, 3), Φ(1)
c and Φ(2)

c are bispinors.

3 Anomalous interaction

In this section we generalize equation (6) by adding the terms Tµνρσ Ψρσ and Tµνρσ T
ρσ
δε Ψδε [8, 9],

which are linear and quadratic in Fµν correspondingly, i.e. consider both minimal and anomalous
interactions [2]

(γλπλ −m)Ψµν +
1
12

(πµγν − πνγµ)[γρ, γσ]Ψρσ − 1
12

[γµ, γν ](πργσ − πσγρ)Ψρσ

+
1
24

[γµ, γν ]γλπλ[γρ, γσ]Ψρσ + Tµνρσ Ψρσ + T̃µνρσ T̃
ρσ
δε Ψδε = 0. (10)

We suppose the following relations are satisfied

γµT
µν
ρσ = 0, γµT̃

µν
ρσ = 0. (11)

It is possible to show [8, 9] that (11) are the necessary and sufficient conditions to obtain
consistent equation (3) whose solutions propagate with the velocity less then velocity of light.
Using Fµν , εµνρσ, gµν and γµ one can construct the basis antisymmetric tensor-bispinors linear
in Fµν :

Tµν1 ρσ = F νρ γ
µγσ − Fµρ γ

νγσ − F νσ γ
µγρ + Fµσ γ

νγρ,
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Tµν2 ρσ = Fµρ δ
ν
σ − F νρ δ

µ
σ − Fµσ δ

ν
ρ + F νσ δ

µ
ρ ,

Tµν3 ρσ = γνγλFρλδ
µ
σ − γµγλFρλδ

ν
σ − γνγλFσλδ

µ
ρ + γµγλFσλδ

ν
ρ

+ γργ
λF νλ δ

µ
σ − γργ

λFµλ δ
ν
σ + γσγ

λFµλ δ
ν
ρ − γσγ

λF νλ δ
µ
ρ ,

Tµν4 ρσ = (δµσδ
ν
ρ − δνσδ

µ
ρ )γαγβFαβ ,

Tµν5 ρσ = γ4(F̃µρ δ
ν
σ − F̃ νρ δ

µ
σ − F̃µσ δ

ν
ρ + F̃ νσ δ

µ
ρ ),

Tµν6 ρσ = γ4(Fµα ε
αν
ρσ − F ναε

αµ
ρσ + Fαρε

αµν
σ − Fασε

αµν
ρ),

Tµν7 ρσ = (γµγν − γνγµ)Fρσ + Fµν(γργσ − γσγρ),

Tµν8 ρσ = γνγλFρλδ
µ
σ − γµγλFρλδ

ν
σ − γνγλFσλδ

µ
ρ + γµγλFσλδ

ν
ρ

− γργ
λF νλ δ

µ
σ + γργ

λFµλ δ
ν
σ − γσγ

λFµλ δ
ν
ρ + γσγ

λF νλ δ
µ
ρ ,

Tµν9 ρσ = γ4(Fµα ε
αν
ρσ − F ναε

αµ
ρσ − Fαρε

αµν
σ + Fασε

αµν
ρ),

Tµν10 ρσ = (γµγν − γνγµ)Fρσ − Fµν(γργσ − γσγρ),

where F̃µν = 1
2ε
µν
ρσF ρσ.

Then the general form of Tµνρσ and T̃µνρσ is the following

Tµνρσ =
10∑
i=1

αiT
µν
i ρσ, T̃µνρσ =

10∑
i=1

α̃iT̃
µν
i ρσ,

where αi, α̃i are arbitrary constants.
Using (11) and asking for existence of real Lagrangian correspondingly to (3)

1 = Ψ̄µν(γλπλ −m)Ψµν +
1
12

Ψ̄µν(πµγν − πνγµ)[γρ, γσ]Ψρσ − 1
12

Ψ̄µν [γµ, γν ]

× (πργσ − πσγρ)Ψρσ +
1
24

Ψ̄µν [γµ, γν ]γλπλ[γρ, γσ]Ψρσ + Ψ̄µνT
µν
ρσ Ψρσ + Ψ̄µν T̃

µν
ρσ T̃

ρσ
δε Ψδε

we come to the conditions

α1 = α6 = −α9 =
λ

2
, α2 = 2λ, α3 = α8 =

λ

4
, α4 = α5 = α7 = α10 = 0,

where λ is an arbitrary constant. The analogous relations are valid for α̃i.
Substituting (9) into (3) we can express (3) in the Dirac-like form [7](

Γµπµ−m+
e

4m
(1− iΓ4)

((
i

4
(g − 2)[Γµ,Γν ] + gτµν

)
Fµν+ g1(SµνFµν)2

))
Ψ(1) = 0, (12)(

Γµπµ−m+
e

4m
(1 + iΓ4)

((
i

4
(g − 2)[Γµ,Γν ] + gτµν

)
Fµν+ g1(SµνFµν)2

))
Ψ(2) = 0, (13)

where g = 2
3

(
1− λ

2

)
, g1 = λ̃2

9 , Ψ(1) =
(

Φ(1)
1 ,Φ(1)

2 ,Φ(1)
3

)T
, Ψ(2) =

(
Φ(2)

1 ,Φ(2)
2 ,Φ(2)

3

)T
, Sµν =

i
4 [Γµ,Γν ] + τµν and τµν satisfy the relations τab = εabcτc; τ0a = iτa, τaτa = τ(τ + 1); [τa, τb] =
iεabcτc, a, b, c = 1, 2, 3.

Matrices Γµ and τa can be represented in the following forms; Γµ = γµ⊗I3, τa = I4⊗τ̂a, symbol
⊗ denotes the direct product of matrices, τ̂a are 3×3 matrices, realizing the representation D(3)
of the algebra AO(3), I3 and I4 are the unit 3× 3 and 4× 4 matrices correspondingly.

In the representation (9) constraints (7) are reduced to the forms

[(Γµπµ +m)(1 + iΓ4)(SµνSµν − 3)]Ψ(1) = 24mΨ(1), (14)

[(Γµπµ +m)(1− iΓ4)(SµνSµν − 3)]Ψ(2) = 24mΨ(2). (15)
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We see that the value g = 2 corresponds to the most simple form of equations (12)–(13).
Moreover, using Foldy–Wouthysen transformation [7] it can be shown that the Hamiltonian of
the equation (12) or (13) in quasiclassical approximation is Hermitian, when g = 2.

4 Particle with spin 3
2 in homogeneous magnetic field

Now let us use proposed equations to solve the problem of motion of charged particle with spin 3
2

in constant magnetic field.
We start with equation (12) which can be written in the following equivalent form(

πµπ
µ −m2 +

eg

2
SµνF

µν +
eg1
2

(SµνFµν)2
)

Ψ(1)
+ = 0, (16)

(SµνSµν − 15)Ψ(1)
+ = 0, (17)

Ψ(1)
− =

1
m

ΓµπµΨ(1)
+ , Ψ(1) = Ψ(1)

+ + Ψ(1)
− (18)

(the similar equation can be obtained for (13)).
The tensor Fµν corresponding to the constant and homogeneous magnetic field can be chosen

in the form

F0a = F23 = −F32 = F31 = −F13 = 0, a = 1, 2, 3, F12 = −F21 = H3 = H, H ≥ 0,

where H is the strength of the magnetic field.
The solution of equation (17), (18) is of the form

Ψ(1)
+ =



Φ(1)
3
2

0̂

1
m

(
ε+ 2

3Saπa
)

Φ(1)
3
2

− 2
3mK

3
2
a πaΦ

(1)
3
2


, (19)

where(
K

3
2
3

)
mm′

= δmm′

√
9
4
−m2;

(
K

3
2
1

)
mm′

± i

(
K

3
2
2

)
mm′

= ±δm±m′

√
3
2
∓m(m∓ 1)± 3m,

m,m′ = −3
2 ,−

1
2 ,

1
2 ,

3
2 ; 0̂ = (0, 0)T , Φ(1)

3
2

is a 4 component spinor which satisfies the equation

[
p2 + e2H2x2

2 − eH
(
gS3 + 2g1S2

3H + 2x2p1

)]
Φ(1)

3
2

=
(
ε2 −m2

)
Φ(1)

3
2

. (20)

So the problem of describing the motion of particle with spin 3
2 reduces to the solution of

equation (20).

Using the eigenvectors Ω
3
2
ν of matrix S3 (ν = −3

2 ,−
1
2 ,

1
2 ,

3
2 are eigenvalues of S3) we can

represent Φ 3
2

in the form

Φ(1)
3
2

= exp(ip1x1 + ip3x3)

3
2∑

ν=− 3
2

f
3
2
ν (x2)Ω

3
2
ν , (21)
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here f
3
2
ν (x2) are unknown functions, Ω

3
2
ν are 4 components spinor eigenvectors of S3 and Ω

3
2
ν are

4 components spinors

Ω
3
2

− 3
2

=


1
0
0
0

 , Ω
3
2

− 1
2

=


0
1
0
0

 , Ω
3
2
1
2

=


0
0
1
0

 , Ω
3
2
3
2

=


0
0
0
1

 .

Substituting (21) into (20) we come to the equation for f
3
2
ν(

− d2

dy2
+ y2

)
f

3
2
ν (y) = ηf

3
2
ν (y),

where y = 1√
eH

(eHx2 − p1) and η = 1
eH (ε2 −m2 − p2

3 + eH(νg + 2g1νH)). It is the equation

for the harmonics oscillator. So, requiring that function f
3
2
ν → 0 when x2 → ±∞, we obtain the

condition for η

η = 2n+ 1, n = 0, 1, 2, 3, . . . ,

then the energy levels for the particle with spin 3
2 in constant magnetic field can be written in

the following form

ε2 = m2 + p2
3 + eH(2n+ 1− ν(g + 2g1νH)), n = 0, 1, 2, 3, . . . . (22)

Function f
3
2
ν has the form

f
3
2
ν (x2) = exp

(
−eHx2 − p1)

2eH

)
hn

(
eHx2 − p1√

eH

)
,

where hn(y) = Hn(y)
||Hn(y)|| , Hn(y) are Hermitian polynomials.

We note that for the case of anomalous interaction linear in Fµν (i.e. for g1 = 0) ε2 can be
negative, provided n = p3 = 0, (νg − 1)eH < m2. Thus the difficulty with complex energies
indicated earlier for spin-1 equation [7] appears also for spin 3

2 equation [9]. However, this
difficulty is overcome introducing anomalous interaction quadratic in Fµν (i.e. choosing g1 �= 0
in (16)), namely

g1 ≤ −(3g − 2)2e
72m2

. (23)

5 The charged particle with spin 3
2

in electric and magnetic fields

In this case, as it was shown in [10, 11], we can confine our attention to the parallel and orthogonal
configurations of electric and magnetic fields (all others configurations can be obtained ones
mentioned in the above using Lorentz transformation)

a) E|| H. For constant, uniform E and H directed along z axis we may choose E = (0, 0, E),
H = (0, 0, H), Aµ = (x3E, x2H, 0, 0) and E �= H. After substituting (19) into (16), equation (16)
takes the form[

(p0 − ex3E)2 − (p1 − ex2H)2 − p2
2 − p2

3 −m2

+egS3(H − iE) + 2eg1S2
3(H − iE)2

]
Φ(1)

3
2

= 0. (24)
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Choosing Φ(1)
3
2

in the form [10, 11]

Φ(1)
3
2

= exp(ip1x1 − εx0)f(x2)

3
2∑

ν=− 3
2

gν(x3)Ω
3
2
ν , (25)

where f(x2) and gν(x3) are unknown functions, we can decompose equation (24) into two sepa-
rate equations for f(x2) and gν(x3). After solving these equations, Φ(1)

3
2

takes the form [10, 11]

Φ(1)
3
2

= exp(ip1x2 − εx0) exp
(
−(p1 + ex2H)2

2eH

)
hn(x2)

× exp
(
iz2

2

) 3
2∑

ν=− 3
2

Gjν(−iδν , −iz2)Ω
3
2
ν , j = 1, 2, (26)

where p1, ε = const, hn(x2) = Hn(x2)
||Hn(x2)|| , Hn(x2) are Hermitian polynomials, z = 1√

|eH|(ε −

ex2E), δν = m2−eνg(H−iE)−2eν2g1(H−iE)2

|eH| − (2n + 1), n = 0, 1, 2, 3, . . ., G1
ν

(
−iδν , −iz2

)
=

F
(

1
4(1− iδν), 1

2 ,−iz2
)

and G2
ν

(
−iδν ,−iz2

)
= F

(
1
4(1− iδν) + 1

2 ,
3
2 , iz

2
)√

iz2. F is the conf-
luent hypergeometric function. So, in this case, the energy levels are not quantized.

b) E⊥ H. Setting E = (0, E, 0), H = (0, 0, H), Aµ = (x2E, x2H, 0, 0) we obtain following
equation for Φ(1)

3
2

instead of (24)[
(p0 − ex2E)2 − (p1 − ex2H)2 − p2

2 − p2
3 −m2

+ eg(S3H − iS2E) + 2eg1(S3H − iS2E)2
]

Φ(1)
3
2

= 0. (27)

Representing Φ(1)
3
3

in the form

Φ(1)
3
2

= exp(ip1x1 + ip3x3 − iεx0)

3
2∑

ν=− 3
2

Pν(x2)Ω
3
2
ν , (28)

substituting (28) into (5) and using transformation P̂ν = Uνν′Pν′(x2) we come to the equation[
(ε− ex2E)2 − (p1 − ex2H)2 +

d2

dx2
2

− p2
3 −m2

]
P̂ν(x2) = eUνν′Λν′ν′′U−1

ν′′ν′′′P̂ν′′′(x2). (29)

where Λνν′ = eg(S3H − iS2E)νν′ + 2eg1(S3H − iS2E)2νν′ and Uνν′Λν′ν′′U−1
ν′′ν′′′ = λνδνν′ .

The solution of equation (29) has the following form

E = H : P̂ν(x2) = Φ(α− 2eHγ(p1 − ε)x2), (30)

where Φ is Airy function, α =
(
p2
3 + p2

1 +m2 − ε2
)
γ and γ =

(
4e2h2(p1 − ε)2

)− 1
3 . So, the energy

levels are not quantized

E �= H : P̂ν(x2) = exp
(
iz2

2

)
Gjν(−iaν , −iz2), j = 1, 2. (31)

Here

aν = −
(
p2
3 + p2

1 +m2 − ε2 + eλν
eη

+
(p1H − εE)2

eη3

)
, η =

√
E2 −H2,
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λν = −igνη − 2g1ν2η2, z =
√
eη

(
x2 +

p1H − εE

eη2

)
.

When E > H, iz2 of (31) becomes purely imaginary. So the energy levels are not quantized.
In the case E < H, iz2 becomes purely real and energy levels are quantized(

ε− p1E

H

)2

=
(
η′

H

)2 (
(2n+ 1)η′ + eλν + p2

3 +m2
)
, (32)

where η′ = −iη, n = 0, 1, 2, 3, . . .. If E → 0 we come to formula (22).
The exact form of matrix Uνν′ which must diagonalize matrix Λνν′ (Uνν′Λν′ν′′U−1

ν′′ν′′′ = λνδνν′′′ ,
λν = −igνη − 2g1ν2η2) can be obtained from the equation√(

3
2
− ν

)(
5
2

+ ν

)
Uνν′+1 + 2(ν − λν)Uνν′ +

√(
3
2

+ ν

)(
5
2
− ν

)
Uνν′−1 = 0,

ν = −3
2
,−1

2
,

1
2
,
3
2
, Uν, 5

2
= Uν,− 5

2
= 0.

6 Discussion

Thus we present the equation for particles with spin 3
2 interacting with electromagnetic field,

which is casual (it can be proved using approach proposed in [7]), i.e. their solutions are propa-
gated with the velocity smaller than the light velocity. We also find the solutions of this equation
in constant magnetic field and in static electric field inclined at an arbitrary angle to a static
magnetic field. As it was shown above the corresponding constant g1 can be chosen in such form
in which the energies levels of charged particle with spin 3

2 in constant magnetic field are not
complex for arbitrary values H and g.
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We survey some algebraic geometric aspects of mirror symmetry and duality in string theory.

1 Introduction

Symmetry principles always played an important role in mathematics and physics. Development
of these sciences in direction of string theory enlarged the context of symmetry considerations and
included in it the notion of duality. String theory has following ingredients: (i) base space (open
or closed string) Σ; (ii) target space M ; (iii) fields: X → Σ → M ; (iv) action S =

∫
L(X,ϕ).

where L is a Lagrangian [1]. Let G be a group such that G ⊃ SU(3)×SU(2)×U(1). Recall that
if L(GΦ) = L(Φ) then L is G-invariant, or G-symmetry. In string theory [1] one of the beautiful
symmetries is the radius symmetry R → 1/R of circle, known as T -duality [2, 3] and [4] and
references there in. Authors of papers [5, 6] conjectured that a similar duality might exist in
the context of string propagation on Calabi–Yau (CY) manifolds, where the role of the complex
deformation on one manifold gets exchanged with the Kähler deformation on the dual manifold.
A pair of manifolds satisfying this symmetry is called mirror pair, and this duality is called
mirror symmetry.

From the point of view of physicists which did the remarkable discovery, mirror symmetry is
a type of duality that means that we may take two types of string theory and compactify them in
two different ways and achieve “isomorphic” physics [7]. Or in the case of a pair of Calabi–Yau
threefolds (X,Y ) P. Aspinwall are said [8] that X and Y to be a mirror pair if and only if the
type IIA string compactified on X is “isomorphic” to the E8 ×E8 heterotic string compactified
on Y. In the case that X is Calabi–Yau threefold Y will be the product of a K3 surface and
elliptic curve. C. Vafa defines the notion of mirror of a Calabi–Yau manifold with a stable bun-
dle. Lagrangian and special Lagrangian submanifolds appear in this situation. Mathematicians
also work hard upon the problems of mirror symmetry, although it is difficult in some cases
to attribute to a researcher the identifier “mathematician” or “physicist”. V. Batyrev gives
construction of mirror pairs using Gorenstein toric Fano varieties and Calabi–Yau hypersurfaces
in these varieties [9]. M. Kontsevich in his talk at the ICM’94 gave a conjecturel interprata-
tion of mirror symmetry as a “shadow” of an equivalence between two triangulated categories
associated with A∞-categories [10]. His conjecture was proved in the case of elliptic curves by
A. Polishchuk and E. Zaslow [11]. The aim of the paper is to provide a short and gentle survey
of some algebraic aspects of mirror symmetry, duality and special lagrangian fibrations with
examples – without proofs, but with (a very restricted) guides to the literature.

2 Preliminaries

We shall use in contrast to [1] some another definition of Calabi–Yau (CY) manifold. The
definition based on the theorem of Yau who proved Calabi’s conjecture that a complex Kähler
manifold of vanishing first Chern class admits a Ricci-flat metric.
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Definition 1. A complex Kähler manifold is called Calabi–Yau (CY) manifold if it has vanishing
first Chern class.

Examples of the CY-manifolds include, in particular, elliptic curves E, K3-surfaces and their
products E ×K3.

2.1 Vector bundles

Local chart or a system of coordinates on a topological space M is a pair (U,ϕ) where U is an
open set in M and ϕ : U → Rm is a homeomorphism from U to an open set ϕ(U) in Rm. An
atlas Φ of dimension m is a collection of local charts whose domains cover M and such that if
(U,ϕ), (U1, ϕ1) ∈ Φ and U ∩ U1 �= 0 then the map

ϕ1 ◦ ϕ−1 : ϕ(U ∩ U1) → ϕ1(U ∩ U1)

is a Cr-diffeomorphism between open sets in Rm.
Fibre space is the object (E, p,B), where p is the continuous surjective (= on) mapping of

a topological space E onto a space B and p−1(b) is called the fibre above b ∈ B. Both the
notation p : E → B and (E, p,B) are used to denote a fibration, a fibre space, a fibre bundle or
a bundle.

Vector bundle is fibre space each fibre p−1(b) of which is endowed with the structure of a (finite
dimension) vector space V over skew-field K such that the following local triviality condition is
satisfied: each point b ∈ B has an open neighborhood U and a V -isomorphism of fibre bundles
φ : p−1(U) → U × V such that φ |p−1(b): p−1(b) → b× V is an isomorphism of vector spaces for
each b ∈ B. dimV is said to be the dimension of the vector bundle.

An Hermitian bundle over algebraic variety X consists of a vector bundle over X and a choice
of C∞ Hermitian metric on the vector bundle over complex manifold X(C), which is invariant
under antiholomorphic involution of X(C).

The tangent space to a differentiable manifold M at point a ∈M can be defined as the set of
tangency classes of smooth paths in M based at a. It will be denoted by TaM. Elements of TaM
are called tangent vectors to M at a.

The tangent bundle of M , denoted by TM , is the union of the tangent spaces at all the points
of M. By well known way TM can be made into a smooth manifold. Recall well known facts
about TM :

(i) if M is Cr then TM is Cr−1;
(ii) if M is C∞ or Cω then the same holds for TM ;
(iii) if M has dimension n then TM has dimension 2n;
(iv) there is a natural map p : TM → M called the projection map, taking TaM to a for

each a in M , i.e. p takes all tangent vectors at a to the point a itself. Thus p−1(a) = TaM (fibre
of the bundle over a). The projection p is a smooth map Cr−1 if M is Cr.

A vector field on a smooth manifold M is a map F : M → TM which satisfies p ◦ F = idM ,
where p is the natural projection TM → M. By its definition a vector field is a section of the
bundle TM.

2.2 Blow-ups

Blowing up is a well known method of constructing complex manifolds M. There are points on
the manifolds that are not divisors on M. Blow up is the construction that transforms points of
complex manifolds to divisors. For instance in the case of two dimensional complex manifolds
(complex surface) N it consists of replacing a point p ∈ N by a projective line CP(1) considered
as the set of limit directions at p.
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Example 1. Let π : M2 → C2 be the blow-up of C2 at the point 0 ∈ C2. ThenM2 is a two dimen-
sional complex manifold that defined by two local charts. In coordinates C2 = (z1, z2),CP(1) =
[l0, l1) manifold M2 is defined in CP(1)×C2 by quadratic equations zilj = zjli. Thus M2 is a line
bundle over Riemann sphere CP(1). π−1(0) = CP(1) is called the divisor of the blow up (the
exceptional divisor).

Recently a large class of CY orbifolds in weighted projective spaces was suggested. C. Vafa
have predicted and S. Roan [14] have computed the Euler number of all the resolved CY hyper-
surfaces in a weighted projective space WCP(4).

2.3 Vector bundles over projective algebraic curves

Let X be a projective algebraic curve over algebraically closed field k and g the genus of X.
Let VB(X) be the category of vector bundles over X. Grothendieck showed that for a rational
curve every vector bundle is a direct sum of line bundles. Atiyah classified vector bundles over
elliptic curves. The main result is

Theorem 1. Let X be an elliptic curve, A a fixed base point on X. We may regard X as an
abelian variety with A as the zero element. Let E(r, d) denote the the set of equivalence classes
of indecomposable vector bundles over X of dimension r and degree d. Then each E(r, d) may
be identified with X in such a way that det : E(r, d) → E(1, d) corresponds to H : X → X, where
H(x) = hx = x+ x+ · · ·+ x (h times), and h = (r, d) is the highest common factor of r and d.

Curve X is called a configuration if its normalization is a union of projective lines and all
singular points of X are simple nodes [16]. For each configuration X can assign a non-oriented
graph ∆(X), whose vertices are irreducible components of X, edges are its singular and an edge
is incident to a vertex if the corresponding component contains the singular point. Drozd and
Greuel have proved:

Theorem 2. 1. VB(X) contains finitely many indecomposable objects up to shift and isomor-
phism if and only if X is a configuration and the graph ∆(X) is a simple chain (possibly one
point if X = P1).

2. VB(X) is tame, i.e. there exist at most one-parameter families of indecomposable vector
bundles over X, if and only if either X is a smooth elliptic curve or it is a configuration and the
graph ∆(X) is a simple cycle (possibly, one loop if X is a rational curve with only one simple
node).

3. Otherwise VB(X) is wild, i.e. for each finitely generated k-algebra Λ there exists a full
embedding of the category of finite dimensional Λ-modules into VB(X).

Let X be an algebraic curve. How to normalize it? There are several methods, algorithms
and implementations for this purpose. A new algorithm and implementation is presented in [17].

2.4 Connection

Consider the connection in the context of algebraic geometry. Let S/k be the smooth scheme
over field k, U an element of open covering of S, OS the structure sheaf on S, Γ(U,OS) the
sections of OS on U . Let Ω1

S/k be the sheaf of germs of 1-dimension differentials, F be a coherent
sheaf. The connection on the sheaf F is the sheaf homomorphism

∇ : F → Ω1
S/k ⊗F ,

such that, if f ∈ Γ(U,OS), g ∈ Γ(U,F) then

∇(fg) = f∇(g) + df ⊗ g.
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There is the dual definition. Let F be the locally free sheaf, Θ1
S/k the dual to sheaf Ω1

S/k,

∂ ∈ Γ
(
U,Θ1

S/k

)
. The connection is the homomorphism

ρ : Θ1
S/k → EndOS

(F ,F), ρ(∂)(fg) = ∂(f)g + fρ(∂).

3 Moduli spaces in string theory

Mirror symmetry connects with geometrical deformations of complex and Kähler structures
on CY-manifolds. So we have to know moduli spaces of complex and Kähler structures on
CY-manifolds.

3.1 Moduli spaces

The theory of moduli spaces [12, 13] has, in recent years, become the meeting ground of se-
veral different branches of mathematics and physics-algebraic geometry, instantons, differential
geometry, string theory and arithmetics. Here we recall some underlieing algebraic structures
of the relation. In previous section we have reminded the situation with vector bundles on
projective algebraic curves X. On X any first Chern class c1 ∈ H2(X,Z) can be realized
as c1 of vector bundle of prescribed rank (dimension) r. How to classify vector bundles over
algebraic varieties of dimension more than 1? This is one of important problems of algebraic
geometry and the problem has closed connections with gauge theory in physics and differential
geometry. Mamford [12] and others have formulated the problem about the determination of
which cohomology classes on a projective variety can be realized as Chern classes of vector
bundles? Moduli spaces are appeared in the problem. What is moduli? Classically Riemann
claimed that 3g− 3 (complex) parameters could be for Riemann surface of genus g which would
determine its conformal structure (for elliptic curves, when g = 1, it is needs one parameter).
From algebraic point of view we have the following problem: given some kind of variety, classify
the set of all varieties having something in common with the given one (same numerical invariants
of some kind, belonging to a common algebraic family). For instance, for an elliptic curve the
invariant is the modular invariant of the elliptic curve.

Let B be a class of objects. Let S be a scheme. A family of objects parametrized by the S is
the set of objects

Xs : s ∈ S, Xs ∈ B

equipped with an additional structure compatible with the structure of the base S. Parameter
varieties is a class of moduli spaces. These varieties is a very convenient tool for computer
algebra investigation of objects that parametrized by the parameter varieties. We have used the
approach for investigation of rational points of hyperelliptic curves over prime finite fields [21].

Example 2. Let ω1, ω2 ∈ C, Im (ω1/ω2) > 0, Λ = nω1 +mω2, n,m ∈ Z be a lattice. Let H be
the upper half plane. Then H/Λ = E be the elliptic curve. Let

y2 = x3 + ax+ b = (x− e1)(x− e2)(x− e3), 4a3 + 27b2 �= 0,

be the equation of E. Then the differential of first kind on E is defined by formula

ω = dx/y = dx/
(
x3 + ax+ b

)1/2
.

Periods of E:

π1 = 2
∫ e2

e1

ω, π2 = 2
∫ e3

e2

ω.

The space of moduli of elliptic curves over C is A1(C). Its completion is CP(1).
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For K3-surfaces the situation is more complicated but in some case is analogous [18].

Theorem 3. The moduli space of complex structure on market K3-surface (including orbifold
points) is given by the space of possible periods.

Some computational aspects of periods and moduli spaces are considered in author’s notes [22,
23].

4 Some categorical constructions

Let (X,ω,Ω) be a complex manifold (real dimension =2n) with

ωn/n! = (−1)n(n−1)/2(i/2)n · Ω ∧ Ω.

It is said that a n-dimensional submanifold L ⊂ X is special Lagrangian (s-lag) ⇔

Re (Ω|L) = Vol|L ⇔ ω|L = 0, Im (Ω|L) = 0.

Example 3. Let X be an elliptic curve E. Then ω = c(i/2)dz ∧ dz, Ω = cdz. S-lag L ⊂ E are
straight lines with slope determined by arg c.

Every compact symplectic manifold Y , ω with vanishing first Chern class, one can associate
a A∞-category whose objects are essentially the Lagrangian submanifolds of Y , and whose
morphisms are determined by the intersections of pairs of submanifolds. This category is called
Fukaya’s category and is denoted by F(Y ) [10]. Let (X,Y ) be a mirror pair. Let M be any
element of the mirror pair. The bounded derived category Db(M) of coherent sheaves on M is
obtained from the category of bounded complexes of coherent sheaves on M [19]. In the case of
elliptic curves A. Poleshchuk and E. Zaslov have proved [11]:

Theorem 4. The categories Db(Eq) and F0(Eq) are equivalent.

Recently A. Kapustin and D. Orlov have suggested that Kontsevich’s conjecture must be
modified: coherent sheaves must be replaced with modules over Azumaya algebras, and the
Fukaya category must be “twisted” by closed 2-form [20].
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Using the self-consistent renormalization (SCR), a careful study of complicated tangle of
problems associated on the one hand with renormalizations and on the other with symme-
tries conservation, their breaking, the Ward identities (WIs) behavior, the Schwinger terms
contributions (STCs), and quantum anomalies is performed for some set of UV-divergent
Feynman amplitudes (FAs) connected with general mass-anysotropic spinor diangles in any
space-time dimension n = 2r + δn, δn = 0, 1. It is shown that the WIs involving SCR FAs
do retain (or imitate) the canonical WIs (CWIs). In this context quantum anomalies reveal
themselves either as an oversubtraction effect for a non-chiral case and for chiral limits (in
these cases the STCs are zero) or as nonzero STCs for the chiral case. Effective formulae for
general quantum corrections (QCs) to the CWIs and primitive “daughter reduction identi-
ties” (DRIs) are derived for any dimension n. For an anysotropic case (m1 �= m2, ml �= 0),
the QCs are the zero degree homogeneous functions of masses and are expressed in terms of
hypergeometric functions 2F1. For the degenerate nonchiral case (m1 = m2 = m �= 0), these
QCs either are equal to zero for vector WIs or reduce to mass-independent expressions for
axial-vector WIs. The Schwinger-Johnson anomaly for n = 2 is a particular case of general
formulas obtained. Conditions under which the nonzero STCs exist are obtained and the
role of the STCs in the QCs are revealed. The behavior of FAs and QCs in the chiral case
(m = 0) and in the symmetric chiral limit (m → 0) is different. In the chiral case only the
“left-handed vector” current may be conserved and hence it may be more fundamental than
vector or axial-vector currents.

1 Introduction

In the perturbation theory, quantum anomalies manifest themselves as breakdown of the canoni-
cal WIs (CWIs) at a level of regular (finite) values of FAs involved in them. Therefore, modes
and interpretations of these CWIs violations are extremely important as for the quantum field
theory itself and for physical applications [1–8]. Despite the large number of papers which
have been written on quantum anomalies, surprisingly many facets of this problem have not
been adequately described, if at all. We hope to clarify some obscure points in these violations
by employing the SCR [9–14] to general spinor diangle FAs, being very important objects for
physical applications [15, 16], and to illustrate possibilities of the SCR. Subjects which will be
raised here are: i) mass dependence of quantum anomalies; ii) distinction between chiral and
chiral limit anomalies; iii) relation between the Schwinger terms contributions and quantum
anomalies. Previously, we have carried out similar investigation for the spinor triangle FAs [17–
22] in which new features of quantum anomalies have been exhibited. Recall that the SCR is
an effective realization of the Bogoliubov–Parasiuk R-operation [23–26] which is complemented
with recurrence, compatibility, and differential relations fixing a renormalization arbitrariness
of the R-operation in some universal way based on mathematical properties of FAs only.
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2 General spinor diangle amplitudes and their identities

2.1. The main Feynman amplitude corresponding to the spinor diangle graph of the most
general kind (different masses, arbitrary Clifford structure of vertices, n-dimensional world with
(q, p)-signature of a nondegenerate metric g, where q and p are respectively the number of
negative and positive squares in g, i.e. q + p = n = 2r + δn, δn = 0, 1) looks as follows:

Iγ1γ2(m, k) :=
∫ ∞
−∞

(dnp) δ(p, k)
tr[γ1(m1 + p̂1)γ2(m2 + p̂2)]

(µ1 − p2
1)(µ2 − p2

2)
,

(dnp) := dnp1d
np2, p̂l := γσplσ, m := (m1,m2), k := (k1, k2),

δ(p, k) := δ1(−k1 + p2 − p1) δ2(−k2 + p1 − p2), µl := m2
l − iεl. (1)

The matrices γi, γσ, Ig, act in the Ng-dimensional space of the faithful representation π(g)
of the lowest dimension for the Clifford algebra Cl(g)K, K = R or C, with γσ ∈ Λ1(g), σ =
1, . . . , n, being the generating elements of the Cl(g)K-algebra in its matrix representation π(g),
i.e. γσγτ+γτγσ = 2gστIg; γi, i = 1, 2, are, as a rule, some k-degree (k = 0, 1, . . . , n) homogeneous
elements of the Cl(g)K-algebra in the π(g)-representation or some linear combination of such
elements; Ig is the Ng-dimensional unit matrix. The n-degree element γ∗ ∈ Λn(g), i.e. the dual
conjugation matrix, with the obvious but important properties:

γ∗ := γ1γ2 · · · γn, (γ∗)2 = ε(g)Ig, γσγ∗ = (−1)n+1γ∗γσ, σ = 1, . . . , n,

ε(g) := (−1)q(−1)n(n−1)/2 = (−1)κ(κ+1)/2, κ := (q − p) (mod 8), (2)

is the natural analog of the Dirac γ5-matrix. For more details on properties of the γ∗-matrix and
on the self-consistent version of the dimensional regularization with the γ∗-matrix see [27, 28].

2.2. The UV-divergent FAs (1) satisfy formally the canonical Ward identities (CWIs):

k1µI
(γµγ)γ2(m, k) = Dγ̇γ2

1 (m, k)
= (−1)π1P γγ21 (m, k)− P γγ22 (m, k) + (m2 − (−1)π1m1) Iγγ2(m, k),

k2αI
γ1(γαγ)(m, k) = Dγ1γ̇

2 (m, k)
= (−1)π2P γ1γ2 (m, k)− P γ1γ1 (m, k) + (m1 − (−1)π2m2) Iγ1γ(m, k). (3)

Here the quantities Dγ̇γ2
1 (m, k), Dγ1γ̇

2 (m, k), P γ
′
1γ

′
2

l (m, k), l = 1, 2, γ′i = γi or γ, i = 1, 2, are
similar to the main amplitude Iγ1γ2(m, k) and differ from it only in polynomials of the integrand:

Iγ1γ2(m, k) ←→ tr [Iγ1γ2(m, p)] := tr [γ1 (m1 + p̂1) γ2 (m2 + p̂2)] ; (4)

Dγ̇γ2
1 (m, k) ←→ tr

[
Dγ̇γ21 (m, p)

]
:= (p2 − p1)µtr

[
I(γµγ)γ2(m, p)

]
,

Dγ1γ̇
2 (m, k) ←→ tr

[
Dγ1γ̇2 (m, p)

]
:= (p1 − p2)αtr

[
Iγ1(γαγ)(m, p)

]
; (5)

P
γ′1γ

′
2

1 (m, k) ←→ tr
[
Pγ

′
1γ

′
2

1 (m, p)
]

:= tr
[
γ′1

(
m2

1 − p2
1

)
γ′2 (m2 + p̂2)

]
,

P
γ′1γ

′
2

2 (m, k) ←→ tr
[
Pγ

′
1γ

′
2

2 (m, p)
]

:= tr
[
γ′1 (m1 + p̂1) γ′2

(
m2

2 − p2
2

)]
. (6)

In equations (3) the vector CWIs (γ = Ig) and the axial-vector CWIs (γ = γ∗) are represented
in the uniform manner. The factors

(−1)πi =

{
1, if γ = Ig, ∀ n, or γ = γ∗, n = 2r + 1;

−1, if γ = γ∗, n = 2r,

stem from the commutation relations γσγ = (−1)πγγσ, σ = 1, . . . , n.
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The quantities Dγ̇γ2
1 (m, k), Dγ1γ̇

2 (m, k), correspond to divergencies of current density T-pro-
ducts 〈0| ∂1µT (JO1(x1)JO2(x2)) |0〉, 〈0| ∂2αT (JO1(x1)JO2(x2)) |0〉, where ∂iσ ≡ ∂/∂xσi , JOi(xi)=
:Ψ(xi)OiΨ(xi) :, Oi := hi ⊗ γi, and hi = τi ⊗ λi are matrices specifying flavor-color structure of
current densities. The quantities P γ

′
1γ

′
2

l (m, k) are associated with current density commutators
and consequently with possible contributions of the Schwinger terms in them.

2.3. Let us consider the obvious identities:

P γ1γ2lε (m, k) = P
γ1γ2
lε (m(l), k), l = 1, 2, m(1) ≡ m2, m(2) ≡ m1, (7)

∂

∂µl
P γ1γ2lε (m, k) = 0, l = 1, 2, (8)

in which the simple idea of cancelling the equal factors in factorized polynomials in numerators
and the denominator of integrands is used. Therefore, these identities are named as reduction
identities (RIs). The nonreduced FAs in the l.h.s. of equation (7) are defined as:[

P γ1γ21ε (m, k)
P γ1γ22ε (m, k)

]
:=

∫ ∞
−∞

(dnp) δ(p, k)
(µ1 − p2

1)(µ2 − p2
2)

[
tr

[
γ1

(
µ1 − p2

1

)
γ2 (m2 + p̂2)

]
tr

[
γ1 (m1 + p̂1) γ2

(
µ2 − p2

2

)]] (9)

and the reduced FAs in the r.h.s. of equation (7) are:[
P
γ1γ2
1ε (m(1), k)

P
γ1γ2
2ε (m(2), k)

]
:=

∫ ∞
−∞

(dnp) δ(p, k)

[
tr [γ1γ2 (m2 + p̂2)]/

(
µ2 − p2

2

)
tr [γ1 (m1 + p̂1) γ2]/

(
µ1 − p2

1

)] , (10)

which are well known as “tadpole” amplitudes.
The RIs (7) are closely related to the CWIs (3). Indeed, due to equation (6) the amplitudes

P
γ′1γ

′
2

l (m, k) involving in equations (3) are very similar to the nonreduced FAs in equation (9).
The only difference between them is the iεl-terms in numerator polynomials of integrands in
equation (9). But exactly these terms permit to perform identical cancellations of factors and
to obtain independent on µl = m2

l − iεl expressions that are reflected clearly in equation (8).
The RIs (7) induce primitive daughter RIs (DRIs) via decompositions involving: i) the nu-

meric Clifford tensors tr[γ1γ2m2], tr[γ1γ2γσ], tr[γ1m1γ2], tr[γ1γσγ2]; ii) the irreducible tensor
structures constructed by means of independent external momenta (e.g., k2, or k1). Altogether
for general spinor diangles, there are 4 primitive DRIs taken two ∀ l = 1, 2.

3 General spinor diangle amplitudes and identities in the SCR

3.1. The amplitude Iγ1γ2(m, k) has the divergence index ν = n − 2 whereas the amplitudes
Dγ̇γ2

1 (m, k), Dγ1γ̇
2 (m, k), P γ

′
1γ

′
2

l (m, k), P γ1γ2lε (m, k), P γ1γ2
lε (m(l), k), l = 1, 2, have the divergence

index ν + 1 = n − 1. The regular values for all of them are obtained according to the SCR [9,
10, 11, 13]. Some of them have be given in [29] as the net results. Here once again, we present
only some of them, but in such a form permitting to evaluate all unavailable amplitudes.

So, the regular values (RνI)γ1γ2(m, k), (Rν+1D1)γ̇γ2(m, k), and (Rν+1P1ε)γ1γ2(m, k) of the
amplitudes given by equations (1), (5), and (9) have the following α-parametric integral repre-
sentation, shown here in a form best suitable for general FAs: (RνI)γ1γ2(m, k)

(Rν+1D1)γ̇γ2(m, k)
(Rν+1P1ε)γ1γ2(m, k)

 = (2π)nδ(k)b(g)
∫

Σ1

dµ(α)
∆n/2

3∑
s=0

[s/2]∑
j=0

 tr[Iγ1γ2sj ](RνF)sj
tr[Dγ̇γ21;sj ](R

ν+1F)sj
tr[Pγ1γ21ε;sj ](R

ν+1F)sj

 . (11)
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The integration measure dµ(α), the integration region Σ1, the metric dependent constant b(g),
and the overall δ-function δ(k) are defined as

dµ(α) := δ(1− α1 − α2)dα1 dα2, Σ1 := {αl|αl ≥ 0, ∀ l, α1 + α2 = 1},
b(g) := (πn/2ip)/(2π)n, δ(k) := δ(−k1 − k2), (12)

and p is the number of positive squares in a space-time metric g.
The explicit form of the basic functions (RνF)sj , (Rν+1F)sj , and the determining numbers

νsj , λsj , ν1
sj , λ

1
sj , and ω appearing in them are as follows:

(RνF)sj := M ω+j
ε Γ(λsj)/Γ(2 + νsj)Z

1+νsj
ε 2F1(1, λsj ; 2 + νsj ; Zε),

νsj := [(ν − s)/2] + j, λsj := − ω − j + 1 + νsj , ω := n/2− 2, (13)

(Rν+1F)sj := M ω+j
ε Γ(λ1

sj)/Γ(2 + ν1
sj)Z

1+ν1
sj

ε 2F1(1, λ1
sj ; 2 + ν1

sj ; Zε),

ν1
sj := [(ν + 1− s)/2] + j, λ1

sj := − ω − j + 1 + ν1
sj , ω := n/2− 2. (14)

The [s/2], [(ν − s)/2], and [(ν + 1 − s)/2] in equations (11), (13)–(14) are integral parts of
the numbers s/2, (ν − s)/2, and (ν + 1 − s)/2 respectively. The subscripts (s, j) of the basic
functions (RνF)sj and (Rν+1F)sj just mean that these functions are attached to the homogeneous
k-polynomials Iγ1γ2sj , Dγ̇γ21;sj , and Pγ1γ21ε;sj of the degree s− 2j in external momenta. The latter are

α-images of the homogeneous p-polynomials Iγ1γ2s (m, p), Dγ̇γ21;s (m, p), and Pγ1γ21ε;s (m, p) of the
degree s appearing in Iγ1γ2(m, p), Dγ̇γ21 (m, p), and Pγ1γ21ε (m, p) given by equations (4)–(6) and
equation (9):

Iγ1γ200 := γ1m1γ2m2, Pγ1γ21ε;00 := γ1µ1γ2m2,

Iγ1γ210 := γ1Ŷ1γ2m2 + γ1m1γ2Ŷ2, Pγ1γ21ε;10 := γ1µ1γ2Ŷ2,

Iγ1γ220 := γ1Ŷ1γ2Ŷ2, Pγ1γ21ε;20 := γ1(−Y 2
1 )γ2m2,

Iγ1γ221 := (−1/2)X12γ1γ
σγ2γσ, Pγ1γ21ε;30 := γ1(−Y 2

1 )γ2Ŷ2,

Iγ1γ230 = Iγ1γ231 := 0; Pγ1γ21ε;21 := (−1/2)(−nX11)γ1γ2m2,

Dγ̇γ21;00 = Dγ̇γ21;21 := 0, Pγ1γ21ε;31 := (−1/2)[(−nX11)γ1γ2Ŷ2 + (−2X12)γ1γ2Ŷ1],

Dγ̇γ21;sj := (Y2 − Y1)µI(γµγ)γ2
s−1,j , if (s, j) �= (0, 0), (2, 1); µ1 := m2

1 − iε1. (15)

The α-parametric functions Zε ≡ Zε(α,m, k), Mε ≡ Mε(α,m), A ≡ A(α, k), ∆ ≡ ∆(α), Yl ≡
Yl(α, k) and Xll′ ≡ Xll′(α) incoming in equations (11)–(15) have the form:

Zε := A/Mε, Mε := α1µ1 + α2µ2, A :=
α1α2

∆
k2

2 = α1Y
2
1 + α2Y

2
2 , ∆:= α1 + α2,

Y1 := β2 k2, Y2 := −β1 k2, Xll′ := ∆−1, l, l′ ∈ {1, 2}, Y2 − Y1 = −k2 = k1,

Y 2
l = −A

∆
+ (1− βl)k2

2, Y1 · Y2 = −A
∆
, αlY

2
l = (1− βl)A, βl :=

αl
∆
, l = 1, 2. (16)

Similar considerations for the reduced amplitudes (10) give rise to the zero values:

(Rν+1P lε) γ1γ2(m(l), k) = 0, ∀ n ≥ 1, l = 1, 2, (17)

confirming once again but in another way the well known result for “tadpole” amplitudes.
3.2. In the SCR, there exist the following compatibility and recurrence relations:

(RνF)sj = Fsj := M ω+j
ε (1− Zε)ω+j Γ(−ω − j), if νsj ≤ −1, (18)

(RνF)sj = (Rν+1F)s+1,j , (19)
Mε (RνF)00 −A (RνF)20 + (ω + 1) (RνF)21 = 0,

Mε (Rν+1F)10 −A (Rν+1F)30 + (ω + 1) (Rν+1F)31 = 0, (20)
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between the basic functions (RνF)sj , (Rν+1F)sj . In fact, due to compatibility relations (19)
both recurrence relations (20) are different forms of the common one.

3.3. From equations (11), (15), and (16) follow more specific formulae for our quantities. So,
the regular value of the main FA defined by equation (1) takes the form:

(RνI)γ1γ2(m, k) = (2π)nδ(k) b(g)
∫

Σ1

dµ(α)
∆n/2

{
tr[γ1m1γ2m2](RνF)00

+ tr[γ1k̂2γ2m2β2 − γ1m1γ2k̂2β1](RνF)10

+ tr[γ1k̂2γ2k̂2](−β1β2)(RνF)20 + tr[γ1γ
σγ2γσ](−1/2)∆−1(RνF)21

}
. (21)

The regular values of convolutions and divergence contributions involved in the CWIs (3) and
defined by equations (5) and (1) look as follow:[

k1µ(RνI)(γ
µγ)γ2(m, k)

k2α(RνI)γ1(γαγ)(m, k)

]
=

[
(Rν+1D1)γ̇γ2(m, k)

(Rν+1D2)γ1γ̇(m, k)

]
= (2π)nδ(k) b(g)

∫
Σ1

dµ(α)
∆n/2

(22)

×
[

tr[γγ2](Rν+1D1){0}(m,α, k)− tr[γγ2k̂2](Rν+1D1){1}(m,α, k)

tr[γ1γ](Rν+1D2){0}(m,α, k) + tr[γ1k̂2γ](Rν+1D2){1}(m,α, k)

]
, (23)

(Rν+1Di){0}(m,α, k) := k2
2 [miβi − (−1)πimjβj ](Rν+1F)20, i, j ∈ {1, 2}, j �= i; (24)

(Rν+1Di){1}(m,α, k) := m1m2(Rν+1F)10 − (−1)πi(A/∆)(Rν+1F)30
+ (−1)πi(n/2− 1)∆−1(Rν+1F)31
= [m1m2 − (−1)πi(Mε/∆) ](Rν+1F)10, i = 1, 2. (25)

The regular values of the nonreduced FAs in the RIs (7) defined by equation (9) take the form:[
(Rν+1P1ε)γ1γ2(m, k)

(Rν+1P2ε)γ1γ2(m, k)

]
=

[
tr[γ1γ2]m2(Rν+1P1ε){0} − tr[γ1γ2k̂2](Rν+1P1ε){1}(m, k)

tr[γ1γ2]m1(Rν+1P2ε){0} + tr[γ1k̂2γ2](Rν+1P2ε){1}(m, k)

]
, (26)[

(Rν+1Plε){0}(m, k)

(Rν+1Plε){1}(m, k)

]
:= (2π)nδ(k) b(g)

∫
Σ1

dµ(α)
∆n/2

[
(Rν+1Plε){0}(m,α, k)

(Rν+1Plε){1}(m,α, k)

]
, (27)

(Rν+1Plε){0}(m,α, k) := µl(Rν+1F)00 − Y 2
l (Rν+1F)20 + (n/2)∆−1(Rν+1F)21

= (Rν+1Pl){0}(m,α, k)− iεl(Rν+1F)00; (28)

(Rν+1Plε){1}(m,α, k) := βlµl(Rν+1F)10 − βlY
2
l (Rν+1F)30

+ [ (n/2)βl − (1− βl) ]∆−1(Rν+1F)31 = (Rν+1Pl){1}(m,α, k)− iεlβl(Rν+1F)10. (29)

The first equality in equation (22) holds due to compatibility relations (19). The second expres-
sion of equation (25) follows from the first one due to the second recurrence relation (20).

3.4. The tensor structure of regular values (Rν+1P lε) γ1γ2(m(l), k), l = 1, 2, is the same as
that of (Rν+1Plε) γ1γ2(m, k), l = 1, 2, given by the r.h.s. of equation (26), and consequently from
equations (7), (17), and (26) we obtain four very practical primitive DRIs at the regular level:

(Rν+1Plε){0}(m, k) = 0, (Rν+1Plε){1}(m, k) = 0, ∀ n ≥ 1, l = 1, 2, (30)

where the l.h.s. are given by equations (27)–(29).
Similarly, the regular values (Rν+1Pl) γ

′
1γ

′
2(m, k), l = 1, 2, of FAs involved in CWIs (3) and

defined by equations (6) and (1) are almost the same as the (Rν+1Plε) γ1γ2(m, k), l = 1, 2, given
by equations (26)–(29). The connection between them is determined completely by the second
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expressions of equations (28)–(29). Taking into account equations (30) one obtains very simple
representations:[

(Rν+1Pl){0}(m, k)

(Rν+1Pl){1}(m, k)

]
:= (2π)nδ(k) b(g)

∫
Σ1

dµ(α)
∆n/2

[
iεl(Rν+1F)00
iεlβl(Rν+1F)10

]
, l = 1, 2, (31)

for quantities (Rν+1Pl){κ}(m, k) in terms of which the regular values (Rν+1Pl) γ
′
1γ

′
2(m, k) are

initially expressed by using of equations (26)–(29) (and replacing µl by m2
l ).

By virtue of properties of the hypergeometric function 2F1 from equation (31) the important
limiting values of these quantities for any space-time dimension n = 2r + δn, δn = 0, 1, follow:

lim
ε1, ε2→ 0, ∃ ms 	=0; or (ε,m)→ 0

(Rν+1Pl){κ}(m, k) = 0, ∀ n ≥ 1, l = 1, 2, κ = 0, 1, (32)

lim
(m,ε)→ 0

ml′(Rν+1Pl){0}(m, k) = 0, ∀ n ≥ 1, l′, l ∈ {1, 2}, l′ �= l,

(Rν+1Pl){1}(m, k) = (2π)nδ(k) b(g)(1− δn)(k2
2)r−1Γ(r)/(2Γ(2r)).

(33)

Hereafter the (ε,m)-limit means first εl → 0 and then ml = m→ 0, l = 1, 2, i.e. it is equivalent
to the symmetric chiral limit case (m1 = m2 = m → 0). Analogously, the (m, ε)-limit means
first ml → 0 and then εl = ε→ 0, l = 1, 2, i.e. it is equivalent to the chiral case (m1 = m2 = 0).

3.5. It turns out that so calculated regular values of the FAs defined by equations (1) and
(4)–(6) satisfy the identities [29]:

k1µ(RνI)(γ
µγ)γ2(m, k) = (Rν+1D1)γ̇γ2(m, k)

= (−1)π1(Rν+1P1)γγ2(m, k)− (Rν+1P3)γγ2 + (m2 − (−1)π1m1) (Rν+1I)γγ2(m, k),

k2α(RνI)γ1(γαγ)(m, k) = (Rν+1D2)γ1γ̇(m, k)

= (−1)π2(Rν+1P2)γ1γ(m, k)− (Rν+1P1)γ1γ + (m1 − (−1)π2m2) (Rν+1I)γ1γ(m, k), (34)

which are referred to as the regular analog of the CWIs (3) (or the quantum Ward identities
(QWIs)). The latter name may be more adequately depict their physical meaning. The first rows
of equations (34) are due to the compatibility relations (19). It is important to note also that
the last terms in the identities (34) are calculated by the renormalization index ν + 1, although
their proper divergence index is ν. It is this peculiarity that permits to the regular analogs of the
CWIs (34) both to imitate (or to retain) the CWIs (3) and to differ from them simultaneously. It
is this peculiarity that permits to obtain some effective formulae for calculating of the quantum
corrections (QCs) to the CWIs in the most general nonchiral case [29].

3.6. As a result the regular analogs of the CWIs (34) are equivalent to four scalar equations:

(Rν+1D1){κ}(m, k) = (Rν+1P 1−2){κ}(m, k) + (Rν+1I2−1){κ}(m, k), κ = 0, 1,

(Rν+1D2){κ}(m, k) = (Rν+1P 2−1){κ}(m, k) + (Rν+1I1−2){κ}(m, k), κ = 0, 1, (35) (Rν+1Di){κ}(m, k)

(Rν+1P i−j){κ}(m, k)

(Rν+1Ij−i){κ}(m, k)

 := (2π)nδ(k) b(g)
∫

Σ1

dµ(α)
∆n/2

 (Rν+1Di){κ}(m,α, k)

(Rν+1P i−j){κ}(m,α, k)

(Rν+1Ij−i){κ}(m,α, k)

 , (36)

(Rν+1Di){0}(m,α, k) = k2
2 [miβi − (−1)πimjβj ](Rν+1F)20,

(Rν+1P i−j){0}(m,α, k) := (−1)πimj(Rν+1Pi){0}(m,α)−mi(Rν+1Pj){0}(m,α)
∼= [ (−1)πimj(iεi)−mi(iεj) ](Rν+1F)00,
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(Rν+1Ij−i){0}(m,α, k) := (mj − (−1)πimi)
[
m1m2(Rν+1F)00−

− (−1)πi(A/∆)(Rν+1F)20 − (−1)πi(n/2)∆−1(Rν+1F)21
]

= mi(Rν+1Pj){0}(m,α)− (−1)πimj(Rν+1Pi){0}(m,α)

+ k2
2 [miβi − (−1)πimjβj ](Rν+1F)20 ∼= [mi (iεj)− (−1)πimj (iεi) ](Rν+1F)00

+ k2
2 [miβi − (−1)πimjβj ](Rν+1F)20, i, j ∈ {1, 2}, j �= i; (37)

(Rν+1Di){1}(m,α, k) := [m1m2 − (−1)πi(Mε/∆) ](Rν+1F)10,

(Rν+1P i−j){1}(m,α, k) := (−1)πi
[

(Rν+1Pi){1}(m,α, k) + (Rν+1Pj){1}(m,α, k)
]

= (−1)πi(iE/∆)(Rν+1F)10,

(Rν+1Ij−i){1}(m,α, k) := (mj − (−1)πimi)[miβi − (−1)πimjβj ](Rν+1F)10

= [m1m2 − (−1)πi(M/∆) ](Rν+1F)10, i, j ∈ {1, 2}, j �= i. (38)

Equations (35) are obeyed for all values of k2, ml, εl, l = 1, 2, and any space-time dimension n.
But limiting values of quantities in them depend strongly on the limit employed. Hereafter
the quantities M and E are defined as M := α1m

2
1 + α2m

2
2, E := α1ε1 + α2ε2, and hence

Mε = M − iE, and the congruence relation A(m,α, k) ∼= B(m,α, k) denotes the equality of
the integrals

∫
Σ1 dµ(α)∆−n/2A(m,α, k) =

∫
Σ1 dµ(α)∆−n/2B(m,α, k). See also equations (25),

(28)–(29), (31), and the relations Y 2
l = −A/∆ + (1− βl)k2

2, l = 1, 2, in equations (16).

4 Quantum corrections to the CWIs and STCs in the SCR

4.1. Now we investigate equations (34)–(38) more closely. Let us first consider a general mass-
anysotropic nonchiral case. Then, from equations (32) follow lim

ε1,ε2→0
(Rν+1Pl){κ}(m, k) = 0 if

m1, m2 �= 0, ∀ l = 1, 2, κ = 0, 1, and consequently we also obtain lim
ε1,ε2→0

(Rν+1P i−j){κ}(m, k)

= 0, ∀ l = 1, 2, κ = 0, 1. The quantum corrections (QCs) (or anomalous contributions in usual
nomenclature) to the CWIs appear now as an oversubtraction effect and take the form:[

aγγ21 (m, k)

aγ1γ2 (m, k)

]
:=

[
(m2 − (−1)π1m1) [(Rν+1I)γγ2(m, k)− (RνI)γγ2(m, k)]

(m1 − (−1)π2m2) [(Rν+1I)γ1γ(m, k)− (RνI)γ1γ(m, k)]

]

=

[
tr[γγ2]a1{0}(m, k)− tr[γγ2k̂2]a1{1}(m, k)

tr[γ1γ]a2{0}(m, k) + tr[γ1k̂2γ]a2{1}(m, k)

]
, (39)

where the scalar functions ai{κ}(m, k) have the integral representations:

ai{κ}(m, k) := (2π)nδ(k) b(g)
∫

Σ1

dµ(α)
∆n/2

ai{κ}(m,α, k), i = 1, 2, κ = 0, 1, (40)

ai{0}(m,α, k) := (mj − (−1)πimi)
[
m1m2(∆F)00 − (−1)πi(A/∆)(∆F)20

− (−1)πi(n/2)∆−1(∆F)21
] ∼= [mi (iεj)− (−1)πimj (iεi) ](∆F)00

+ k2
2 [miβi − (−1)πimjβj ](∆F)20, i, j ∈ {1, 2}, j �= i; (41)

ai{1}(m,α, k) := (mj − (−1)πimi)[miβi − (−1)πimjβj ](∆F)10
= [m1m2 − (−1)πi(M/∆) ](∆F)10, i, j ∈ {1, 2}, j �= i. (42)

The quantities (∆F)sj appearing in equations (41)–(42) are defined as

(∆F)sj := (Rν+1F)sj − (RνF)sj = (−1)Θsj

(
Γ(λsj)A1+νsj

)
/
(
Γ(2 + νsj)M

λsj
ε

)
,

Θsj := H(ν1
sj)θs, θs := ν1

sj − νsj = (ν − s) (mod 2), (43)

and H(x) is the Heaviside step function such that H(x) = 0, x < 0, H(x) = 1, x ≥ 0.
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4.2. According to equations (13)–(14) we find that λ00 = 2 − δn/2, ν00 = r − 1, Θ00 =
δnH(r−1 + δn); λ20 = 1− δn/2, ν20 = r−2, Θ20 = δnH(r−2 + δn); λ21 = 1− δn/2, ν21 = r−1,
Θ21 = δnH(r − 1 + δn); λ10 = 1 + δn/2, ν10 = r − 2 + δn, Θ10 = (1 − δn)H(r − 1), and taking
into account the representation:

Φ
(
λ

∣∣∣ a1,
µ1,

a2

µ2

)
:=

∫
Σ1

dµ(α)
∆b

αa1−1
1 αa2−1

2

Mλ
ε

=

{
B(a1, a2)/µλ2 2F1(λ, a1; a1 + a2; 1− ξ1/2),
B(a1, a2)/µλ1 2F1(λ, a2; a1 + a2; 1− ξ2/1),

B(a1, a2) := Γ(a1)Γ(a2)/Γ(a1 + a2), b := n/2 +N, N ∈ Z+, ξl/s := µl/µs, (44)

the scalar functions ai{κ}(m, k) given by equations (40)–(43) acquire the form:

ai{0}(m, k) = (2π)nδ(k) b(g) δn(k2
2)rai{0}(m1, ε1; m2, ε2), i = 1, 2,

ai{1}(m, k) = (2π)nδ(k) b(g) (1− δn)(k2
2)r−1ai{1}(m1, ε1; m2, ε2), i = 1, 2, (45)

in which the mass dependent functions ai{κ}(m1, ε1; m2, ε2) with ε-damping look as follow:

ai{0}(m1, ε1; m2, ε2) := (−1)i
Γ(3/2)

Γ(r + 1)
(m2 −m1)

{
m1m2 Φ

(
3/2

∣∣ r+1,
µ1,

r+1
µ2

)
− (4r + 1)Φ

(
1/2

∣∣ r+1,
µ1,

r+1
µ2

)}
, µl := m2

l − iεl, i = 1, 2, (46)

ai{1}(m1, ε1; m2, ε2) :=
(−1)
Γ(r)

{
m1m2 Φ

(
1

∣∣ r,
µ1,

r
µ2

)
− (−1)πi

[
m2

1 Φ
(
1

∣∣ r+1,
µ1,

r
µ2

)
+m2

2 Φ
(
1

∣∣ r,
µ1,

r+1
µ2

)]}
, i = 1, 2. (47)

Since in equation (45) the ai{0}(m, k) �= 0 only for δn = 1, i.e. for n = 2r + 1, we put in
equation (46) the factors (−1)πi = 1, i = 1, 2, both for vectors (γ = Ig) and axial-vectors
(γ = γ∗) cases.

The functions ai{κ}(m1, ε1; m2, ε2) have the symmetry properties

ai{κ}(m2, ε2; m1, ε1) = (−1)κ+1ai{κ}(m1, ε1; m2, ε2), κ = 0, 1, (48)

and in the limit εl → 0 tend to homogeneous functions ai{κ}(x) of the zero degree in masses
which are named as mass functions of the QCs to the CWIs. Using the relation

µ1Φ
(
λ

∣∣a1+1,
µ1,

a2

µ2

)
+ µ2Φ

(
λ

∣∣ a1,
µ1,

a2+1
µ2

)
= Φ

(
λ− 1

∣∣ a1,
µ1,

a2

µ2

)
,

(which is a consequence of equation (44) and of the identity Mε/M
λ
ε = Mλ−1

ε ), and other
properties of the function 2F1, from equations (46)–(47) follow the explicit form of the mass
functions ai{κ}(x):

ai{0}(x) := lim
ε1,ε2→0

ai{0}(m1, ε1; m2, ε2) = A2r+1ai{0}(x), x := m1/m2,

ai{0}(x) := (−1)i−1(1− x)/C2r+1

[
(4r + 1)α

(
1/2, r + 1; x2

)
− xα

(
3/2, r + 1; x2

) ]
, (49)

ai{1}(x) := lim
ε1, ε2→0

ai{1}(m1, ε1; m2, ε2) = A2rai{1}(x), x := m1/m2,

ai{1}(x) := [ (−1)πi − a2r(x) ], a2r(x) := xα
(
1, r; x2

)
,

α(λ, b; x2) := 2F1

(
λ, b; 2b; 1− x2

)
. (50)

In equations (49)–(50), C2r+1 is the normalization constant (that gives ai{0}(0) = (−1)i−1,
∀ r), and A2r+1, A2r denote the magnitudes of the mass functions of QCs:

C2r+1 := (4r + 1)α(1/2, r + 1; 0) = 2Γ(2r + 2)Γ(r + 1/2)/(Γ(2r + 1/2)Γ(r + 1)),
A2r+1 := Γ(1/2)Γ(r + 1/2)/Γ(2r + 1/2), A2r = Γ(r)/Γ(2r). (51)
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There exists the relation A2r+1 = Γ(3/2)A2r+2C2r+1 between them. The magnitudes A2r and
A2r+1 are monotonically decreasing functions of the variable r, varying from A2 = 1 and A1 =
(2/3)

√
π to lim

r→∞A2r+δn = 0. Therefore, when r → ∞ the QCs go to zero very rapidly.

Similarly, the ai{κ}(x) denote normalized mass functions which determine a shape of the
ai{κ}(x). As far as (−1)πi = ±1, from equations (49)–(50) follow three primitive mass functions

a2r+1(x) := a1{0}(x); a (−)

2r (x) := 1− a2r(x), a (+)

2r (x) := 1 + a2r(x), (52)

in term of which all mass functions ai{κ}(x) of the QCs are finally expressed. The properties of
the functions a2r+1(x), a (∓)

2r (x), a2r(x), ∀r ≥ 1, which may be physical important, are related
to the reciprocity relations, the values at x = 0, x = ∞, and at x = 1 (the latter corresponds
to the degenerate nonchiral case (m1 = m2 = m �= 0)), the range of values for real 0 ≤ x ≤ ∞,
zeros, extrema, and intervals of monotonicity, are as follows:

a2r+1(x) = −a2r+1(1/x); a (∓)

2r (x) = a (∓)

2r (1/x), a2r(x) = a2r(1/x); (53)

a2r+1(0) = −a2r+1(∞) = 1; a (∓)

2r (0) = a (∓)

2r (∞) = 1, a2r(0) = a2r(∞) = 0; (54)

a2r+1(1) = 0; a (−)

2r (1) = 0, a (+)

2r (1) = 2, a2r(1) = 1, (55)

1 ≥ a2r+1(x) ≥ −1; 0 ≤ a (−)

2r (1) ≤ 1, 1 ≤ a (+)

2r (x) ≤ 2, 0 ≤ a2r(x) ≤ 1.

The values at x = 1 are: the unique zero for a2r+1(x), the unique zero which is the unique
minimum for a (−)

2r (x), the unique maxima for a (+)

2r (x) and a2r(x). The a2r+1(x) are monotonically
decreasing on 0 ≤ x ≤ ∞; the a (−)

2r (x) are monotonically decreasing on 0 ≤ x ≤ 1 and are
monotonically increasing on 1 ≤ x ≤ ∞; the a (+)

2r (x) and a2r(x) are monotonically increasing on
0 ≤ x ≤ 1 and are monotonically decreasing on 1 ≤ x ≤ ∞.

Taking into consideration equations (32), (36)–(43), (45)–(52), one obtains for the regular
analogs of the CWIs (35)–(38) the following expressions (i = 1, 2, j ∈ {1, 2}, j �= i):

(Rν+1Di){0}(m, k) = (Rν+1Ij−i){0}(m, k) = (RνIj−i){0}(m, k) + ai{0}(m, k),

ai{0}(m, k) = b̃(g, k) δn(k2
2)rA2r+1(−1)i−1a2r+1(x), b̃(g, k) := (2π)nδ(k) b(g),

(Rν+1Di){1}(m, k) = (Rν+1Ij−i){1}(m, k) = (RνIj−i){1}(m, k) + ai{1}(m, k),

ai{1}(m, k) = b̃(g, k) (1− δn)(k2
2)r−1A2r[(−1)πi − a2r(x)], x := m1/m2, (56)

which are valid both for general and degenerate nonchiral cases.
4.3. Now we pass to the chiral behavior. Let us consider some possible ways tending to the

chiral state in renormalized amplitudes at hand: i) the symmetric chiral limit (m1 = m2 = m→
0), accomplishing as the (ε1,2,m)− limit, when first ε1, ε2 → 0, and then ml = m→ 0, ∀ l; ii) the
nonsymmetric chiral limit (m1 → 0, m2 → 0), accomplishing as the (ε1,2,m1,m2)− limit, when
first ε1, ε2 → 0, then m1 → 0, and lastly m2 → 0; iii) the nonsymmetric chiral limit (m2 → 0,
m1 → 0), accomplishing as the (ε1,2,m2,m1) − limit, when first ε1, ε2 → 0, then m2 → 0, and
lastly m1 → 0; iv) the chiral case (m1 = m2 = 0), accomplishing as the (m1,2, ε) − limit, when
first m1 = m2 = 0, and then εl = ε→ 0, ∀ l.

Equations (53)–(55) imply that the symmetric chiral limit m1 = m2 = m → 0 differs essen-
tially from the nonsymmetric chiral limits m1 → 0, m2 → 0 or m2 → 0, m1 → 0 for primitive
mass functions (52). In addition, for the a2r+1(x) the last two limits are also different.

From equations (36)–(39), (13) and properties of the function 2F1 it follows that for all chiral
limits, i.e. for i), ii), and iii) cases, lim

ms→0
(RνIj−i){κ}(m, k) = 0, κ = 0, 1, and equations (56) take

the form:

lim
ms→0

(Rν+1Di){κ}(m, k) = b̃(g, k)

{
δn(k2

2)rA2r+1(−1)i−1{ 0, 1, −1}, κ = 0;

(1− δn)(k2
2)r−1A2r{[(−1)πi − 1], (−1)πi}, κ = 1,

(57)
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where the { 0, 1, −1} in the first row of equation (57) corresponds to the { i), ii), iii)}-cases, and
the {[(−1)πi−1], (−1)πi} in the second row corresponds to the { i), ii) or iii)}-cases, respectively.

In the chiral case (m1 = m2 = 0), due to equations (36)–(38), one has:

(Rν+1Ij−i){κ}(0, k) = 0, κ = 0, 1, ε1, ε2 �= 0,

(Rν+1Di){0}(0, k) = 0, (Rν+1P i−j){0}(0, k) = 0, ε1, ε2 �= 0, (58)

and equations (35),(33) and (51) give rise to the following nontrivial identities

(Rν+1Di){1}(0, k) = (Rν+1P i−j){1}(0, k) �= 0, ε1 ε2 �= 0,

lim
ε1=ε2=ε→0

(Rν+1Di){1}(0, k) = lim
ε1=ε2=ε→0

(Rν+1P i−j){1}(0, k)

= b̃(g, k) (1− δn)(k2
2)r−1A2r(−1)πi , (59)

which are caused by the nonzero Schwinger terms contributions of current density commutators.
From the previous, it follows that for general spinor diangles the STCs may be nonzero only

in the chiral case, for even space-time dimension n = 2r, for non light-like momenta k2
2 �= 0,

and if n = 2 for the light-like momenta k2
2 = 0 also. The dimension n = 2 is the unique one for

which STCs are nonzero for light-like momenta k2
2 = 0. Clearly, this fact is connected with the

well known dynamical mass generation for the two-dimensional vector boson [30, 31].
From equations (57)–(59) also imply that the chiral case and the chiral limit cases in general do

not coincide. For example, the expression in equation (59) coincides with that of corresponding
to the nonsymmetric chiral limits in equation (57) for ii) and iii) cases and differs from that
of corresponding to the symmetric chiral limit in equation (57) for i) case. Similar conclusion
follows also from equation (58) and from the first row of equation (57).

5 Conclusions

From the above we have come to the important conclusions:

• There is the technique (SCR) in framework of which the WIs involving regular values of
quantities do retain (or imitate) the CWIs. Quantum anomalies reveal themselves either as
an oversubtraction effect for a non-chiral case and for the symmetric and nonsymmetric chiral
limits (in these cases the STCs are zero) or as nonzero STCs for the chiral case.

• Quantum anomalies are more general phenomena than the well known mass-independent
axial-vector and conformal anomalies. The related conclusion has been obtained as early
as 1970 by Kummer and Schweda [6, 7, 8]. Our investigations show that canonically non-
conserved vector and axial-vector currents can have mass-dependent anomalies. Furthermore,
in the chiral case vector and axial-vector currents have the same anomaly (up to the factor
ε(g) = (−1)q(−1)n(n−1)/2). It is the STCs that are responsible for these anomalies. STCs may
be nonzero only in the chiral case, for even n = 2r, for non light-like momenta k2

2 �= 0, and if
n = 2 for the light-like momenta k2

2 = 0 also. The dimension n = 2 is the unique one for which
STCs and quantum anomalies are nonzero for light-like momenta k2

2 = 0. This fact is connected
with the well known dynamical mass generation for the two-dimensional vector boson [30, 31].

• For the complex Clifford algebra Cl(g)C the matrix dual conjugation γ∗ may be always redefined
as γ∗ := i(1−ε(g))/2γ1γ2 · · · γn, (γ∗)2 = Ig. Then from equations (2) and equations (39)–(40) it
follows that in the chiral case the QCs to the vector and axial-vector CWIs are the same exactly.
Therefore, in this case “left-handed vector” current can be conserved and hence it can be more
fundamental than vector or axial-vector currents. This may give some insight into why just the
left-handed neutrino exists in Nature.
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• No universal modified operator expressions for divergencies of axial-vector and vector currents
exist, even in the framework of some fixed model. Modes of quantum anomalies strongly depend
on the type of quantum field quantities under consideration. Moreover, the behavior of FAs and
quantum anomalies in the chiral case (m = 0) and in the symmetric chiral limit (m → 0) is
different. The same is also true for the Schwinger terms of current commutators.

• A mass spectrum of fermions, appearing in the quantum anomalies, increases the predictive
power of formulas widely used in the low energy phenomenological physics, e.g., for describing
particle decays [1–5].

• A nontrivial mass dependence of the QCs to the CWIs prevents the standard mechanism
of anomaly cancellation and requires a revision of some orthodox ideas of the counter-term
renormalization.
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A quantitative prediction of Conformal Field Theory (CFT), which relates the second mo-
ment of the energy-density correlator away from criticality to the value of the central
charge, is verified in the sine-Gordon model. By exploiting the boson-fermion duality of
two-dimensional field theories, this result also allows to show the validity of the prediction
in the strong coupling regime of the Thirring model.

Some time ago Cardy [1] derived a quantitative prediction of conformal invariance [2, 3] for
2D systems in the scaling regime, away from the critical point. Starting from the so called
‘c-theorem’ [4], he was able to relate the value of the conformal anomaly c, which characterizes
the model at the critical point, to the second moment of the energy-density correlator in the
non-critical theory:∫

d2x |x|2 〈ε(x)ε(0)〉 =
c

3π t2 (2−∆ε)2
, (1)

where ε is the energy-density operator, ∆ε is its scaling dimension and t ∝ (T−Tc) is the coupling
constant of the interaction term that takes the system away from criticality. It is interesting
to notice that a similar sum rule has been recently obtained by Jancovici [5] in the context of
Classical Statistical Mechanics. This author considered the correlations of the number-density
of particles in a 2D two-component plasma (Coulomb gas).

The validity of (1) has been explicitly verified for the Ising model [1], for 2D self-avoiding
rings [6], and for the Baxter model [7]. In this last case the formula could be checked only in
the weak-coupling limit, by describing the system in terms of a massive Thirring model [8] and
performing a first-order perturbative computation.

The main purpose of this note is to show that (1) also holds for a bosonic QFT with highly
non-trivial interactions, the well-known sine-Gordon (SG) model with Euclidean Lagrangian
density given by

L =
1
2

(∂µΦ)2 − α

λ
cos

(√
λΦ

)
+
α

λ
, (2)

where α and λ are real constants.
In this work we shall perform a perturbative computation up to second order in λ. We are

then naturally led to consider the renormalization of this theory. Fortunately this issue has
been already analyzed by many authors [9–14]. One of the main conclusions is that for λ < 8π
a normal order procedure that eliminates the contributions of the tadpoles is enough to have
a finite theory. The only effect of this prescription is to renormalize the constant α. We shall
then restrict our study to this case.

Since we want to verify equation (1) for the model given by (2), we will take ε = (1 −
cos

√
λΦ)/λ and t = α. Taking into account that the model of free massless scalars has a con-

formal charge c = 1 and that the scaling dimension of ε for this case is equal to λ/4π, (1) reads

F (α, λ) =
∫
d2x |x|2 〈ε(x)ε(0)〉 =

1

3π α2
(
2− λ

4π

)2 . (3)
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Expanding the interaction term up to order λ2 one has ε = 1
2Φ2 − λ

4!Φ
4 + λ2

6! Φ6. Replacing
this expression in (3) we obtain

F (α, λ) = A(α, λ) +B(α, λ) + C(α, λ) +D(α, λ),

where

A(α, λ) =
1
4

∫
d2x |x|2 〈Φ2(x)Φ2(0)〉α, B(α, λ) = − λ

4!

∫
d2x |x|2 〈Φ2(x)Φ4(0)〉α,

C(α, λ) =
λ2

(4!)2

∫
d2x |x|2 〈Φ4(0)Φ4(x)〉α, D(α, λ) =

λ2

6!

∫
d2x |x|2 〈Φ2(x)Φ6(0)〉α.

At this point we notice that D(α, λ), up to this order, contains only tadpoles which, as
explained above, were already considered in the renormalization of α. Then we must disregard
this contribution in the present context. Now, in order to illustrate the main features of the
computation, we shall briefly describe the evaluation of A(α, λ), which involves both analytical
and numerical procedures. In the above equations 〈 〉α means v.e.v. with respect to the SG
Lagrangian expanded up to second order in λ. From now on we will decompose this Lagrangian
into free and interaction pieces as

L0 =
1
2

(∂µΦ)2 +
α

2
Φ2, Lint = −αλ

4!
Φ4 +

αλ2

6!
Φ6.

Using Wick’s theorem and the well-known expression for the free bosonic propagator
〈Φ(x)Φ(0)〉0 = 1/(2π)K0(

√
α|x|) (K0 is a modified Bessel function of zeroth order), after a con-

venient rescaling of the form x→ x√
α

, we obtain

A(α, λ) =
1

2α2(2π)2

∫
d2x |x|2K2

0 (|x|) +
λ

4α2(2π)4

∫∫
d2x d2x1 |x|2K2

0 (|x1 − x|)K2
0 (|x1|)

+
λ2

α2(2π)6

∫∫∫
d2x d2x1 d

2x2 |x|2
[

1
8
K2

0 (|x2 − x1|)K2
0 (|x1|)K2

0 (|x2 − x|)

+
1
6
K3

0 (|x2 − x1|)K0(|x2|)K0(|x1 − x|)K0(|x|)

+
1
4
K2

0 (|x2 − x1|)K0(|x1|)K0(|x2 − x|)K0(|x2|)K0(|x1 − x|)
]
.

The first two terms are related to tabulated integrals [15] yielding the first order analytical
expression F (α, λ) = (1+λ/(4π))/

(
12πα2

)
which can be shown to verify (3) in a straightforward

way. Concerning the remaining second order terms we have three contributions corresponding
to the prefactors 1/8, 1/6 and 1/4 in the last integrand. Due to its symmetry, the first one can
be analytically computed by repeatedly using∫

d2x |x|2K2
0 (|x− y|) =

2π
3

+ π|y|2.

The result is 2π3. The computation of the other two contributions is more involved. In fact we
could not find analytical results in these cases. However we were able to considerably simplify
these multiple integrals in order to facilitate their numerical evaluation. Indeed, using the Fourier
transform of K0 and the integral representation of the first kind Bessel function J0:

J0(|x|) =
1

2π

∫ 2π

0
dθ exp (−i|x| cos θ) ,
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we obtain∫∫∫
d2x d2x1 d

2x2 |x|2K3
0 (|x2 − x1|)K0(|x1|)K0(|x2 − x|)K0(|x|)

= 4(2π)3
∫
dr

∫
dp
r p

(
1− p2

)
K3

0 (r)J0(pr)

(p2 + 1)5
.

Using NIntegrate in the program Mathematica for the double integral in this expression one
obtains the value 0.04874. Similar manipulations with the last contribution to A(α, λ) led us to
the following numerical results:∫

dr

∫
dp

∫
dk
r p k

(
1− p2

)
K3

0 (r)J0(pr)J0(kr)

(p2 + 1)4 (k2 + 1)2
= 0.0169622,

and ∫
dr r5K2

0 (r)K2
1 (r) = 0.08783.

Putting all this together we have

A(α, λ) =
1

12πα2

(
1 +

λ

4π

)
+

λ2

α2(2π)6

[
1
8

2π3 +
1
6

4 (2π)3 0.04874

+
1
4

(2π)3
(

8× 0.0169622− 1
8

0.08783
)]

.

Working along the same lines with B(α, λ) and C(α, λ) we find

B(α, λ) =
−32λ2

α2(2π)34!

∫
dr

∫
dp
r p

(
1− p2

)
K3

0 (r)J0(p r)

(p2 + 1)4
=

−32λ2

α2(2π)34!
× 0.0501125

and

C(α, λ) =
λ2

α2(2π)34!

∫
dr r3K4

0 (r) =
λ2

α2(2π)34!
× 0.0754499.

All these numerical values were confirmed by using Fortran.
Finally, inserting these results in the left hand side of (3) we get

F (α, λ) =
1

12πα2
+

λ

48π2α2
+

λ2

4!(2π)3α2

(
3
4

+ 5.4× 10−6

)
.

Comparing this expression with the expansion in λ of the right hand side of (3) one sees that
they are equal up to first order and differ in a small quantity

(
O

(
10−6

))
up to second order

in λ.
In summary, we have verified the validity of a quantitative prediction of CFT in the context

of the SG model. Taking into account the well-known bosonization identity between the SG
theory and the massive Thirring model (characterized by a coupling g2) [9] which takes place
for β2/(4π) =

(
1 + g2/π

)−1, it becomes apparent that our result implies that (1) also holds in
the strong coupling limit of the Thirring model. This, in turn, allows us to improve the proof
of the validity of (1) for the Baxter and Ashkin–Teller models which, up to now, was restricted
to the weak coupling limit [7].
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Extended phase space (EPS) formulation of quantum statistical mechanics treats the ordi-
nary phase space coordinates on the same footing and thereby permits the definition of the
canonical momenta conjugate to these coordinates. The extended Lagrangian and extended
Hamiltonian are defined in EPS by the same procedure as one does for ordinary Lagrangian
and Hamiltonian. The combination of ordinary phase space and their conjugate momenta
exhibits the evolution of particles and their mirror images in the same manner. As an examp-
le the resultant evolution equation in EPS for a damped harmonic oscillator DHO, is such
that the energy dissipated by the actual oscillator is absorbed in the same rate by the image
oscillator leaving the whole system as a conservative system. We use the EPS formalism to
obtain the dual Hamiltonian of a damped harmonic oscillator, first proposed by Bateman, by
a simple extended canonical transformations. The extended canonical transformations are
capable of converting the damped system of actual and image oscillators to an undamped
one, and transform the evolution equation into a simple form. The resultant equation is
solved and the eigenvalues and eigenfunctions for damped oscillator and its mirror image
are obtained. The results are in agreement with those obtained by Bateman. At last, the
uncertainty relation are examined for above system.

1 Introduction

Although the formulation of dissipative systems from the first principles are cumbersome and
little transparent, however, it is not so difficult to account for dissipative forces in classical
mechanics in a phenomenological manner. Stokes’ linear frictional force proportional to the ve-
locity v, Coulomb’s friction ∼ v/v, Dirac’s radiation damping ∼ v̈ and the viscous force ∼ ∇2v
are noteworthy examples in this respect. Unfortunately, the situation is much more complicated
in quantum level (see Dekker [1], and the references there in). In his review article on classical
and quantum mechanics of the damped harmonic oscillator, Dekker outlines that: “Although
completeness is certainly not claimed, it is felt that the present text covers a substantial portion
of the relevant work done during the last half century. All models agree on the classical dy-
namics . . . however, the actual quantum mechanics of the various models reveals a considerable
variety in fluctuation behavior. . . . close inspection further shows that none of them . . . are
completely satisfactory in all respects”. As an example of the dissipative systems, the DHOs
is investigated through different approaches by different people. Caldirola [2] and Kanai [3]
using the familiar canonical quantization procedure, obtained the Schrödinger equation which
gives the eigenvalue and eignfunctions for damped oscillator. However the difficulty with this
approach is that it violates the Heisenberg uncertainty relation in the long time limit. Another
approach is the Schrödinger–Langevin method, which introduces a nonlinear wave equation for
the evolution of the damped oscillator [4]. In this method the superposition principle is obvi-
ously violated. Using the Wigner equation, Dodonov and Manko [5] introduced the loss energy
state for DHO as consequence of the Bateman dissipation, by introducing a dual Hamiltonian
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considered the evolution of the DHO in parallel with its mirror image [6]. In this method the
energy dissipated by the actual oscillator of interest is absorbed at the same rate by the image
oscillator. The image oscillator, in fact, plays the role of the physical reservoir. Therefore, the
energy of the total system, as a closed one, is a constant of motion.

Here we use the EPS method [7] to investigate the evolution of the DHO. The method
looks like the Bateman approach, however, the uncertainty principle, when looked upon from
a different point of view, is not violated. That is, the extended uncertainty relation is satisfied for
combination of actual and image oscillators, while reducing into ordinary uncertainty relations
for actual and image oscillators, separately, in zero dissipation limit.

This paper is organized as follows. In Section 2, a review of the EPS formulation is given.
In Section 3, we investigate the quantization procedure for the DHO. In Section 4, we use the
path integral technique directly to calculate the exact propagators, and then the uncertainties
of position and momentum for the actual and image oscillator system. Section 5 is devoted to
concluding remarks.

2 A review of the EPS formulation

A direct approach to quantum statistical mechanics is proposed by Sobouti and Nasiri [7], by
extending the conventional phase space and applying the canonical quantization procedure to
extended quantities in this space. Assuming the phase space coordinates q and p to be inde-
pendent variables on the virtual trajectories allows one to define momenta πq and πp, conjugate
to q and p, respectively. This is done by introducing the extended Lagrangian

L(q, p, q̇, ṗ) = −q̇p− ṗq + Lq(q, q̇) + Lp(p, ṗ), (1)

where Lq and Lp are the q and p space Lagrangians of the given system. Using equation (1) one
may define the momenta, conjugate to q and p, respectively, as follows

πq =
∂L
∂q̇

=
∂Lq
∂q̇

− p, (2)

πp =
∂L
∂ṗ

=
∂Lp
∂ṗ

− q. (3)

In the EPS defined by the set of variables {q, p, πq, πp}, one may define the extended Hamiltonian

H(q, p, πq, πp) = q̇πq + ṗπp − L = H(p+ πq, q)−H(p, q + πp)

=
∑ 1

n

{
∂nH

∂pn
πnq −

∂nH

∂qn
πnp

}
, (4)

where H(q, p) is the Hamiltonian of the system. Using the canonical quantization rule, the
following postulates are outlined:

a) Let q, p, πq and πp be operators in Hilbert space X, of all square integrable complex
functions, satisfying the following commutation relations

[πq, q] = −i�, πq = −i� ∂

∂q
, (5)

[πp, p] = −i�, πp = −i� ∂

∂p
, (6)

[q, p] = [πq, πp] = 0. (7)

By virtue of equations (5)–(7), the extended Hamiltonian H, will be an operator in X.
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b) A state function χ(q, p, t) ∈ X is assumed to satisfy the following dynamical equation

i�
∂χ

∂t
= Hχ =

[
H

(
p− i�

∂

∂q
, q

)
−H

(
p, q − i�

∂

∂p

)]
χ

=
∑ 1

n

{
∂nH

∂pn
πnq −

∂nH

∂qn
πnp

}
χ. (8)

The general solution for this equation is

χ(q, p, t) = ψ(q)φ∗(p)e−
i
�
qp, (9)

where ψ(q) and φ(p) are the solutions of the Schrödinger equation in q and p space, respectively.
c) the averaging rule for an observable O(q, p), a c-number operator in this formalism, is

given as

〈O(q, p)〉 =
∫
O(q, p)χ∗(q, p, t)dpdq. (10)

For details of selection procedure of the admissible state functions, see Sobouti and Nasiri [7].

3 Damped harmonic oscillator in EPS

Extended Hamiltonian of equation (4) for undamped harmonic oscillator is given by

H =
1
2
πq

2 + pπq −
1
2
πp

2 − qπp. (11)

By a canonical transformation of the form

q1 = q, πq1 = −πq − p, p1 = p, πp1 = −πp − q,

equation (10) yields

H =
1
2
π2
q1 + q21 −

1
2
π2
p1 −

1
2
p2
1. (12)

This extended Hamiltonian evidently represents the subtraction of Hamiltonians of two inde-
pendent identical oscillators, which is called actual and image oscillators [5]. The position q
and momentum πq denote the actual oscillator, while p and πp denote the image oscillator. The
minus sign has its origin in equation (4) and has an important role in this theory [7]. The
following canonical transformation

q2 = q1, πq2 = πq1 − λq1, p2 = p1, πp2 = πp1 + λp1. (13)

changes the extended Hamiltonian of an undamped harmonic oscillator into that of the damped
one, i.e.

H2 =
1
2

{
π2
q2 + 2λq2πq2 + ω2q22

}
− 1

2
{
π2
p2 − 2λp2πp2 + ω2p2

2

}
, (14)

where ω = 1 + iλ. One further transformation generated by

F2(q2, p2, πq3 , πp3) = q2πq3e
−λ,t + p2πp3e

λt, (15)

finally leads to

H3 =
1
2

{
πq

2
3e
−2λt + ω2q23e

2λt
}
− 1

2

{
πp3e

2λt + ω2p2
3e
−2λt

}
. (16)
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The first part of the extended Hamiltonian in equation (16) is Caldirola–Kanai Hamiltonian,
which is widely used to study the dissipation in quantum mechanics [3]. Using equation (16),
the extended Hamilton equations [7] gives the following classical evolution equations for actual
and image oscillators, respectively

q̈3 + 2λq̇3 + ω2q3 = 0, (17)

and

p̈3 − 2λṗ3 + ω2p3 = 0. (18)

Almost trivially, the energy dissipated by actual oscillator, with phase space coordinates (q3, πq3)
is completely absorbed at the same pace by the image oscillator with phase space coordinates
(p3, πp3).

To quantize the above system as usual, the dynamical variables (q3, πq3) and (p3, πp3) are con-
sidered as operators in a linear space. They obey the commutation relations in equations (5)–(7).
The dynamical equation (8), now becomes

i�
∂χ

∂t
= Hχ =

(
1
2

{
πq

2
3e
−2λt + ω2q23e

2λt
}
− 1

2

{
πp

2
3e

2λt + ω2p2
3e
−2λt

})
χ. (19)

By an infinitesimal canonical transformation which in quantum level corresponds to the following
unitary transformation

U = exp
(
iλ

2�

{
e2λtq4

2 + e−2λtp2
4

}
+
iλt

�

{
q4πq4 − p4πp4

})
, (20)

equation (19) may be written as

i�
∂χ

∂t
= Hχ =

(
1
2

{
−�2 ∂

2

∂q24
+ ω′2q42

}
− 1

2

{
−�2 ∂

2

∂p2
4

+ ω′2p4
2

})
χ. (21)

where ω′ = ω + iλ. The eigenvalues of equation (21) may be obtained as follows [7],

Emn = En − Em = (n−m)�ω′. (22)

The corresponding eigenfunctions are,

χmn(q4, p4, t) = Uχmn(q3, p3, t)

= exp
(
iλ

2�

{
e2λtq4

2 + e−2λtp4
2
})

ψm

(
eλtq4

)
φ�n

(
e−λtp4

)
e−

i
�
p4q4 , (23)

where ψm(q) and φn(p) eigenfunctions of the harmonic oscillator in configuration and momentum
space (Hermit functions). The result obtained above are in agreement with those obtained by
Bateman [6]. However, here in contrast to the Bateman approach, the Heisenberg uncertainty
relation is looked upon from a different point of view and is not violated. This is discussed in
the next section using the eigenfunctions in equation (23).

4 Uncertainty relations for actual and image oscillators

In this section we calculate the uncertainties in position and momentum for the actual and the
image oscillators. We calculate the extended propagator [8] for the combined actual and the
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image oscillators as follows

K(q, p, t, qi, pi, ti) =
(

1
2πi�

)[
ω′

sinω′(t− ti)

]
× exp

[
1
2

(
ω′eλ(t+ti)

sinω′(t− ti)

) {
eλ(t−ti)q2

(
cosω′(t− ti)−

λ

ω′
sin(ω′(t− ti))

)
+ e−λ(t−ti)q2i

(
cosω′(t− ti) +

λ

ω′
sin(ω′(t− ti))

)
− 2qqi

}]
× exp

[
1
2

(
ω′e−λ(t+ti)

sinω′(t− ti)

) {
e−λ(t−ti)p2

(
cosω′(t− ti) +

λ

ω′
sin(ω′(t− ti))

)
+ eλ(t−ti)p2

i

(
cosω′(t− ti)−

λ

ω′
sin(ω′(t− ti))

)
− 2ppi

}]
. (24)

When λ → 0, then equation (24) reduces to the familiar form of the undamped extended
harmonic oscillator propagator [8]. We assume that the initial state function for combined

system in ground state is χ00(q, p, 0) =
(
πδ2

)− 1
2 exp

(
− q2+p2

2δ2

)
, where δ is the width of the

extended wave packet. Then one gets using equation (9)

χ00(q, p, t) =
∫ ∫

dqidpiK(q, p, t, qi, pi, 0)χ00(qi, pi, 0)

=
( π
δ2

) [
1

2δ2
− i

2
ω′

�

(
cosω′t
sinω′t

+
λ

ω′

)]− 1
2

×
(

ω′eλt

2πi� sinω′t

) 1
2

exp

[
−q

2

2

{
1
δ2
e2λt

(
1 +

[
1
δ4

(
�
ω′

)2

+ 2
(
λ

ω′

)2

− 1

]
sin2 ω′

+
λ

ω′
sin 2ω′t

)−1

− i

{
ω′

�
e2λt

sinω′t

[
cosω′t− λ

ω′
sinω′t−

(
cosω′t+

λ

ω′
sinω′t

)]

×
[

1 +
1
δ4

(
�
ω′

)2

+ 2
(
λ

ω′

)2

− 1

]
sin 2ω′t+

λ

ω′
sin 2ω′t

}}−1


×
[

1
2δ2

+
i

2
ω′

�

(
cosω′t
sinω′t

+
−λ
ω′

)]− 1
2 −ω′e−λt

2πi� sinω′t

1
2

exp
[
−p

2

2

{
1
δ2
e−2λt

×
(

1 +

[
1
δ4

(
�
ω′

)2

+ 2
(
λ

ω′

)2

− 1

]
sin2 ω′ − λ

ω′
sin 2ω′t

)−1

+ i

{
ω′

�
e−2λt

sinω′t

[
cosω′t+

λ

ω′
sinω′t−

(
cosω′t− λ

ω′
sinω′t

)]

×
[

1 +
1
δ4

(
�
ω′

)2

+ 2
(
λ

ω′

)2

− 1

]
sin 2ω′t− λ

ω′
sin 2ω′t

}}−1
 e− ipq

� . (25)

Using equations (10) and (25) the uncertainties of positions and momenta we can calculate for
the actual and the image oscillators as follows

〈∆q〉 =
δ√
2
e−λt

1 +

(√
�
δ

)4 (
1
ω′

)2

+
(
λ

ω′

)2

− 1

 sin2 ω′t+
λ

ω′
sin 2ω′t


1
2

, (26)
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Figure 1. Uncertainty relation for actual oscil-
lator as a function of time, for λ = 0.1ω.

Figure 2. Uncertainty relation for image oscil-
lator as a function of time, for λ = 0.1ω.

〈∆πq〉 =
δ√
2
e−λt

1 +

(√
�
δ

)4 (
1
ω′

)2

+
(
λ

ω′

)2

− 1

 sin2 ω′t− λ

ω′
sin 2ω′t


1
2

, (27)

〈∆p〉 =
δ√
2
eλt

1 +

(√
�
δ

)4 (
1
ω′

)2

+
(
λ

ω′

)2

− 1

 sin2 ω′t− λ

ω′
sin 2ω′t


1
2

, (28)

and

〈∆πp〉 =
δ√
2
eλt

1 +

(√
�
δ

)4 (
1
ω′

)2

+
(
λ

ω′

)2

− 1

 sin2 ω′t+
λ

ω′
sin 2ω′t


1
2

. (29)

The above results for actual and image oscillators, in separate form, are in agreement with those
obtained by Bateman. It is clear that the Heisenberg uncertainty relation is not valid for each
oscillator independently. In fact for λ �= 0 it is not possible to separate the oscillators, and
the Heisenberg uncertainty relations would not hold for them separately, as shown in Figs. 1
and 2. In the presence of dissipation, i.e. λ �= 0, the actual and image oscillators are coupled
with each other and the area which is preserved during the evolution is Γ(t) = ∆πq∆πp∆q∆p
in EPS. In contrast to the case of undamped harmonic oscillator, neither Γq(t) = ∆πq∆q nor
Γp(t) = ∆πp∆p are preserved for DHO in q and p representation of quantum mechanics. This
is shown in Fig. 3, where Γ(t) is plotted versus time. It is clear that Γ(t) never goes the zero. In
other words, Γq(t) and Γp(t) which goes to zero and infinity in the long time limit, respectively,
behave in such a manner that their product Γ(t), always keeps a positive and finite value.

5 Concluding remarks

The EPS formulation of quantum mechanics seems to be a suitable method to handle the
dissipative systems. Introducing the notion of mirror image oscillator beside the actual oscillator
is a possibility that the extension of the ordinary phase space allows one to consider. This
possibility introduces a conservative system of combined actual and image oscillators evolving
together in the course of time. The eigenvalues and eigenfunctions obtained in this way is in
agreement with those obtained by Bateman by introducing a dual Hamiltonian. However, the
uncertainty principle, as one of the major problems on the way of the different approaches to the
dissipative systems, including the Bateman approach, is valid in the extended form. This means
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Figure 3. Uncertainty relation for combined system (actual and image oscillator) as a function of time,
for λ = 0.1ω.

that the dissipative systems can not be considered as isolated systems and it really interacts
with its surrounding medium. The effect of the medium must be included as well. The mirror
image oscillator plays the role of the interacting medium for the total conservative system, and
the uncertainty relation is still valid.
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The canonical realization of the Poincaré group for the systems of the pointlike particles
coupled with the electromagnetic, massive vector and scalar fields is constructed. The
reduction of the canonical field degrees of freedom is done in the linear approximation in the
coupling constant. The Poincaré generators in terms of particle variables are found. The
relation between covariant and physical particle variables in the Hamiltonian description is
written. The approximation up to c−2 is examined.

1 Introduction

So many field-theoretical models in the classical relativistic mechanics are based on the La-
grangian formalism due to its conceptual simplicity [1, 2]. However, the transition from La-
grangian description, when the fields are eliminated by means of substitution of the formal
solutions of the field equations, to Hamiltonian one is not simple and demands the use of va-
rious approximations. For this reason, it is natural to construct the Hamiltonian description of
the “particle plus field” systems, and then to exclude field degrees of freedom. Such a program
is discussed in the series of papers by Lusanna with collaborators (see [3]).

Here at the beginning we apply simpler approach of the use of the geometrical forms of dy-
namics [2] fixing chronometrical invariance of the action integral. We construct the Hamiltonian
description of charged particles with electromagnetic field, and perform the canonical transfor-
mation which isolates nonphysical (gauge) degrees of freedom of the electromagnetic field. We
also consider the massive scalar and vector interactions and obtain generators of time evolution
and Lorentz transformations on the physical phase space. In Section 3 the procedure of the
exclusion of the field degrees of freedom is described within the linear approximation in the cou-
pling constant. We obtain the canonical generators of the Poincaré group (the direct-interaction
theory) for considered interactions. We demonstrate that the approximation up to c−2 agrees
with the well known results of various approaches.

2 Hamiltonian formulation of the “field+particle” systems

Let particles be described by their world lines in the Minkowski space-time1 γa : τ �→ xµa(τ). The
electromagnetic interaction between charges is mediated by the field Fµν(x) = ∂µAν(x)−∂νAµ(x)
with the electromagnetic potential Aµ(x); ∂ν ≡ ∂/∂xν . An action for the system of N charges

1The Minkowski space-time is endowed with a metric ‖ηµν‖ = diag(1,−1,−1,−1). The Greek indices µ, ν, . . .
run from 0 to 3; the Roman indices from the middle of alphabet, i, j, k, . . . run from 1 to 3 and both types of
indices are subject of the summation convention. The Roman indices from the beginning of alphabet, a, b, label
the particles and run from 1 to N . The sum over such indices is indicated explicitly.
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is

S = −
N∑
a=1

∫
dτa

{
ma

√
u2
a(τa) + eau

ν
a(τa)Aν [xa(τa)]

}
− 1

4

∫
Fλσ(x)F λσ(x)d4x, (1)

wherema and ea are the mass and the charge of particle a, respectively, and uµa(τa)=dxµa(τa)/dτa.
The action is manifestly invariant under reparametrization of the particle world lines and ordi-
nary gauge transformation of the electromagnetic potential:

τa �→ φ(τa), φ′ > 0, (2)
Aµ �→ Aµ + ∂µΛ. (3)

Moreover, action (1) is invariant under (global) transformations of the Poincaré group; this
invariance results in the conservation of the symmetric energy-momentum tensor [4]:

θµν(x) =
N∑
a=1

∫
ma

uµa(τa)uνa(τa)√
u2
a(τa)

δ4(x− xa(τa))dτa − FµλF νλ +
ηµν

4
FλσF

λσ, (4)

θµν(x) = θνµ(x), ∂νθ
µν(x) = 0. (5)

We fix the freedom in the parametrization of particle world lines by means of gauge condition:

x0 = f(t,x), x =
(
x1, x2, x3

)
, (6)

which defines the form of relativistic dynamics. Then, the Minkowski space-time is foliated
by the family of space-like or isotropic hypersurfaces Σt parametrized by t. The functions
xi = xia(t), i = 1, 2, 3, completely determine the parametric equations of the particle world lines
in a given form of dynamics:

x0 = f(t,xa(t)), xi = xia(t). (7)

The variable t serves as a common evolution parameter of the system.
Accounting (6), we come to a single-time form of the action [5]

S =
∫
dtL (8)

with Lagrangian L(t) depending on the functions xa(t), Aµ(t,x) and their first order derivatives
with respect to evolution parameter, ẋa(t) = dxa(t)/dt and Ȧµ(t,x).

The conservation of the energy-momentum tensor (4) gives us ten conserved quantities in a
given form of dynamics:

Pµ =
∫

Σt

θµνdσν , Mµν =
∫

Σt

(xµθνρ − xνθµρ) dσρ. (9)

However, the Lagrangian L still remains invariant under gauge transformation (3) and leads
to the constrained Hamiltonian description. It is demonstrated in [5] that the form of dynamics
determines the structure of the corresponding constraints. In the following we confine ourselves
by the most common case of the instant form of dynamics (x0 = t). The Lagrangian function
in this form of dynamics is represented by

L = −
N∑
a=1

{
ma

√
1− ẋ2

a + ea
[
A0(t,xa) + ẋiaAi(t,xa)

]}
− 1

4

∫ (
2EiEi + FijF

ij
)
d3x, (10)

where Fij = ∂iAj − ∂jAi and Ei = ∂iA0 − Ȧi.
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In the Hamiltonian formulation of our system we start with canonical variables xia(t), Aµ(t,x)
and conjugated momenta pai(t), Eµ(t,x) which are subject of the first class constraints [6]

E0 ≈ 0, Γ ≡ �− ∂iE
i ≈ 0, (11)

where ≈ means “weak equality” in the sense of Dirac and �(t,x) =
N∑
a=1

eaδ
3(x − xa(t)) is a

charge density.
Now we break the field phase space by means of canonical transformation so that the physical

part is described by the gauge invariant variables aα =
(
δiα − δi3∂α/∂3

)
Ai, Eα; α = 1, 2, and

unphysical part is parametrized by the canonical pairs (Q,Γ) and (A0, E
0).

The time evolution of the physical degrees of freedom is generated by the Hamiltonian

H =
N∑
a=1

√
m2
a + [pa − eaA⊥(xa)]2 −

1
2

∫ (
A⊥i ∆A⊥i − Ei⊥E

i
⊥ + �∆−1�

)
d3x, (12)

where

Ei⊥ =
(
δiα − δi3∂α/∂3

)
Eα, A⊥i =

(
δαi + ∂i∆−1∂α

)
aα. (13)

Inverse differential operators are defined so that

1/∂3δ
3(x) = (1/2)δ

(
x1

)
δ
(
x2

)
sgn

(
x3

)
, ∆−1δ3(x) = −1/(4π|x|). (14)

Reexpression of the conserved quantities (9) in the terms of canonical variables leads to the
canonical realization of the Poincaré group. On the physical subspace the generator P 0 coincides
with the Hamiltonian (12), and the generator of the Lorentz transformation is given by

Mk0 =
N∑
a=1

{
xka

√
m2
a + [pa − eaA⊥(xa)]

2 − tpka

}
− 1

2

∫
xk�∆−1�d3x

+
∫
xk

(
1
4
F⊥ij F

⊥
ij +

1
2
Ei⊥E

i
⊥ + El⊥∂l∆

−1�

)
d3x− t

∫
El⊥∂

kA⊥l d
3x. (15)

where F⊥ij = ∂iA
⊥
j − ∂jA

⊥
i .

Let us consider in a similar manner the Hamiltonian description of the system of particles
with massive vector and scalar interactions. In the first case a system is described by action
that differs from (1) by the massive term 1

2µ
2AνAν . The instant form Hamiltonian description

of the system is based on the canonical variables xia(t), Aµ(t,x) and pai(t), Eµ(t,x). Moreover,
there is a pair of the second class constraints:

E0 ≈ 0, Γ− µ2A0 ≈ 0, (16)

which can be excluded by means of the Dirac bracket. The canonical Hamiltonian is

H =
N∑
a=1

√
m2
a + [pa − eaA(t,xa)]

2

+
∫ [

1
4
FijFij +

1
2
EiEi − 1

2
µ2AiA

i +A0

(
Γ− 1

2
µ2A0

)]
d3x. (17)
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After exclusion of the constraints (16) one obtains for the boost generator

Mk0 =
N∑
a=1

{
xka

√
m2
a + [pa − eaA(t,xa)]2 − tpka

}
+

∫
xk

[
1
4
FijFij +

1
2
EiEi − 1

2
µ2AiA

i +
1

2µ2
Γ2

]
d3x

− t

∫ [
Ej∂kAj −

1
2
µ2AkΓ

]
d3x. (18)

In the case of a system of particles interacting by means of the scalar field ϕ(x) we construct
the standard Hamiltonian formalism without constraints with the Hamiltonian

H =
N∑
a=1

√
p2
a + [ma − eaϕ(t,xa)]2 +

1
2

∫ [
π2 + (∇ϕ)2 + µ2ϕ2

]
d3x, (19)

and the boost generator

Mk0 =
N∑
a=1

{
xka

√
p2
a + [ma − eaϕ(t,xa)]2 − tpka

}
+

1
2

∫
xk

[
π2 + (∇ϕ)2 + µ2ϕ2

]
d3x− t

∫
π∂kϕd3x. (20)

In the next section we will see that elimination of the field degrees of freedom into the three
considered cases gives us the canonical generators of a similar structure.

3 Elimination of the field degrees of freedom

In the systems, where the free radiation is not essential, the physical field degrees of freedom
can be excluded. As a result, we obtain the description of our systems in the terms of particle
variables only.

Let us perform the field reduction by three steps [7]. First, we must find a solution of the field
equations of motion. Here, using coupling constant expansion, we solve the linearized equations.
However, we touch the problem of choice of Green’s function. Fortunately, in the first-order
(linear) approximation in the coupling constant the advanced, retarded, or symmetric solutions
coincide. We use here the time-symmetric Green’s function G(x2) = G

(
x2

0 − x2
)
. It is well

known [1] that the Green’s function determines the nonrelativistic potential u(r):

u(r) =
∫
dαG

(
α2 − r2

)
. (21)

The general solution of the field equations is a sum of the source free field Arad
s (s is the number

of the physical field components), which satisfies the homogeneous equation, and the solution
of the inhomogeneous equation As in the terms of canonical particle variables.

Second, we perform a canonical transformation [7]:

As = Arad
s +As, Es = Esrad + Es, (22)

xia = qia +
∫ [(

Arad
s +

1
2
As

)
∂Es
∂kai

−
(
Esrad +

1
2
Es

)
∂As
∂kai

]
d3x, (23)

pai = kai −
∫ [(

Arad
s +

1
2
As

)
∂Es
∂qia

−
(
Esrad +

1
2
Es

)
∂A⊥k
∂qia

]
d3x, (24)

here the free field terms (Arad
s , Esrad) are treated as the new canonical variables.
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Third step consists in elimination of the field variables by means of constraints

Arad
s ≈ 0, Esrad ≈ 0. (25)

The Dirac bracket for the systems with additional canonical constraints (25) coincides with the
particle Poisson bracket {qia, kbj} = −δabδij .

It is true, in order to simplify the form of the Poincaré generators for the system with vector
interaction, we need to canonically transform the particle variables. Finally, the canonical
generators of the Poincaré group for the considered interactions in the linear approximation are

H = c
N∑
a=1

k0
a +

c

2

N∑′

a,b=1

eaeb
f(ωab)
k0
a

u(ρab), k0
a =

√
m2
ac

2 + k2
a, (26)

P k =
N∑
a=1

kka , M ij =
N∑
a=1

(
qiak

j
a − qjak

i
a

)
, (27)

Mk0 =
N∑
a=1

(
qka
c
k0
a − tkka

)
+

1
2c

N∑′

a,b=1

eaebq
k
b

f(ωab)
k0
a

u(ρab), (28)

where the prime over sum denotes that a �= b (a = b terms is excluded by means of mass
renormalization); ρ2

ab = q2ab +
(
kaqab/k

0
a

)2, qab = qa − qb, qab = |qab|, ωab = kµakbµ/mambc
2,

and f(ω) = 1 for the scalar interaction and f(ω) = ω for the vector interaction. It can easy be
demonstrated that the expressions (26)–(28) satisfy the commutation relations of the Poincaré
group in a given approximation with arbitrary functions u(r) and f(ω).

According to (23), the covariant particle positions xia are connected with the canonical vari-
ables as

xia = qia +
1
2

∫ [
As

∂Es
∂kai

− Es ∂As
∂kai

]
d3x. (29)

It can be verified directly that in a given approximation the expression (29) satisfies the world
line condition{

xia,M
k0

}
= xka

{
xia, H

}
− tδik. (30)

The Poisson brackets between particle positions do not vanish,{
xia, x

j
b

}
=

∫ (
∂As
∂kbj

∂Es
∂kai

− ∂Es
∂kbj

∂As
∂kai

)
d3x, (31)

in a full agreement with the famous no-interaction theorem [8].
Similarly, the direct-interaction theory can be obtained in the different forms of relativistic

dynamics. They are physically equivalent. So, the Poincaré generators in the front form (x0 =
t+x3), which corresponds to foliation of the Minkowski space-time by the isotropic hypersurfaces,
are connected with the instant form generators (“in”) by means of the following canonical
transformation:

qia → qia − q3a
kia + δi3ha

ha
, kia → kia + δiaha, (32)

Gin −Gfr = {F,Gin}, (33)

ha =
k2
a +m2

a

2ka3
, F =

∫ (
exp

(
−x3∂t

)
− 1

)
Fd3x, (34)

where ∂tF is equal to the spatial density of the instant form interaction term.
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Now let us examine the generators (26), (28) up to c−2 approximation. We immediately find
that

u(ρab) = u(qab) +
(qabka)2

2qabm2
ac

2

du(qab)
dqab

, f(ωab) = 1 +
f ′(0)
2c2

(
ka
ma

− kb
mb

)2

. (35)

Performing the canonical transformation generated by the function

Λ =
1

4c2

N∑
a<b

eaebu(qab)
[
qab

(
ka
ma

− kb
mb

)]
, (36)

finally, we obtain the expressions

H = H(0) +H(1), (37)

Mk0 =
N∑
a=1

(qkama − tkka) +
1

2c2

N∑′

a,b=1

eaebq
k
b u(qab). (38)

where

H(0) =
N∑
a=1

(
mac

2 +
k2
a

2ma

)
+ U (0), U (0) =

N∑
a<b

eaebu(qab), (39)

H(1) = −
N∑
a=1

k4
a

8m3
ac

2
−

N∑
a<b

eaeb

{
1

2c2mamb
[kakbu(qab)

+(kaqab)(kbqab)
du(qab)
qabdqab

]
− A

2c2

(
ka
ma

− kb
mb

)2

u(qab)

}
, (40)

and A = f ′(0) − 1. Specifically, A = −1 for the scalar and A = 0 for the vector interactions.
The latter in the massless case produces by the Darwin’s Lagrangian for electromagnetic inter-
action. Expression (40) agrees with the post-Newtonian Hamiltonians obtained within various
approaches [1].
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[7] Nazarenko A., Canonical realization of the Poincaré algebra for a relativistic system of charged particles plus
electromagnetic field, in Proceedings of Third International Conference “Symmetry in Nonlinear Mathemati-
cal Physics” (12–18 July, 1999, Kyiv), Editors A.G. Nikitin and V.M. Boyko, Kyiv, Institute of Mathematics,
2000, V.30, Part 2, 343–349.

[8] Currie D.G., Jordan J.F. and Sudarshan E.C.G., Relativistic invariance and Hamiltonian theories of inter-
acting particles, Rev. Mod. Phys., 1963, V.35, 350–375.



Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 659–662

Towards Uniform T-Duality Rules

Alexei J. NURMAGAMBETOV

Institute for Theoretical Physics, NSC “Kharkov Institute of Physics and Technology”,
1 Akademicheskaya Str., 61108, Kharkov, Ukraine

Center for Theoretical Physics, Texas A&M University, College Station, TX 77843, USA
E-mail: ajn@physics.tamu.edu

In this contribution based on the talk given at the SUSY’01, Dubna, Russia, I discuss the
reasons of appearing the different sets of fields entering into the T-duality transformations
and a way to construct the uniform T-duality rules.

1 Introduction

Discovery in the past decade of the new class of non-compact symmetries allowed to revise one of
the main problems of Superstrings: The puzzle of having too much “fundamental” theories. The
resolution was in the conjecture on the M-theory in framework of which it turned out possible
to unify all the five different superstring theories. The useful tool for establishing the M-theory
evidence are dualities connected to the new symmetries of perturbative or non-perturbative
sectors of Superstrings.

In this Contribution I would like to discuss some questions related to the so-called T-duality
(see [1] for review). Namely, I will focus my attention on the following:

Q1: What are the different ways of T-duality rules derivation?
Q2: Do the T-duality rules coincide?
Q3: How uniform T-duality rules could be derived?
For the sake of simplicity I restrict myself in what follows to the pure classical frames, that

means neglecting the dilaton field, which receives its corrections from quantum effects, and
will consider backgrounds with single isometry direction. However, these restrictions are not
so crucial, and more general case can be considered more or less straightforwardly in the same
manner.

2 How one can derive the T-duality rules?

There are at least three different ways for getting the T-duality rules. The first one is based on
the consideration of fundamental string dynamics in special kind of backgrounds allowing for
existence of isometry direction [2]. Such consideration gives a possibility to derive the T-duality
rules for Neveu–Schwarz (NS) sectors of the original and dual theories. The second way appeals
to the unification of D=10 type IIA and D=10 type IIB supergravity (SUGRA) theories, which
are the low energy effective actions for superstrings, after dimensional reduction down to nine
dimensions. Requirement of having the same spectra in nine dimensions leads to the T-duality
rules relating both the NS and Ramond (RR) sectors of the original (say, type IIA) and dual
(type IIB) SUGRAs [3, 4]. Finally, one can derive the T-duality rules from the consideration
of Dirichlet (D)-branes [5, 6, 7]. Again, the requirement of having the same physics after
direct dimensional reduction of action for the Dp-brane, propagating in the background of
type IIA theory, and double dimensional reduction of action for the D(p+1)-brane in the type
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IIB background gives a chance to arrive at the T-duality transformations which relate the NS
and the RR fields of the type IIA and type IIB theories to each other.

3 Do the T-duality rules coincide?

Let us consider the picture we have dealt with again. From the point of view of the fundamental
string dynamics in the background with isometry no any additional redefinitions of the original
fields which enter into the T-duality transformations are required. It should be pointed out since
derivation of the T-duality rules is accompanied by dimensional reduction, target-space gauge
fields can always be redefined to pick up the term which is proportional to the Kaluza–Klein
vector field. This is due to the so-called transgression of the field strengths which is well-known
in Kaluza–Klein literature. In such a situation additional means other possible redefinitions
which do not relate to the transgression.

However, remind that in the case of fundamental string we are dealing with the NS sector
only. If we extend our consideration to involve the RR sector into the game and to consider the
T-duality rules from the point of view of the SUGRAs, we observe that the RR fields entering into
the T-duality transformations are not always the same as the original ones [3, 4]. In other words
some of the RR fields additional redefinition is required. The reason of this phenomenon is easy
to understand. One of the features of the D=10 type IIB SUGRA is S-duality symmetry under
the global SL(2,R) transformations. This symmetry is absent in the case of the D=10 type IIA
SUGRA. Since we can establish the connection between these theories only after dimensional
reduction, we expect the trace of the higher dimensional SL(2,R) transformations to be in lower
dimensions. To make this symmetry manifest it is necessary to redefine the fields and to recollect
them into the SL(2,R) multiplets [3, 4]. On the other hand there always exists a freedom in the
field (re)definition due to Bianchi identities (BIs) for the RR fields. But nevertheless, having
the same BIs for two different sets of fields one describes the same physics [8]. Important point,
which is worth to note, is that the additional redefinitions of the RR fields just fall into the class
of admissible from the point of view of the BIs ones.

To complete the picture we need to know what happens in the D-brane case. The action for
any D-brane (modulo instanton in type IIB) has the following structure (see, e.g., [9] for details)

SDp = −
∫
dξp+1

√
−det(gmn + Fmn) +

∫
Mp+1

C ∧ eF2 , C =
d/2(−1)∑
n=0

C
IIB(IIA)
2n(+1) . (1)

The first term is the kinetic term represented by generalization of Dirac action for relativistic
membrane and the action for nonlinear electrodynamics proposed by Born and Infeld and called
therefore by Dirac–Born–Infeld (DBI) term, and the second term is the Wess–Zumino (WZ)
term. The DBI term is constructed out the NS target-space fields and worldvolume gauge
field a1 entering by means of F2 = da1 −B2, while both the NS 2-form B2 and the RR target-
space fields enter in the WZ term. In T-duality business two parts of the action play their roles
independently giving the T-duality rules for the NS and for the RR sectors respectively [5, 7].
One can demonstrate that in such a case no original fields redefinition is required. The reason
for this lies, in particular, in the natural restriction on the RR fields when they are fixed by
the canonical form of the WZ term (cf. (1)), where C is treated as formal sum over the RR
potentials in d-spacetime dimensions.

Therefore we are able to conclude the T-duality rules which we can read off from the Funda-
mental String, the SUGRA and the D-brane considerations coincide in the NS sector. However,
even if the RR T-duality rules which follow from the SUGRA and the D-brane considerations
coincide, the fields entering into the rules are not always the same.
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4 Can we derive the uniform T-duality rules?

The key point here is that the analysis based mainly on the two-dimensional CFT and the vertex
operators technique shows that T-duality is the exact symmetry of string theory [10, 11] (and
Refs. therein). Therefore, in the language of low-energy classical effective dynamics of quantum
string theory, it should be the symmetry of the following action

S = SSUGRA (NS+RR) + SNS SOURCES + SRR SOURCES, (2)

where the first term denotes schematically the action for the SUGRA with the NS and the
RR fields (strictly speaking with their field strengths) and the last terms denote dynamical
sources for the NS and the RR fields which are the actions for fundamental string and D-branes.
This approach leads to the complete set of classical dynamical equations of motion describing
dynamics of the SUGRA in presence of matter-type sources as well as dynamics of sources in
the dynamical-type background, and gives therefore enclosed interaction picture.

In such a consideration it is naturally to expect that one can derive the uniform T-duality
rules for both the NS and RR sectors since all the possible additional redefinitions coming from
the SUGRA consideration will be under control and shall be in accordance with T-duality rules
for the sources. One can observe some details in favour of this claim in [12]. There the model
with action [13, 14]

S = SSUGRA (NS) + SFundamental String SOURCE (3)

was investigated from the point of view of invariance under the T-duality transformations.
The result on the T-duality invariance of such a system is predictable in view of the statement

in the beginning of this Section. However, as a by-product, it became clear that as it can be
expected from the discussion in the Section before the NS T-duality rules which come from
equation (3) are in accordance with the rules derived from the fundamental string and the
SUGRA considerations and no additional fields redefinition is required.

This observation simplifies explicit derivation of T-duality transformations, because, roughly
speaking, having fundamental string as a source in effective action one can “forget” about the
DBI part of D-brane sources and consider the contributions coming only from the WZ part of
the D-branes action.

5 Discussion and conclusions

To summarize, I have discussed the reasons of appearing different sets of fields in the T-duality
transformations and have sketched a way of the T-duality rules derivation in uniform basis of
fields. Actually, the main problem is not even in derivation of T-duality rules in the uniform
basis of fields, but rather in verification at the dynamical level the statement on T-duality as
the exact symmetry of (perturbative and non-perturbative) string theory.

Vice versa, as we believe in the result achieved in the framework of quantum approach of the
CFT and vertex operators, this gives confidence that it should be correct for effective theory
describing the low-energy classical dynamics of quantum string theory. Hence, as a by-product,
we can derive the T-duality transformations in the uniform basis of fields.

Beside the questions discussed above, consideration of T-duality in the SUGRA+SOURCES
type interacting systems plays important role in String Cosmology with the pre-big-band sce-
nario [15] where it is supposed that one deals with the string theory effective action in the
background with isometries (see, e.g., the discussion in [16]). But this model should include
actions for matter fields (strings and branes) and they have to be invariant under duality trans-
formations.
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Finally, in view of the recent paper [17] where an example of supersymmetric interacting
system of the SUGRA+SOURCES type has been proposed, it looks very attractive to derive
the supersymmetric T-duality rules and to compare the result with that of [18].
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First order differential equations, which satisfy second order equations of motion for N = 2
Super Yang–Mills theory, are obtained with help of breaking of super self-duality.

First order equations of motion, by definition, are differential equations of first order, which
satisfy second order equations of motion of the theory. For example, in the N = 1 supersym-
metric SU(2) Yang–Mills theory

L = Tr
{
−1

4
FmnF

mn − iλ̄σmDmλ+
1
2
D2

}
, (1)

where

Fmn = ∂mVn − ∂nVm + ig[Vm, Vn],
Dm = ∂m + ig[Vm, · ], ηmn = diag(−1, 1, 1, 1),

the super self-duality equations in component fields are first order equations of motion. The
Yang–Mills strength in spinor indices has the following form

Fαα̇,ββ̇ ≡ σmαα̇σ
n
ββ̇
Fmn =

1
2
εαβfα̇β̇ +

1
2
εα̇β̇fαβ ,

where

fα̇β̇ ≡ εαγFγα̇,αβ̇ , fαβ ≡ εα̇γ̇Fαγ̇,βα̇.

The super self-duality equations of the theory (1) look as follows [1]

fαβ = 0, D = 0, λα = 0, Dαβ̇λ̄
β̇ = 0. (2)

The system (2) is invariant under the following N = 1 supersymmetric transformations

δξVαα̇ = −2i(ξαλ̄α̇ + ξ̄α̇λα), δξD = −ξαDαα̇λ̄α̇ + ξ̄α̇Dαα̇λα,

δξλα =
1
2
ξβfαβ + iξαD, δξλ̄α̇ =

1
2
ξ̄β̇fα̇β̇ − iξ̄α̇D, (3)

where ξα, ξ̄α̇ are the parameters of N = 1 supersymmetric transformations. Invariance of (2)
under transformations (3) means that the system of transformed equations

δξfαβ = 0, δξD = 0, δξλα = 0, δξ

(
Dαβ̇λ̄

β̇
)

= 0

is satisfied on the system (2).
It easy to verify that the system of super self-duality equations (2) can be derived from the

only equation

λα = 0 (4)
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by applying sypersymmetric transformations to this equation twice. In other words, the sys-
tem (2) can be written in the following form

λα = 0, δξλα = 0, δηδξλα = 0.

Adding to (4) one more equation (which breaks super self-duality)

λα = 0, λ̄1̇ = kλ̄2̇, (5)

where k is complex number, and by applying twice the transformations (3) to (5), we obtain
another system of first order equations of motion

fαβ = 0, f1β̇ = kf2β̇ , D = 0, λα = 0, λ̄1̇ = kλ̄2̇, Dαβ̇λ̄
β̇ = 0. (6)

Though this system is overdetermined, it is invariant under supersymmetric transformations.
This example prompts the procedure for obtaining of first order equations of motion in

supersymmetric theories.
In this paper we present some systems of first order equations in the N = 2 supersymmetric

Yang–Mills theory, which are obtained by breaking super self-duality. By definition, the system
of super-self-duality equations has the following properties: i) it includes the self-duality equation
for pure Yang–Mills theory fαβ = 0; ii) it satisfies the equations of motion of the corresponding
supersymmetric theory; iii) it is invariant under supersymmetric transformations.

The SU(2) Yang–Mills theory with extended N = 2 supersymmetry, given by the La-
grangian [2]

L = Tr
(
−1

4
FmnF

mn − iλ̄α̇iσ
mα̇βDmλiβ − 2DmCDmC∗ −

1
2
C2

+ igC{λ̄α̇i, λ̄α̇i}+ igC∗{λiα, λαi }+ 4g2C[C,C∗]C∗
)
, (7)

is invariant under N = 2 supersymmetric transformations [3]:

δξC = −ξαi λiα,
δξC

∗ = −ξ̄α̇iλ̄α̇i,
δξVαα̇ = 2i

(
ξiαλ̄α̇i + ξ̄α̇iλ

i
α

)
,

δξλ
i
α = −1

2
ξβifαβ + 2igξiα[C,C∗]− ξαj Cτ

ij + 2iξ̄α̇iDαα̇C,

δξλ̄α̇i = −1
2
ξ̄β̇i fα̇β̇ − 2igξ̄α̇i[C,C∗] + ξ̄jα̇

Cτij + 2iξαi Dαα̇C∗,

δξ C = −iξαi
(
Dαβ̇λ̄

β̇j + 2g[λjα, C
∗]

)
τij + iξ̄iα̇

(
Dαβ̇λjα − 2g[λ̄β̇j , C]

)
τij , (8)

where ξiα, ξ̄α̇i are the parameters of N = 2 supersymmetric transformations, and τ ji are Pauli
matrices.

The N = 2 super self-dual system

fαβ = 0, C = 0, Dαβ̇D
αβ̇C∗ − ig{λ̄α̇i, λ̄α̇i} = 0,

C = 0, λiα = 0, Dαβ̇λ̄
β̇i = 0 (9)

includes one second order equation. The system (9) can be written as

λiα = 0, δξλ
i
α = 0, δηδξλ

i
α = 0.
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In order to obtain the systems of first order equations, we can break super self-duality in
two ways: i) adding to the equation λiα = 0 other conditions for spinor fields; ii) imposing some
conditions on supersymmetric parameters. In the case of proper choice of the above-mentioned
conditions, after applying twice the supersymmetric transformations (8) to the equations for
spinor fields we will obtain the system of first order equations.

The first example is (we have two systems, which correspond to i = 1 and i = 2)

λiα = 0, δξλ
i
α = 0, δηδξλ

i
α = 0,

λ̄1̇i − kλ̄2̇i = 0, δξ
(
λ̄1̇i − kλ̄2̇i

)
= 0, δηδξ

(
λ̄1̇i − kλ̄2̇i

)
= 0. (10)

After transformations, we obtain from (10)

fαβ = 0, f1̇β̇ = kf2̇β̇ , C = 0, Dα1̇C
∗ = kDα2̇C

∗,

C = 0, λiα = 0, Dαβ̇λ̄
β̇i = 0, λ̄1̇i = λ̄2̇i. (11)

The system (11) is invariant under N = 2 supersymmetric transformations and satisfies the
equations of motion of the theory (7). It is not overdtermined.

The following system of first order equations of motion looks as follows

ξ̄α̇i = 0,
λαi = 0, δξλαi = 0, δηδξλαi = 0,
λ̄α̇i = 0, δξλ̄α̇i = 0, δηδξλ̄α̇i = 0,

λi1 − kλi2 = 0, δξ(λi1 − kλi2) = 0, δηδξ(λi1 − kλi2) = 0, (12)

or, in the equivalent form,

fαβ = 0, D1α̇C = kD2α̇C, C∗ = C = 0,

Dαβ̇λiα − 2g[λ̄β̇i, C] = 0, Dαβ̇λ̄
β̇i = 0,

λαi = 0, λ̄α̇i = 0, λi1 = kλi2, ξ̄α̇i = 0. (13)

In this case we have put a constraint on supersymmetric parameters and included it into the
system of first order equations of motion. This underlines that the system (13) is invariant under
N = 2 supersymmetric transformations on the condition that ξ̄α̇1 = 0 or ξ̄α̇2 = 0 correspondingly.

Another system of first order equations of motion

ξαi = 0, ξ̄α̇i = 0,
λαi = 0, δξλαi = 0, δηδξλαi = 0,
λ̄α̇i = 0, δξλ̄α̇i = 0, δηδξλ̄α̇i = 0, (14)

or, in the explicit form,

fαβ = 0, C = 0, D1α̇C
∗ = kD2α̇C

∗, C = 0,

Dαβ̇λiα = 0, Dαβ̇λ̄
β̇i + 2g[λiα, C

∗] = 0,

λαi = 0, λ̄α̇i = 0, ξαi = 0, ξ̄α̇i = 0. (15)

In such way one can find some more systems of first order equations of motion.
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In this talk I will review some recent work on the Maxwell–Dirac equations. This system of
equations can be thought of as the classical equations for electronic matter, the quantisa-
tion of which yields that most successful of physical theories, QED. The talk will focus on
qualitative, non-perturbative properties of this highly non-linear system of equations. We
will be particularly interested in properties which might be used to describe a single isolated
electron.

1 Introduction

The Maxwell–Dirac system consists of the Dirac equation

γα(∂α − i eAα)ψ + imψ = 0, (1)

with electromagnetic interaction given by the potential Aα; and the Maxwell equations (sourced
by the Dirac current, jα),

Fαβ = ∂αAβ − ∂βAα,

∂αFαβ = −4πejβ = −4πeψ̄γβψ. (2)

Most studies of the Dirac equation treat the electromagnetic field as given and ignore the
Dirac current as a source for the Maxwell equations, i.e. these treatments ignore the electron
“self-field”. A comprehensive survey of these results can be found in the book by Thaller [1].
This is not surprising, inclusion of the electron self-field via the Dirac current leads to a very
difficult, highly non-linear set of partial differential equations. So difficult in fact that the
existence theory and solution of the Cauchy problem for small initial data was only solved in
1997 (Gross [2], Chadam [3], Georgiev [4], Esteban et al [5], Bournaveas [6], and Flato, Simon
and Taflin [7]) – seventy years after Dirac first wrote down his equation!

There are no known non-trivial, exact solutions to the Maxwell–Dirac equations in 1 + 3
dimensions – all known solutions involve some numerical work. These solutions do, however,
exhibit interesting non-linear behaviour which would not have been apparent through perturba-
tion expansions. The particular solutions found in [8] and [9] exhibit just this sort of behaviour –
localisation and charge screening. See also Das [10] and the recent work of Finster, Smoller and
Yau [11].

Finster, Smoller and Yau also point out in [12] that solving the system (Einstein–Maxwell–
Dirac system in their case) gives, in effect, all the Feynman diagrams of the quantum field theory,
with the exception of the fermionic loop diagrams. Study of the Maxwell–Dirac system should
provide an interesting insight into non-perturbative QED.

In the discussion which follows we will focus on two broad reductions of the equations, the
static case (including the spherically symmetric sub-case) and the stationary case. Precise
statements of theorems will be given, however only brief indications as to the methods of proof
are supplied – details can be found in the original papers cited in the bibliography.
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2 The Maxwell–Dirac equations

In [8] the 2-spinor form of the Dirac equations was employed to solve (1) for the electromagnetic
potential, under the non-degeneracy condition jαjα �= 0. Requiring Aα to be a real four-vector
then gave a set of partial differential equations in the Dirac field alone, the reality conditions.

For 2-spinors uA and vB (see [13] for an exposition of the 2-spinor formalism) we have

ψ =
(
uA

vḂ

)
, with uCv

C �= 0 (non-degeneracy),

where A,B = 0, 1, Ȧ, Ḃ = 0̇, 1̇ are two-spinor indices. The Dirac equations are(
∂AȦ − i eAAȦ

)
uA +

im√
2
vȦ = 0,(

∂AȦ + i eAAȦ
)
vA +

im√
2
uȦ = 0, (3)

where ∂AȦ ≡ σαAȦ∂α, AAȦ = σαAȦAα; here σαAȦAα are the Infeld-van der Waerden symbols.
The electromagnetic potential is (see [8] for details),

AAȦ =
i

e(ucvc)

{
vA∂BȦuB + uA∂BȦvB +

im√
2

(
uAuȦ + vAvȦ

)}
. (4)

The reality conditions are,

∂AȦ
(
uAuȦ

)
= − im√

2

(
uCvC − uĊvĊ

)
,

∂AȦ (vAvA) =
im√

2

(
uCvC − uĊvĊ

)
,

uA∂
AȦv̄Ȧ − vȦ∂

AȦuA = 0. (5)

The Maxwell equations are,

∂αFαβ = −4πe jβ = −4πe
√

2σAȦβ
(
uAuȦ + vAvȦ

)
. (6)

The equations (4), (5) and (6) are entirely equivalent to the original Maxwell–Dirac equations,
(1) and (2).

3 The static Maxwell–Dirac equations

A Maxwell–Dirac system is said to be static if there exists a Lorentz frame in which the Dirac
current vector is purely timelike, i.e. jα = j0δα0 , in this Lorentz frame there is no current flow.

As noted in [8] this definition implies,

vA = eiχ
√

2σ0AȦuȦ, with χ a real function.

The gauge may be fixed (see [8]) by the choice,

u0 = X e
i
2
(χ+η), u1 = Y e

i
2
(χ−η),

with X, Y , and η real functions on R4.
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Defining the null vector L,

L =
(
σα
AȦ
uAūȦ

)
=

(
L0,

1√
2
V

)
, with L0 =

1√
2

(
X2 + Y 2

)
and

V =
(
2XY cos η, 2XY sin η, X2 − Y 2

)
,

our equations become,

∂

∂t

(
X2 + Y 2

)
= 0,

∇.V = −2m
(
X2 + Y 2

)
sinχ,

∂V

∂t
+ (∇χ)×V = 0. (7)

With electromagnetic potential

A0 =
m

e
cosχ+

(
X2 − Y 2

)
2 e (X2 + Y 2)

∂η

∂t
+

(∇χ) .V

2e (X2 + Y 2)
,

A =
1

2e (X2 + Y 2)

[
∂χ

∂t
V +

(
X2 − Y 2

) ∇η −∇ × V

]
, where A =

(
A1, A2, A3

)
. (8)

The full system is given by the above two sets of equations and the Maxwell equations.
Further simplification can be made to the system by imposing the stationary condition:

A Maxwell–Dirac system is said to be stationary if there is a gauge in which ψ = eiωtφ, with the
bi-spinor φ independent of t. Such a gauge will be referred to as a stationary gauge. We will be
examining isolated, stationary, static systems in Section 3.2. A stationary gauge is not unique.

3.1 Spherical symmetry

Spherical symmetry of the stationary and static Maxwell–Dirac system is imposed (in a gauge
independent way) by demanding that the null vector L, defined above, is spherically symmetric.
This has the following consequences, in terms of spherical polar coordinates,

X =
√
R cos(θ/2), Y =

√
R sin(θ/2), and η = φ.

The equations are

A =
1

2 e
cot θ
r

φ̂, A0 =
m

e
cosχ+

1
2 e

dχ

dr
,

d

dr

(
r2R

)
= −2mr2R sinχ,

d

dr

(
r2
dA0

dr

)
= 8πer2R,

with χ and R functions of r only. The Dirac field is

ψ =
√
R


−e i

2
(χ−φ) sin

(
θ
2

)
e

i
2
(χ+φ) cos

(
θ
2

)
−e−i

2
(χ+φ) sin

(
θ
2

)
e

−i
2

(χ−φ) cos
(
θ
2

)
 .

The first thing one notices is that there is a central magnetic monopole, with Dirac magnetic
charge 1

2e . In fact, we can obtain a reasonably complete characterisation of these solutions [8].
Briefly, under quite weak (physically reasonable) assumptions, we find that the solutions can be
thought of as a central magnetically and electrically charged point source (external to the Dirac
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field) surrounded by an electrically (oppositely) charged Dirac field. Near ∞ the electrostatic
potential behaves as A0 ∼ −m

e + 1/(me)
r2

and near r = 0 the potential behaves as A0 ∼ −m
e + γ/e

r
(for some constant γ).

The object is highly compact, with a radius of about 1/m a (reduced) Compton wavelength.
Inside this radius it has an onion like structure consisting of an infinite series of spherical shells.
The system is electrically neutral, with the central Coulomb point source effectively screened by
the Dirac field for r > 1/m.

3.2 Isolated systems

In most physical processes that we would wish to model using the Maxwell–Dirac system we
would be interested in isolated systems – systems where the fields and sources are largely confined
to a compact region of R3. This requires that the fields ‘die-off’ sufficiently quickly as |x| → ∞.

The best language for the discussion of such decay conditions and other regularity issues is the
language of weighted function spaces; specifically weighted classical and Sobolev spaces. In [14]
the weighted Sobolev spaces W k,p

δ are used following the definitions of [15]. These definitions
have the advantage that the decay rate is explicit: under appropriate circumstances a function
in W k,p

δ behaves as |x|δ with |x| → ∞. An element f of W k,p
δ has σ−δ+|α|−

3
p∂|α|f in Lp for each

multi-index α for which 0 ≤ |α| ≤ k; here σ =
√

1 + |x|2 and we are working on R3 (or some
appropriate subset thereof) – see [15] or [16] and [17] (the later papers use a different indexing
of the Sobolev spaces).

We will be interested in the asymptotic region (spatially) of the Maxwell-Dirac system, which
we denote by Eρ = R3\Bρ, where Bρ is the ball of radius ρ. A minimal condition that one may
impose on the Dirac field is that it have finite total charge in the region Eρ, this amounts to∫

Eρ

j0 dx =
∫
Eρ

(
|uo|2 + |u1|2 + |v0|2 + |v1|2

)
dx <∞.

This, of course, simply means that uA and vA are in L2.
Suppose we have a stationary system and we are in a stationary gauge for which Aα → 0

as |x| → ∞. Write, uA = e−iEtUA and v̄Ȧ = e−iEtV̄ Ȧ with UA, VA and Aα all independent of
time t. Then UA and VA must be in L2(Eρ) if the total charge due to the Dirac field is finite.
So U and V must have L2 decay as |x| → ∞, roughly U and V must decay faster than |x|− 3

2 .
We also note that Aα is given by equation (4) in terms of U and V and their first derivatives. If
we substitute this expression for the electromagnetic potential into the Maxwell equations then
we have equations that are of third order for U and V . For these equations to make sense we
require that U and V are three times differentiable (in the weak sense at least). This suggests
that U and V should be in W 3,2

−τ (Eρ), where τ > 3
2 .

To make this all a little more precise we introduce some more notation. Note that uCvC =
UCV

C is a gauge and Lorentz invariant complex scalar function, this means we can introduce a
(unique up to sign) “spinor dyad” {oA, ιB}, with ιAoA = 1. The dyad is defined as follows, let
UCV

C = Reiχ – where R and χ are real functions – then write,

UA =
√
Rei

χ
2 oA and VA =

√
Rei

χ
2 ιA.

Definition 1. A stationary Maxwell–Dirac system will be said to be isolated if, in some sta-
tionary gauge, we have

ψ = e−iEt
√
R

(
e

iχ
2 oA

e−
iχ
2 ῑȦ

)
,
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with E constant and
√
Rei

χ
2 ∈ W 3,2

−τ (Eρ); oA, ιA ∈ W 3,2
ε (Eρ) and Aα ∈ W 2,2

−1+ε(Eρ), for some
τ > 3

2 and some ρ > 0 and any ε > 0.

Remark 1. This definition ensures, after use of the Sobolev inequality and the multiplication
lemma, that ψ = o(r−τ ) and Aα = o(r−1+ε).

Remark 2. Notice our condition places regularity restrictions on the fields in the region Eρ
only. In the “interior” Bρ there are no regularity assumptions.

The spherically symmetric solution in fact provides an excellent example of an isolated, sta-
tionary and static Maxwell–Dirac system.

The main theorem proved in [14] shows that the electric neutrality of the spherically sym-
metric solution is generic for these isolated, static systems.

Theorem 1. An isolated, stationary, static Maxwell–Dirac system is electrically neutral.

The theorem is remarkable in that it depends only on asymptotic regularity and decay –
almost anything can happen in Bρ! Another theorem of [14] shows that the association of
a magnetic monopole with the central, external Coulomb field, in the spherically symmetric
case, is also generic (at least for axial symmetry). That is, associated to each external Coulomb
point charge in a stationary, static Maxwell–Dirac system there is a magnetic monopole with
magnetic charge of Dirac value 1

2e .

4 Stationary isolated systems

To close this brief overview of the Maxwell–Dirac system we will take a quick look at some very
recent results [18].

The first observation one makes is that under the regularity and decay conditions assumed
(those of an isolated system) we can always perform a gauge transformation to the Lorenz
gauge. The Maxwell equation for Aα now becomes an elliptic equation (remember the system
is stationary)

� Aα = 4πe
√

2RσAȦβ (oAoȦ + ιAιȦ). (9)

Writing aα = Eδα0 +Aα the Dirac equations (3) are,

oA
2

(
∂AȦR

R
+ i∂AȦχ

)
+ ∂AȦoA − ieaAȦoA +

im√
2
ῑȦe−iχ = 0,

ιA
2

(
∂AȦR

R
+ i∂AȦχ

)
+ ∂AȦιA + ieaAȦιA +

im√
2
ῑȦe−iχ = 0. (10)

A straightforward “bootstrap” argument (based on elliptic regularity) can be made to show that
A and U and V must in fact be C∞ if U and V are taken to be in L2(Eρ) and A is in L1

loc.
One can show (using an argument based on Thaller, [1]) that the essential spectrum of the

Dirac operator in this case is the same as that for the free Dirac operator, i.e. (−∞,−m]∪[m,∞).
So we would expect to get bound states for E ∈ (−m,m) – cf. [5]. In fact under very weak
assumptions we can show that there are no embedded eigenvalues, i.e. E ∈ [−m,m] – cf. [1].

Under more restrictive assumptions there is also a version of the “electric neutrality” theorem.
The interested reader may find details of these and other results in the forthcoming paper.
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The asymptotic expansions (at small and large internuclear distances R) of the eigenvalues
(potential curves) E(R) of the two-Coulomb-centre problem by the perturbation theory are
obtained.

1 Introduction

In the present time a severe asymmetry exists in development of the theories of nonrelativis-
tic and relativistic quantum-mechanical problems of two Coulomb centres (the so-called Z1eZ2

problem). Numerous effective asymptotic and numerical methods of solving the two-Coulomb-
centre problem for the Schrödinger equation (see, for instance, [1] and references therein) can be
opposed only by seldom examples of the consideration of same problem for the Dirac equation
within various approximations [2, 3, 4, 5] (the Galerkin method, diagonalization, variational
method, perturbation theory, Furry–Sommerfeld–Maue approximation). Such situation is a sur-
prising example of passivity of the theory at the deficiency of experimental data for heavy and
superheavy quasi-molecular systems due to the difficulties in construction of sources of multiply
charged ions and formation of beams of rather slow particles.

Besides, with the recent erection of powerful accelerators of highly charged ions in many
laboratories [6, 7] the need of the consistent Dirac theory of the quantum mechanical problem
is more and more urgent in different fields of physics. Previously, this problem was applied,
basically, in the theory of supercritical atoms for the description of effects of spontaneous and
enforced creation of positrons in a supercritical field of a quasi-atom formed at slow collisions
of heavy ions with a total atomic number Z1 + Z2 > 173 [3, 8, 9]. Rather recently [10], Z1eZ2

problem was used as a model approximation in the investigations of elementary processes of
collisions (excitation, charge exchange, ionization) of multiply charged ions. Other application
of the relativistic problem in theory of collisions is more traditional, and is reduced to using the
model functions of a continuous spectrum for the analysis of scattering of relativistic electrons
on heavy diatomic molecules [10].

The difficulty in considering the problem consists in the fact that the Dirac equation with
the potential of two Coulomb centres does not permit complete separation of variables in any
orthogonal system of coordinates and, thus, one has to deal with first-order partial differential
equations. This highly complicates the whole specific problem of finding the electron wave func-
tion and potential curves. Unfortunately, numerical solving this system of differential equations
is rather complicated and cumbersome problem [4, 5] requiring complicated calculations for
each specific system Z1eZ2. This causes the necessity of creating and investigating approxima-
tive methods of solving this problem, which are based on clear physical ideas and well elaborated
mathematical device and have a clear area of application.

In the present paper we determine the energy of an electron for two asymptotic cases, when
the distance R between the Coulomb centres is rather small or rather large. For this we use
the scheme of the perturbation theory which does not require the separation of variables. As
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a result of the performed calculations, the asymptotic expressions for levels of energy of system
Z1eZ2 are obtained at R→ 0 (R→∞) up to the terms O(R3) (O(R−3)).

2 Asymptotic expansions of the solutions
of the problem at R → 0

When the total charge of Coulomb centres Z = Z1 + Z2 is positive and internuclear distance R
tends to zero, it is possible to consider the relativistic problem within the perturbation theory.
The Dirac Hamiltonian of the problem Z1eZ2 is of the form (me = e = � = 1):

Ĥ = cα · ̂p+ c2β + V, V = −Z1

r1
− Z2

r2
, (1)

where r1,2 is the distance between the electron and the corresponding nucleus, ̂p = −i� is the
momentum operator, and c is the velocity of light. In standard representation [11],

α =
(

0 σ
σ 0

)
, β =

(
I 0
0 −I

)
.

Here σ are Pauli matrices, and 0 and I are, respectively, 2×2 zero and identity matrices. Let us
represent the complete Hamiltonian of the two-Coulomb-centre problem Ĥ by the Hamiltonian
of zero approximation ĤUA and perturbation Ŵ :

Ĥ = ĤUA + Ŵ .

As ĤUA the Dirac Hamiltonian of the united relativistic atom

ĤUA = cα · ̂p+ c2β − Z

r0

is taken, the atom being placed on the axis z, directed from centre Z1 to centre Z2, in the
point z = z0 that is the centre of electric charges and divides the internuclear distance into two
segments:

R1 =
Z2

Z
R, R2 =

Z1

Z
R.

We consider a spherical system of coordinates r0, θ0, ϕ0: the origin is in the point (0, 0, z0) and
the angle θ0 is measured from the axis z.

Now we construct the unperturbed wave function of an united atom. The eigenvalues of the
operator are characterized by spherical quantum numbers n, j, l, m, where n is the principal
quantum number, j and l are the total electron and orbital angular moments, respectively, is
the projection of j onto the internuclear axis z. The explicit form of the eigenfunctions of the
operator ĤUA can be found in [11]. Expanding the perturbation operator Ŵ in the Legendre
polynomials and calculating the matrix elements of the matrix

∥∥∥Wnjl′m′
njlm

∥∥∥ to the first (within the

terms O
(
R3

)
) nonzero term we see that at R→ 0 the matrix

∥∥∥Wnjl′m′
njlm

∥∥∥ is diagonal with respect
to each group of mutually degenerated (on l and m) states. The residual result for energy of
Z1eZ2 system at is R→ 0

Enjlm(R) = εc2 +
Z1Z2

2N3
· 3m2 − j(j + 1)

j(j + 1)
·
[
3εℵ(εℵ − 1)− γ2 + 1

]
· (ZR)2

γ(γ2 − 1)(4γ2 − 1)
+O

(
R3

)
, (2)

where

nr = n− j − 1/2, ℵ = (−1)k−lk, k = j + 1/2, l = j ± 1/2, (3)
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N =
√
n2 − 2nr(k − γ), γ =

√
k2 − (Zα0)2,

ε =

[
1 +

(
Zα0

nr + γ

)2
]−1/2

, α0 =
1
c
. (4)

We have compared (see Fig. 1) the binding energies of some bound states of the Pb-Pb system
calculated by asymptotic formula (2) with results of paper [5]. The difference ≈ 5% is connected
with the finite extension of the Pb nuclei in [5].

Figure 1.

3 Asymptotic expansions of the solutions
of the problem at R → ∞

Now we shall determine the energy E(R) and the wave functions Ψ(r;R) of an electron in the
asymptotic region, when the distance R between the Coulomb centres is large. This distance
should be so large that the quantum penetrability of the potential barrier separating atomic
particles is much smaller than unity. When atoms 1 and 2 are different, the eigenvalues (potential
curves) E(R) of the two-Coulomb-centre problem, dependent on the internuclear distance R as
a parameter, are divided into two classes in the asymptotic limit R→∞: EI - and EII -potential
curves that, for R→∞, transform into the energy levels of isolated atoms 1 and 2, respectively.

Having placed the origin at the position of the hydrogen-like ion eZ1 with nuclear charge Z1

and run the polar axis along the R axis, we represent a complete Hamiltonian of the two-
Coulomb-centre problem (1) by a Hamiltonian of zero-approximation ĤSA and perturbation V̂ :

Ĥ = ĤSA + V̂ .

As ĤSA the Hamiltonian of the relativistic hydrogen-like atom with charge Z1

ĤSA = cα · ̂p+ c2β − Z1

r1

is taken. In a spherical coordinate system wave functions ΨSA
n1j1l1m1

(r1) of eZ1 atom, belonging
to a discrete energy spectrum, are characterized by the set quantum numbers n1, j1, l1, m1.
At large internuclear distances the operator of the interaction between the electron and the Z2

nucleus V̂ = −Z2/
∣∣∣R− r∣∣∣ can be considered as a small perturbation of the Hamiltonian ĤSA.

As in previous case we expand the perturbation operator V̂ in the Legendre polynomials and
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calculate the matrix
∥∥∥V n1j1l′1m

′
1

n1j1l1m1

∥∥∥ of the perturbation operator to the first non-zero diagonal
term.

Diagonalizing the complete matrix of energy with respect to each group of mutually degen-
erate states we obtain the analytical expression for EI -potential curves in the first order of the
perturbation theory

EI(R) = ε1c
2 − Z2

R
± 3

4

√
N2

1 − ℵ2
1

(nr1 + γ1)m1

j1(j1 + 1)
Z2

Z1R2
+O

(
R−3

)
, (5)

where the quantities nr1, ℵ1, k1, l1, N1, γ1, ε1 are obtained from (3), (4) by adding index 1.
The third term in (5) coincides with the Stark shift of level in the weak electric field with the
intensity −Z2/R

2 [12].
The asymptotic expansion of the potential curve EII is obtained from EI by the substitutions

ε1 → ε2, Z1,2 → Z2,1, n1,ℵ1, j1,m1 → n2,ℵ2, j2,m2.

4 Conclusions

Here we briefly summarize the results obtained in this paper. By means of the perturbation
theory we have calculated the asymptotic expansion of the eigenvalues (potential curves) E(R)
of the two-Coulomb-centre problem in the limits of united (R → 0) and separated (R → ∞)
atoms with the precision to O

(
R3

)
and O

(
R−3

)
, respectively. Note that asymptotic expressions

of the potential curves obtained here are applicable under the condition that quantities γ, γ1,2

are real only, which corresponds to the range of applicability of the Dirac equation solutions for
the point-charge.
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Solutions of the Dirac equation in a strong external field are obtained in the WKB approxi-
mation. A field is considered strong if the electron binding energy exceeds 2mc2 and the
discrete spectrum levels may be lowered into the lower continuum. The wave functions in
the classically allowed and forbidden regions are found and the conditions for matching them
on transition through the turning point are obtained. The WKB method is applied to the
following problems: 1) generalization of the Bohr–Sommerfeld quantization conditions with
allowance for relativistic effects and the spin in 2 + 1 dimensions; 2) energy and width of
the quasistationary level in the lower continuum.

1 Introduction

It is known [1, 2] that in three spatial dimensions the expression for the electron ground state
energy in the Coulomb field of a point-charge Z|e| becomes purely imaginary when Z > 137,
and that its interpretation as electron energy no longer has a physical meaning. To determine
the electron energy spectrum in the Coulomb field with such a charge we need to eliminate
the singularity of the Coulomb potential of a point-charge at r = 0 by cutting off the Coulomb
potential at small distances. This is equivalent to taking into account of the nucleus size. In three
space dimensions the electron energy spectrum in the Coulomb field regulated at small distances
was first considered by Pomeranchuk and Smorodinsky (see, for instance, [3]). With increasing Z
in the region Z > 137, the electron energy levels in such a field were found to decrease, become
negative, and may cross the boundary of the lower energy continuum, E = −mc2. The value of
Z|e| = Zcr|e| at which the lowest electron energy level cross the boundary of the lower energy
continuum is called the critical charge for the electron ground state [2, 4]. If Z continues to
grow and enters the transcritical region with Z > Zcr, the lowest electron energy level “sinks”
into the lower energy continuum, which result in a rearrangement of the vacuum of the QED.
This rearrangement is constrained by Pauli exclusion principle. If the electron ground state
at Z < Zcr is vacant, two electron-positron pairs are created; if it is half-occupied, one pair
is created; and if it is occupied, no pairs are created. The Coulomb potential is repulsive
for the created positrons, so they go to infinity. Hence at Z > Zcr a quasistationary state
appears in the lower energy continuum and the new vacuum of QED, which corresponds to
the filling of all the electron states with E < −mc2, has the total electric charge 2e [2, 4].
Indeed, all the electron states with E < −mc2 (the Dirac sea) were filled at Z < Zcr, so
electrons created by the strong Coulomb field with Z > Zcr cannot be described by means of
a convenient wave function, and the notion of charged vacuum was introduced to describe these
states [4, 5, 6, 7]. In terms of the new vacuum, the density of electric charge ρ(r) is classical. It
is a function characterising the spatial distribution of the real electric charge appearing in the
new (charged) vacuum, while in terms of the old (uncharged) vacuum this function should be
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interpreted as the probability of two electrons (with charge 2e) being present at a given point
in space.

We would like to see how the same system behaves in two dimensions. With this aim we shall
apply the WKB method to the Dirac equation in a strong Coulomb field. Such approach works
rather well for states with energy both 0 < E < mc2 and E < −mc2. The obtained by this way
quasiclassical formulae for the energy of quasistationary levels of the Dirac equation solutions
in the lower continuum in (2 + 1) dimensions allow to consider a wide range of problems in the
theory of supercritical atoms.

2 The Dirac equation in an external Coulomb field
in 2 + 1 dimensions

Since [8] in 2+1 dimensions the Dirac algebra may be represented in terms of the Pauli matrices
as γ0 = σ3, γk = iσk, the Dirac equation for an electron minimally coupled to an external
electromagnetic field has the form (� = c = me = 1)(

i
∂

∂t
−HD

)
Ψ = 0, (1)

where

HD = α̂p+ β − eA0Î = σ1p2 − σ2p1 + σ3 − eA0Î (2)

is the Dirac Hamiltonian, pµ = i∂µ + eAµ is the operator of generalized momentum of the
electron, Aµ is the vector potential of the external electromagnetic field, −e < 0 (e > 0) is
electric charge of the electron, and the conserved total angular momentum has only a single
component, namely, Jz = Lz + Sz, where Lz = −i∂/∂ϕ and Sz = σ3/2.

Let us apply the Dirac equation (1), (2) to study two-dimensional hydrogen-like ion with
nuclear charge eZ % 1. Consider the problem neglecting the nucleus size and assuming the
vector potential to be Coulomb

A0(r) = −Ze
r
, Ax = Ay = 0 (3)

for 0 ≤ r <∞.
We seek the solutions of the Dirac equation (1) in the field (3) in the polar coordinates in

the form

Ψ(t, x) =
1√
2π

exp(−iεt+ ilϕ)ψ(r, ϕ), (4)

where ε is the energy, l is an integer number and

ψ(r, ϕ) =
1√
r

(
F (r)
G(r)eiϕ

)
. (5)

Note that the function (4) is an eigenfunction of the the Dirac Hamiltonian HD and the total
angular momentum Jz with eigenvalues ε and l + 1/2, respectively.

Substituting (4) and (5) into (1), and taking into account of the equations

px ± py = −ie±iϕ
(
∂

∂r
± i

r

∂

∂ϕ

)
,
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we obtain
dF

dr
− l + 1/2

r
F + (ε+ 1− V (r))G = 0, (6)

dG

dr
+
l + 1/2
r

G− (ε− 1− V (r))F = 0, (7)

where V (r) = −Zα/r, α = e2 ≈ 1/137 is the fine structure constant.
The exact solutions and the energy eigenvalues with ε < 1 corresponding to stationary states

of the Dirac equation may be found in full analogy with the case of three space dimensions [1].
Let us look for functions F and G in the form

F =
√

1 + ε · e−ρ/2ργ (Q1 +Q2) , G =
√

1− ε · e−ρ/2ργ (Q1 −Q2) , (8)

where

ρ = 2λr, λ =
√

1− ε2, γ =
√

(l + 1/2)2 − (Zα)2.

The value of γ is to be found by studying the behavior of the wave function at small r. The
functions Q1 and Q2 which rendered the solutions of (6), (7) finite at ρ = 0 are given in terms
of the confluent hypergeometric function F (a, b; z) as:

Q1 = AF (γ − εZα/λ, 2γ + 1; ρ), Q2 = BF (γ − εZα/λ+ 1, 2γ + 1; ρ).

The constants A and B are related by

B =
γ − εZα/λ

l + 1/2 + Zα/λ
A,

and the energy eigenvalues are defined by

γ − εZα/λ = −nr. (9)

It is easy to show that the following values of the quantum number nr are allowed: nr =
0, 1, 2, . . ., if l � 0, and nr = 1, 2, 3, . . . if l < 0.

From the normalization condition for the wave function Ψ(t, x) one can obtain the expression
for the constant A:

A =
1

Γ(2γ + 1)

{
λ [Zα+ λ(l + 1/2)] Γ(2γ + nr + 1)

2Zα · nr!

}1/2

.

From (9) we find the electron energy spectrum in the Coulomb field (3):

ε =

1 +
(Zα)2(

nr +
√

(l + 1/2)2 − (Zα)2
)2


−1/2

.

It is seen that

ε0 =
√

1− (2Zα)2

for l = nr = 0, and ε0 becomes zero at Zα = 1/2, whereas in three spatial dimensions ε0 equals
zero at Zα = 1. Thus, in two space dimensions the expression for the electron ground state
energy in the Coulomb field of a point-charge Z|e| no longer has a physical meaning at a much
lower value of Zα = 1/2, and the corresponding solution of the Dirac equation oscillates near
the point r → 0.

To determine the electron energy spectrum in the Coulomb field with such a charge we need
to eliminate the singularity of the Coulomb potential of a point-charge at r = 0 by cutting off
the Coulomb potential at small distance rN . This is equivalent to taking into account of the
nucleus size.
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3 WKB method for the Dirac equation
in the strong external field

For finding the quasiclassical solutions of the system of equations (6), (7) it is convenient to
write them in the matrix form:

ψ′ =
1
�
Dψ, ψ =

(
F
G

)
, D =

(
�ℵ/r − (ε+ 1− V (r))

ε− 1− V (r) −�ℵ/r

)
. (10)

Here we have restored in an obvious view the reduced Planck constant �, the prime denotes
the derivative with respect to r, ℵ = l + 1/2, and the external electrostatic potential is V (r) =
−eA0(r). The solution of the matrix equation (10) we shall look as the formal expansion in
powers of �:

ψ = ϕ exp
(∫

ydr

)
, y(r) =

1
�
y−1(r) + y0(r) + �y1(r) + · · · ,

ϕ(r) =
∞∑
n=0

�nϕ(n)(r), (11)

where the upper (lower) component ϕ(n)
F

(
ϕ

(n)
G

)
of the vector ϕ(n) corresponds to the radial

wave function F (G). By substituting (11) into (10) and equating to zero the coefficient of each
power of �, we obtain the recurrence system

(D − y−1)ϕ(0) = 0, (12)

(D − y−1)ϕ(n+1) =
(
ϕ(n)

)′
+

n∑
k=0

yn−kϕ(k), n = 0, 1, . . . (13)

Using the first two equation of system of equations (12), (13) by the left and right vectors
technique we find the terms y−1, y0 and ϕ(0). Solving the following equations of this system by
the similar procedure one can find the terms y2, y3, . . . , ϕ

(2), ϕ(3), . . . in the expansions (11). But
formulae for them are rather cumbrous, therefore in applications one usually restricts them to
only first terms. Actually the reason of this is the fact that the expansions in powers of � (11)
in the general case do not convergent and are asymptotic series, the finite number of terms of
which gives the good approximation for the wave function, if a parameter of an expansion (the
reduced Planck constant �) is rather small. So we obtained (to within a normalization constant)

ψ =
1√
qQ∓

exp
[∫ (

±q +
V ′(r)
2qQ∓

)
dr

](
1 + ε− V (r)

∓Q∓

)
. (14)

Employ the obtained formula to the problem about quasistationary state that is prolongation
of the discrete level into the transcritical range Z > Zcr, when ε < −1.

To the Dirac system of equations (6), (7) there corresponds the effective potential

U(r, ε) = εV − 1/2V 2 + ℵ2/2r2, (15)

which corresponds to the attraction on small distances r < r− from nuclear (at Zα > |ℵ|)
and repulsion for r > r−. So U(r, ε) looks like a potential with a barrier. To eliminate the
singularity of the Coulomb potential of a point-charge at r = 0 it is necessary to cut off the
Coulomb potential V (r) at some small distance rN :

V (r) =
{
−Zα/r, r > rN ,
− (Zα/r) f (r/rN ) , r ≤ rN .

(16)

Here f(x) is cutoff function, 0 ≤ x = r/rN ≤ 1. Most often the following models are used:
f(x) = 1 and f(x) =

(
3− x2

)
/2.
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4 The wave function of the Dirac electron
in classically allowed and forbidden regions

The wave function of quasistationary state has the various look in the various regions.
I. The region r0 < r < r− is classically allowed; there the wave functions (14) oscillate

G = C±1

(
ε− V + 1

p

)1/2

cos Θ1, F = C±1 sgn
(
ε− V − 1

p

)1/2

cos Θ2. (17)

Here

p(r) =

√
(ε− V )2 − 1− ℵ2

r2

is quasiclassical moment for the radial motion of a particle, C±1 is normalization constant,

Θ1 =
∫ r

r−

(
p− ℵw

pr

)
dr +

π

4
, Θ2 =

∫ r

r−

(
p− ℵw̃

pr

)
dr +

π

4
,

w =
1
2

(
V ′

1 + ε− V
− 1
r

)
, w̃ =

1
2

(
V ′

1− ε+ V
− 1
r

)
.

Signs ± correspond to values ℵ > 0 and ℵ < 0. If a width γ of a level is small (it will be
shown later) the wave function of quasistationary state can be normalized on a single particle
localized in the region I, neglecting its penetrability into the classically forbidden regions r < r0
and r > r− [10]. Here cos2 Θi(r) can be replaced with average value 1/2:∣∣C±1 ∣∣ =

[∫ r−

r0

ε− V (r)
p(r)

dr

]−1/2

=
(

2
T

)1/2

,

where T is the frequency period of a relativistic particle inside a potential well.
II. The below-barrier region r− < r < r+ is classically forbidden. Here p = iq, and quanti-

ties q, y−1 and y0 are real. As known [10] the wave function should exponentially damp inside
of this region. So the solutions of the Dirac system of equations (6), (7) in the below-barrier
region for ℵ < 0 are

ψ =
C−2√
qQ−

exp
[
−

∫ r

r+

(
q +

V ′(r)
2qQ−

)
dr

](
−Q−

ε− 1− V (r)

)
, (18)

III. In the region r > r+ the divergent wave corresponds to the quasistationary state (taking
off positron); for ℵ < 0:

ψ =
C−3√
pP−

exp
[∫ r

r+

(
ip+

V ′(r)
2pP−

)
dr

] (
iP−

ε− 1− V (r)

)
, (19)

where P± = p ± iℵ/r. The formulae (17)–(19) include the whole range of values of r (except
for range r < r0 for which the view of a wave function here is not written out), except for
neighbourhoods of turning points r− and r+. For bypass of these points and sewing the solutions
we shall use the usual method [10]. Closely to the r− and r+ the system (6) reduces to the
Schrödinger equation with the effective potential linearly depending on r − r±, the solution of
which expressed through the Airy function; one can sew by the more elegant Zwaan method.
So the relation between the constants in various regions is of the form

C±2 = iC±3 = σC±1

[
|ℵ|(

r2− + ℵ2
)1/2 + r−

]σ
exp

[
−

∫ r+

r−

(
q + σ

V ′(r)
qQ±

)
dr

]
, (20)

where σ = sgnℵ/2.
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Though the formulae (17)–(19) essentially differ from the formulae by nonrelativistic quasi-
classics and more complicated from them, their application to concrete problems does not meet
difficulties, as all quantities in functions F and G express in quadratures.

5 Position and width of quasistationary levels
in the lower continuum

Let us find the energy of quasistationary states that are the prolongation of the discrete spectrum
levels into supercritical region Z > Zcr, ε < −1. Neglecting the penetrability of a barrier in the
region r− < r < r+ we obtain from (15) the quantization condition:∫ r+

r−

(
p− ℵw

pr

)
dr = π

(
nr +

sgn (l + 1/2)
2

)
. (21)

The equation (21) determines the real part of the level energy εnl = ε − iγ/2. It is easy to
show that the condition (21) reproduces the exact expression of the energy spectrum in the case
0 < ε < 1.

Calculating the integral in (21) for the potential (14) and taking into account that |ε| 	
Zα/rN , we arrive at the transcendental equation ε:

εZα

2k
ln
|ε|Zα+ kg

|ε|Zα− kg
− g ln

rNeµ

2g2
+ σ arccos

g2 − εℵ2

Zαµ
+ I = π

(
nr +

sgn (l + 1/2)
2

)
, (22)

where

I = Zα

∫ 1

x0

[√
f2(x)− ρ2

x2
+

ℵ
2(Zα)2

(
f ′(x)
f(x)

+
1
x

)
1√

x2f2(x)− ρ2

]
dx, e = 2.718 . . .

Let now us go to determination of the level width γ = −2 Im εnl that coincides with the
probability of the spontaneous creation of positrons. From the equations (6), (7) we obtain the
expression for γ

γ = 2 Im [G∗(∞)F (∞)].

By the obtained formulae for G and F γ takes the form

γ = γ0 exp
[
−2πZα

(√
1 + 1/k2 −

√
1− ρ2

)]
,

T =
1
γ0

= − 2
k2

[
εg +

Zα

2k
ln

(
|ε|Zα+ kg

|ε|Zα− kg

)]
.

6 Conclusions

In this paper we construct quasiclassical solutions of the (2+1)-dimensional Dirac equation with
a strong Coulomb field. By the obtained formulae we obtain the spectrum of quasistationary
levels (its position and width) in the lower energy continuum ε < −1 for a spherical superheavy
nuclear with a charge Z > Zcr. Comparison of values of critical charge Zcr obtained from exact
solutions of the Dirac equation [9] with Zcr obtained from the quasiclassical formula (20) shows
good correlation. Note that in the ground state for the model I at rN = 0.03 Z ≈ 108 and
170 in (2 + 1)- and (3 + 1)-dimensional QED, respectively. Thus, the Dirac vacuum in two
space dimensions in the presence of a strong Coulomb field is unstable against electron-positron
production at significantly smaller values of the critical charge than in the case of three spatial
dimensions. Another difference between these two cases results from the fact that electrons
confined to a plane behave like a spinless fermion. So if the ground electron state at Z < Zcr is
vacant, one pair is created; if it is occupied, no pairs are created.
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In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H)
and use its geometric structure. It will be shown that the star product in Berezin quantiza-
tion is equivalent to the Poisson bracket on P(H) and the Berezin method to construction
a correspondence between a given classical theory and a given quantum theory is used to
define a classical limit for geometric quantum mechanics.

1 Introduction

In Berezin quantization one defines from a representation of C∗-algebra of quantum observables
the covariant symbols. These symbols are expectation values of the observables in terms of
coherent states: the holomorphic functions on classical phase space M that is assumed to be
a Kähler manifold.

Berezin [2] showed that the covariant symbols form a ∗�-algebra which in limit � → 0 leads
to the Poisson algebra between the corresponding classical observables: The functions on the
phase space M .

In this paper we will see that the Berezin ∗�-algebra is in fact a Poisson algebra which is
induced by the Fubini–Study 2-form on space of coherent states. This space is defined as follows:
coherent states span a dense subspace H̃ of Hilbert space H. P(H̃), which is denoted by M,
is a Kähler manifold with induced symplectic structure from P(H). Therefore the covariant
symbols can be considered as functions on M. It is shown [13] that there exists an embedding
mapping between the classical phase space M and M, by which to any point z ∈M is associated
a point Z ∈ M. With this construction to all of the quantum observables are associated their
covariant symbols, which form a Poisson algebra on M and since the corresponding classical
observables form a Poisson algebra on M , the Berezin quantization is a systematic procedure to
relate these two Poisson algebras. Also the relation of Berezin quantization and geometric for-
mulation of quantum mechanics will be evident as follows. The geometric quantum mechanics is
a formulation of quantum mechanics in projective Hilbert spaces. With our construction one sees
that the Berezin quantization is an equivalent formulation and in addition gives a prescription
as classical limit for geometric quantum mechanics [9].

2 Geometry of projective Hilbert space

Let H be a Hilbert space and P(H) is its projective space by the canonical projection π : H\0 →
P(H). Any point in P(H) is shown with [ψ] corresponds to the one dimensional subspace Cψ
in H. P(H) is a Kähler manifold, the symplectic form is given by [12]

Ω�

[ψ](Tψπ(φ1), Tψπ(φ2)) = −2�(〈φ1, φ2〉), (1)
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where φ ∈ (Cψ)⊥ and Tψπ(φ) is tangential space of P(H) in point [ψ], which is isomorphic to
H\Cψ,

Tψπ : H → T[ψ]P(H) � H\Cψ. (2)

and defined by

(Tψπ)(φ) =
d

dt
π(ψ + tφ) |t=0 .

2.1 Vector fields on P(H)

Let (M,ω) be a symplectic manifold. The vector field A is called Hamiltonian if there exists
a smooth function f on M such that

iAω = df, (3)

where iA is interior derivative of Ω with respect to A.
The quantum mechanical observables are self adjoint operators on Hilbert space and one can

consider the expectation values of these observables as function on projective Hilbert space; in
fact the expectation value of HA is defined by

〈HA〉ψ =
〈ψ,HAψ〉
〈ψ,ψ〉 . (4)

By the following theorem the relation between the operators on Hilbert space and the associated
Hamiltonian vector field will be evident.

Theorem 1. Let A be a Hamiltonian vector field on P(H) and HA the corresponding Hamil-
tonian operator on H. Then the Schrödinger equation HAψ(t) = i�dψ/dt is equivalent to the
equation of motion that induced by A on P(H), such that

A[ψ] =
1
i�
HAψ

‖ψ‖ , (5)

where A is given in local coordinates Z on P(H) with respect to Fubini-study form as

A = −i
∑
n,p

Ωk,np

(
∂〈HA〉
∂Z̄kp

∂

∂Zkn
− ∂〈HA〉

∂Zkp

∂

∂Z̄kn

)
. (6)

Proof. See [3, 15]. �

As a consequence one can say that the Schrödinger equation is nothing but the classical
Hamilton equations. Then it is natural to expect that there exists a Poisson structure on P(H).
With the following proposition will be seen that the symplectic form on P(H) endows it with
Poisson algebra. For a symplectic manifold with form Ω we have:

{f, g} = Ω(Xf , Xg), (7)

where Xf and Xg are Hamiltonian vector fields of f and g respectively.

Proposition 1. Let A,B : P(H) → TP(H) are two Hamiltonian vector fields corresponding to
the functions 〈HA〉 and 〈HB〉 on P(H) respectively. Then

{〈HA〉, 〈HB〉} = 〈 1
i�

[HA, HB]〉, (8)

where the Poisson bracket is defined by (1) and the relation

{〈HA〉, 〈HB〉} = ΩFS(A,B).

Proof. Direct calculation [12, 15]. �
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It must be pointed out that the Poisson structure is defined on quantum phase space P(H)
rather than classical phase space M .

It is well known that the P(H) has a natural metric, called Fubini–Study metric g, by which
the transition probability is defined [3, 9, 12]. Then the vector field A on P(H) is Hamiltonian
if and only if LAg = 0, where LA is Lie derivative along A and A = X〈HA〉 is defined by (3).
Therefore the Hamiltonian flow of the functions 〈HA〉 preserves the geometric structures carried
by P(H) and then the quantum mechanical observables generate the structural symmetries of
P(H) [4].

2.2 The coherent states manifold

The generalized coherent states are elements of a G-orbit, which are generated by action of the
Lie group G on a dominant weight vector φ0 in the separated Hilbert space H. This orbit H̃ is
dense subspace of H [1]. If Ug is a unitary representation of g ∈ G Then the projective space
P(H̃) ≡ M is also a dense subspace of P(H). M is Kählerian if G is a semi-simple group [11].
The manifold of coherent states is given by

M = {[Ugψ0] | g ∈ G}, (9)

where [Ug] is the projective representation of G induced by U .
Let K denote the maximal stabilisator of G. Then there exists an isomorphism between M

and G/K.
With this construction there exist an embedding ι : M→ P(H) and the symplectic and other

geometrical structures of projective Hilbert space are induced in M:

Ω = ι∗ΩFS = ΩFS |M . (10)

2.3 The embedding of classical phase space in M
Let (M,ω) be a Kähler manifold as classical phase space. We define the weighted Bergman
space as

H� =
{
f |

∫
|f(z)|2e− 1

�
Ψ(z,z̄)dν(z, z̄) = ‖f‖2

� <∞
}
. (11)

As a subspace of L2
(
M, e−

1
�
Ψ
)

, H� is a Hilbert space. In fact H� is the space of analytic
quadratic integrable functions on Kähler manifold M with measure

dµ(z, z̄) = e−
1
�
Ψ(z,z̄)dν(z, z̄). (12)

In this space the Berezin coherent states Φ�

ζ̄
form a overcomplete set. According to definition of

inner product in H� we have

Φ�

ζ̄ (z) = 〈Φ�
z̄ ,Φ

�

ζ̄ 〉� =: K�(ζ̄, z), (13)

where K�(ζ̄ , z) is the Bergman kernel, which is defined uniquely for any manifold and has the
reproducing property

f(ζ) = 〈Φ�

ζ̄ , f〉�. (14)

For a symmetric space the Berezin coherent states are the same as the generalized coherent
states [14]. Therefore to any point of Kähler manifold M is associated a coherent state in H� as
a kerned Hilbert space. Hence there exists a holomorphic embedding ι� : M →M�, where M�
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is the projective space of H�. This association is called the coherent states quantization [1, 13].
Two important properties of this embedding are that it is one-one and global differentiable. Then
the pull-back of ι∗ΩFS of Fubini–Study form of M�, induced from M, is again a symplectic
form. If the coherent states are generated from the representation of a Lie group G, then (M,ω)
is a homogeneous symplectic manifold.

3 The Berezin quantization on the coherent states manifold

Berezin quantization [2, 6] on an arbitrary Kähler manifold is defined by the ∗�-algebra out
of covariant symbols, which are the expectation values of quantum observables (self adjoint
bounded operators) in terms of coherent states Φ�

ζ̄

ÃB = Ã ∗� B̃(z) =
∫
M
Ã(ζ̄ , z)B̃(z̄, ζ)

|K�(ζ̄, z)|2
K�(z̄, z)

e−
1
�
Ψ(ζ̄,z) dν(ζ̄, ζ), (15)

where Ã is Berezin covariant symbol defined by

Ã(ζ̄ , z) =
〈K�(z̄, ·), AK�(ζ̄ , ·)〉�

K�(ζ̄, z)
=
〈Φ�

z̄ , AΦ�

ζ̄
〉�

〈Φ�
z̄ ,Φ�

ζ̄
〉�

. (16)

K�(ζ̄, z) is the Bergman kernel and Ψ(ζ̄, z) is the Kähler function. Berezin has considered the
covariant symbols as bounded functions on classical phase space (M,ω), to be a Kähler manifold,
which form the ∗�-algebra A�. The classical limit � → 0 results from(

Ã ∗� B̃
)

(z) = a(z)b(z) +O(�), (17)

1
�

(
Ã ∗� B̃ − B̃ ∗� Ã

)
(z) = −i{a, b}(z) +O(�). (18)

where a, b are the � → 0 limits of Ã, B̃ respectively.
By construction in Section 2 we can also consider the covariant symbols as functions on

projective Hilbert space M�. Therefore these functions form a Poisson algebra via the induced
Fubini-Study form on M�. What we must show is that both these algebras, i.e. Poisson algebra
and ∗� algebra, are the same.

From Proposition 1 one sees clearly that for two covariant symbols Ã, B̃, as expectation
values of the operators A, B, in terms of coherent states, we have

1
i�

[̃A,B] = {Ã, B̃}ι∗ΩFS
. (19)

On other hand from equation (15) it can be easily shown

1
i�

[̃A,B] =
1
i�

(
Ã ∗� B̃ − B̃ ∗� Ã

)
. (20)

The lhs of equations (19) and (20) are identical, so we have

1
i�

(
Ã ∗� B̃ − B̃ ∗� Ã

)
=

{
Ã, B̃

}
ι∗ΩFS

. (21)

Hence: The ∗�-algebra correspond to Poisson algebra on M�.
We emphasise again that this Poisson structure is defined on quantum phase space and

preserves all of the quantum mechanical properties of the system.
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The classical limit in Berezin quantization is defined now by

lim
�→0

{
Ã, B̃

}
ι∗ΩFS

(Z) =
{
ϕ(Ã), ϕ(B̃)

}
(z), z ∈M,Z ∈M�, (22)

where ϕ is defined as the quantum to classical observable map:

lim
�→0

Ã = ϕ(Ã). (23)

Dynamics is also defined in Berezin quantization as follows:
The Heisenberg equation of motion for the observable A is dA

dt = 1
i�[A,H]. This equation

on M� has the following form

dÃ(Z)
dt

=
{
Ã(Z), H̃(Z)

}
ι∗ΩFS

, Z ∈M. (24)
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Five multi-parameter families of Hermitian exactly solvable matrix Schrödinger operators
in one variable was constructed.

1 Introduction

One of the principal aims of the present paper is developing a systematic algebraic procedure
for constructing exactly solvable (ES) Hermitian matrix Schrödinger operators

Ĥ[x] = ∂2
x + V (x). (1)

Here V (x) is an 2×2 matrix whose entries are smooth complex-valued functions of x. Hereafter
we denote d/dx as ∂x.

The well-known procedure of constructing a ES matrix (scalar) model is based on the concept
of a Lie-algebraic Hamiltonian [1, 2] (the Turbiner–Shifman approach). We call a second-order
operator in one variable Lie-algebraic if the following requirements are met:

• the Hamiltonian is a quadratic form with constant coefficients of first-order operators
Q1, Q2, . . . , Qn forming a Lie algebra g;

• the Lie algebra g has a finite-dimensional invariant subspace I of the whole representation
space.

Now if a given Hamiltonian H[x] is Lie-algebraic, then after being restricted to the space I
it becomes a matrix operator H whose eigenvalues and eigenvectors are computed in a purely
algebraic way. This means that the Hamiltonian H[x] is exactly solvable.

In the paper [3] we have extended the Turbiner–Shifman approach to the construction of
quasi-exactly solvable (QES) models on line for the case of matrix Hamiltonians. In this paper
we suggested the method for construction of exactly solvable matrix models, which based on the
idea explained in [3]. Let us remind, the method consists in supplementing a set of operators
Q1, Q2, . . . , Qn, forming a representation of some algebra, so that the obtained set of operators
left an appropriate subspace I invariant. However, there is a difference between the approaches
suggested in this paper and in [3]. Namely, the obtained set of operators does not form a Lie
algebra, in contrast to a set found in [3].

So, let us realize this method considering the set of the operators

Q1 = A, Q2 = Be−x, Q3 = cx(∂x + C), Q4 = ∂x, (2)

which form the representation of the algebra L2
4,8, found in [4]. Here A = B =

(
0 1
0 0

)
,

C =
(
c 0
0 c

)
.

The operators (2) belong to the class L of matrix differential operators of the form

L = {Q : Q = a(x)∂x +A(x)} , (3)
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where a(x) is a smooth real-valued function and A(x) is an 2×2 matrix whose entries are smooth
complex-valued functions of x.

The corresponding finite-dimensional invariant space has the form

G = 〈e−cxe1, e−(c+1)xe1, . . . , e
−(c+k+1)xe1〉 ⊕ 〈e−cxe2, e−(c+1)xe2, . . . , e

−(c+k)xe2〉, (4)

where k is an arbitrary natural number.
It is easy to verify that all operators from the class (3) and acting in the space (4), are

R1 = S0, R2 = S+e
x∂x, R3 = S+∂x, R4 = S0e

x∂x,

R5 = S0∂x, R6 = S+e
−x∂x, R7 = S−ex∂x, (5)

where S0 = σ3/2, S± = (iσ2 ± σ1)/2, σk are the 2× 2 Pauli matrices.
Then we construct a Hamiltonian H[x] of the form

H[x] = ξ(x)∂2
x +B(x)∂x + C(x), (6)

which can be obtained by using of all bilinear combinations of operators belonging to the linear
span of the operators (2), (5).

Here we omitted a very cumbersome calculation and some technical methods to reduce an
operator (6) to a standard Schrödinger operator

Ĥ[y] = ∂2
y + V (y). (7)

We give below the final results, namely, the restrictions on the choice of parameters and the
explicit forms of the QES Hermitian Schrödinger operators (7). In the formulae below we denote
the conjunction of two statements A and B as [A]

∨
[B].

Let complex-valued parameters β̃ = (β1, iβ2, β3), δ̃ = (δ1, iδ2, δ3) and others satisfy the
following conditions[

β̃
2
< 0, ε �= 0, β1 �= β2

]
∧ [{α0, α1, α2, λ, γ0, β0, ε(β1 − β2), δ1(β1 − β2) + β3δ3, δ3} ⊂ R]

∧
[
µ = α0 = α2λ− β0 + 2α2

β̃δ̃

β̃
2 = −γ0λ+ 2α1

β̃ε̃

β̃
2

= α1λ− β0λ− γ0 + 2α1
β̃δ̃

β̃
2 + 2α2

β̃ε̃

β̃
2 = 0

]
.

Then, the following Schrödinger operator be hermitian:

Ĥ[y] = ∂2
y +

1
16 (α2e2x + α1ex)

[(
α2

1 + 8α2γ0 − 4β2
0 − 4β̃

2
)
e2x

+
(

8α1γ0 − 8γ0β0 − 8λβ̃2
)
ex − 4

(
λ2β̃2 + γ2

0

)]
+

P cos
(
θ(x)

√
−β̃

2
+ Ω

)
+
ε(β1 − β2)√

−β̃
2

e−x cos
(
θ(x)

√
−β̃

2
)σ1

+

P sin
(
θ(x)

√
−β̃

2
+ Ω

)
+
ε(β1 − β2)√

−β̃
2

e−x sin
(
θ(x)

√
−β̃

2
)σ3

∣∣∣∣∣∣
x=z−1(y)

, (8)

here

P =

√√√√δ23 −
(β̃δ̃)2

β̃
2 , cos Ω =

β̃δ̃

P

√
−β̃

2
, sin Ω =

δ3
P
, θ(x) = −

∫
ex + λ

α0 + α1ex + α2e2x
dx.
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We denote the function z−1(y) as the inverse of the function

y = z(x) ≡
∫

dx√
α2x2 + α1x+ α0

. (9)

Furthermore, the basis elements of the corresponding transformed invariant space take the form

G = 〈Λ−1e−cz
−1(y)e1,Λ−1e−(c+1)z−1(y)e1, . . . ,Λ−1e−(c+k+1)z−1(y)e1〉

⊕ 〈Λ−1e−cz
−1(y)e2,Λ−1e−(c+1)z−1(y)e2, . . . ,Λ−1e−(c+k)z−1(y)e2〉,

where the constant matrix

Λ = Λ1 · Λ2 = exp
(
β3

2β̃ε̃
ε̃σ

)
· exp(νσ3), e2ν =

√
−β̃

2

β1 − β2
.

We give the particular example of a Hermitian model which has the important property.
Namely, a corresponding invariant space is a Hilbert one. That is, one can define a scalar
product

〈f1(y), f2(y)〉 =
∫

f1(y)†f2(y)dy,

where f1(y)† is a Hermitian conjugation of the vector f1(y). Let us put in the formula (8)
α2 = β2 = δ3 = γ0 = 1, ε = 1

2 , and the rest coefficients are equal zero. Then we have the
following Hamiltonian

Ĥ(y) = ∂2
y −

(
sin y +

1
2
y cos y

)
σ1 +

(
cos y − 1

2
y sin y

)
σ3 +

3
4
.

The corresponding invariant space for this operator G has (2k + 3)-dimension and is generated
by the vectors

fj = ie−y
2/4yj exp

(
−iσ2

2
y

)
e1, gs = −ie−y2/4ys exp

(
−iσ2

2
y

)
e2,

where j = 0, . . . , k + 1, s = 0, . . . , k, e1 = (1, 0)T , e2 = (0, 1)T , σi (i = 1, 2, 3) are 2 × 2 Pauli
matrices.
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We investigate the separation property for hierarchies of Schrödinger operators for identical
particles. We show that such hierarchies of translation invariant second order differential
operators are necessarily linear. A weakened form of the separation property, related to
a strong form of cluster decomposition, allows for homogeneous hierarchies of nonlinear
differential operators. Some connection with field theoretic formalisms in Fock space are
pointed out.

1 Introduction

In [1] we studied hierarchies of N -particle Schrödinger equations that satisfy the separation
property. By this we mean that product functions evolve as product functions. The separation
property was considered as a nonlinear version of the notion of non-interacting systems, as then
uncorrelated states remain uncorrelated under time evolution. The motivation for studying such
hierarchies came from concrete examples of nonlinear Schrödinger equations arising in problems
of representations of the diffeomorphism group.

The hierarchies of Schrödinger operators that one encounters in such evolution equation
satisfies a property that we called tensor derivation as the characteristic property is formally a
derivation with respect to the tensor product of wave functions.

Fn(ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψp) = Fn1(ψ1)⊗ ψ2 ⊗ · · · ⊗ ψp

+ ψ1 ⊗ Fn2(ψ2)⊗ · · · ⊗ ψp + · · ·+ ψ1 ⊗ ψ2 ⊗ · · · ⊗ Fnp(ψp), (1)

where the Fm are m-particle operators, the ψk are nk-particle wave function and n = n1+· · ·+np.
Tensor derivations were fully classified in [1]. Canonical decompositions and constructions were
also presented.

The analysis in [1] is incomplete in several aspects. One most apparent is that there one only
considered N -particle systems in which the particles were all of different species. Thus there
was no need to consider symmetric or antisymmetric wave functions. Since the world is made of
bosons and fermions, one should reconsider the whole question for systems of identical particles.
The tensor derivation property (1) must then be reformulated not with respect to the simple
tensor product

φ⊗ ψ(x1, . . . , xn, xn+1, . . . , xn+m) = φ(x1, . . . , xn)ψ(xn+1, . . . , xn+m)

of two wave functions, but with respect to the symmetric or anti-symmetric tensor product

φ⊗̂ψ(x1, . . . , xn, xn+1, . . . , xn+m)

=
1

n!m!

∑
π

(−1)fs(π)φ(xπ(1), . . . , xπ(n))ψ(xπ(n+1), . . . , xπ(n+m)),

where π is a permutation of {1, 2, . . . , n+m}, s(π) its parity, and f is the Fermi number equal
to zero for bosons and one for fermions. The coefficient in front of the sum is conventional.
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In [2] we explored the possibility of formulating a nonlinear relativistic quantum mechanics
based on a nonlinear version of the consistent histories approach to quantum mechanics. A toy
model led to a set of equations among which there were instances of the separation property
for a symmetric tensor product. This showed once more that such a separation property is
fundamental for understanding any nonlinear extension of ordinary quantum mechanics.

Given these motivations, this paper is dedicated to the beginning of a systematic exploration
of the symmetric separation property.

2 Symmetric tensor derivations

A symmetric tensor derivation would be a hierarchy of operators that satisfies (1) with ⊗̂ instead
of ⊗. That is,

Fn(ψ1⊗̂ψ2⊗̂ · · · ⊗̂ψp) = Fn1(ψ1)⊗̂ψ2⊗̂ · · · ⊗̂ψp
+ ψ1⊗̂Fn2(ψ2)⊗̂ · · · ⊗̂ψp + · · ·+ ψ1⊗̂ψ2⊗̂ · · · ⊗̂Fnp(ψp). (2)

One does not have a classification of these as one has for ordinary tensor derivations as given
in [1]. It seems that the conditions to be a tensor derivation in the symmetric case is rather
stringent, and as we shall now see, in the case of differential operators, implies linearity under
some general conditions. We only treat the case of second order operators as these are the most
common kind in physical applications.

Let us consider a possibly nonlinear differential operators of second order not depending ex-
plicitly on the position coordinates (dependence on time can be construed as simply dependence
on a parameter), in the case N = 2. Such an operator has the form

H

(
φ,
∂φ

∂xi
,
∂φ

∂yj
,
∂2φ

∂xi∂xj
,
∂2φ

∂xi∂yj
,
∂2φ

∂yi∂yj

)
.

Introducing variable names for the arguments of H, we write H(a, bi, cj , dij , eij , fij). When φ is
constrained to be a symmetrized product (here f is the Fermi number)

φ(x, y) = α(x)β(y) + fβ(x)α(y)

then the arguments of H are constrained to take on values of the form .

a = α0β0 + fβ̃0α̃0, bi = αiβ0 + fβ̃iα̃0, ci = α0βi + fβ̃0α̃i, (3)

dij = αijβ0 + fβ̃ijα̃0, eij = αiβj + fβ̃iα̃j , fij = α0βij + fβ̃0α̃ij (4)

where all the quantities on the right-hand sides: α0, β0, αi, βi, αij , βij , α̃0, β̃0, α̃i, β̃i, α̃ij , β̃ij ,
which we shall call the αβ-quantities, can be given, by Borel’s lemma, arbitrary complex values
by an appropriate choice of the points x and y and functions α and β. Denote the right-hand
sides of the above equations by â, b̂i, ĉi, d̂ij , êij , and f̂ij , respectfully.

The separability condition for the symmetrized tensor product now reads:

F2(â, b̂i, ĉi, d̂ij , êij , f̂ij) = F1(α0, αi, αij)β0

+ fF1(α̃0, α̃i, α̃ij)β̃0 + F1(β0, βi, βij)α0 + fF1(β̃0, β̃i, β̃ij)α̃0. (5)

Based on the examples of separating hierarchies for the non symmetrized tensor product, we
must admit that the differential operators F1 and F2 may be singular, so that in analyzing (5)
we should avoid points in which the first argument vanishes. Aside from this we put no further
restrictions the values of the αβ-quantities. The freedom of choice in these quantities is now
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such that we can give arbitrary values to a, with a �= 0, bi, ci, dij , and fij . This is achieved by
setting

α0 =
a− fα̃0β̃0

β0
, αi =

bi − fβ̃iα̃0

β0
, α̃i = f

β0ci − (a− fα̃0β̃0)βi
β0β̃0

,

αij =
dij − fβ̃ijα̃0

β0
, α̃ij = f

β0fij − (a− fα̃0β̃0)βij
β0β̃0

with these substitutions one finds

êij =
β̃0biβj + β0β̃icj − aβ̃iβj

β0β̃0

.

Equation (8) now becomes

F2(a, bi, ci, dij , êij , fij) = F1

(
a− fα̃0β̃0

β0
,
bi − fβ̃iα̃0

β0
,
dij − fβ̃ijα̃0

β0

)
β0

+ fF1

(
α̃0, f

β0ci − (a− fα̃0β̃0)βi
β0β̃0

, f
β0fij − (a− fα̃0β̃0)βij

β0β̃0

)
β̃0

+
a− fα̃0β̃0

β0
F1

(
β0, βi, βij) + fα̃0F1(β̃0, β̃i, β̃ij

)
. (6)

The left-hand side of (6) is independent of β̃ij and the right-hand side has two terms that
depend on it. Differentiating both sides with respect to βij one arrives at the following identity:

Dij
3 F1

(
a− fα̃0β̃0

β0
,
bi − fβ̃iα̃0

β0
,
dij − fβ̃ijα̃0

β0

)
= Dij

3 F1(β̃0, β̃i, β̃ij) (7)

which must hold for all values of the variables that appear. Here Dij
3 stands for the partial

derivative with respect to the ij component of the third argument of F1. Choosing α̃0 = 1,
β0 = fβ̃0, a = 2fβ̃0, bi = fβ̃i, and dij = fβ̃ij one gets

Dij
3 F1(1, 0, 0) = Dij

3 F1(β̃0, β̃i, β̃ij)

which means that

F1(u, vi, wij) = G(u, vi) +
∑
ij

kijwij ,

where kij are constants. After substituting this into (6) and simplifying, that equation now
becomes

F2(a, bi, ci, dij , êij , fij)

= G

(
a− fα̃0β̃0

β0
,
bi − fβ̃iα̃0

β0

)
β0 + fG

(
α̃0, f

β0ci − (a− fα̃0β̃0)βi
β0β̃0

)
β̃0

+
a− fα̃0β̃0

β0
G(β0, βi) + fα̃0G(β̃0, β̃i) +

∑
ij

kij(dij + fij). (8)
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The linear differential operator represented by the term
∑
ij
kij(dij+fij) is of the form I⊗L+L⊗I

and which is part of a ⊗̂-separating hierarchy (in which the one-particle operator is L), so
subtracting it from F2 results in a new separating hierarchy with kij = 0. We now note that the
left-hand side of (8) is independent of α̃0 so differentiation both sides with respect to α̃0 results
in the following identity:

−D1G

(
a− fα̃0β̃0

β0
,
bi − fβ̃iα̃0

β0

)
β̃0

−
∑
i

Di
2G

(
a− fα̃0β̃0

β0
,
bi − fβ̃iα̃0

β0

)
β̃i +D1G

(
α̃0, f

β0ci − (a− fα̃0β̃0)βi
β0β̃0

)
β̃0

+
β̃0

β0

∑
i

Di
2G

(
α̃0, f

β0ci − (a− fα̃0β̃0)βi
β0β̃0

)
βi −

β̃0

β0
G(β0, βi) +G(β̃0, β̃i) = 0. (9)

Choosing now as before α̃0 = 1, β0 = fβ̃0, βi = 0, a = 2fβ̃0, bi = fβ̃i, and ci = 0 one finds

G(β̃0, β̃i) + fG(fβ̃0, 0) +
∑
i

Di
2G(1, 0)β̃i = 0. (10)

This means that

G(u, vi) = A(u) +
∑
i

kivi, (11)

where ki are constants. Substituting this into (8) with kij = 0 one gets

F2(a, bi, ci, dij , êij , fij) = A

(
a− fα̃0β̃0

β0

)
β0 + fA(α̃0)β̃0

+
a− fα̃0β̃0

β0
A(β0) + fα̃0A(β̃0) +

∑
i

ki(bi + ci). (12)

As before, the differential operator represented by the last term is part of a ⊗̂-separating hie-
rarchy, so subtracting it from F2 results in a new separating hierarchy with ki = 0.

Also as before the right-hand side of (12) has to be independent of α̃0. Differentiating again
both sides with respect to α̃0 one arrives at

−A′
(
a− fα̃0β̃0

β0

)
β̃0 +A′(α̃0)β̃0 − f

β̃0

β0
A(β0) + fA(β̃0) = 0. (13)

As the first term is the only one that depends on a, this equation can only hold if A′(u) is a
constant, that is A(u) = ku+ � for constants k and �. Substituting this into (12) now results in

F2(a, bi, ci, dij , êij , fij) = 2ka+ �

(
β0 + fβ̃0 + fα̃0 +

a− fα̃0β̃0

β0

)

which seeing that the right-hand side must be independent of α̃0 means that � = 0, and we
conclude.

Lemma 1. A ⊗̂-derivation of translation invariant second order differential operators neces-
sarily has F1 a linear operator.
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Following the procedure in [1], we define e00 = a, e0j = cj , ei0 = bi, and let the upper case
indices I, J , K, L range over 0, 1, . . . , d, then the parameterization of our variety is given by
eIJ = αIβJ + α̃I β̃J . This is equivalent to saying that eIJ is at most a rank two matrix. By
standard results about determinantal ideals, the ideal of polynomials over the complex numbers
vanishing on the variety of such matrices is generated by the order-three minors

MIJKABC =

∣∣∣∣∣∣
eIA eIB eIC
eJA eJB eJC
eKA eKB eKC

∣∣∣∣∣∣ .
A simple rotation-invariant example would be given by jp and kq contraction of∣∣∣∣∣∣

a cj ck
bp epj epk
bq eqj eqk

∣∣∣∣∣∣
that is,∑

pq

(a(eppeqq − epqeqp)− 2cpbpeqq + 2cpbqepq).

For the curious, written out explicitly as a differential operator for φ(x, y), using the summation
convention, this is:

φ

(
∂2φ

∂xp∂yp

)2

− φ
∂2φ

∂xp∂yq
∂2φ

∂xq∂yp
− 2

∂φ

∂xp
∂φ

∂yp
∂2φ

∂xq∂yq
+ 2

∂φ

∂xp
∂2φ

∂xp∂yq
∂φ

∂yq
.

A somewhat more concise expression results if we use the mixed Hessian

Hpq =
∂2φ

∂xq∂yp

then our operator becomes

φTr(H)2 − φTr
(
H2

)
− 2∇xφ · ∇yφTr(H) + 2∇xφ ·H · ∇yφ.

This is not a homogeneous operator, but dividing it by φ2 turns it into one.
If we were simply interested in only the one- and two-particle equations then a separating

hierarchy would consist of a linear one-particle operator, and the two particle operator would
be given by the sum of the canonically lifted one-particle operator [1] and an operator that
vanishes identically on symmetrized tensor products of one-particle functions. If we want a full
multiparticle hierarchy with N -particle operators for all N , the story is different. An N -particle
wave-function for particles in Rd can be viewed as a one-particle wave-function for particles
(let us call these conglomerate particles) in RNd. We can now consider the consequences of the
separating property for the hierarchy consisting of a 2N particle operator on a symmetrized
tensor product of two N -particle wave functions reinterpreted as one consisting of an operator
for two conglomerate particles and an operator for one conglomerate particle. A wave-function of
two conglomerate particles does not have the same permutation symmetry as the wave-function
of 2N particles, but the difference is such as to impose even stronger conditions due to the
separation property. Let φ(x1, . . . , xN ) and ψ(y1, . . . , yN ) be two properly symmetric N -particle
wave-functions. One has

φ⊗̂ψ(x1, . . . , x2N ) = C
∑
I

(−1)fp(I)φ(xi1 , . . . , xiN )ψ(xj1 , . . . , xjN ), (14)
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where C is a combinatorial factor, I = (i1, . . . , iN ) are N numbers from {1, . . . , 2N}, in ascending
order, (j1, . . . , jN ) the complementary numbers, also in ascending order, and p(I) is the parity
(0 or 1) of the permutation (1, . . . , 2N) �→ (i1, . . . , iN , j1, . . . , jN ). For (14) the possible values
that one can attribute to the wave-function and its derivatives at a point is now more complicated
than that given by expressions (3), (4), but by an appropriate choice of coordinates and an
appeal to Borel’s lemma, we can again use, as a particular case, expressions (3), (4) for two
conglomerate particles. Repeating the argument presented above for the two-particle case we
see that the operator for one conglomerate particle must be linear and so the N -particle operator
must be linear. With this the whole hierarchy must be linear. We thus have:

Theorem 1. A ⊗̂-derivation of translation invariant second order differential operators is li-
near.

This result of course does not rule out the physical possibility of nonlinear quantum mechanics
for identical particles, but points out a further subtlety in its manifestation. The separation
property cannot be used as a generalization of the idea of non-interacting systems and the
notion of lack of interaction becomes more subtle.

3 Strong cluster property

Given that separation cannot hold for identical particles in the nonlinear case, one can expect
on intuitive grounds that it may hold for systems in which the subsystems are distant from each
other. This is usually called the cluster decomposition property. This property however holds
even in the interacting case, given short range interparticle potentials. A slightly strengthened
version however eliminates interaction potentials in the linear case, and can be used as a gener-
alization that can be extended to the symmetric nonlinear case. Consider an n-fold symmetric
tensor product

(φ1⊗̂φ2⊗̂ · · · ⊗̂φn)(x) = C
∑
π∈S

±φ1(x(1,π))φ2(x(2,π)) · · ·φn(x(n,π)), (15)

where C is a combinatorial coefficient x is an m-tuple of space points, S is a subset of the
permutation group, and each x(k,π) is a subset of the m-tuple x ordered according to its original
order in x. The sum is over all permutations that distribute x into the subsets x(k,π). We say
such a product is cluster-separated if the supports of the summand in (15) are all disjoint. We
say a hierarchy of operators has the strong cluster separation property if (2) holds for cluster-
separated products. A simple verification with ordinary linear Schrödinger operators shows that
these satisfy the strong cluster-separation property if and only if the interparticle potentials
vanish, so this is indeed a proper generalization of lack of interaction. One sees immediately
that the strong cluster separation property would hold if the ordinary separation property holds
and if the operators were linear on sums of functions with disjoint supports. This linearity
may at first sight seem contrary to the spirit of looking for nonlinear theories, but in fact, for
differential operators it follows from the ordinary separation property in almost all cases. As
was shown in [1] tensor derivations are for the most part homogeneous. Those that are not, differ
from these by a fixed canonical term. Homogeneous differential operators have the remarkable
property that they are linear on spaces generated by functions with disjoint supports:

Theorem 2. If G be a differential operator which is homogeneous of degree k �= 0 then it is
additive on spaces generated by functions with disjoint support and for k = 1 it is linear on such
spaces.
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Proof. By Euler’s formula DG(φ)φ = kG(φ) where D denotes the Frechét derivative. Let φj ,
j = 1, . . . , r have disjoint supports. We have

G

∑
j

φj

 = k−1DG

∑
j

φj

 (∑
�

φ�

)
= k−1

∑
�

DG

∑
j

φj

φ�.

Now in a neighborhood of a point where φ� �= 0 one has for j �= � that φj = 0. Since the value at
a point of a differential operator applied to a function depends only on the values of the function
in any neighborhood of the point, we can write the last term as k−1

∑
�

DG(φ�)φ� =
∑
j
G(φj)

and we have additivity. If now k = 1, the operator will in fact be real-linear on the subspace
generated by the φj . �

From this we deduce

Theorem 3. Homogeneous ordinary tensor derivations of differential operators satisfy the
strong cluster separation property.

This means that we can apply all the structural theorems of [1] to symmetric tensor derivation
provided that we stay within the class of homogeneous differential operators.

4 Fock space considerations

In [2] we were led to consider the problem of finding a Lorentz invariant nonlinear operator K
in a relativistic scalar free field Fock space for which

[[K,φ(f)], φ(g)] = 0 (16)

provided the supports of f and g are space-like separated. In that reference we analyzed only
the simplest consequence of this equation that arising from applying it to the vacuum state. One
of the conditions was a symmetric separation property for space-like separated supports. We
now address (16) more systematically. We here consider only the bosonic case as the fermionic
one is entirely similar.

Let H =
⊕∞

n=0Hn be the bosonic Fock space where H0 = C, H1 is the 1-particle subspace,
and Hn = H1⊗̂ · · · ⊗̂H1, the n-fold symmetric tensor product, is the n-particle subspace. We
assume H1 has a antilinear involution f �→ f̄ satisfying

(f̄ , g) = (ḡ, f). (17)

For f ∈ H1 one defines the creation operator a+(f) and the annihilation operator a(f) in H by

(a+(f)Ψ)n =
√
n f⊗̂Ψn−1, (18)

(a(f)Ψ)n =
√
n+ 1 f,Ψn+1, (19)

where the contraction operator , is defined by

f,(g1⊗̂ · · · ⊗̂gn) =
1
n

n∑
i=1

(f, gi)g1⊗̂ · · · ⊗̂ĝi⊗̂ · · · ⊗̂gn,

where by the hat over gi we mean that that factor is missing. The quantum field is defined as

φ(f) = φ(+)(f) + φ(−)(f) = a+(f) + a(f̄). (20)
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One has the famous canonical commutation relations

[φ(+)(f), φ(+)(g)] = 0,

[φ(−)(f), φ(−)(g)] = 0,

[φ(−)(f), φ(+)(g)] = (f̄ , g).

Assume that K respects particle number, that is, (KΨ)n = KnΨn for a hierarchy of opera-
tors Kn. We analyze the equation

[[K,φ(f)], φ(g)] = 0 (21)

by applying the left-hand side to a Fock space vector which has only an n-particle component Ψn.
One arrives at the following three conditions

Kn+2

(√
(n+ 2)(n+ 1) f⊗̂g⊗̂Ψn

)
−
√
n+ 2 f⊗̂Kn+1

(√
n+ 1 g⊗̂Ψn

)
−
√
n+ 2 g⊗̂Kn+1

(√
n+ 1 f⊗̂Ψn

)
+

√
(n+ 2)(n+ 1) f⊗̂g⊗̂Kn(Ψn) = 0, (22)

Kn

(
(n+ 1)f̄,g⊗̂Ψn + nf⊗̂ḡ,Ψn

)
−
√
n+ 1 f̄,Kn+1

(√
n+ 1 g⊗̂Ψn

)
−
√
n+ 1 ḡ,Kn+1

(√
n+ 1 f⊗̂Ψn

)
−
√
n f⊗̂Kn−1

(√
n ḡ,Ψn

)
−
√
n g⊗̂Kn−1

(√
n f̄,Ψn

)
+ (n+ 1)ḡ,f⊗̂Kn(Ψn) + ng⊗̂f̄,Kn(Ψn) = 0, (23)

Kn−2

(√
(n− 1)n f̄,ḡ,Ψn

)
−
√
n− 1 f̄,Kn−1

(√
n ḡ,Ψn

)
−
√
n− 1 ḡ,Kn−1

(√
n f̄,Ψn

)
+

√
(n− 1)n ḡ,f̄,Kn(Ψn) = 0. (24)

In the relativistic case these conditions are to be satisfied whenever the smearing functions f
and g have space-like separated supports.

We have

Theorem 4. If K is a linear symmetric tensor derivation, then equations (22) and (24) are
satisfied identically, while (23) is satisfied if

(f̄ , K1(g)) + (ḡ, K1(f)) = 0. (25)

This is a straightforward though tedious verification. It is enough to consider Ψn = h1⊗̂ · · ·
⊗̂hn as linear operators are uniquely defined by their action on product functions.

Equation (25), imposed for all f and g says, using (17), that K1 must be anti-symmetric, or
that its exponential is unitary. This is an interesting consequence, as one of the requirements
in [2] for a consistent history model is this unitarity which was states separately; here it is a
consequence of the separation property and the commutation relation.

This result does not in itself provide us with an example of a nonlinear relativistic quantum
mechanics, but it allows us to construct a theory, using the coherent histories approach, in which
the quantum measurement process has properties similar to those we believe a nonlinear theory
must have, that is, the future light-cone singular behavior pointed out in [2].

[1] Goldin G.A. and Svetlichny G., Nonlinear Schrödinger equations and the separation property, J. Math.
Phys., 1994, V.35, 3322–3332.

[2] Svetlichny G., On relativistic non-linear quantum mechanics, in Proceedings of Second International Con-
ference “Symmetry in Nonlinear Mathematical Physics. Memorial Prof. W. Fushchych Conference” (7–13
July, 1997, Kyiv), Editors M. Shkil, A. Nikitin and V. Boyko, Institute of Mathematics, 1997, V.2, 262–269.
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Classes of solutions, asymptotic in small parameter �, � → 0, are constructed to the genera-
lized nonlinear Schrödinger equation (NSE) in a multi-dimensional space with an external
field in the framework of the WKB-Maslov method. Asymptotic semiclassically concentrated
solutions (SCS), regarded as multi-dimensional solitary waves, are introduced for the NSE
with an external field and cubic local nonlinearity. The one-dimensional soliton dynamics in
an external field of a special form is discussed. Another class of asymptoitic SCS solutions
is constructed for the NSE with Gaussian non-local potential and a local external field.
These solutions are similar to the trajectory-coherent states or squeezed states in quantum
mechanics.

1 Introduction

We study soliton-like properties of nonintegrable generalizations of the nonlinear Schrödinger
equation (NSE){

−i�∂t + Ĥ
(
t, |Ψ|2

)}
Ψ = 0 (1)

within the framework of the semiclasical WKB-Maslov method [1]. Here, Ψ = Ψ(x, t) is a com-
plex smooth function, x ∈ Rn, t ∈ R1; |Ψ|2 = Ψ∗Ψ, Ψ∗ is the function complex conjugate of Ψ;
Ĥ

(
t, |Ψ|2

)
is a nonlinear operator, ∂tΨ = ∂Ψ/∂t. The Planck’s constant � plays the role of an

asymptotic parameter.
Equation (1) arises in the statistical physics and quantum theory of condensed matter [2].

The evolution of bosons is described in terms of the secondary quantized Schrödinger equation.
In Hartree’s approximation it leads to the classical multi-dimensional Schrödinger equation with
a non-local nonlinearity for one-particle functions, i.e. a Hartree type equation. The special case
of equation (1), the NSE with local cubic nonlinearity

i�Ψ, t +
�2

2
Ψ, xx + 2g|Ψ|2Ψ = 0, (2)

is used, in particular, in nonlinear optics (see, for example, [3, 4]). Here Ψ = Ψ(x, t), x ∈ R1,
g is a real nonlinearity parameter, Ψ, t = ∂Ψ/∂t, Ψ, x = ∂Ψ/∂x.

Equation (2) is integrated by the Inverse Scattering Transform (IST) method and has soliton
solutions [5]. Solitons are localized wave packets propagating without distortion and interacting
elastically in mutual collisions. The soliton conception is of commonly used in various fields of
nonlinear physics and mathematics (see [6, 7, 8] and Refs. herein).

A fairly wide class of nonlinear equations, nonintegrable via the IST method, was found
to possess soliton-like solutions. They are concentrated in a sense and conserve this property
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in the course of evolution. These solutions are referred to as solitary waves (SWs), quasi-
solitons, etc. There is a large number of papers studying SWs. For example, so called squeezed
(compressed) light states and the important problem of the correspondence between the stressed
states describing the quantum properties of a radiation and the optical solitons are analyzed
in [11] in terms of NLS-solitons. Systematic study of soliton excitations in molecular systems
was carried out by Davidov [9] and was continued in subsequent works [10].

Note that in the optical pulse propagation theory the function Ψ is an envelope of the elec-
tromagnetic field that is quite different from the quantum mechanical meaning of Ψ. Though,
in both cases Ψ is a square-integrable function which norm is conserved. This can be considered
as a ground to apply quantum mechanical ideas and methods to the pulse propagation theory.
The semiclassical approach in this case implies that we deal with narrow wave packets, and the
asymptotic small parameter � is a characteristic of the packet width.

Soliton properties in nonintegrable systems can be investigated either using computer simu-
lations or by approximate methods.

We construct asymptotic semiclassically concentrated solutions, regarded as multi-dimensio-
nal solitary waves, for the NSE with cubic local nonlinearity in the presence of an external field.
The one-dimensional soliton dynamics in the external field of a special form is discussed in terms
of the asymptotic SCS as an illustration.

Another class of the SCS is introduced and studied for the NSE with non-local unitary
nonlinearity, the Hartree type equation. This class of solutions is similar to the trajectory-
coherent states or squeezed states in quantum mechanics. A class of such solutions, asymptotic
in small parameter � (� → 0), is constructed for the one-dimensional Hartree type equation with
Gaussian non-local potential.

2 The nonlinear Schrödinger equation with external field

The generalized NSE with cubic local nonlinearity is written as follows [2, 7, 9]:{
−i�∂/∂t+

1
2

(−i�∇− A(x, t))2 + u(x, t)− 2g|Ψ(x, t)|2
}

Ψ(x, t) = 0. (3)

Here u(x, t), A(x, t) are given functions determining an external field; g is a real parameter of
nonlinearity.

The key moment of the asymptotic method is choice of a class of functions singularly de-
pending on the asymptotic parameter in which asymptotic solutions are constructed.

To define soliton-like asymptotic solutions to (3) we need some auxiliary notions. Let ̂x(= x)
and ̂p(= −i�∇) are the position and momentum operators, respectively, with the commutators

[x̂k, p̂s] = i�δk,s, [x̂k, x̂s] = [p̂k, p̂s] = 0, k, s = 1, n.

A smooth function A(t, x, p ) of t and of real vector variables x and p is a symbol of the (Weyl)
operator Â(t, x, ̂p ).

The mean value of the operator Â by a function Ψ(x, t, �) is defined as

〈A〉 = 〈Ψ|Â|Ψ〉
/
‖Ψ‖2, ‖Ψ‖2 = 〈Ψ|Ψ〉 =

∫
Rn

|Ψ|2dx, (4)

〈Ψ|Â(t)|Ψ〉 =
∫

Rn

Ψ∗(x, t)Â(t)Ψ(x, t)dx.

For the operators x, ̂p we have 〈x〉 = X(t, �), 〈p 〉 = P (t, �). We assume that there exist the limits
lim
�→0

X(t, �) = X(t), lim
�→0

P (t, �) = P (t). The 2n-vector function Z(t) = { X(t), P (t), 0 ≤ t ≤ T}
is referred to as the phase orbit corresponding to the function Ψ(x, t).
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Let CS�(Z(t)) ≡ CS� be the class of semiclassically concentrated functions associated with
an arbitrary phase orbit Z(t) as follows.

Definition 1. A function Ψ(x, t) belongs to the class CS�

(i) if there exists the limit

lim
�→0

|Ψ(x, t, �)|2
/
‖Ψ‖2 = δ(x− X(t)),

(ii) there exist the centered moments of arbitrary order with respect to X(t), P (t).

A solution Ψ(x, t, �) of (3), Ψ ∈ CS�, is called the semiclassically concentrated solution (SCS).
It was proved in Ref. [12] that if Ψ(x, t, �) is a semiclassically concentrated solution of (3),

then Z(t) = { X(t), P (t)} is a solution of the classical Hamilton system with the Hamiltonian
Hcl(p, x, t) = 1

2(p− A(x, t))2 + u(x, t).
Let us denote by Qt

�
a class of semiclassically concentrated functions Ψ(x, t, �) singularly

depending on the asymptotic parameter �, � → 0,

Qt
� =

{
Ψ(x, t, �) : Ψ(x, t, �) = ρ(θ, x, t, �) exp

[
i

�
S(x, t, �)

]}
. (5)

Here θ = �−1σ(x, t, �) is a “fast” variable; σ(x, t, �), ρ(θ, x, t, �), and S(x, t, �) are real functions
regular in �, that is S(x, t, �) = S(0)(x, t) + �S(1)(x, t) + · · · .

The class Qt
�

can be considered as a generalization of the solitary wave since the one-soliton
solution for the NSE (2) belongs to the Qt

�
. Note that the derivative operators ∂/∂t and ∇ are

extended in acting on the functions of the class (5):

−i�∂/∂t = −i�∂/∂t
∣∣∣
θ=const

− iσ,t∂/∂θ, −i�∇ = −i�∇|θ=const − i(∇σ)∂/∂θ,

where σ,t = ∂σ/∂t. In what follows we put

∂/∂t|θ=const ≡ ∂t, ∇|θ=const ≡ ∇, ∂/∂θ ≡ ∂θ. (6)

Let us set estimates for these operators.

Definition 2. An operator Â has the asymptotic estimate Ô(�α) on the class Qt
�
, Â = Ô (�α),

if ∀ Ψ ∈ Qt
�

the asymptotic estimate

‖ÂΨ‖
/
‖Ψ‖ = O (�α) , � → 0, (7)

is valid.

Note that similar estimates are also valid for mean values of operators,

|〈Ψ|Â|Ψ〉|
/
‖Ψ‖ = O (�α) , � → 0.

For the derivative operators (6) we have

i�∂t + S,t = Ô(�), i�∇+∇S = O(�), x = O(1), ∂θ = O(1). (8)

These estimates permits us to construct a solution of equation (3) in the form of asymptotic
series in �.

When studying the asymptotic solution, the leading term is of primary interest. So, we
construct the asymptotic SCS to equation (3) in the class Qt

�
with an accuracy of O

(
�2

)
.
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To this end we substitute the function Ψ(x, t) of the form (5) into (3), gather and sum both � –
free terms and terms of the power �1, and put every of these sums to zero. Note that the residual
has the estimates O

(
�2

)
. Next, we separate the equations for the function ρ with the “fast”

variable θ from the other equations and solve them under the constraint lim
θ→∞

ρ(θ, x, t, �) =

lim
θ→∞

ρ,θ(θ, x, t, �) = 0.

As a result the asymptotic solution taken with the accuracy of O
(
�2

)
is of the form

Ψ = Ψ0(θ, x, t, �)[1 + �(w(θ, x, t) + iv(θ, x, t))] +O
(
�2

)
, (9)

where

Ψ0 = ρ(θ, x, t, �) exp
[
i

�
(S(0)(x, t) + �S(1)(x, t))

]
, (10)

θ =
1
�
σ(0)(x, t) + σ(1)(x, t), (11)

ρ =

√(
∇σ(0)

)2

2g
cosh−1θ, g > 0. (12)

Here, S(0), S(1), σ(0), σ(1) are real functions of x and t independent from � which are determined
by the following system:

S
(0)
, t + u+

1
2

(
∇S(0) − A

)2
=

1
2

(
∇σ(0)

)2
, (13)

σ
(0)
, t + 〈

(
∇S(0) − A

)
,∇σ(0)〉 = 0, (14)

S
(1)
, t + 〈

(
∇S(0) − A

)
,∇S(1)〉 − 〈∇σ(0),∇σ(1)〉

+
ν

2
〈∇σ(0),∇〉 ln

(
∇σ(0)

)2

g
+
ν

2
∆σ(0) = 0, (15)

σ
(1)
, t + 〈

(
∇S(0) − A

)
,∇σ(1)〉+ 〈∇σ(0),∇S(1)〉 − ν

2

(
ln

(
∇σ(0)

)2

g

)
, t

+ 〈
(
∇S(0) − A

)
,∇ ln

(
∇σ(0)

)2

g
〉+ 〈∇,

(
∇S(0) − A

)
〉
]

= 0. (16)

Here, ν = sign(θ) and 〈a,b〉 denotes the Euclidean scalar product of the vectors:
n∑
j=1

ajbj .

The functions w(θ, x, t), v(θ, x, t) are written as

ρ(θ, x, t)w(θ, x, t) =

√
2

g
(
∇σ(0)

)2

1
cosh θ

{
c1(x, t) tanh θ +

1
2
〈∇σ(0),∇σ(1)〉

+
1
12

[
∆σ(0) + 〈∇σ(0),∇ ln

(
∇σ(0)

)2

g
〉
] (

sinh θ cosh θ − ν cosh2 θ
)}

, (17)

ρ(θ, x, t)v(θ, x, t) =

√
2

g2
(
∇σ(0)

)2

{
c1(x, t)
cosh θ

+
1
4

[
〈∇,∇S(0) − A〉

+
(
∂t + 〈

(
∇S(0) − A

)
,∇〉

)
ln

(∇σ(0))2

g

]
(ν sinh θ − cosh θ)

}
. (18)

Here, a function c1(x, t) is determined by successive approximations.
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3 One-dimensional NSE-soliton in external field

To assess an efficacy of the asymptotic approach it is of interest to compare the asymptotic
results with a well known problem. To this end let us apply the above asymptotic solution to
the one-dimensional nonlinear Schrödinger equation with an external field u(x, t) that is read as

i�Ψ,t +
�2

2
Ψ,xx + 2g|Ψ|2Ψ− uΨ = 0. (19)

In accordance with (9)–(12) soliton-like asymptotic solution for equation (19) is

Ψ =

√
(σ(0)
,x )2

2g
exp

[
i

�

(
S(0)(x, t) + �S(1)(x, t)

)]
cosh−1 θ. (20)

Here, S(0), σ(0), S(1), σ(1) are functions of x and t, independent of �. Equations (13)–(16) takes
the form

S
(0)
,t +

1
2

(
S(0)
,x

)2
+ u =

1
2

(
σ(0)
,x

)2
, σ

(0)
,t + S(0)

,x σ
(0)
,x = 0, (21)

S
(1)
,t + S(0)

,x S
(1)
,x − σ(0)

,x σ
(1)
,x +

ν

2
σ(0)
,x

(
ln

(σ(0)
,x )2

g

)
,x

+
ν

2
σ(0)
,xx = 0, (22)

σ
(1)
,t + S(0)

,x σ
(1)
,x + σ(0)

,x S
(1)
,x =

ν

2

(
ln

(σ(0)
,x )2

g

)
,t

+
ν

2
S(0)
,x

(
ln

(σ(0)
,x )2

g

)
,x

+
ν

2

(
S(0)

)
,xx
. (23)

At u = 0 the functions

S(0) = 2(η2 − ξ2)t+ 2ξx+ ϕ0, (24)

σ(0) = −4ξηt+ 2η(x− x0), (25)

S(1) = σ(1) = 0. (26)

satisfy the system (21)–(23) and determine the exact one-soliton solution to the nonlinear
Schrödinger equation (19) in the form (20). Here, constants ξ, η, ϕ0, x0 are soliton para-
meters: 2ξ is a velocity, η is related to an amplitude, ϕ0 is an initial phase, x0 is an initial
soliton position.

Let us construct the asymptotic solution of the form (20) so that it turns into the exact
one-soliton solution at u → 0. We will refer to this asymptotic solution as asymptotic soliton
for equation (19).

In accordance with (24)–(26) we take the solutions of equations (21) as

S(0) = 2
(
η2 − ξ2

)
t+ 2ξx+ ϕ0 + h(x, t), (27)

σ(0) = −4ξηt+ 2η(x− x0) + f(x, t).

Then for functions h and f we have

h,t +
1
2

(
4ξh,x + h2

,x

)
+ u =

1
2

(
4ηf,x + f2

,x

)
,

f,t + (2ξ + h,x)f,x + 2ηh,x = 0. (28)

Taking f as f(x, t) = −2ηx+ 4ηξt+ w(x, t), we obtain

σ(0) = −2ηx0 + w(x, t). (29)
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Equations (21), (28) result in the following equations for the functions h and w:

h,t +
1
2

(
4ξh,x + h2

,x

)
+ u =

1
2

(
−4η2 + w2

,x

)
, (30)

w,t + (2ξ + h,x)w,x = 0. (31)

For h,x = h,x(x) the characteristic equation of (31), dx
/
dt = 2ξ + h,x, has a special solution as

an arbitrary function w = w(z) of the variable z = t−
∫

(2ξ + h,x)−1dx. Then with the change
of variables (x, t) → (x, z) (22), (23) are simplified as

w′(z)
2ξ + h,x

(
σ(1)
,x − 1

2ξ + h,x
σ(1)
,z

)
+ (2ξ + h,x)S(1)

,x +
3ν
2
w′′(z) + w′(z)h,xx

(2ξ + h,x)2
= 0, (32)

w′(z)
2ξ + h,x

(
S(1)
,x − 1

2ξ + h,x
S(1)
,z

)
− (2ξ + h,x)σ(1)

,x =
ν

2
h,xx. (33)

Had we chosen a special solution of equations (32), (33) in the form w(z) = αz, α = const, then
the functions σ(1) ≡ m(x) and S(1) ≡ n(x) are dependent on x only and are determined by the
equations

α

2ξ + h,x
m′(x) + (2ξ + h,x)n′(x) +

3ν
2

αh,xx
(2ξ + h,x)2

= 0,

α

2ξ + h,x
n′(x)− (2ξ + h,x)m′(x) =

ν

2
h,xx.

The potential u according to (30) reads

u =
1
2
· α2

(2ξ + h,x)2
− 1

2
(2ξ + h,x)2 + 2

(
ξ2 − η2

)
. (34)

Let us take into account that the velocity V of the exact one-soliton solution of the NSE (19)
at u = 0 is equal to V = 2ξ. In terms of the “fast” variable θ = (2η/�)(x− x0 − 2ξt) it will be

V = −∂θ
∂t

/∂θ
∂x
. (35)

For the considered asymptotic solution

θ =
1
�
σ(0) + σ(1) =

α

�

(
t−

∫
dx

2ξ + h,x

)
− 2ηx0

�
+m(x), (36)

and, with respect to (35), we have

V = V (x) = (2ξ + h,x)
[
1− �

α
m′(x)(2ξ + h,x)

]−1

. (37)

Note that at � → 0 we obtain V → (2ξ + h,x). The function

V0(x) = 2ξ + h,x (38)

has the meaning of the velocity (at � → 0) of the asymptotic soliton moving in the external
field u(x). From (34) it follows

lim
h(x)→0

u(x) =
α2

8ξ2
− 2η2.
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Figure 1.

For u(x) → 0 at h,x → 0 one needs to put α = ±4ξη. If we take α = −4ξη then the potential u
according to (34) and (38) becomes

u(x) =
8ξ2η2

V0(x)2
− 1

2
V0(x)2 + 2

(
ξ2 − η2

)
. (39)

Solving (39) with respect to V 2
0 we obtain

V0(x)2 = −u(x)− 2(η2 − ξ2) +
√

[u(x) + 2 (η2 − ξ2)]2 + 16η2ξ2. (40)

Note that in (40) we are to take the positive value of the square root and V 2
0 → 4ξ2 at u→ 0.

The general form of the function V 2
0 (u) is shown as in Fig. 1 at ξ �= 0 (a) and at ξ = 0 (b).

It can be seen that the potential well (u ≤ 0) increases the soliton velocity and the potential
barrier (u ≥ 0) monotonously decreases it with respect to the free soliton velocity equal to 2ξ
without a barrier reflection. The last feature is the nonlinearity effect.

Let us collect the expressions determining the asymptotic one-soliton solution (20) for equa-
tion (19) with the external field u(x).

Equations (27), (29) for the functions S(0), σ(0) are written as

S(0) = 2
(
η2 − ξ2

)
t+

∫ x

−∞
(V0(y)− 2ξ)dy + 2ξx+ ϕ0,

σ(0) = 4ξη
(∫ x

−∞

(
1

V0(y)
− 1

2ξ

)
dy − t

)
+ 2η(x− x0).

The functions S(1) ≡ n(x), σ(1) ≡ m(x) are given by

σ(1)′ = m′(x) = −νV0,xx(x)
2D

(
48ξ2η2

V0(x)3
+ V0(x)

)
,

S(1)′(x) = n′(x) =
4νξηV0,xx(x)
V0(x)D

, D =
16ξ2η2

V 2
0 (x)

+ V 2
0 (x).

The “fast” variable θ (29) takes the form

θ =
4ξη
�

(∫ x

−∞

(
1

V0(y)
− 1

2ξ

)
dy − t

)
+ 2

η

�
(x− x0) +m(x),

the phase

Φ =
1
�
S(0) + S(1) =

2
�

(
η2 − ξ2

)
t+

1
�

∫ x

−∞
(V0(y)− 2ξ)dy +

2ξx+ ϕ0

�
+ n(x).
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The velocity V (x) of the asymptotic soliton in the external field u(x) with respect to (37) is

V (x) = V0(x)
[
1 +

�
4ξη

m′(x)V0(x)
]−1

.

4 The Hartree type equation

The asymptotic approach appears to be more effective for the NSE with non-local nonlinearity,
the Hartree type equation (HTE). A construction of asymptotic solution to the multi-dimensional
HTE with external field and unitary non-local nonlinearity in terms of the WKB-Maslov method
is developed in [13]. Here we consider the one-dimensional HTE with Gaussian non-local poten-
tial {

−i�∂t +H(p̂, x, t) + ĝV0

∫ +∞

−∞
dy exp

[
−(x− y)2

2γ2

]
|Ψ(y, t)|2
‖Ψ‖2

}
Ψ = 0, (41)

where H(p, x, t) = p2

2m +u(x, t), u(x, t) = 1
2kx

2 + lx is the Hamiltonian of an effective particle in
the external field that is the sum of an oscillator field and a stationary homogeneous field. Note
that ĝ = g‖Ψ‖2 is assumed to be O(1) and k, V0, l are real parameters.

The HTE is not solvable by the IST method even in one-dimensional case. To define a class
of semiclassically concentrated functions similar to (5) we turn to the quantum mechanics where
functions of this type are well known coherent and “squeezed” states (see, for example, [14, 15]).

Following to these ideas, consider a class of functions Pt
�

in which we will find asymptotic
solutions of equation (41), it as

Pt� =
{

Ψ : Ψ(x, t, �) = ϕ

(
∆x√

�
, t, �

)
exp

[
i

�
(S(t) + P (t)∆x)

]}
. (42)

Here the function ϕ(ξ, t, �) belongs to the Schwartz space S in variable ξ ∈ R1 and depends
smoothly on t and regularly on

√
� for � → 0. We assume here that ∆x = x − X(t); the real

function S(t) and the 2-dimensional vector function Z(t) = (P (t), X(t)), which characterize the
class Pt

�
, are indepent of � and are to be determined. More general case when S, P , X are

regular functions of
√

� is considered in [13]. The functions of the class Pt
�

are normalized to
‖Ψ(t)‖2 = 〈Ψ(t)|Ψ(t)〉 in the space L2(R1

x) with the norm (4).
In addition, let us define the following class of functions

Ct� =
{

Ψ : Ψ(x, t, �) = ϕ

(
∆x√

�
, t

)
exp

[
i

�
(S(t, �) + 〈P (t, �),∆x〉)

]}
, (43)

where the functions ϕ(ξ, t), as distinct from (42), are independent of �.
At any fixed point in time t ∈ R1, the functions of the class Pt

�
are concentrated, in the limit

of � → 0, in a neighborhood of a point lying on the phase curve z = Z(t, 0), t ∈ R1 [13] and are
referred to as trajectory-concentrated functions (TCF).

In definition of the class of the TCF the phase trajectory Z(t, �) and the scalar function S(t, �)
are free “parameters”. Note that for a linear Schrödinger equation, g = 0, the class Pt

�
includes

the well-known dynamic (compressed) coherent states of quantum systems with quadratic Hamil-
tonians (see for details [16]).

Let us consider principal moments of the asymptotic solution construction for equation (41)
in the class Pt

�
(see for details [12]).
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Consider functions Φ of the class P̂t
�

that is defined by the functions (Z(t), Ŝ(t)),

Φ(x, t, �) = ϕ

(
∆x√

�
, t, �

)
exp

[
i

�
(Ŝ(t) + P (t)∆x)

]
, (44)

Ŝ = S +
∫ t

0

[
P (t)2

2m
+
k

2
X(t)2 + lX(t)− Ẋ(t)P (t) + ĝV0 − ĝ

V0

2γ2
α

(2)
Φ

]
. (45)

The following estimates are valid for the functions Φ ∈ P̂t
�

(44) in terms of Definition 2:

∆x = Ô
(√

�
)
, ∆̂p = Ô

(√
�
)
, −i�∂t − ˙̂

S(t) + Ẋ(t)p̂− Ṗ (t)∆x = Ô(�), (46)

∆x = x−X(t), ∆p = p− P (t), p̂ = −i�∂x. (47)

Let us expand the exponential in equation (41) in a Taylor series of ∆x = x−X(t), ∆y = y−X(t)
and restrict ourselves to the terms of the order of not above four in ∆x and ∆y. In view of the
estimates (46), (47) equation (41) takes the form{

L̂0 + ˙̂
S − Ẋ(t)p̂+ Ṗ (t)∆x+ Ẋ(t)P (t) +

1
m
P (t)∆̂p+ kX(t)∆x+ l∆x

+
ĝV0

γ2
∆xα(1)

Φ + L̂1

}
Φ = Ô

(
�5/2

)
, (48)

where

L̂0 = −i�∂t − ˙̂
S(t) + Ẋ(t)p̂− Ṗ (t)∆x+

1
2m

∆̂p
2

+
1
2

(
k − ĝV0

γ2

)
∆x2 = Ô(�), (49)

L1 =
ĝV0

8γ4

(
∆x4 − 4∆x3α

(1)
Φ + 6∆x2α

(2)
Φ − 4∆xα(3)

Φ + α
(4)
Φ

)
= Ô

(
�2

)
, (50)

α
(k)
Φ (t, �) =

1
‖Φ‖2

∫ ∞
−∞

(∆y)k|Φ(y, t)|2dy, k = 0, 1, . . . , α
(k)
Φ (t, �) = O

(
�k/2

)
. (51)

Let us expand ϕ(ξ, t, �) in
√

� then

Φ = Φ(0) +
√

�Φ(1) + �Φ(2) + · · · , Φ(k) ∈ Ct�, (52)

α
(1)
Φ = α

(1)

Φ(0) +
√

�
2

‖Φ(0)‖2
Re〈Φ(0)|∆x|Φ(1)〉

+ �
1

‖Φ(0)‖2
(〈Φ(1)|∆x|Φ(1)〉+ 2Re〈Φ(0)|∆x|Φ(2)〉). (53)

From (4) and (49)–(53) we have

˙̂
S = 0, Ṗ (t) = −kX(t)− l, Ẋ(t) =

1
m
P (t), (54)(

L0 +
ĝV0

γ2
∆xα(1)

Φ(0)

)
Φ(0) = 0, (55)(

L0 +
ĝV0

γ2
∆xα(1)

Φ(0)

)
Φ(1) = − 2

‖Φ(0)‖2

ĝV0

γ2
∆xRe〈Φ(0)|∆x|Φ(1)〉Φ(0). (56)

The function Φ(0) is governed by (49), (55). It is defined as a linear Schrödinger equation with
quadratic Hamiltonian that has the special solution (see, for example, [14, 15, 16]) in the form
of Gaussian wave packet

Φ(0)
0 = N(t) exp

{
i

�

[
a(t) + a1(t)∆x+

1
2
f(t)∆x2

]}
, Im f(t) > 0. (57)
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Here, the functions a(t), a1(t), f(t) are to be determined. With (49), (54), equation (55) takes
the form{

−i�∂t +
1
m
P (t)p̂− Ṗ (t)∆x+

1
2m

∆̂p
2

+
1
2

(
k − ĝV0

γ2

)
∆x2 +

ĝV0

γ2
∆xα(1)

Φ
(0)
0

}
Φ(0)

0 = 0. (58)

Note that for the Gaussian packet of general form we have

α
(1)

Φ
(0)
0

= 0. (59)

From (57)–(59) it follows that a(t) = const, a1(t) = P (t), f(t) = Ċ(t)/C(t), N(t) = C(t)−1/2,
and (57) becomes

Φ(0)
0 =

1
C1/2

exp

{
i

�

[
a+ P (t)∆x+

m

2

˙C(t)
C(t)

∆x2

]}
. (60)

With the initial conditions C(0) = 1, B(0) = mb, Im b < 0, the function C(t) can be found as
follows:

1)
1
m

(
k − ĝV0

γ2

)
= Ω2 ≥ 0, C(t) = cos Ωt+

b

Ω
sin Ωt, (61)

2)
1
m

(
k − ĝV0

γ2

)
= −Ω2 ≤ 0, C(t) = cosh Ωt+

b

Ω
sinh Ωt. (62)

The variance of the coordinate x with respect to (60) will be

α
(2)

Φ
(0)
0

=
1

‖Φ(0)
0 ‖2

∫ ∞
−∞

∆x2|Φ(0)
0 (x, t)|dx =

�|C(t)|2

2m Im
(
Ċ
C

) . (63)

It can be seen that for ĝV0 < 0 the variance α(2)

Φ
(0)
0

(t, �) is limited in t, i.e. |α(2)

Φ
(0)
0

(t, �)| ≤ M ,

M = const , while for ĝV0 > 0 it increases exponentially. In the limit of γ → 0 and with
V0 = (2πγ)−1/2, equation (4) becomes a nonlinear Schrödinger equation with the local nonlin-
earity, while in the case where ĝV0 < 0 (ĝV0 > 0) it corresponds to the condition of existence
(nonexistence) of solitons.

Consider (60) as the vacuum solution of (58) regarded as the linear Schrödinger equation
with quadratic Hamiltonian. Then the Fock basis of solutions of equation (58) yields a class of
asymptotic solutions to the HTE. Due to the condition (59) the superposition principle is not
fulfilled for these solutions. The last ones can be modified so that α(1)

Φ
(0)
0

�= 0 and the superposition

principle becomes valid.
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We present, in the context of nearly integrable Hamiltonian systems, a functional analysis
approach to study the “splitting of the whiskers” and the “shadowing problem” developed
in collaboration with P. Bolle in the recent papers [1] and [2] . This method is applied to the
problem of Arnold diffusion for nearly integrable partially isochronous systems improving
known results.

1 Introduction

Topological instability of action variables in multidimensional nearly integrable Hamiltonian
systems is known as Arnold diffusion. This phenomenon was pointed out in 1964 by Arnold
himself in his famous paper [3]. For autonomous Hamiltonian systems with two degrees of
freedom KAM theory generically implies topological stability of the action variables (i.e. the
time-evolution of the action variables for the perturbed system stay close to their initial values
for all times). On the contrary, for systems with more than two degrees of freedom, outside
a wide range of initial conditions (the so-called “Kolmogorov set” provided by KAM theory),
the action variables may undergo a drift of order one in a very long, but finite time called the
“diffusion time”. After thirty years from Arnold’s seminal work [3], attention to Arnold diffusion
has been renewed by [4], followed by several papers (see e.g. [5, 6] and references therein).

The Hamiltonian models which are usually studied (as suggested by normal form theory near
simple resonances) have the form

H(I, ϕ, p, q) =
1
2
I2
1 + ω · I2 +

1
2
p2 + ε(cos q − 1) + εµf(I, ϕ, p, q), (1)

where ε and µ are small parameters (the “natural” order for µ being εd for some positive d);
(I1, I2, p) and (ϕ, q) are standard symplectic action-angle variables (Ii ∈ Rni , n1 + n2 = n,
ϕ = (ϕ1, ϕ2) ∈ Tn, (p, q) ∈ R × T, T being the standard torus R/2πZ). In Arnold’s model
I1, I2 ∈ R, ω = 1, f(I, ϕ, p, q) = (cos q − 1)(sinϕ1 + cosϕ2) and in [3] diffusion is proved
for µ exponentially small w.r.t.

√
ε. Physically (1) describes a system of n1 “rotators” and n2

harmonic oscillators weakly coupled with a pendulum through a perturbation term.
The existence of Arnold diffusion is usually proved following the mechanism proposed in [3].

For µ = 0, Hamiltonian H admits a continuous family of n-dimensional partially hyperbolic
invariant tori TI possessing stable and unstable manifolds W s

0 (TI) = W u
0 (TI), called “whiskers”

by Arnold. Arnold’s mechanism is then based on the following three main steps.

(i) For µ �= 0 small enough, the perturbed stable and unstable whiskers W s
µ(T µI ) and W u

µ (T µI )
split and intersect transversally (“splitting of the whiskers”);

(ii) Prove the existence of a chain of “transition” tori connected by heteroclinic orbits (“tran-
sition chain”);

(iii) Prove the existence of an orbit, “shadowing” the transition chain, for which the action
variables I undergo a variation of O(1) in a certain time Td called the diffusion time.
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The shadowing problem (iii) has been extensively studied in the last years by geometrical
(see e.g. [4, 7, 8, 9, 10, 11]) and by variational methods (see e.g. [5, 12]). A rich literature is
also available for the splitting problem see e.g. [4, 13, 14, 15, 16, 17, 18] and references therein.

The aim of this note is to summarize the functional analysis approach developed in the recent
papers [1, 2] (see also [19]), apt to deal with Arnold diffusion, especially with “splitting” (i)
and “shadowing” (iii) problems. The method is illustrated on a relatively simple class of
models, namely harmonic oscillators weakly coupled with a pendulum through purely spatial
perturbations. Precisely we consider nearly integrable partially isochronous Hamiltonian systems
given by

Hµ = ω · I +
p2

2
+ (cos q − 1) + µf(ϕ, q), (2)

where (ϕ, q) ∈ Tn × T1 and (I, p) ∈ Rn × R1. When µ = 0 the energy ωiIi of each oscillator is
a constant of the motion. The unperturbed Hamiltonian possesses n-dimensional invariant tori
TI0 = {(ϕ, I, q, p) ∈ Tn ×Rn × T1 ×R1 | I = I0, q = p = 0} with stable and unstable manifolds
W s(TI0) = W u(TI0) = {(ϕ, I, q, p) ∈ Tn × Rn × T1 × R1 | I = I0, p

2/2 + (cos q − 1) = 0}. The
problem of Arnold diffusion in this context is whether, for µ �= 0, there exist motions whose net
effect is to transfer O(1)-energy from one oscillator to the others. In order to exclude trivial drifts
of the actions due to resonance phenomena, it is standard to assume a Diophantine condition
for the frequency vector ω. Precisely we will always suppose that ω is (γ, τ)-Diophantine, i.e.

• (H1) ∃ γ > 0, τ ≥ n− 1 such that |ω · k| ≥ γ/|k|τ , ∀ k ∈ Zn, k �= 0.

Under assuption (H1) all the invariant tori are preserved by the perturbation, being just
slightly deformed (in [1] an elementary proof, not based on any KAM technique, is given). As
a consequence, the existence of a transition chain (ii) follows immediately once the “splitting of
the whiskers” (i) is proved.

As applications of our shadowing theorems and our splitting estimates, we will consider the
following two particular cases

(a) the frequencies of the harmonic oscillators form a Diophantine vector ω of order 1 (“a priori-
unstable case”);

(b) the frequencies of the harmonic oscillators form a Diophantine vector ωε = (1/
√
ε, βεa)

with a ≥ 0, µε−3/2 small and the perturbation f(ϕ, q) = (1 − cos q)f(ϕ) (“three-time-
scales problem” with perturbations preserving all the unperturbed invariant tori). This
corresponds, after a time rescaling, to ω = (1, βεa

√
ε) in (1). Hamiltonian systems with

three time scales have been introduced in [4] as a description of the d’Alembert problem
in celestial mechanics.

2 The functional analysis approach

We now describe the functional analysis approach developed to prove both the results on
the shadowing theorem and on the “splitting of the whiskers”. It is based on a finite dimensional
reduction of Lyapunov–Schmidt type, variational in nature, introduced in [20] and in [21], and
later extended in [22, 23] in order to construct shadowing orbits of “multibump” type. For
simplicity we describe our approach when the perturbation term f(ϕ, q) = (1 − cos q)f(ϕ) so
that the tori TI0 are still invariant for µ �= 0 (we underline however that in [1] the shadowing
analysis is carried out also for a general perturbation term f(ϕ, q)).

The equations of motion derived by Hamiltonian Hµ are

ϕ̇ = ω, İ = −µ(1− cos q) ∇f(ϕ), q̇ = p, ṗ = sin q − µ sin q f(ϕ). (3)
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The dynamics on the angles ϕ is given by ϕ(t) = ωt + A so that (3) are reduced to the quasi-
periodically forced pendulum equation

−q̈ + sin q = µ sin q f(ωt+A), (4)

corresponding to the Lagrangian

Lµ,A(q, q̇, t) =
q̇2

2
+ (1− cos q) + µ(cos q − 1)f(ωt+A). (5)

For each solution q(t) of (4) one recovers the dynamics of the actions I(t) by quadratures in (3).
For µ = 0 equation (4) is autonomous and possesses the one parameter family of homo-

clinic solutions (mod 2π) qθ(t) = 4 arctan(exp (t− θ)), θ ∈ R. Consider the Lagrangian action
functional Φµ,A : q0 +H1(R) → R associated to the quasi-periodically forced pendulum (4)

Φµ,A(q) :=
∫

R

Lµ,A(q(t), q̇(t), t) dt. (6)

Φµ,A is smooth on q0+H1(R) and critical points q of Φµ,A are homoclinic solutions to 0, mod 2π,
of (4). These critical points q are in fact smooth functions of the time t and are exponentially
decaying to 0, mod 2π, as |t| → +∞.

The unperturbed functional Φ0 := Φ0,A does not depend on A and possesses the 1-dimensional
manifold of critical points Z := {qθ | θ ∈ R} with tangent space at qθ spanned by q̇θ. All the
unperturbed critical points qθ are degenerate since d2Φ0(qθ)[q̇θ] = 0. However qθ are non-
degenerate critical points of the restriction Φ0|Eθ

for any subspace Eθ supplementary to 〈q̇θ〉.
It is then possible to apply a Lyapunov–Schmidt type reduction, based on the Implicit Func-
tion Theorem, to find near qθ, for µ small, critical points qµA,θ of Φµ,A restricted to Eθ; more
precisely qµA,θ = qθ + wµA,θ with wµA,θ ∈ Eθ, ||wµA,θ|| = O(µ) and dΦµ,A(qµA,θ)|Eθ

= 0. We call
the functions qµA,θ “1-bump pseudo-homoclinic solutions” of the quasi-periodically forced
pendulum (4).

It turns out that the 1-dimensional manifold Zµ = {qµA,θ | θ ∈ R} is a “natural constraint”
for the action functional Φµ,A, namely any critical point of Φµ,A|Zµ

is a critical point of Φµ,A,
and hence a true solution of equation (4) homoclinic to 0 (mod 2π).

In [1] the above finite dimensional reduction is performed using two different supplementary
spaces to 〈q̇θ〉: one is better suited for the shadowing arguments, the other is better suited for
studying the splitting problem in presence of “high frequencies”.

Shadowing. For dealing with the shadowing problem, we choose as supplementary space

Eθ =
{
w : R → R

∣∣ w(θ) = 0
}
. (7)

Eθ and 〈q̇θ〉 are supplementary since q̇0(0) �= 0. The choice of the supplementary space Eθ is
very well suited to perform the shadowing theorem because the corresponding “1-bump pseudo
solutions” qµA,θ(t) are true solutions of (4) except at the instant t = θ where q̇µA,θ(t) may have
a jump, even though qµA,θ(t) is continuous at t = θ and assumes the value qµA,θ(θ) = qθ(θ) +
wµA,θ(θ) = q0(0) = π. The corresponding “reduced action functional” turns out to be

Fµ(A, θ) := Φµ,A(qµA,θ) =
∫ θ

−∞
Lµ,A(qµA,θ(t), q̇

µ
A,θ(t), t) dt+

∫ +∞

θ
Lµ,A(qµA,θ(t), q̇

µ
A,θ(t), t) dt.

By the autonomy of the system Fµ(A, θ) = Gµ(A + ωθ) where Gµ(A) := Fµ(A, 0). The func-
tion Gµ : Tn → R, called the homoclinic function, has a neat geometric meaning: it is the
difference between the generating functions of the exact Lagrangian stable and unstable mani-
folds W s,u(TI0) at section {q = π}. Hence, from a geometrical point of view, the choice of the
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supplementary space Eθ means to study W s(TI0) and W u(TI0) at the fixed Poincaré section
{q = π}.

If ∂θFµ(A, θ) = 0 then qµA,θ is a true homoclinic orbit of the quasi periodically forced pendulum
equation (4). Moreover it results that ∂AFµ(A, θ) =

∫ +∞
−∞ İµ(t) dt = “heteroclinic jump” and

hence critical points of Fµ(A, θ) := Fµ(A, θ) − (I ′0 − I0) · A give rise to true heteroclinic orbits
between the tori TI0 and TI′0 . By a Taylor expansion in µ it results that Fµ(A, θ) = Φ0(q0) +
µΓ(A+ ωθ) +O(µ2)− (I ′0 − I0) ·A where Γ(B) =

∫
R

(cos q0(t)− 1)f(ωt+B) is nothing but the
Poincaré-Melnikov primitive. Hence, roughly speaking, critical points of Γ give rise, for µ small,
I ′0 − I0 = O(µ) and (I ′0 − I0) · ω = 0, to heteroclinic orbits between TI0 and TI′0 .

Following [22, 23] the above finite dimensional reduction is generalized in [1] in order to
find a natural constraint for “k-bump pseudo homoclinic solutions” turning k times near the
unperturbed separatrices of the pendulum. The search for “diffusion orbits” is then reduced
to find critical points of a finite dimensional functional, which is the natural generalitation of
the previous one: the Lagrangian action functional evaluated on the k-bump pseudo homoclinic
solutions. In this way under a suitable “splitting condition”, satisfied for instance if Gµ(A)
possesses a proper minimum we can prove a general shadowing theorem with explicit estimates
on the diffusion time Td. Denoting by Bα(A0) the open ball centered at A0 ∈ Rn and of radius α,
let assume

“Splitting condition”. There exist A0 ∈ Tn, α > 0, a bounded open set U ⊂ Rn (the covering
space of Tn) such that Bα(A0) ⊂ U and a positive constant δ > 0 such that

(i) inf∂U Gµ ≥ infU Gµ + δ;

(ii) supBα(A0)Gµ ≤ δ
4 + infU Gµ;

(iii) d({A ∈ U | Gµ(A) ≤ δ/2 + infU Gµ}, {A ∈ U | Gµ(A) ≥ 3δ/4 + infU Gµ}) ≥ 2α.

The following shadowing type theorem holds, where ρU := diam(Πω(U)) and Πω : Rn → Rn

denotes the orthogonal projection onto ω⊥.

Theorem 1. Assume (H1) and the “splitting condition”. Then ∀ I0, I ′0 with ω ·I0 = ω ·I ′0, there
is a heteroclinic orbit connecting the invariant tori TI0 and TI′0. Moreover there exists C3 > 0
such that ∀ η > 0 small enough the “diffusion time” Td needed to go from a η-neighbourhood
of TI0 to a η-neighbourhood of TI′0 is bounded by

Td ≤ C3
|I0 − I ′0|

δ
· ρU ·max

(
| log δ|, 1

γατ

)
+ C3| log(η)|. (8)

The meaning of the previous estimate (8) is roughly the following: Td is estimated by the
product of the number of heteroclinic transitions k (= number of tori forming the transition
chain = heteroclinic jump/splitting) and of the time Ts required for a single transition, namely
Td = kTs. The time for a single transition Ts is bounded by the maximum time between the
time needed to “shadow” homoclinic orbits for the quasi-periodically forced pendulum and the
“ergodization time” Te of the torus Tn run by the linear flow ωt, defined as the time needed for
the flow {ωt} to make an α-net of the torus. By a well known result this time can be estimated
by Te = O(1/ατ ).

The a-priori unstable systems (Case (a)) highlight the improvement of our estimates on
diffusion times. In this case it is easy to show that the splitting of the whiskers is O(µ)
using the classical Poincaré–Melnikov function, which for a general perturbation turns out
to be M(A) =

∫
R

[f(ωt + A, 0) − f(ωt + A, q0(t))] dt (note that when the perturbation is
f(ϕ, q) = (1 − cos q)f(ϕ) then M(A) reduces to the Poincaré–Melnikov function Γ previously
defined). Then our shadowing method yields
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Theorem 2. Assume (H1) and let M(A) possess a proper minimum (or maximum) A0. Then,
for µ small enough, there exist orbits whose action variables undergo a drift of order one, with
diffusion time Td = O((1/µ) log(1/µ)).

Theorem 2 answers a question raised in [24, Section 7] proving that, at least for isochronous
systems, it is possible to reach the maximal speed of diffusion µ/| logµ|. The estimate on
the diffusion time obtained in [4] is Td >> O(exp (1/µ)) and that in [8] it is improved to be
Td = O(exp (1/µ)); recently in [12], by means of Mather theory, the estimate on the diffusion
time has been improved to be Td = O(1/µ2τ+1); in [10] it is obtained via geometric methods
that Td = O(1/µτ+1). It is worth pointing out that the estimates given in [12] and [10], while
providing a diffusion time polynomial in the splitting, depend on the diophantine exponent τ
and hence on the number of rotators n. Instead our estimate (as well as that discussed in [11])
does not depend upon the number of degrees of freedom.

The main reason for which Theorem 2 improves the polynomial estimates Td = O(1/µ2τ+1)
and Td = O(1/µτ+1), obtained respectively in [12] and [10], is that our shadowing orbit can be
chosen, at each transition, to approach the homoclinic point only up to a distance O(1) and
not O(µ) like in [12] and [10]. This implies that the time spent by our diffusion orbit at each
transition is Ts = O(log(1/µ)). Since the number of tori forming the transition chain is equal
to O(1/splitting) = O(1/µ) the diffusion time is finally estimated by Td = O((1/µ) log(1/µ)).

As mentioned in the introduction variational methods in the context of Arnold diffusion have
been used also in [5] and [12]. One possible advantage of our approach is that it may be used
to consider more general critical points of the reduced functional, not only minima. Another
advantage is that the same shadowing arguments can be used also when the hyperbolic part is
a general Hamiltonian in R2m, m ≥ 1, possessing one hyperbolic equilibrium and a transversal
homoclinic orbit.

Splitting. Detecting and measuring the splitting of the whiskers is a difficult problem when
the frequency vector ω = ωε depends on some small parameter ε and contains some “fast
frequencies” ωi = O(1/εb), b > 0. Indeed, in this case, the variations of the Melnikov function
along some directions turn out to be exponentially small with respect to ε and then the naive
Poincaré-Melnikov expansion provides a valid measure of the splitting only for µ exponentially
small with respect to some power of ε.

The typical argument to estimate exponentially small splittings, used virtually in all papers
dealing with this problem is based on Fourier analysis on complex domains.

For this reason we would like to extend analytically the “reduced action functional” Fµ(A, θ)=
Φµ,A(qµA,θ) in a complex strip sufficiently wide in the θ variable. However Fµ(A, θ) can not be
easily analytically extended. Indeed, for θ complex, the supplementary space Eθ = {w : R →
C | w(Re θ) = 0}, appearing naturally when we try to extend the definition of qµA,θ to θ ∈ C,
does not depend analytically on θ. This breakdown of analyticity, arising when measuring the
“splitting of the whiskers” at the fixed Poincaré section {q = π}, is a well known difficulty and
has been compensated in [4, 14, 15] via the introduction of tree techniques which enable to prove
cancellations in the power series expansions.

Our method to overcome this “loss of analyticity” is different and relies on the introduction
of another supplementary space Ẽθ, which depends analytically on θ. This “trick” was yet used
in [20] to study the exponentially small splitting in rapidly periodically forced systems. Our
supplementary space Ẽθ is defined by

Ẽθ =
{
w : R → R

∣∣∣ ∫
R

ψθ(t)w(t) dt = 0
}
,

where ψ0(t) = cosh2(t)/(1+cosh t)3. Ẽθ and 〈q̇θ〉 are supplementary spaces since
∫

R
ψ0(t)q̇0(t)dt

�= 0 (the above choice of ψ0 is motivated by the fact that ψ0(t) decays at zero as q̇0(t) for |t| →
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±∞ and its singularities are located at ±iπ while those of q̇0 stay at iπ/2). The corresponding
reduced functional F̃µ(A, θ) := Φµ,A(QµA,θ), where QµA,θ are the corresponding “1-bump pseudo-
homoclinics solutions”, can be analytically extended in a sufficiently large complex strip. More
precisely let f(ϕ, q) = (1 − cos q)f(ϕ) with f(ϕ) analytic in D :=

∏n
j=1(R + i[−aj , aj ]) for

some ai ≥ 0 and define ||f || := supA∈D |f(A)|. Since q0(t) has a analytic extension up to the
streep |Im t| < π/2 we manage to extend, using the contraction mapping theorem, F̃µ(A, θ) in
D × {|Im θ| < ((π/2)− σ)}, for µσ−3||f || small enough.

By an estimate of F̃µ(A, θ)− µΓ(A+ωθ) over its complex domain and a standard lemma on
Fourier coefficients of analytical functions we easily obtain an exponentially small bounds for the
Fourier coefficients of the splitting function G̃µ := F̃µ(A, 0). Setting G̃µ(A) =

∑
k∈Zn

G̃k expik·A,

Γ(A) =
∑
k∈Zn

Γk expik·A and f(A) =
∑
k∈Zn

fk exp(ik ·A), the following theorem holds

Theorem 3. For µ||f ||σ−3 small enough, ∀ k �= 0, k ∈ Zn, ∀ σ ∈
(
0, π2

)
,

|G̃k − µΓk| = O

(
µ2||f ||2
σ4

exp

(
−

n∑
i=1

ai|ki|
)

exp
(
−|k · ω|

(π
2
− σ

)))
. (9)

Γk are explicitely given by Γk = fk2π(k · ω)/ sinh
(
k · ω π2

)
.

The crucial point is now to observe that “reduced action functionals” corresponding to
different choices of the supplementary space are equivalent: it turns out that the reduced func-
tionals Fµ and F̃µ are simply the same up to a change of variables close to the identity,

Fµ(A, θ) = F̃µ(A, θ + hµ(A, θ)), hµ = O(µ). (10)

This fact enables to transpose the informations on F̃µ to Fµ and viceversa. The introduction
of F̃µ (which recover the analiticity) may then be interpreted simply as measuring the splitting
with a non fixed Poincaré section. Setting θ = 0 in equation (10) we get

Gµ(A) = G̃µ(A+ gµ(A)ω), where gµ(A) := hµ(A, 0), (11)

namely the splitting function Gµ and G̃µ are the same up to the change of variables of the torus
ψµ := Id+ gµ close to identity, i.e. Gµ = G̃µ ◦ ψµ.

3 Systems with three time scales

We consider now Hamiltonians with three time scales

H =
I1√
ε

+ εaβ · I2 +
p2

2
+ (cos q − 1) + µ(cos q − 1)f(ϕ1, ϕ2), I1 ∈ R, β, I2 ∈ Rn−1, n ≥ 2,

namely Hµ with ωε =
(

1√
ε
, εaβ

)
. In this case, as an application of the previous estimate (9), it

follows easily lower estimates for the splitting and hence for the diffusion time. Assume that f is
analytical w.r.t ϕ2. Set G̃µ(A) =

∑
k1∈Z

g̃k1(A2) expik1·A1 and Γ(ε,A) =
∑
k1∈Z

Γk1(ε,A2) expik1·A1 .

In [1] it is proved

Theorem 4. For µ||f ||ε−3/2 small there holds

G̃µ(A1, A2) = g̃0(A2) + 2Re
[
g̃1(A2)eiA1

]
+

∑
|k1|≥2

g̃k1(A2) exp(ik1A1)

= b+ (µΓ0(ε,A2) +R0(ε, µ,A2)) + 2Re
[
(µΓ1(ε,A2) +R1(ε, µ,A2)) eiA1

]
+O

(
µε−1/2||f || exp

(
− π√

ε

))
,
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where b := Φ0(q0)

R0(ε, µ,A2) = O
(
µ2||f ||2

)
and R1(ε, µ,A2) = O

(
µ2||f ||2
ε2

exp
(
− π

2
√
ε

))
.

This result improves the main Theorem I in [18] which holds for µ = εp, p > 2 + a; w.r.t. [14]
(which deals with more general systems) we remark that our results hold in any dimension,
while the results of [14], based on tree techniques and cancellations, are proved for n = 2.

Using Theorem 4, in [1] simple conditions on the perturbation f which imply the “splitting
condition”, are given. For example, setting f(A1, A2) =

∑
k1∈Z

fk1(A2) exp(ik1A1), the “splitting

condition” is satisfied if (i) a > 0, f0(A2) admits a strict local minimum at the point A2 and
f1(A2) �= 0. (ii) a = 0, f0(A2) admits a strict local minimum at the point A2 and f1(A2 +
i(π/2)β) �= 0.

In systems with three time scales it appears that the splitting is not uniform in all the
directions. Since for larger splitting one would expect a faster speed of diffusion, one could
guess the existence of diffusion orbits that drift along the “fast” directions I2 ∈ Rn−1, where
the splitting is just polynomially small w.r.t. 1/ε, in a polynomially long diffusion time Td =
O(1/εq). In [2] we prove that, for n ≥ 3, this is indeed the case (note that Arnold diffusion can
take place in the direction I2 only for n ≥ 3 because of the conservation of the energy along the
orbits). For example we can prove

Theorem 5. Let f(ϕ) =
n∑
j=1

cosϕj, n ≥ 3, and ωε be a (γε, τ)-diophantine vector. Assume

ε, µε−3/2 and µε−2a−1 to be sufficiently small. Then, for all I0, I ′0 with ωε · I0 = ωε · I ′0 and
(I0)1 = (I ′0)1 there exists a heteroclinic orbit connecting the invariant tori TI0 and TI′0 with a
diffusion time

Td ≤ C
|I ′0 − I0|
µεa+(1/2)

×max
{

1
γε(εa+(1/2))τ

, | ln(µ)|
}
. (12)

The previous phenomenon can not be seen by the splitting estimates given in [14] and [18]
where the size of the splitting is measured by the “determinant of the splitting matrix” which
turns out to be exponentially small.

In order to prove Theorem 5 we refine the shadowing Theorem 1. The reasons for which we
are able to move in polynomial time w.r.t. 1/ε along the fast I2 directions are the following three
ones. (i) As in Theorem 1, since the homoclinic orbit decays exponentially fast to 0, the time
needed to “shadow” homoclinic orbits for the quasi-periodically forced pendulum (4) is only
polynomial. (ii) Since the splitting is polynomially small in the directions I2, we can choose just
a polynomially large number of tori forming the transition chain k = O(1/εp) to get a O(1)-drift
of I2. (iii) Finally, the most difficult task is to get a polynomial estimate for the “ergodization
time” Te. The crucial improvement of the shadowing Theorem 5 allows the shadowing orbit to
approach the homoclinic point only up to a polynomially small distance α = O(εp), p > 0, (and
not exponentially small as it would be required applying the shadowing Theorem 1). Since the
ergodization time is estimated by Te = O(1/ατ ), it results that the minimum time after which
the homoclinic trajectory can “jump” to another torus is only polynomially long w.r.t. 1/ε.

These results are the first steps to prove the existence of this phenomenon also for more
general systems (with non isochronous terms and more general perturbations).

Acknowledgments

The author thanks P. Bolle for numerous discussions.



Arnold Diffusion: a Functional Analysis Approach 719

[1] Berti M. and Bolle P., A functional analysis approach to Arnold diffusion, Annales de l’I. H. P, analyse non
lineaire, to appear.

[2] Berti M. and Bolle P., Fast Arnold’s diffusion in systems with three time scales, Discrete and Continuous
Dynamical Systems, to appear.

[3] Arnold V.I., Instability of dynamical systems with several degrees of freedom, Sov. Math. Dokl., 1964, V.6,
581–585.

[4] Chierchia L. and Gallavotti G., Drift and diffusion in phase space, Annales de l’I.H.P, section Physique
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In this work the Melnikov method for perturbed Hamiltonian wave equations is considered
in order to determine possible chaotic behaviour in the systems. The backbone of the analy-
sis is the multi-symplectic formulation of the unperturbed PDE and its further reduction to
travelling waves. In the multi-symplectic approach two separate symplectic operators are
introduced for the spatial and temporal variables, which allow one to generalise the usual
symplectic structure. The systems under consideration include perturbations of generalised
KdV equation, nonlinear wave equation, Boussinesq equation. These equations are equiva-
riant with respect to Abelian subgroups of Euclidean group. It is assumed that the external
perturbation preserves this symmetry. Travelling wave reduction for the above-mentioned
systems results in a four-dimensional system of ODEs, which is considered for Melnikov type
chaos. As a preliminary for the calculation of a Melnikov function, we prove the persistence
of a fixed point for the perturbed Poincaré map by using Lyapunov–Schmidt reduction. The
framework sketched will be applied to the analysis of possible chaotic behaviour of travelling
wave solutions for the above-mentioned PDEs within the multi-symplectic approach.

1 Introduction

Recently it was shown how many nonlinear PDEs can be formulated in a multi-symplectic form
[3, 4, 5]. This formulation assigns distinct symplectic structures to the spatial and the temporal
coordinates, thereby generalising the usual Hamiltonian formulation. By means of the multi-
symplectic approach questions concerning stability of solitary waves, existence of generalised
basic state at infinity, equivariant properties of the solutions etc. can be considered in a more
general setting, yielding new results on these issues.

In order to analyse chaotic behaviour of travelling wave solutions to Hamiltonian PDEs,
Melnikov’s method can be used. The problem with its direct application is due to the symmetry
in a multi-symplectic formulation of these PDEs, which results in the presence of unit eigenvalue
among the spectrum of the Poincaré map. This complication is solved by means of Lyapunov–
Schmidt reduction.

Finally, we illustrate the application of the Melnikov method to the study of chaotic behaviour
in a perturbed Korteweg-de Vries equation.

2 General setting

We start to consider a perturbed multi-symplectic PDE of the form [5]:

MZt + KZx = ∇S(Z) + εS1(Z, x− ct), Z =


U
V
W
Φ

 ∈ R4, x ∈ R, (1)

where M and K are constant skew-symmetric matrices on R4 and S : R4 → R is sufficiently
smooth (at least twice continuously differentiable). The perturbation S1 is assumed to be a pe-
riodic function of its last argument: S1(·, x) = S1(·, x+ T ) and also Cr, r ≥ 2.
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We suppose that the system (1) is equivariant with respect to a one-parameter Lie group,
whose algebra is spanned by the generator ξ. For the unperturbed case (ε = 0), multi-symplectic
Noether theory provides the existence of the two functionals P (Z) and Q(Z) such that [3]

Mξ(Z) = ∇P (Z), Kξ(Z) = ∇Q(Z). (2)

The state at infinity should satisfy [4, 5]:

∇S(Z0) = a∇P (Z0) + b∇Q(Z0) (3)

with P (Z0) = P and Q(Z0) = Q specified real parameters, a, b ∈ R.
A shape of an unperturbed solitary wave travelling at speed c, Z(x, t) = Z(x− ct), which is

biasymptotic to this state should satisfy the equation

Zx = J−1
c ∇H0(Z), (4)

where H0(Z) = S(Z)− aP (Z)− bQ(Z), and Jc = K− cM [4, 5].
To study the existence of travelling waves and their chaotic behaviour, we consider the dy-

namical system (similar consideration can be found in [7])

d

dx
Z = f0(Z) + εf1(Z, x), Z ∈ R4, 0 < ε	 1, 0 < x <∞, (5)

where f0(Z) = J−1
c ∇H0(Z), and f1(Z, x) = J−1

c S1(Z, x).
The following hypotheses are imposed on the system:

(H1) a) f0 : R4 → R4 is Cr (r ≥ 2);

b) f1 : R4 × S1 → R4 is Cr (r ≥ 2).

The system (5) can be rewritten as a following suspended system:

dZ

dx
= f0(Z) + εf1(Z, θ),

dθ

dx
= ω, (6)

with the frequency ω = 2π/T . Its flow Φε
t : R4 × S1 → R4 × S1 is defined for all t ∈ R.

(H2) a) The unperturbed system

d

dx
Z = f0(Z) = J−1

c ∇H0(Z) (7)

is Hamiltonian with energy H0 : R4 → R.
So, we have the corresponding symplectic form

Ω(Z1, Z2) = 〈JcZ1, Z2〉. (8)

b) The system (7) is equivariant with respect to a one-parameter symmetry group G spanned
by the generator ξ(Z). This group G is assumed to be either compact or a subgroup of affine
translations. We also suppose that the perturbation preserves this symmetry.

c) The system (7) has a family of fixed points φp0, where p0 = 0 and φ ∈ G, and corresponding
(heteroclinic) orbits Z0(x) such that

d

dx
Z0(x) = f0 (Z0(x)) , (9)

and lim
x→−∞Z0(x) = φ1p0 as well as lim

x→+∞Z0(x) = φ2p0, for some φ1, φ2 ∈ G. Correspondingly,

the unperturbed suspended system (6) ε = 0 has a family of periodic orbits φγ0(x) = (φp0, ωx).
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(H3) f1(Z, x) = A1Z+f(x)+g(Z, x), where A1 is a linear operator, f(x) = f(x+T ), g(Z, x)
is time-periodic with period T and also satisfies g(0, x) = 0, Dg(0, x) = 0.

(H4) a) For ε = 0 the spectrum σ[exp(TA)] =
{

1, 1, e±λT
}
, λ > 0, where A = J−1

c D2H0(p0),

b) i. (Hamiltonian case) For ε > 0 σ[exp[T (A+ εA1)]] =
{

1, 1, eTλ
±
ε

}
,

ii. (Dissipative case) For ε > 0 σ[exp[T (A+εA1)]] =
{

1, λd, eTλ
±
ε

}
, where C1ε � dist(λd, |z| =

1) � C2ε, C1 > 0, C2 > 0.

Next, one can define the Poincaré map P ε : R4 → R4 as

P ε(Z) = π1Φε
T (Z, 0), (10)

where π1 : R4 × S1 → R4 denotes the projection onto the first factor. Equivalently, one can
define

P εx0
(Z) = π1Φε

T (Z, x0). (11)

We rewrite the fixed point equation P ε(pε) = pε in the form:

Pε(pε) = 0, (12)

where Pε(Z) = P ε(Z)− Z, and the operator L = DP0(0) is introduced.

3 Main results

Lemma 1. Let (H1)–(H4) hold. For ε small, there exists a unique group orbit φpε of fixed
points of the perturbed Poincaré map near the group orbit φp0 such that

min
φ1, φ2∈G

{φ1pε − φ2p0} = O(ε).

Equivalently, there is a family of periodic orbits φγε(x) = (φpε, ωx) of the perturbed system (6)
near φγ0(x) for φ ∈ G.

Lemma 2. For ε > 0 sufficiently small, we have σ [DP ε(pε)] =
{

1, 1, eTλ
±
ε

}
for the case (H4b i)

and σ [DP ε(pε)] =
{

1, λd, eTλ
±
ε

}
for the case (H4b ii) respectively.

Conjecture 3. Corresponding to the eigenvalues eTλ
±
ε , 1 there exist invariant manifolds:

W ss(γε(x)) (the strong stable manifold), W u(γε(x)) (the unstable manifold), and W c(γε(x))
(the centre manifold) of pε for the Poincaré map P ε(Z) such that

i) W u
loc(γε(x)) and W ss

loc(γε(x)) are tangent to the eigenspaces of eTλ
±
ε respectively at γε, while

W c
loc(γε(x)) is at the same point tangent to the eigenspace corresponding to unity eigenvalue

(double in the case of Hamiltonian perturbations). Their global analogues are obtained in the
usual way:

W ss(γε(x)) =
⋃
x≤0

Φε
xW

ss
loc(γε(x)), W u(γε(x)) =

⋃
x≥0

Φε
xW

u
loc(γε(x)); (13)

ii) they are invariant under P ε(·);
iii) W ss(γε(x)) and W u(γε(x)) are Cr O(ε)-close to W s(γ0(x)) and W u(γ0(x)) respectively.
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Lemma 4. Let (Zs,uε (x, x0), ωx) be orbits lying in W ss,u(γε(x)) and originating in an O(ε)-
neighbourhood of (Z0(−x0), 0). Then the following expressions hold with uniform validity in the
indicated time intervals:

Zsε (x, x0) = Z0(x− x0) + εysε (x, x0) +O
(
ε2

)
, x ∈ [x0,∞),

Zuε (x, x0) = Z0(x− x0) + εyuε (x, x0) +O
(
ε2

)
, x ∈ (−∞, x0], (14)

where ys,uε satisfy the first variational equation:

dy

dx
= J−1

c D2H0(Z0(x− x0))y + εf1(Z0(x− x0), ωx). (15)

We introduce Melnikov function as:

M(x0) =
∫ ∞
−∞

DH0(Z0(x)) · f1(Z0(x), x+ x0)dx

=
∫ ∞
−∞

Ω (f0(Z0(x)), f1(Z0(x), x+ x0) dx. (16)

Theorem 1. Suppose M(x0) has simple zeros. Then for ε > 0 sufficiently small W ss(γε) and
W u(γε) intersect transversely.

This result implies via the Smale–Birkhoff theorem [6] the appearance of a horseshoe near
the saddle-centre point of the perturbed Poincaré map, what results in a chaotic dynamics in
the corresponding region of the phase space.

4 Example

We consider the perturbed Korteweg-de Vries equation [1, 2]:

ut + ∆ux + αuux + uxxx = εfx(u, ux, ut, x− ct), (17)

where the perturbation is assumed to be T -periodic in its last argument. The unperturbed
equation can be rewritten in a multi-symplectic form as

MZt + KZx = ∇S, Z =


u
v
w
Φ

 ∈ R4, x ∈ R (18)

with

M =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 , K =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , (19)

and

S =
1
2
v2 − 1

2
uw + u

(
1
2

∆u+
α

6
u2

)
. (20)
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The unperturbed solution is defined as:

u0(x) = 2b+
3
α
K2sech2

(
Kx

2

)
,

v0(x) = − 3
α
K3 sinh

(
Kx

2

)
sech3

(
Kx

2

)
,

w0(x) = 2a+ 4b(∆ + αb) +
3
α
cK2sech2

(
Kx

2

)
,

Φ0(x) =
3
α
K

[
1 + tanh

(
Kx

2

)]
, (21)

with K =
√
c−∆− 2αb. Perturbation can be represented in a multi-symplectic setting as:

εf1(Z, x) =


0

εf̃(Z, x)
0
0

 . (22)

Here we expressed the perturbation f̃(Z, x) = f(u, v,−cv, x) in terms of the components of Z.
Therefore Melnikov function (16) for the system (17) yields

M(x0) =
∫ ∞
−∞

v0(x)f̃(Z0(x), x+ x0)dx. (23)

For the one-harmonic dissipative driving force this Melnikov function will have simple zeros [2],
and therefore one can conclude the chaotic dynamics of u.

5 Conclusions

We have considered a modification of Melnikov’s method, which can be used for the analysis
of chaotic behaviour of travelling wave solutions to multi-symplectic PDEs. The results are
illustrated with the example of the perturbed KdV equation.
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In this paper the smoothness properties of Green’s operator-function an exponentially di-
chotomous bilinear matrix system and the smoothness properties the invariant torus of
nonhomogeneus matrix system of equations have been considered. It hHave been proved
that if some conditions, concerning the properties of coefficient of the system hold this
operator-function has smoothness index which depends on both the smoothness of matrix
coefficients of the system and their spectral properties.

We consider the system of equations

dφ

dt
= a (φ) ,

dX

dt
= A (φ)X −XB (φ) + F (φ) , (1)

where aT (φ) = (a1(φ), a2(φ), . . . , am(φ)), φT = (φ1, φ2, . . . , φm), φi ∈ [0, 2π), i = 1,m, are vec-
tors, A(φ) = An1×n1 , B(φ) = Bn2×n2 , F (φ) = Fn1×n2 , X = Xn1×n2 are matrix functions defined
and continuous with respect to φ ∈ Tm, where Tm = T1 × T1 × · · · × T1 is m-dimensional torus,
φi ∈ T1 = [0, 2π), i = 0,m. We shall call the system (1) a matrix bilinear non-homogeneous
system of equations defined on a direct product of m-dimensional torus Tm and the space of
matrices Mn1×n2 , under assumption that spectral sets of matrices A(φ) and B(φ) satisfy the
condition σ(A(φ))

⋂
σ(B(φ)) = ∅, and the system (1) is exponentially dichotomous. We define

the norm of matrix in the space Mn1×n2 as Frobenius or trace-norm ‖X‖2 = tr(X∗X). The
Green’s operator-function for the system of equations (1) defined by relation

[Gt(τ, φ)]F (φτ (φ)) =

{
[Ωt

0(φ)][P1(φ)][Ω0
τ (φ)]F (φτ (φ)), t ≥ τ,

−[Ωt
0(φ)][P2(φ)][Ω0

τ (φ)]F (φτ (φ)), t < τ.
(2)

where [Ω t
τ (φ)]Z = Ω

A

t
τ (φ)Z Ω

B

τ
t (φ), [Pk(φ)]Z =

∑
Pik(φ)ZQjk(φ), (k=1,2), Ω

A

t
τ (φ), Ω

B

t
τ (φ) are

matricents of matrix differential equation associated with matrix A and B accordingly. Pi(φ),
Qj(φ) are projection operators to proper subspace in Euclidean space En1 and En2 . [P1], [P2] are
projection operators in the space of matrices Mn1×n2 , [P1(φ)] + [P2(φ)] = [I], [I] is the identity
operator in the space Mn1×n2 , [I]Z = In1ZIn2 = Z, ηik,jk(A(φ), B(φ)) = λik(A(φ))− µjk(B(φ))
is an eigenvalue of operator Φ(φ)X = A(φ)X −XB(φ), k = 1 when ηik,jk(A(φ), B(φ)) < 0 and
k = 2 when ηik,jk (A(φ), B(φ)) > 0, λik(A(φ)) and µjk(B(φ)) are eigenvalues of matrices A(φ)
and B(φ) accordingly. The solution of the second homogeneous matrix equation (1) has the
form [1] Xt(φ,X) = Ω

A

t
τ (φ)X Ω

B

τ
t (φ) = [Ω t

τ (φ)]X. The operator [Ω t
τ (φ)] in the space Mn1×n2

has the group property [Ω t
τ (φθ(φ))] = [Ω t+θ

τ+θ(φ)] that follows from the properties of matricents
Ω
A

t
τ (φ), Ω

B

t
τ (φ) [2].
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We call [Gt(τ, φ)] a Green’s operator-function for system of equations (1) in the case when
integral∫ ∞

−∞
‖[G0(τ, φ)]‖ dτ ≤ K <∞

is uniformly bounded with respect to φ. We give the simplest properties of the Green’s operator-
function. It follows from its definition that [G0(τ, φ)] ∈ C(Tm) for ∀ τ and [G0(−0, φ)] −
[G0(+0, φ)] = [P1(φ)] + [P2(φ)] = [I]. Suppose that matricents Ω

A

t
τ (φ), Ω

B

t
τ (φ) satisfy inequalities

‖Ω
A

t
τ (φ)‖ ≤ K1 exp(−γ1(t− τ)), ‖Ω

B

t
τ (φ)‖ ≤ K2 exp(−γ2(τ − t)), t > τ, (3)

for all φ ∈ Tm, and some positive Ki, γi, (i = 1, 2) independent of φ. From (3) the estimate
follows (t > τ)

|[Gt(τ, φ)]F (φτ )‖ ≤ ‖Ω
A

t
τ (φ)‖ ‖F (φτ )‖ ‖Ω

B

τ
t (φ)‖ ≤ Ke−(γ1−γ2)(t−τ) ‖F (φτ (φ)‖ . (4)

We suppose that homogeneuous system of equations (1) is exponentially dichotomous, then
a Green’s operator-function satisfies the estimate [3, 4]

‖[Gt(τ, φ)]‖ ≤ Ke−(γ1−γ2)|t−τ |, t, τ ∈ R, φ ∈ Tm, (5)

where K > 0, γ = γ1 − γ2 > 0 are positiv constants independent of φ.
From estimate (5) the existence of invariant matrix torus of the system (1) follows, which is

given by the relation

U(φ) =
∫ 0

−∞
[Ω t

τ (φ)][P1(φτ (φ))]Fτ (φ)dτ −
∫ ∞

0
[Ω t

τ (φ)][P2(φτ (φ))]Fτ (φ)dτ . (6)

The smoothness of invariant torus (6) of the system (1) depends essentially on the properties of
the Green’s function [G0(τ, φ)] and the solution φt(φ) of the first equation of the system, which
defines a trajectory flow for system (1) on the torus U(φ) [2]. We need to have the estimate of
derivative ∂φt(φ)/∂φj which is equal j-th column Jacobi matrix for vector-function φt(φ), which
is satisfying the system of equations dθ/dt = a′(φ)θ, where a′(φ) = Dφt(φ)/Dφ is the matrix of
partial derivative of the function φt(φ) or Jacobi matrix. We denote Ω

a

t
0(φ) matricient of this

system, it is characterized the stability of solutions of a nonperturbed system on a torus [2]. For
obtaining of estimate of derivatives of operator-function [Gt(τ, φ)] in φi we use the estimate of
derivatives ∂sφt(φ)/∂sφi = Ds

φi
φt(φ) which was obtained in [2].

‖Ds
φi
φt(φ)‖ ≤ Ke(sα+ε)|t|, t ∈ R, φ ∈ Tm, (7)

Taking s = 1 we obtain the estimate ‖Ω
a

t
0(φ)‖ ≤ Ke(α+ε)|t|. The estimate of derivatives of

operator-function [Gt(τ, φ)] is essentially defined by smoothness properties of invariant torus
of the nonhomogeneuous system of equations and depends on smoothness of coefficients of the
system (1) a(φ), A(φ), B(φ) and spectral properties of matrices A(φ), B(φ).

Theorem 1. Assume that for some integer positive number l ≥ 0 the following conditions holds:
A(φ) ∈ C lLip(Tm), B(φ) ∈ C lLip(Tm), a(φ) ∈ C lLip(Tm) and γ̃ = γ1 − γ2 − ε ≥ lα, where α > 0,
ε > 0 is an arbitrary small positive number. Then

‖Ds
φ[G0(τ, φ)]‖ ≤ Ke−(γ1−γ2−ε−sα)|τ |, (8)

where 0 ≤ s ≤ l, K = K(ε) is a positive constant independent of φ ∈ Tm.
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Proof. Because eε|τ | > 1 for τ �= 0, then e−γ|τ | < e−γ|τ |+ε|τ | = e−γ̃|τ |, |τ | < (1/ε)eε|τ |. If
l = 0 the estimate (8) followed from (5) and the operator [G0(τ, φ)] belongs to the space C(Tm),
we therefore suppose that l > 0. Consider the difference [Zt(τ, φ̄, φ)] = [Gt(τ, φ̄)] − [Gt(τ, φ)],
where φ̄ = φ + ∆φiei, eTi = (0, . . . , 0, 1, 0, . . . , 0) is unit vector and ∆φi is a scalar constant.
[Zt(τ, φ̄, φ)]F satisfies the matrix equation (t �= τ)

d([Zt(τ, φ̄, φ)]F )/dt = ΦA,B

{
[Zt(τ, φ̄, φ)]F

}
+ ΨA,B(t, τ, φ, φ̄), (9)

where

ΦA,B {Xt} = At(φ̄)Xt −XtBt(φ̄),
ΨA,B(t, τ, φ, φ̄) = Φ∆A,∆B {[Gt(τ, φ)]F} = ∆A(φt) ([Gt(τ, φ)]F )− ([Gt(τ, φ)]F ) ∆B(φt),
∆A(φt) = A(φt(φ̄))−A(φt(φ)), ∆B(φt) = B(φt(φ̄))−B(φt(φ)).

It has a unique bounded solution on R given by the expression

[Zt(τ, φ̄, φ)]Ft(φ) =
∫ ∞
−∞

[Gt(s, φ̄)]ΨA,B(s, τ, φ, φ̄)ds. (10)

Inequality (5) ensures that the operator-function [Zt(τ, φ̄, φ)] is bounded on (−∞,∞). If we de-
vide the expression (10) on ∆φi and equal it to zero, we obtain lim

∆φi→0
(∆A(φt))/∆φi = DφiA(φt),

lim
∆φi=→0

(∆Bφt)/∆φi = DφiB(φt), lim
∆φi→0

([Zt(τ, φ̄, φ)]F )/∆φi = Dφi([Gt(τ, φ)]F ). We will be use

notations A(φt(φ)) = A1,t(φ), B(φt(φ)) = A2,t(φ), ∂/∂φi = Dφi . Since lim
∆φ→0

ΨA,B(s, τ, φ, φ̄)

uniformly with respect to φ ∈ Tm and τ, s ∈ D2, it follows that

lim
∆φi→0

[Zt(τ, φ̄, φ)]F/∆φi = Dφi [Gt(τ, φ)]F =
∫ ∞
−∞

Jt(s, τ, φ, F )ds, (11)

where

Jt(s, τ, φ, F ) = [Gt(s, φ)]ΦDφA,DφB {[Gs(τ, φ)]F} ,
ΦDφi

A,Dφi
B {[Gs(τ, φ)]F} = DφiA(φs)([Gs(τ, φ)]F )− ([Gs(τ, φ)]F )DφiB(φs),

DφiAk(φs) =
m∑
ν=1

(∂Ak(φs(φ))/∂(φs)ν)(∂(φs)ν/∂φi), (k = 1, 2).

Here D2 is any bounded domain of the τ, s plane. The value lim
∆φi→0

[Zt(τ, φ̄, φ)] equal derivative

of operator-function, when integral is uniformly convergent.
For the following estimates we will be use the formulas of Faa de Bruno [5]

Dr
φf(φt(φ)) =

r∑
q=1

Dq
φt
f(φt(φ))

∑
p

cqp(Dφφt(φ))p1
(
D2
φφt(φ)

)p2 · · · (Dr
φφt(φ)

)pr , (12)

where p1 + p2 + · · · + pr = q, p1 + 2p2 + · · · + rpr = r. For obtaining the estimate of function
Jt(s, τ, φ, F ) we need to have the estimate of only the first summand, because the estimate for
the second one is different from the first summand by a constant multiplier

‖[Gt(s, φ)]DφiA(φs)[Gs(τ, φ)]F‖ ≤ K exp(−γ|s− t| − γ|s− τ |+ α̃|s|)‖F‖. (13)

Therefore summarizing the estimates (13) from both summands, we obtain

‖Jt(s, τ, φ, F )‖ ≤ K exp(−γ|t− s|+ α̃|s| − γ|s− τ |)‖F‖,
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where ε > 0, α̃ = α+ ε, K = K(ε) and independent of φ. Taking t = 0, we obtain

‖J0(s, τ, φ, F )‖ ≤ K exp(−(γ − α̃)|s| − γ|s− τ |)‖F‖. (14)

For obtaining the estimate of derivative ‖Dφi [G0(τ, φ)]‖ it is necessary to have the estimate of
the integral of function J0(s, τ, φ, F ), we consider the case τ > 0. We represent the integral
as sum of three integrals (−∞,∞) = (−∞, 0)

⋃
(0, τ)

⋃
(τ,∞), after simple transformation we

obtain the estimate∫ ∞
−∞

‖J0(s, τ, φ, F )‖ds ≤ K(ε)e−(γ−α̃)τ+ετ‖F‖,

where K(ε) = (2/(2γ − α̃) + τ), from which follow estimate

||Dφi [G0(τ, φ)]|| ≤ K(ε1)e−(γ̃−α)|τ |

for ∀τ ∈ R, γ̃ = γ − ε1, ε1 = 2ε, K(ε1) = K(2/(2γ − α̃) + |τ |). The estimate for the second
derivative we obtain from relation

D2
φi

[G0(τ, φ)]F =
∫ ∞
−∞

DφiJ0(s, τ, φ, F )ds. (15)

The estimate of both summands of function DφiJ0(s, τ, φ, F ) will be similar, therefore we need
only one of this estimate

Dφi ([G0(s, φ)]DφiA(φs)[Gs(τ, φ)]F ) = Dφi [G0(s, φ)]DφiA(φs)[Gs(τ, φ)]F

+ [G0(s, φ)]D2
φi
A(φs)[Gs(τ, φ)]F + [G0(s, φ)]DφiA(φs)Dφi [Gs(τ, φ)]F. (16)

For obtaining the estimate of last summand of (16) transform [Gs(τ, φ)] to the form [G0(τ −
s, φs(φ))], and use the formulas Faa de Bruno

Dk
φi

[Gs(τ, φ)] =
k∑
j=1

Dj
φi

[G0(τ − s, φs(φ))]
∑
m

cjm(Dφiφs(φ))m1 · · · (Dk
φφs(φ))mk

where m1 +m2 + · · ·+mk = j, m1 + 2m2 + · · ·+ kmk = k. For k = 1 we obtain an estimate

‖DφiJ0(s, τ, φ, F )‖ ≤ K(ε)(e−(γ̃−2α)|s|−γ̃|s−τ | + e−(γ̃−2α)|s|−(γ̃−α)|s−τ |)‖F‖. (17)

Taking the integral from expression on right hand side, we obtain estimate

‖D2
φi

[G0(τ, φ)]F‖ ≤ K(ε)e−(γ̃−2α)|τ |‖F‖. (18)

We carry out the proof by induction. Suppose that inequality (8) holds for s = k, we will prove
that it then holds for s = k+ 1. To prove this we differentiate the identity (10) k times, (t = 0)

Dk+1
φi

[G0(τ, φ)]F =
∫ ∞
−∞

Dk
φi
J0(s, τ, φ, F )ds. (19)

Consider one of summands of function Dk
φi
J0(s, τ, φ, F ), it has the form

k∑
j=0

Ck−jk ([G0(s, φ)]DφiA(φs))(k−j)([G0(τ − s, φs)])(j)F .

For the first multiplier, under sign of the sum, an estimate has the form

‖Dk−j
φi

([G0(s, φ)DφiA(φs))‖ ≤ K̃e−(γ̃−(k−j+1)α−ε)|s|, (20)
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where K̃ = K(ε)
k−j∑
p=1

Ck−j−pk−j . The Faa de Bruno formulas allow one to obtain an estimate for

[G0(τ − s, φs(φ))](j) of the form

‖Dj
φi

[G0(τ − s, φs(φ))]‖ ≤ jK(ε)e−(γ̃−jα)|s−τ |+(jα+ε)|s|. (21)

Using estimate (20), (21) one can obtain estimate

‖Dk
φi

([G0(s, φ)]DφiAq(φs)[Gs(τ, φ)])F‖ ≤ K̄qe
−(γ̃−(k+1)α)|s|−(γ̃−kα)|s−τ |‖F‖,

where K̄q = Kq(ε)
k∑
j=1

jCk−jk , (q = 1, 2) independent of φ. Summarizing all estimates we have

the inequality

‖Dk+1
φi

[G0(τ, φ)]F‖ ≤ K(ε)e−(γ̃−(k+1)α)|τ |‖F‖

and the proof of the Theorem 1 is complete. �

Theorem 1 allows one to prove the theorem about smoothness of invariant torus of the dichoto-
mous matrix bilinear equation.

Theorem 2. Let the following conditions be satisfied: A(φ) ∈ C lLip(Tm), B(φ) ∈ C lLip(Tm),
a(φ) ∈ C l(Tm) and F (φ) ∈ C l(Tm), then the invariant matrix torus (6) of system (1) belongs to
the space C l(Tm) and admits the estimate

|U(φ)|l ≤ K|F (φ)|l.
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S.V. Rogozin, Minsk, Institute of Mathematics of NAS of Belarus, 2000, V.6, 147–153.

[5] Ibragimov N.H., Group transformations in mathematical physics, Moskow, Nauka, 1983 (in Russian).
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A method of the reduction of linear differential equations with multiple root of the cha-
racteristic equation to which some multiple elementary divisors correspond to the system,
the perturbed characteristic equation of which has the simple roots as well as asymptotic
estimation of solutions obtained are presented.

Consider the system of linear differential equations of the following type

εp/q
dx

dt
= A(t, ε)x, (1)

where x is an n-dimensional vector, A(t, ε) =
∞∑
s=0

εsAs(t) is real square (n×n) dimension matrix,

whose elements are infinitely differentiable by t on the segment [0;L], ε > 0 is a small parameter,
p and q are natural relatively prime numbers. Besides let the inequality p < n ≤ q take place.

Let us denote ε1/q = µ. Then the system (1) reduces to the form

µp
dx

dt
=

(
A0(t) + µqA1(t) + µ2qA2(t) + · · ·

)
x, (2)

where ε = µq, ε
p
q = µp.

The systems for which small parameter has a fractional power were studied by V.K. Gri-
gorenko in [1]. The case of the simple roots of the characteristic equations and the case of
the equation having only one multiple n root were studied separately. Let us construct the
asymptotic solution of the system (1) by the method of perturbed characteristic equation [2] for
the case when the matrix A0(t) is such that the characteristic equation has one multiple root λ0,
to which m � 1 multiple elementary divisors correspond.

It means that there is non-degenerate matrix T (t) which leads matrix A0(t) to the matrix
with the simplest structure of quasi-diagonal type

W (t) = {H1(λ0(t)), H2(λ0(t)), . . . , Hm(λ0(t))},
where Hi(λ0(t)) is Jordan cells, and the length of a cell is equal a multiplicity of elementary
divisor, i = 1, 2, . . . ,m, m is the number of elementary divisors. Let us put that the elementary
divisors with every value of t ∈ [0;L] have the same multiplicity. Let a set of elementary divisors
be k1, k2, . . . , km and k1 ≥ k2 ≥ · · · ≥ km. The substitution x = T (t)y reduces the system (2)
to system

µp
dy

dt
= D(t, µ)y, (3)

where

D(t, µ) = D0(t, µ) +
∞∑
s=1

µqsDs(t),

D0(t, µ) = W (t)− µpT−1(t)T ′(t), Ds(t) = T−1(t)As(t)T (t),

T ′(t) is a derivative of matrix T (t).
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Let us consider perturbed equation

det ‖D0(t, µ)− λE‖ = 0. (4)

Or opening the determinant (4),

(λ0 − λ)n + (λ0 − λ)n−1cn−1(t, µ) + · · ·+ c1(t, µ)(λ0 − λ) + c0(t, µ) = 0. (5)

It is known that coefficients ci(t, µ) in expansion (5) will be equal to the sum of all principal
minors n− i order of the matrix

D0(t, µ)− λ0(t)E = W (t)− µpT−1(t)T ′(t)− λ0(t)E

=



µpt11 1 + µpt12 . . . µpt1k1 µpt1k1+1 µpt1k1+2 . . . µpt1n
µpt21 µpt22 . . . µpt2k1 µpt2k1+1 µpt2k1+2 . . . µpt2n
. . . . . . . . . . . . . . . . . . . . . . . .

µptk1,1 µptk1,2 . . . µptk1,k1 µptk1,k1+1 µptk1,k1+2 . . . µptk1,n
µptk1+1,1 µ

ptk1+1,2 . . . µ
ptk1+1,k1 µ

ptk1+1,k1+1 1 + µptk1+1,k1+2 . . . µ
ptk1+1,n

. . . . . . . . . . . . . . . . . . . . . . . .
µptn1 µptn2 . . . µptn,k1 µptn,k1+1 µptn,k1+2 . . . µptnn


,

where tij is a matrix element −T−1(t)T ′(t), i, j = 1, n.
If m multiple elementary divisors correspond to multiple root, it means that all elements

of the given matrix will be of O(µp) order, but it n − m of the first over-diagonal elements
will be 1 + µptij . Proceeding from this, for estimation λ − λ0 let us draw the first diagram of
equation (5).

As ρn−1 corresponds to polynomial power cn−1(t, µ) = spD(t, µ), and ρn−1 = p. It’s easy
to see that all main minors, the order of which will be less or equal to k1 will be of O(µp)
order. So, ρn−k1 = ρn−k1+1 = · · · = ρn−1 = p. The order of the next k2 polynomials
ρn−k1−1, ρn−k1−2, . . . , ρn−k1−k2 will be O(µ2p), because 1 more line of O(µp) order is added,
and further k2 − 1 the lines of O(µ0) will be added. Estimating further the main minors of
matrix we will come to conclusion that the main minors of n, n− 1, . . . , n− km + 1 order will be
of O(µmp) order. Thus, minimal power by µ of polynomials ci(t, µ) may have the next values:

ρn = 0, ρn−1 = p, p ≤ ρn−2 ≤ 2p, p ≤ ρn−3 ≤ 3p, . . . ,

p ≤ ρn−k1 ≤ k1p, 2p ≤ ρn−k1−1 ≤ (k1 + 1)p, . . . ,

2p ≤ ρn−k1−k2 = ρkm+km−1+···+k3 ≤ (k1 + k2)p, . . . ,

(m− 2)p ≤ ρkm+km−1 = ρn−k1−···−km−2 ≤ (k1 + · · ·+ km−2)p = (n− km − km−1)p,
(m− 1)p ≤ ρkm+km−1−1 ≤ (n− km − km−1 + 1)p, . . . ,

l(m− 1)p ≤ ρkm = ρn−k1−k2−···−km−1 ≤ (n− km)p,
mp ≤ ρkm−1 ≤ (n− km + 1)p, . . . ,

mp ≤ ρ1 ≤ (n− 1)p, mp ≤ ρ0 ≤ np.

Let us draw the obtained results (see Fig. 1).
Here ∗ denotes values meanings of ρi if coefficients with the smaller theoretically possible

powers µ are equal zero. Figure shows that ki of solving the equation (5) will be O
(
µp/ki

)
order, i = 1, 2, . . . ,m, moreover, they all will be different. So, for the case of several multiple
elementary divisors the following theorem takes place.

Theorem 1. If matrices As(t) (s = 0, 1, . . .) on the segment [0;L] are infinitely differentiable
and proper meanings of matrix D0(t, µ) on the given segment are simple when 0 < µ ≤ µ0:

λi(t, µ) �= λj(t, µ), i, j = 1, . . . , n, i �= j, ∀ t ∈ [0;L],
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Figure 1.

then the system of differential equations (3) has a formal matrix-solution

Y (t, µ) = U(t, µ, µ) exp
(

1
µp

∫ t

0
Λ(τ, µ, µ) dτ

)
,

where U(t, µ, µ) is a square matrix of n order, Λ(t, µ, µ) is a diagonal matrix of n order, they
are represented by formal series

U(t, µ, µ) =
∞∑
s=0

µsUs(t, µ), Λ(t, µ, µ) =
∞∑
s=0

µsΛs(t, µ), (6)

where µ = q
√
ε.

This theorem is proved by the method from [3], as a result we have

U0(t, µ) = B(t, µ), Λ0(t, µ) = W ∗(t, µ),

where B(t, µ) is the transforming matrix, which leads the matrix D0(t, µ) to the diagonal matrix
W ∗(t, µ) = {λ1(t, µ), λ2(t, µ), . . . , λn(t, µ)},

Λs(t, µ) = G1s(t, µ), s = 1, 2, . . . , (7)

G1s(t, µ) is obtained from the diagonal elements of matrix

Gs(t, µ) = B−1(t, µ)Hs(t, µ), (8)

Hs(t, µ) =

[
s
q

]∑
j=1

Dj(t)Us−jq(t, µ)−
s−1∑
i=1

Ui(t, µ)Λs−i(t, µ)− U ′s−p(t, µ), (9)

Us(t, µ) = B(t, µ)Qs(t, µ), (10)

where Qs(t, µ) is the matrix the elements of which are found from the formulas

qsij(t, µ) =
gsij(t, µ)

λj(t, µ)− λi(t, µ)
, i �= j, i, j = 1, n. (11)

The diagonal elements of the matrix Qs(t, µ) vanish.
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Consider the matrix (9). It is easily seen that for s < p Hs(t, µ) ≡ 0, and from (7)–(11)
Us(t, µ) ≡ Λs(t, µ) ≡ 0, s = 1, 2, . . . , p− 1 is produced. As in expansion (6) these elements will
follow U0(t, µ),Λ0(t, µ), then we will write down the series (6) in the following way

U(t, µ, µ) = B(t, µ) +
∞∑
s=p

µsUs(t, µ) = B(t, ε) +
∞∑
s=p

ε
s
qUs(t, ε),

Λ(t, µ, µ) = W ∗(t, µ) +
∞∑
s=p

µsΛs(t, µ) = W ∗(t, ε) +
∞∑
s=p

ε
s
q Λs(t, µ). (12)

The following theorem is true.

Lemma 1. Let the conditions of Theorem 1 be satisfied be tk1,1(t) �= 0. Then the coefficients of
the formal series (12) are given by

Us(t, µ) = B(t, ε) + ε
− p

qk1
(s−p+1)

Uas (t, ε),

Λs(t, µ) = W ∗(t, ε) + ε
− p

qk1
(s−p)Λas(t, ε), s = p, p+ 1, . . . , (13)

where Uas (t, µ), Λas(t, µ) are matrices which do not have asingularity in point µ = 0.

This Lemma is proved by immediate analysis of the matrixes elements (7)–(11).
Let us substitute (13) for (12). We will have

U(t, µ, µ) = U0(t, ε) +
∞∑
s=p

ε
s
q ε
− p

qk1
(s−p+1)

Uas (t, ε),

Λ(t, µ, µ) = Λ0(t, ε) +
∞∑
s=p

ε
s
q ε
− p(s−p)

qk1 Λas(t, ε).

Lemma 2. Let the condition of Theorem 1, Lemma 1,

Re (λi(t, µ)) ≤ 0

be satisfied on the set {K : t ∈ [0;L], 0 < µ ≤ µ0}, then on the segment [0;L] m-th approximation

satisfies the differential system (1) up to the order of magnitude O
(
ε

1
q

(
(m+1−p)

(
1− p

k1

)
+p

))
.

Theorem 2. Let the condition of Theorem 1, Lemma 2 be satisfied and for t = 0

y(t, µ) = ym(t, µ),

where y(t, µ) is the exact solution of the system (3), then for any L > 0 there is c > 0, which
does not depend upon µ and is such that for all t ∈ [0;L], µ ∈ (0;µ0] the inequality is satisfied

‖y(t, µ)− ym(t, µ)‖ ≤ µ
(m+1−p)

(
1− p

k1

)
−p+1

c.

Lemma 2 and Theorem 2 are proved by the methods from [3].
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Solving of the spectral problem for the finite-gap Schrödinger operator in terms of hyper-
elliptic Weierstrass functions is proposed. Corresponding solutions with help of unknown
coefficients are expressed through the Weierstrass functions which also contain unknown pa-
rameters. These unknown quantities are determined by corresponding band equations and
polynomial solutions of the inverse Jacobi problem. Corresponding equations can be reduced
to simple algebraic equations. The elliptic finite-gap case is considered in the framework of
the proposed approach.

1 Introduction

The spectral problem for finite-gap linear differential operator is interesting both of its own
and as an auxiliary problem in the finite-gap theory of integrable partial differential equations.
Furthermore it may be applied to electron spectra theory.

The spectral problem is reduced to building of finite-gap eigenfunctions and finding of their
parameters from the spectral linear differential equation. Symmetrized products of the functional
part of these parameters (so-called µ-functions) are expressed through functional coefficients
(so-called potentials) of a linear differential operator by the fundamental system of finite-gap
equations (see [1, 2]). This system follows from the comparison of asymptotic series developments
of general and finite-gap eigenfunctions.

Usually, solving of the spectral linear differential equation in µ-functions is realized with
help of the known Abelian transformation with a subsequent introducing of the corresponding
Riemann surface. In so doing, µ-functions are considered as points of this surface and its
symmetrized degrees are solutions of the Jacobi inversion problem (see [3, 4]). Corresponding
solutions are expressed in terms of the Riemann theta functions.

Thus, the system of the finite-gap equations and the Abelian transformation leads to solving
of the finite-gap spectral problem for linear differential operators through the Riemann theta
functions. The above mentioned solution of the Jacobi problem is connected with the comp-
licated analysis of properties of theta functions on the Riemann surface. At the same time
utilization of the known (see [5, 6, 7]) relations for 2-differential of second kind can lead to
essential simplification of the latter problem.

Taking above mentioned circumstances we suggest simplification for solving the spectral
problem for finite-gap linear differential operators in the case of the Schrödinger operator in
the class of hyperelliptic finite-gap functions. Consideration will be based on known relations
for fundamental 2-differential on the hyperelliptic Riemann curves and the system of finite-gap
equations connecting the hyperelliptic Weierstrass functions and its derivatives.

The paper is organized as follows. In Section 2 the building of the hyperelliptic finite-gap
eigenfunction and finite-gap equations of the spectral problem for the Schrödinger operator are
formulated. In Section 3 solving of the Jacobi inversion problem with the help of the known
relations for the fundamental 2-differential on the Riemann hyperelliptic curves is considered.



On the Spectral Problem for the Finite-Gap Schrödinger Operator 735

In Section 4 on the basis of the finite-gap equation relation for the hyperelliptic Weierstrass
functions are obtained.

2 The finite-gap function and finite gap equations
for the Schrödinger operator

The general form of eigenfunctions for one-dimensional Schrödinger operator H = −∂2
x + U(x)

(where ∂nx ≡ dn/dxn) is determined by the symmetry of the Schrödinger equation HΨ(x,E) =
EΨ(x,E), where Ψ(x,E) means the eigenfunction, x and E are space and spectral variables
respectively. Such symmetry is expressed in each specific case by corresponding integrals of
motion. In the case under consideration when the differential equation has two solutions Ψ1(x,E)
and Ψ2(x,E) this integral of motion has the form

Ψ2(x,E)∂xΨ1(x,E)−Ψ1(x,E)∂xΨ2(x,E) = 2G, (1)

where G means a constant.
Introducing the variable X(x,E) = Ψ1(x,E)Ψ2(x,E) we can write the evident relation

Ψ2(x,E)∂xΨ1(x,E) + Ψ1(x,E)∂xΨ2(x,E) = ∂xX(x,E). (2)

The system of two equations (1) and (2) result in the equation

∂x ln Ψ1(x,E) =
12
∂ x

lnX(x,E) +
G

X(x,E)
. (3)

The solutions of this equation

Ψ1,2(x,E) =
√
X(x,E) exp

(
±

∫ x

x0

dx
G

X(x,E)

)
(4)

determine the general form of the Schrödinger eigenfunctions taking into account the symmetry
of the system (see [8]).

The finite-gap case imposes on the X-function the polynomial dependence on E. Then the
differentiation (3) with taking into account this circumstance results in the equality (see [8])

U(x) =
1

2X
∂2
x −

1
2X2

(∂xX)2 +
(
G

X

)
.

Multiplication of the last on X2 at zero points x = ai (X(a)i) = 0) yields the relation

∂xX|x=ai = 4G. (5)

This relation is used for computation of the finite-gap eigenfunctions.
The above mentioned general Schrödinger eigenfunction in terms of the function χ = G/X

can be written in the form

Ψ(x,E) =
√
χ(x,E) exp

(∫ x

dxχ(x,E)
)
, (6)

where χ is real function with the asymptotic series

χ(x,E) =
√
E

(
1 +

∞∑
n=0

(−1)n

22n+1
χ2n+1(x)E−(n+1)

)
(7)
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(further we shall omit the argument of the coefficient functions χn). Coefficients of (7) satisfy
the known [1] recurrence relation

χn+1 =
d

dx
χn +

n−1∑
k=1

χkχn−k, χ1 = −U(x), (8)

from which follow that χn-functions are polynominal in the potential U ant its derivatives.
Thus power series (7) and the recurrence relation (8) determine the power series of χ-function

in the expression (4) for the general eigenfunction through the Schrödinger potential and its
derivatives.

The finite-gap spectrum of the Schrödinger operator imposes the condition of a polynomial
form of the X-function in the expression (4). In the case of g-gap spectra (which have g gaps
and 2g + 1 boundaries {Ei}) the quantities G and X are described by the expressions [1]

G =
√
P (E) =

√√√√2g+1∏
n=1

(E − En), X = Q(E, x) =
g∏

n=1

(E − µn(x)). (9)

Then the χ-function transforms to the form

χR(x,E) =

√
2g+1∑
n=0

anE−n

g∑
n=0

bnE−n
, a0 = 1, b0 = 1. (10)

Here an and bn are symmetrized products of spectral boundaries Ej and µ-functions of the nth
order, respectively;

an = (−1)n
2g+1∑

j1,	=j2,..., 	=jn

n∏
i=1

Eji , bn = (−1)n
g∑

j1,	=j2,..., 	=jn

n∏
i=1

µ(x)ji ,

The expression (10) as in the case (7) can be represented in the form of the asymptotic series

χR ∼
√
E

(
1 +

∞∑
n=1

AnE
−n

)
, (11)

with coefficients

An =
1
n!

dn

dzn

√
2g+1∑
n=0

anzn

g∑
n=0

bnzn

∣∣∣∣∣
(z=0)

. (12)

Comparing coefficients at the same power of E−1 in the expressions (7) and (11) we obtain
finite-gap equations

(−1)n

22n+1
χ2n+1 =

1
(n+ 1)!

∂n+1
z


√

2g+1∑
n=0

anzn

g∑
n=0

bnzn


∣∣∣∣∣
z=0

, b0 = 0. (13)
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The system (13) in accord with the definition (12) and (8) determines relations between coeffi-
cient functions bn (symmetrized products of µi-functions), an and polynomials of nth power in
the potential U(x) and its derivatives. The first g equations of this (13) are a system of alge-
braic equations which is solvable in respect to (b1, . . . , bg). This system at n ≥ g+ 1 determines
relations between the Schrödinger potential and its derivatives.

Thus finite-gap Schrödinger eigenfunctions and potentials are determined by the finite-band
equations (13) presenting by relations between symmetrized products of µ-functions (bi-coeffi-
cient functions) and the Schrödinger potential (U) with its derivatives. But complete solution
of the spectral problem assumes computation of symmetrized products of µ-functions.

The general hyperelliptic finite-gap Schrödinger operator U in accord with the finite-band
equation (13) is described linear symmetrized combination of µ-functions by the expression

U(x) = 2
g∑
j=1

µj(x)−
2g+1∑
j=1

Ej . (14)

The linear combination of µ-functions in (14) can be obtained by substitution the above men-
tioned finite-gap function in the Schrödinger equation and using the Abelian change of variables.
In so doing, the solution is reduced to the Jacobi inverse problem. The latter is solving with
help of a theorem about theta function zeros.

3 Calculating the symmetrized products of µ-functions

Substitution of the finite-gap Schrödinger eigenfunction (4) taking into account (9) in the Schrö-
dinger equation results in the differential equation with respect to µi-functions. In the class of
the Abelian hyperelliptic functions it can be integrated by the Abelian transformation of the
form

v =
g∑
j=1

∫ µj(z)

P0

dv, dv = (2ω)−1du, duj =
zj−1

y(z)
, (15)

Here y2(z) =
2g+1∑
j=1

λjz
j means a hyperelliptic Riemann curve Γ; duj means holomorphic diffe-

rential of the first kind on Γ. Moreover, 2ω means a matrix of periods on the canonical basis
cycles aj (see [9]) on the Riemann surface Γ,

(2ω)i,j=1,...,g =
(∮

ai

duj

)
,

which exists together with a matrix 2ω′ of periods on the canonical basis cycles bj ,

(2ω′)i,j=1,...,g =
(∮

bi

duj

)
.

The first matrix of periods on the Riemann surface is obtained from the condition reducing the
canonical basis of holomorphic differentials duj to the normal form dvj .

Thus the finite-gap spectral problem for the Schrödinger operator was reduced to the problem
of the Abelian integral (15) conversion with respect to the symmetrized products of µi-functions,
i.e. the Jacobi inversion problem.

Taking into account (14) and using the known Riemann vanishing theorem for theta Riemann
function θ(z|τ) (which will be defined below) we can obtain the expression

U(x) = 2
∑
i,j

αiαj∂αi,αj ln θ(αx−K|τ), (16)

(where αi = (2ω)−1
gi ) for hyperelliptic U -potentials.
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Calculation of symmetrized products of higher degree can be realized with help of the so-
called fundamental 2-differential of the second kind which is defined through the function of the
form (see [7, 9])

F (z1, z2) = 2y2
2 + 2(z1 − z2)y2∂zy2 + (z1 − z2)2

g∑
j=1

zj−1
1

2g+1−j∑
k=j

(k − j + 1)λk+j+1z
k
2 , (17)

F (z1, z2) = 2λ2g+2z
g+1
1 zg+1

2 +
g∑
i=0

zi1z
i
2(2λ2i + λ2i+1(z1 + z2)). (18)

Here any pair of points (y1, z1), (y2, z2) ∈ Γ.
Then the fundamental Abelian 2-differential of the second kind with the unique pole of the

second order along z1 = z2 can be written in the form

dω̂(z1, z2) =
2y1y2 + F (z1, z2)

4(z1 − z2)2
dz1
y1

dz2
y2
. (19)

Taking into account (17) the expression (19) can be rewritten in the form

dω̂(z1, z2) =
∂

∂z2

(
y1 + y2

2y1(z1 − z2)

)
dz1dz2 + duT (x1)dr(x2), (20)

where

drj =
2g+1−j∑
k=j

(k + 1− j)λk+1+j
zkdz
4y

, j = 1, . . . , g (21)

is a canonical Abelian differential of the second kind.
Solution of the Jacobi inversion problem (15) is based on the known relation of the funda-

mental 2-differential (19) which can be written as∫ z

µ

g∑
i=1

∫ zi

µi

2yyi + F (z, zi)
4(z − zi)2

dz
y

dzi
yi

= ln


θ

(∫ z
a0

dv −
g∑
i=1

∫ zi

ai
dv

)
θ

(∫ z
a0

dv −
g∑
i=1

∫ µi

ai
dv

)
− ln


θ

(∫ µ
a0

dv −
g∑
i=1

∫ zi

ai
dv

)
θ

(∫ µ
a0

dv −
g∑
i=1

∫ µi

ai
dv

)
 . (22)

The right hand of this equation contains the known Riemann theta function (see [1])

R(z) = θ(w(z)|τ) =
∑

m∈Zn

exp
{
πı

(
mT τm

)
+ 2πı

(
w(z)Tm

)}
. (23)

Here (a · b) means a scalar product,

w(z) =
∫ z

a0

dv +
g∑

k=1

∫ zi

z0

dv −Kz0 ,

where components of K defined as

Kj =
1 + τjj

2
−

∑
l 	=j

∮
al

dvl(x)
∫ z

z0

dvj , j = 1, . . . , g
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is the vector of Riemann constants with respect to the base point z0. In the considered case

with the base point a the vector of Riemann constants has the form Ka =
g∑

k=1

∫ ai

a dv. Taking

into account definition of the hyperelliptic Weierstrass function through theta function (23) as

℘ij = ∂2
vi,vj

ln θ(v|τ)

and differentiating (22) on variables z and zr we can obtain the relation

g∑
i=1

℘ij

(∫ z

a0

dv +
g∑

k=1

∫ zk

ak

dv + Ka

)
zi−1zj−1

r =
F (z, zr)− 2yyr

4(z − zr)2
, (24)

which expresses a second kind 2-differential through the linear combination of the hyperelliptic
Weierstrass functions. In the limit case z →∞ from (24) the relation follows

P(z; v) = zg −
g−1∑
j=1

∑
l,m

℘l,m(v)αlαj

 zj−1, (25)

in which points {zi} of the Riemann surface are presented as roots of the polynomial P (zj ≡ µj).
In so doing, symmetrized products of these points are expressed by linear combinations hyper-
elliptic Weierstrass functions through the period matrix of holomorphic differentials 2ω. The
α-coefficients are obtained from algebraic equations which can be obtained by substitution (16)
in the finite-band equation (13) taking into account (25). One will be demonstrated in next
section in the case elliptic finite-gap Schrödinger potentials.

The matrix 2ω can be calculated with help the known Thomae formulae of the form

θ4[ε(I0)] = ±det 2ω
∏
i,j∈J0

(Ei − Ej)
∏

n,m∈J̃0

(En − Em),

θ4
j [ε(I1)] = ±det(2ω)−2

16

∏
i,j∈J1

(Ei − Ej)
∏

n,m∈J̃1

(En − Em)
g∑
i=1

∮
ai

zj−1dz
y

Si−1(I1).

Here expressions

S0(I1) = 1, S1(I1) =
∑
j∈I1

Ej , . . . , Sg−1(I1) =
∏
j∈I1

Ej

denotes symmetrized products of the branching points of the Riemann surface.
Thus finite-gap Schrödinger eigenfunctions and potentials can be expressed through hyperel-

liptic Weierstrass functions containing theta-constants instead unknown elements of a 2ω-matrix.

4 The finite-gap relations for elliptic Weierstrass functions

The system of finite-gap equations (10) is solvable with respect to symmetrized products
µi-functions expressed as coefficient functions bi. Therefore excluding bi-functions at n > g
we can obtain the system of algebraic equations with respect to the Schrödinger potential and
its derivatives. These equations determine relations for the hyperelliptic Weierstrass functions.

We consider above mentioned relations in the case of the Riemann curves of low genus g which
correspond to small number of gaps in the eigenvalue spectrum of the Schrödinger operator.

One-gap spectrum. The Schrödinger potential U(z) is determined by the system of three
finite-gap equations of the form (13) at n = 0, 2. Substitution into these equations of the explicit
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expressions (12) for An and polynomial in U expressions for χn-functions which follow from (8)
yields the system

1
2
a1 − b1 = −1

2
U,

1
2

{(
a2 −

1
4
a2

1

)
+ 2

(
b21 − b2

)
− a1b1

}
= − 1

23

{
U2 − U (2)

}
,

1
3!

{(
3
8
a3

1 −
3
2
a1a2 +

3
2
a3

)
+ 3

(
1
4
a2

1 − a2

)
b1 + 3a1

(
b21 − b2

)
+

(
12b1b2 − 4!b3 − 6b31

)}
=

1
25

{
U (4) − 5U (1)2 + 6UU (2) − 2U3

}
in which bn|n≥2 = 0 (in view of the relation bn|n≥g+1 = 0, where g is the number of gaps in
the eigenvalue spectrum of the Schrödinger equation. Excluding bn from the last system we can
obtain the equations

b2 = 0 =
1
8

(
3U2 − U (2)

)
+

1
4
a1U +

1
2
a2 −

1
8
a2

1,

b3 = 0 = − 1
32

(
U (4) + 10U3 − 5U (1)2 − 10UU (2)

)
− 1

16
a1

(
3U2 − U (2)

)
+

1
16
U

(
a2

1 − 4a2

)
+

1
2
a3 +

1
4
a1a2 −

1
16
a3

1.

Inserting into the latter system the expression U = 2α2
1℘1,1 − a1 (in accord with (25)) we can

obtain unknown parameters for 1-gap Schrödinger potentials.
Two-gap spectrum. The 2-gap Schrödinger potential is determined by the system of the

four finite-gap equations of the form (13) at n = 0, 3. Analogically to the one-gap case their
explicit form can be obtained by the substitution of the expressions (12) for An and expressions
for χn (following from (8)) into (13). In so doing, the first two equations are solvable with
respect to b1 and b2. Excluding the latter from the fourth and fifth equation and taking into
account the equality bn|n≥3 = 0 we can obtain the finite-gap system

b3 = 0 =
1
25

(
16a3 + 8a2U + 10U3 − 5U ′2 − 2a1U

′′ − 10UU ′′ + U (4)
)
,

b4 = 0 =
1
27

(
−16a2

2 + 64 ∗ a4 + 32a3U + 24a2U
2 + 35U4

− 70UU ′2 − 8a2U
′′ − 70U2U ′′ + 21U ′′2 + 28U ′U (3) + 14UU (4) − U (6)

)
.

Inserting into the latter system the expression U = 2
∑
i,j
αiαj℘i,j − a1, i, j = 1, 2 (in accord

with (25)) we can obtain unknown parameters for 2-gap Schrödinger potentials.
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A parameter-homogeneous manifestly covariant Lagrangian of second order is considered,
which covers the case of the free relativistic top at constraint manifold of constant accelera-
tion. Relation to other models is discussed in brief.

1 Introduction

The interest to the description of quasi-classical physical particle by the means of some higher-
order equations of motion and the methods of generalized Ostrohrads’kyj mechanics arose some
60 years ago and since then has been continuous [1–7]. Recently renewed attention was paid
to such the models, which basically involve the notions of the first and higher curvatures of
the particle’s world line [8–12]. In most cases, people start with an a priori given higher order
Lagrangian, and then try to interpret the dynamical system thus obtained as one describing the
motion of quasi-classical spin (the relativistic top). Technical misunderstanding of two kinds
happens to arise. First, certain nonholonomic constraints sometimes are imposed from the very
beginning. These constraints are chosen in such a way as to ensure that the Lagrangian is in fact
written in terms of the moving frame components [13]. But, as shown in [14], non-holonomic
constraints require a more subtle approach. In particular, the constraint system does not retain
the property of variationality any more. Second, sometimes the very tempting assumption of
unit four-velocity vector is imposed after the variation procedure has already been carried out
(cf. [15]). Such approach was quite justifiably criticized by several authors [16, 17]. On the other
hand, there exist the established equations of Mathisson & Papapetrou [18] and of Dixon [19],
which are believed to be well based from the point of view of physics. In 1945 Weyssenhoff [2]
asserted, referring to one paper of Mathisson [20], “Even for a free particle in Galileian do-
mains the equations of motion of a material particle endowed with spin do not coincide with
the Newtonian laws of motion; there remains an additional term depending on the internal an-
gular momentum or spin of the particle, which raises the order of these differential equations to
three”. We add to this that the procedure of complete elimination of spin variables in fact raises
the order of the differential equations to four. In the present note this fourth order differential
equation will be shown to follow from Dixon’s form of the relativistic top equation of motion and
in case of flat space-time a Lagrange function will be proposed which produces the world lines
of thus governed spinning particle without any preliminary constraints being imposed before the
variation procedure in undertaken. A constraint of constant curvature must be imposed after the
variation, and this is why we call the corresponding Lagrange function a covering Lagrangian.

2 Relativistic top

To start from the lowest possible order let us recall the Dixon equations of the quasi-classical
spinning particle in the gravitational field:

Ṗα =
1
2
Rαβγδu

βSγδ, Ṡαβ = Pαuβ − Pβuα. (1)
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This system (1) does not prescribe any preferable way of parametrization along the world line
of the particle.

It was proved in [21] and announced in [22] that under the so-called auxiliary condition of
Pirani

uβSαβ = 0, (2)

equations (1), (2) are equivalent to the following system of equations (3), (4), and (5)

εαβγδü
βuγsδ− 3

u̇βu
β

‖u‖2
εαβγδu̇

βuγsδ −m
(
‖u‖2u̇α− u̇βu

βuα

)
=
‖u‖2

2
εµνγδRαβ

µνuβuγsδ, (3)

‖u‖2ṡα + sβu̇
β uα = 0, (4)

sαu
α = 0. (5)

The correspondence between the skewsymmetric spin tensor Sαβ and spin four-vector sα under
the assumption that we recognize Pirani’s condition is given by

sα =
1

2‖u‖ εαβγδu
βSγδ, Sαβ =

1
‖u‖ εαβγδu

γsδ.

Equation (3) in flat space-time was considered from variational point of view in [21] and some
Lagrange functions for it were offered in [23].

As promised, from now on we put Rαβµν = 0 and proceed to eliminate the variable sα (in
fact, a four-vector constant quantity). To facilitate the calculations, it is appropriate to chose
the would line parametrization in the usual way: ‖u‖ = 1. Then we get immediately that (3)
takes on the shape (“∗” denotes the dual tensor)

∗ ü ∧ u ∧ s +mu̇ = 0 (6)

and possesses the first integral k2 = u̇2, which is nothing but the squared first curvature of the
world line.

Now contract the above vector equation with the tensor ∗u∧s and remember of (5) to obtain
after some algebraic manipulations

s2
(
ü + k2u

)
= −m ∗ u̇ ∧ u ∧ s.

Differentiating and then substituting the right hand side from (6), we finally obtain

...
u +

(
k2 − m2

s2

)
u̇ = 0. (7)

Now let us return to equations (1) and recall the standard fact that under Pirani’s condi-
tion (2) the particle’s momentum P may be expressed in terms of spin tensor Sαβ , or, equiva-
lently, in terms of spin for-vector s

P =
m

‖u‖ u +
1

‖u‖3
∗ u̇ ∧ u ∧ s,

where m = P·u
‖u‖ is a constant of motion, and that the square momentum

P2 = m2 − k2s2 +
1

‖u‖6
[(u̇·s) u− (u·s) u̇]2 = m2 − k2s2

by virtue of (2) is a constant of motion too. Thus denoting ω2 = −P2

s2 , we finally obtain the
desired fourth-order equation for the free relativistic top:

...
u + ω2u̇ = 0 (8)
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3 Hamilton–Ostrohrads’kyj approach

Let us again notify that we tend to set a parameter-invariant variational problem in order to
get the world lines without any additional parametrization. Recall the general formula for the
first curvature of the world line in arbitrary parametrization

k =
‖u ∧ u̇‖
‖u‖3

(9)

and consider the following Lagrange function:

L =
1
2
‖u‖

(
k2 +A

)
. (10)

This Lagrange function (10) constitutes a parameter-homogeneous variational problem because
it satisfies the Zermelo conditions:(

u.
∂

∂u
+ 2 u̇.

∂

∂u̇

)
L = L, u.

∂L
∂u̇

= 0. (11)

Variational equations are given by

−℘̇ = 0, (12)

where

℘ =
∂L
∂u

−
(
∂L
∂u̇

)·
.

Now, one can calculate the quantity ℘̇ and afterwards set ‖u‖ = 1, thus benefiting from the
parameter homogeneity of equation (12). We get for (12):

...
u +

(
3
2

u̇2 −A

)
u̇ + 3 (ü·u̇) u = 0. (13)

Now, on the surface k = k0 equation (13) will coincide with (8) if we put

A =
3
2
k0

2 − ω2.

This completes the proof, as asserted in [24].
To pass to the canonical formalism, it is necessary to introduce the parametrization by time,

setting x0 = t, u0 = 1, and denoting dxi

dt = vi. In this coordinates formula (10) suggests the
following expression for the Lagrange function:

L =
1
2

√
1 + v2

(
k2 +A

)
, k2 =

v′2 + (v′ × v)2

(1 + v2)3
. (14)

Generalized Hamilton function H is expressed in terms of v and the couple of momenta

p′ =
∂L

∂v′
, p =

∂L

∂v
− d

dt
p′, (15)

namely,

H = p.v + p′.v′ − L.

It is possible to find the inverse of the generalized Legendre transformation (15) and after
some laborious calculating efforts the generalized Hamiltonian reads:

H = p.v +
1
2

(
1 + v2

)3/2 (
p′2 + (p′.v)2

)
− A√

1 + v2
.
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4 Concluding notes

1. Equation (8) was known to Riewe [15], but its deduction directly from (1) or from the
Mathisson–Papapetrou equations [18] apparently was not obvious.

2. By means of the formula kk2k3 = ‖u∧ u̇∧ ü∧ ...
u‖, which presents the relationship between

the successive curvatures of a curve (in natural parametrization), we see immediately, that all
the extremals of (10) have zero third curvature, and in terms of the space-like world line it means
that the particle evolves in a plane.

3. In [21] we proved by means of generalized Ostrohrads’kyj momenta approach, that ev-
ery one of the successive curvatures of a curve, taken as the Lagrange function, produces the
extremals with this same curvature being the constant of motion. This was also observed by
Arodź for the first curvature [9]. But the problem of the simultaneous conservation of all the
curvatures, i.e. the variational description of helices, remains open (cf. [25]).

4. Surprisingly enough, the Lagrange function (10) in fact coincides with one, considered by
Bopp in [1] for the motion of a charged particle in electromagnetic field (in part, not including
the external four-potential itself). That equations (1) in their differential prolongation cover
both the Mathisson–Papapetrou equations of spinning particle and the Lorentz–Dirac equations
of self-radiating particle, was already noted in [23] in relation to the prediction of Barut [26].
This gives still more grounds to call (10) the covering Lagrangian.

5. Following the ideas of [6] we considered in [27] some non-local transformations which leave
invariant the exact form of the action integral∫ √

ε2dτ2 − dα2 =
∫
Lεdτ, (16)

where dα measures the rotation of the tangent to the world line during the increment dτ of the
proper time along it, so the curvature k = dα

dτ . There was an attempt to interpret these non-local
transformations (linear in α and τ) as such that explain the transition between the uniformly
accelerated frames of reference in special relativity. Treating in quite formal way the variables α
and τ as independent, one may stay hoping that the variation of (16) will produce the world
lines of constant curvature (i.e. constant acceleration). On the other hand, looking more closely
at the Lagrange function

Lε =
√
ε2 − k2, (17)

immediately leads to the concept of maximal acceleration ε = c7/2G(−1/2)�−1/2 = 3/5·1052m/sec2

[28].
Two shortcomings spring up. First, the Lagrange function (17), viewed as a higher-order

Lagrangian, does not correspond to constant curvature world lines. Second, the variational
problem is not parameter-independent, at least because Lε, with k given by (9), does not satisfy
the Zermelo conditions (11). The Lagrangian (10) is free of these shortcomings.
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The explicit and exact solutions of the linear homogeneous difference equation with initial
conditions (Cauchy problem) are constructed. The approach is quite general and relies on
a novel and successful treatment of the linear recursion appropriately cast in matrix form.
Our approach is exploited to solve the eigenvalues problem of a special set of non-Hermitian
operators. A new class of generalized even and odd coherent states of a quantum harmonic
oscillator are defined.

The occurrence of linear or nonlinear difference equations is ubiquitous in applied sciences.
The exact treatment of many important problem in physics, chemistry, biology, economy, psy-
chology and so on, depend on our ability to solve recursive relations of various kind. The
importance of this particular chapter of mathematics may be for instance appreciated taking
into account the close relation existing between difference and differential equations. Systema-
tic methods for approximating intractable ordinary or partial differential equations by easier-to
manage appropriate difference equations, are currently and successfully used in many contexts
of applied sciences [1, 2, 3]. By definition a nth-order linear discrete Cauchy problem consists
of a linear normal nth-order difference equation associated to given initial conditions. It is well
known that when the vectors of the initial conditions defining n different discrete Cauchy prob-
lems relative to the same nth-order recursive equation are independent, then the n corresponding
solutions constitute a fundamental set of solutions. In this paper we construct the explicit and
exact solution of the following discrete Cauchy problems

yk+n = f1(k)yk+n−1 + · · ·+ fn−1(k)yk+1 + fn(k)yk,
y0 = y1 = y2 = · · · = yk−1 = 0, yk = 1, yk+1 = yk+2 = · · · = yn−1 = 0, (1)

where fi : S → R ∀ i = 1, 2, . . . , n and fn(k) �= 0 ∀ k ∈ S = {0, 1, 2, . . .}. Our treatment is
new and leads to a resolutive formula whose usefulness is vividly illustrated by an application
to the physics of the quantum harmonic oscillator. To this end we transform equation (1) into
the following homogeneous, linear, matrix, first order equation

Zk+1 = A(k)Zk, k = 0, 1, 2, . . . (2)

with A(k) n × n matrix defined by A1j = δjn, A(k)
21 = fn(k), A(k)

2j = fj−1(k) (j = 2, . . . , n),
Arj = δr−1,j for r = 3, . . . , n and

ZTk = (yk yk+n−1 · · · yk+1), (3)

where superscript T denotes the transposition of column vector Zk. Its formal solution has the
form

Zk = P (k)Z0, (4)
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where P (0) = I and P (k) = A(k−1)A(k−2) · · ·A(0), k ≥ 1. It is easy to verify that P (0)
1j = δ1j ,

P
(1)
1j = δnj and, for any k > 1

P
(k)
1j =

∑
h0,h1,...,hk−2

A
(k−1)
1hk−2

A
(k−2)
hk−2hk−1

· · ·A(1)
h1h0

A
(0)
h0j
, (5)

where hi (i = 0, 1, . . . , k−2) runs from 1 to n. Consider first 1 ≤ k ≤ n−1. In this case, in view
of equation (5), P (k)

1j does not vanish only if k = n−j+1. In fact only this condition ensures the

existence of a not vanishing contribution to P (k)
1j in the form of the following product of matrix

elements

A
(k−1)
1n A

(k−2)
nn−1 · · ·A

(k+j−n−1)
j+1j = 1. (6)

Thus we arrive at the conclusion that P (k)
1j = δn+1−k,j . Moreover P (n)

1j = A
(0)
2j and P

(n+1)
1j =

A
(0)
2j A

(1)
22 + (1− δ1,j)A

(1)
2j+1 provided we consistently put A(k)

2 n+1 ≡ A
(k)
21 . Observe that∑

h0,h1,...,hk−2

A
(k−1)
1hk−2

A
(k−2)
hk−2hk−1

· · ·A(1)
h1h0

A
(0)
h0j

=
∑

h0,h1,...,hk−n−1

A
(k−n)
2hk−n−1

· · ·A(1)
h1h0

A
(0)
h0j
, (7)

where the n − 1 indices hk−2, hk−1, . . . , hk−n have been eliminated with the help of relations
essentially similar to that expressed by equation (6). The expression (5) for P (k)

1j with k > n+ 1
and j = 1, 2, . . . , n, may be put in the following form

P
(k)
1j =

r∗∑
r=j

(δ1,r + ϑ(j − 1))A(r−j)
2r

∑
hr−j+1,...,hk−n−1

A
(k−n)
2hk−n−1

· · ·A(r−j+1)
hr−j+12

+ fn(k, j), (8)

where

fn(k, j) = (1− δ1,j)(1− ϑ(k − 2n+ j − 2))

×
[
(1− δk−n,n−j+2)A(k−n)

2j+k−n +A
(k−n)
22 A

(k−n−1)
21 δk−n,n−j+2

]
, (9)

ϑ(x) is the Heaviside step function such that ϑ(0) = 0 and r∗ = min{(n + 1), k + j − n − 2}.
Equation (8) expresses P (k)

1j in terms of finite sums like∑
hr−j+1,...,hk−n−1

A
(k−n)
2hk−n−1

· · ·A(r−j+1)
hr−j+12 (10)

which may be further simplified exploiting the structural presence of “1” and “0” in the charac-
teristic matrices

{
A(k)

}
. To this end we note that there are only n not vanishing products of

matrix elements beginning in the second row and ending in the second column:

A
(k−n)
21 A

(k−n−1)
1n · · ·A(k−2n+1)

32 = A
(k−n)
21 ,

A
(k−n)
22 = A

(k−n)
22 ,

A
(k−n)
23 A

(k−n−1)
32 = A

(k−n)
23 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A
(k−n)
2j A

(k−n−1)
jj−1 · · ·A(k−n)

32 = A
(k−n)
2j ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A
(k−n)
2n A

(k−n−1)
nn−1 · · ·A(k−n)

32 = A
(k−n)
2n . (11)
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To take advantage from equation (11) let us introduce the function g : {1, 2, . . . , n} → N × N
defined putting g(1) = (2, 2); g(j) = (2, j + 1), 2 ≤ j ≤ n − 1, (n > 2) and g(n) = (2, 1) which
helps in writing down P (k)

1j as given by equation (8) in a conveniently irreducible form. In what
follows we shall use the following symbols

A
(p)
g(1) ≡ A

(p)
22 , . . . , A

(p)
g(j) ≡ A

(p)
21 . (12)

Looking at equation (11) we see that the length of the sequence beginning with A(k−n)
21

(
A

(k−n)
2j

)
(that is the number of factors) is n(j− 1). It is easy to convince oneself that each not vanishing
contribution to the sum expressed by equation (10) may be subdivided into products of sequences
of different length explicitly written down in equation (11). This circumstance provides the key
for defining a useful algorithm to cast P (k)

1j into an explicit form where only elements of the
second row of the matrices {A(k), k = 1, 2, . . .} are present. For this purpose we find convenient
to put the following definitions. Let h, n and p be positive integers. We say that a sequence of
integers has order h and high n if it is constructed by h eventually repeated positive integers
not exceeding n. A generic sequence of order h and high n is denoted by (r1, . . . , rh)n and the
set of all such sequences by In(h). For each prefixed integer p such that h ≤ p ≤ nh, we say
that (r1, . . . , rh)n ∈ In(h) represents a p−sequence when it satisfies the additional condition to

be also a partition of the integer p, that is
h∑
ν=1

rν = p. A generic p−sequence of order h and

high n is denoted by (r1, . . . , rh)pn and the certainly not empty subset of all such p-sequences

by Ipn(h). Finally we put Ipn =
p⋃

h=1

Ipn(h), that is Ipn is the set of all the p-sequences of high n in

correspondence with all the possible orders.
For instance if n = 5 and p = 3, I3

5 has 4 elements: 1+1+1 = 2+1 = 1+2 = 3, and for p = 6
I6
5 has 31 elements: 1+1+1+1+1+1 = 2+1+1+1+1 = 1+2+1+1+1 = · · · = 1+5 = 5+1 = 6. It

is possible to convince oneself that for any k > n+1 and 1 ≤ j ≤ n the expression (10) appearing
in equation (8) may be cast in the following form

∑
(r1,...,rh)p

n∈Ip
n

A
(k−n−r0)
g(r1)

A

(
k−n−

1∑
t=0

rt

)
g(r2) · · ·A

(
k−n−

h−1∑
t=0

rt

)
g(rh) , (13)

where r0 = 0 ≤ h ≤ p, p = (k − n)− (r − j).
The important difference between the two expression (10) and (13) is of course that the latter

equation contains only matrix elements of the second rows of the (at most) (k − n) matrices

A(1), A(2), . . . , A(k−n) and therefore is irreducible. We wish to point out that k − n −
h−1∑
t=1

rt >

r − j + 1 as it should be. Inserting equation (13) into equation (8) we are now in position to
write down the definite expression of P (k)

1j as

δ1,j , k = 0, δn+1−k,j , 1 ≤ k ≤ n, A
(0)
21 , k = n,

A
(0)
2j A

(1)
2j + (1− δ1j)A

(1)
2j , k = n+ 1,

r∗∑
r=j

[δ1,r + ϑ(j − 1)]A(r−j)
2r

×
∑

(r1,...,rh)p
n∈Ip

n

A
(k−n−r0)
g(r1)

· · ·A

(
k−n−

h−1∑
t=0

rt

)
g(rh) + fn(k, j), k > n+ 1. (14)
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When j runs from 1 to n, P (k)
1j defines n independent solutions of equation (1). Introduce the

non-hermitian operators

Cn = anei
2π
n
a†a, n = 1, 2, . . . (15)

The eigenstates of C1 are the coherent states and the eigenstates of C2 pertaining to a generic not
null eigenvalue are the even and odd coherent states. The eigenvalue problem for Cn, formulated
to construct generalizations of the even and odd coherent states,

Cn

∞∑
k=0

bk|k〉 = λ
∞∑
k=0

bk|k〉,
∞∑
k=0

|bk|2 <∞, λ ∈ C \ {0} (16)

may be easily reduced to the resolution of the following linear discrete Cauchy problem:

bk+n = λ

√
k!

(k + n)!
e−i

2π
n
kbk,

bk = 1, b0 = b1 = · · · = bk−1 = bk+1 = · · · = bn−1, (17)

where k runs from 0 to n − 1. The Fock states |0〉, |1〉, . . . , |n − 1〉 are eigenstates of Cn, with
eigenvalue 0. If normalizable solutions of the linear difference equation (17) of order n and
with variable coefficients exist in correspondence to such initial conditions, then, in view of
equation (17), the relative eigensolutions of Cn satisfy the property that the distance between
two successive Fock states of their number representations is fixed and equal to n. Thus the n
different eigenstates of Cn correspond to the n initial conditions, if normalizable, provide possible
generalizations of the even and odd coherent states. We now solve equation (17) exploiting the
formula (14) deduced in this paper. A comparison between equation (17) and (1) yields

A
(k)
21 = λ

√
k!

(k + n)!
e−i

2π
n
k, A

(k)
2j = 0, j = 2, . . . , n. (18)

As a consequence, we immediately deduce that only when the choice g(r1) = g(r2) = · · · =
g(rh) = g(n) is compatible with a prefixed value of p, that is p = nh, the expression (12) does
not vanish. This fact implies that the sum over r appearing in equation (16), contributes for
j = 1 with the (r = 1)-term only and with the (r = n+1)-term only, if j > 1 and k > 2n− j+2.
Thus exploiting equation (16) the general expression of P (k)

11 in our case may be cast as follows:

P
(k)
11 = A

(h−1)n
21 A

(h−2)n
21 · · ·A(n)

21 A
(0)
21 =

λh√
(hn)!

, ∀ k = hn, h = 1, 2, . . . ,

0, otherwise. (19)

P
(k)
11 is the solution of equation (17) in correspondence to the initial condition b0 = 1, b1 = b2 =
· · · = bn−1 = 0. The corresponding normalized eigenstate of Cn may be written down as

|ψ(n)
0 〉 = N0

∞∑
h=0

λh√
(hn)!

|hn〉, (20)

where

N0 = ne−
1
2
|β|2

{
n+ 2

n−1∑
ν=1

(n− ν)e−2|β|2 sin2(π
n
ν) cos

(
|β|2 sin

(
2π
n
ν

))}− 1
2

(21)
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and the relative eigenvalue is of course λ. The solution of equation (17) relative to the initial
condition bn−j+1 = 1, b0 = b1 = · · · = bn−j = bn−j+2 = · · · = bn−1 = 0 for j > 1 is P (k)

1j and
corresponds to the following eigenstate of Cn

|ψ(n)
k 〉 = Nk

∞∑
h=0

λh√
(hn+ k)!

|hn+ k〉, k = 0, . . . , n− 2, (22)

where Nk is an appropriate normalization constant explicitly calculable.
It is possible to demonstrate that |ψ(n)

k 〉 can be expressed as linear combination of n equal-
amplitude coherent states. In particular,

(a) |ψ(n)
0 〉 may be represented as the equal right linear combination of all the eigenstates of an

pertaining to the same eigenvalue λ. It therefore generalizes the even coherent state;
(b) |ψ(n)

n
2
〉 (n are even) can also be expanded in terms of the same set of coherent states as

before, with the difference that now the ratio between successive coefficients is −1. Appropriately
adjusting its global phase, we may therefore state that it generalizes the odd coherent state.

In this paper we have derived a new way of representing the general solution of an arbitrary
homogeneous linear difference equation. Our resolutive keys of this problem are two. The first
one is the choice of the fundamental set of solutions used. The second one is the algorithm by
which we succeed to express in the (best possible) closed form the first row of the product of
an arbitrary number of the noncommutating matrices. Our resolutive formula (14) has been
applied to solve the eigenvalue problem of a particular non-Hermitian operator building up
a new class of states of a quantum harmonic oscillator. These states should attract interest in
quantum optician community, for instance, in view of the fact that these generalized even and
odd coherent states might exhibit remarkable non-classical features.

Concluding we wish to emphasize that the material presented in this paper provides a concrete
stimulus toward other interesting applicable developments both in physics and in mathematics.
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We show that the problem of existence of preferred orthonormal frame in general relativity,
which is formulated as a problem of solvability for the nonlinear system of elliptic equations,
can be reduced to the linear problem. For the obtained system of equations and for more
general one we find the necessary and sufficient conditions of existence and uniqueness of the
solution for Dirichlet problem and the conditions of zeros absence for the solution, taking
into account the availability of double symmetry. This allows in particular to prove existence
of wide class of hypersurfaces on which the Sen–Witten equation and the Nester gauge are
equivalent (up to the sign).

Let (M, g) be M = Σ × R with spacelike Σt × {t} and metric g of signature (+,−,−,−)1.
We assume that on Σt the constraints of general relativity are satisfied:

−R(3) −KµνKµν +K2 = 2µ, (1)
Dµ (Kµν −Khµν) = J ν , (2)

where R(3) is scalar curvature of Σt, h = g − n ⊗ n is induced metric on Σt. Dµ is induced by
connection ∇µ on M connection on Σt, Kµν is extrinsic curvature of Σt, K = Kνν . µ and J ν are
the energy density and momentum density, respectively, of the matter in the frame of reference
of an observer, whose one-form of 4-velocity is ξ = dt. µ and J ν satisfy the dominant energy
condition

µ ≥| J νJν |1/2 .
There are three globally defined on Σt linearly independent one-forms θa that may thus

be used as a coframe basis. Vector basis will be denoted by ea. The connection one-forms
coefficients ωabc are determined as usually: ωabc = 〈θa, ∇eb

ec〉.
Definition 1. A set of N (0 < N ≤ 10) equations for the components of orthonormal vector
basis emµ (tetrad, vierbein)

ΦN

(
em′µ

′
, ∂ν′em′ν

′
, ∂2

ν′ρ′ep′
π′)

= 0, (3)

which are not covariant under the local Lorentz transformations and (or) coordinate basis trans-
formations, is said to be auxiliary conditions.

Definition 2. The auxiliary conditions (3) are said to be gauge fixing conditions in some do-
main Ω, if in this domain there exists the solution xµ

′
(xν), Lm

′
n (x) of the system of equations

ΦN

(
en
ν ∂x

µ′

∂xν
Lnm′ , . . . , . . .

)
= 0 (4)

with arbitrary coefficients enν .

1Greek indices α to λ run through 1, 2, 3; indices κ to ω run through 0, 1, 2, 3. Latin indices are Lorentzian
and a to l run through 1, 2, 3; indices m to z run through 0, 1, 2, 3.
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For construction of tensor method for the proof of the positive energy theorem in general
relativity Nester [1] introduced the auxiliary conditions for the choice of special orthonormal
frame on three-dimensional Riemannian manifold

dq̃ = 0, d ∗ q = 0, (5)

where

q̃ := iadθ
a, ∗q := θa ∧ dθa.

For proof the statement that auxiliary conditions (3) are gauge it is necessary to prove the
existence of the solution ||Ra′b|| ∈ SO(3) for the system of equations (5), where

q = iadθ
a = q′ + θm′ ∧Rm′

b dR
b
c′ ∧ θc

′
, (6)

q = θa ∧ dθa = q̃ ′ +Rb
′
aR

a
c′,bθ

b. (7)

The system of equations (6)–(7) is a nonlinear second-order elliptic system for the rota-
tion Ra

′
b. Nester proved the existence and uniqueness for the solution of the linearization of this

system for geometries within a neighborhood of Euclidean space, and therefore the additional
conditions (5) are gauge-fixing only asymptotically.

In paper [2] we have proved that conditions (5) are everywhere gauge on maximal hypersur-
face. Our purpose is to establish the existence of most wide as in [2] class of the conditions,
under which auxiliary conditions (5) are gauge everywhere on Σ.

The method for the proof is based on the grounding for substitution of auxiliary conditions (5)
by equivalent (up to sign) linear equations for SU(2)-spinor field, for which the theorems of
existence are known. For these equations the new theorems about uniqueness and zeros of
double-covariant system of equations in the bounded closed domain are also proved.

On the spaces, where the forms q̃ and ∗q are exact, the conditions (5) are replaced by their
first integrals:

q̃ = −4d ln ρ, ∗q = 0.

Function ρ is arbitrary and everywhere on Σt is positive. Let us consider a case, when the
form Kθ3 is exact, and introduce some function λ, which anywhere on Σt does not equal to zero
and is defined by the relationship d lnλ := 4d ln ρ = Kθ3. Let us complement the triad θa to the
tetrad defining θ0 as following: θ0 ≡ n = Ndt, here n is one form of the normal to Σt, and let
us introduce the complex one-form L = λ√

2
(θ1 + iθ2). Then one-form L satisfies the equation〈

L̃, D ⊗ L
〉
−KL+ 3! i ∗ (n ∧D ∧ L) = 0, (8)

where L̃ = |L|−1 ∗
(
L ∧ L

)
, and here it is taken into account that λ does not equal to zero.

The form L is spatial and, therefore, it defines up to sign the SU(2)-spinor λA: L = −λAλB,
which is a result of Sen [3] reduction of SL(2,C)-spinor on Σt according to the definition λA+ =√

2nAȦλȦ. Equation (8) is the “squared” Sen–Witten equation

DBCλC = 0, (9)

where an action of the operator DAB on SU(2) spinor field is

DABλC = DABλC +
√

2
2
KABCDλD.
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So, the question about existence of solution for nonlinear elliptic system (5) is reduced to the
question about existence of solution for linear elliptic system (9) under the condition that this
solution λA nowhere on Σt equals zero.

Further we will examine the question about conditions of existence and zeros absence for the
solution of boundary value problem for general elliptic system of equations

1√
−h

∂

∂xα

(√
−hhαβ ∂

∂xβ
uA

)
+ CA

BuB = 0 (10)

on bounded closed spherical-type domain Ω on Σt, where hαβ – metric tensor components, which
are arbitrary real functions of independent variables xα continuous in Ω; the quadratic form
hαβξαξβ is negatively defined. The unknown functions uA are complex twice continuously differ-
entiable functions of independent variables xα. They are also the elements of vector space C2,
in which the skew symmetric tensor εAB is defined, and the group SU(2) acts. The matrix
C := ||CAB|| is Hermitian, its elements are twice continuously differentiable, and C0

1 �= 0 in Ω.
A system (10) is a generalization of a differential result of equation (9) and equations (1), (2) [2].

For strongly elliptic systems of second order equations the sufficient conditions for unique
solvability of boundary value problem were obtained in [4]. Let us take into account that
the system of equations (10) is covariant under arbitrary transformations of coordinates on Ω,
and covariant under the local SU(2) transformations. This allows to obtain the necessary and
sufficient conditions for unique solvability of Dirichlet problem.

Let denote by

∆ := C1
1 − C0

0 −
[(
C1

1 − C0
0
)2 + 4

∣∣C0
1
∣∣2]1/2

.

Theorem 1. The boundary value problem for equation (10) is uniquely solvable in domain Ω if
and only if in this domain there are exist functions of C2 class which satisfy the inequalities

det

 (−hαβ) Bβ
A

Bα
A

3∑
γ=1

∂Bγ
A

∂xγ + CA′

 > 0, (11)

here

C0′ =
4C0

0
∣∣C0

1
∣∣4 +

(
4∆

∣∣C0
1
∣∣2 + C1

1∆2
) (

4
∣∣C0

1
∣∣2 + ∆2

)
4 |C0

1|2
(

4 |C0
1|2 + ∆2

) , (12)

C1′ =

(
C0

0∆2 − 4 ∆
∣∣C0

1
∣∣2) (

4
∣∣C0

1
∣∣2 + ∆2

)
+ 4C1

1
∣∣C0

1
∣∣4(

4 |C0
1|2 + ∆2

) . (13)

Proof. The system of equations (10) is covariant under the arbitrary transformations of coor-
dinates and under the local transformations from spinor group SU(2). This allows us to use
them independently. Because the matrix C is Hermitian, there exists a matrix

R := ||RAB|| :=
(

α β

−β α

)
, αα+ ββ = 1,

such that C ′ = −εRεCRT+ = RT+CR = diag (C0′ , C1′). The matrix elements satisfy the
conditions αα

(
1 + ∆2/4

∣∣C0
1
∣∣2) = 1, β = α∆/2C0

1, and in the new spinor basis

u0′ = α

(
u0 +

∆
2C0

1
u1

)
, u1′ = α

(
− ∆

2C0
1
u0 + u1

)
. (14)
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The eigenvalues of matrix C are real, therefore, the system of equations (10) in the new spinor
basis splits into the system of four independent equations. The coefficients before unknown
functions are expressed as (12) and (13). Since C0′ and C1′ are scalars under the transformations
of coordinates, we can apply the Skorobohat’ko theorem 1.16 [4] to each of equations. The
conditions of the existence for each of equations are (11) with (12) or (13). This proves the
Theorem. �

Corollary 1. The boundary value problem for equation (10) is uniquely solvable in domain Ω
if in this domain the matrix C is positively defined.

Theorem 2. If the matrix C is positively defined in Ω, then a function M = u0u0 + u1u1 for
any solution of class C2 for equation (10) reaches the non-zero maximum only on the boundary
of domain Ω.

Proof. In arbitrary domain Ω in Riemannian space V 3 there exist solutions fγ of class C2 for
a system of differential equations

hαβ
∂fγ
∂xα

∂fδ
∂xβ

, γ �= δ.

Setting 3-orthogonal hypersurfaces fα = const as coordinate hypersurfaces xα
′

= const we will
obtain the system of coordinates in which hαβ = 0 at α �= δ [5].

Let us assume that the function M reaches the non-zero maximum in some intrinsic point
of domain Ω. Then in this point ∂M

∂xα = 0 and hαα ∂
2M

∂xα2 ≥ 0. But, from the other side, in the
same point of maximum we have, taking into account that functions uA and CA

B are scalars
under arbitrary transformations of coordinate basis, the equation (10) is covariant with respect
to them, and Hermitian matrix C is positively defined:

hαα
∂2M

∂xα2 = hαα
∂uA
∂xα

∂uA

∂xα2 −
√
−hCABuBuA −

√
−hCABuBuA > 0.

The contradiction proves the statement of the theorem. �

Theorem 2 generalizes the Bicadze extremum principle [6] onto the systems of elliptic equations
with non-diagonal main parts of operators. It gives effective conditions of the knot points
absence.

Corollary 2. If the matrix C is positively defined in domain Ω, then in this domain the non-
trivial solutions of class C2 for equations (10) do not have the knot points.

Reula has proved the existence of the C∞ solution to Sen–Witten equation on Σt , if the
initial data set (Σt, hµν ,Kπρ) is asymptotically flat [7].

The conditions, when initial data set is asymptotically flat and spinor uA belongs to a certain
Hilbert space, in this case substitute the conditions of Theorem 1. From Theorem 2 we obtain
a condition for absence of knot points for Sen–Witten equation.

Theorem 3. If matrix G with the elements

GA
B := DABK +

√
2εBA

(
K2 +

1
4
KαβK

αβ +
1
2
µ

)
is positively defined everywhere on Σt, then the solution of equation (10), which tends at infinity
to a certain constant non-zero value, differs from zero everywhere on Σt.
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From existence of the solution for Sen–Witten equation and from absence of knot points for
this solution it follows that the Nester additional conditions are gauge on all hypersurfaces, on
which the matrix G is positively defined. Therefore on such hypersurfaces there exists the Nester
preferred orthonormal frame, and this is also the Sen–Witten frame. In particular, the Nester
conditions are gauge, and the Nester frame is the Sen–Witten frame on maximal hypersurface.
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The method of asymptotic integration of a singular perturbed nonlinear system of differential
equations is offered.

In works [1, 2] the systems of singular perturbed linear differential equations were studied.
The construction of asymptotic solution of nonlinear systems of differential equations were stu-
died in works of W. Wasow, R. Langer, M. Iwano, A. Vasilieva, S. Lomov. In this work the
method of asymptotic integration of the singular perturbed nonlinear system of differential
equations is suggested.

Let us study the system of equations

ε
dx

dt
= A(t, ε)x+ f(t, ε, x), x(0, ε) = x0, (1)

where ε (0 < ε ≤ ε0) is a small parameter, f(t, ε, x), x(t, ε), x0 is n-dimensional vectors. We
suppose to carry out such conditions:

1) vector f(t, ε, x) has the decomposition into uniform convergent series

f(t, ε, x) =
∞∑
|r|=2

ar(t, ε)xr, (2)

where ar(t, ε) is n-dimensional vectors, xr = xr11 x
r2
2 · · ·xrnn , |r| =

n∑
i=1

ri; xi (i = 1, . . . , n), com-

ponents of vector x(t, ε);
2) the matrix A(t, ε) and vectors ar(t, ε) have the decomposition using degrees of small para-

meters

A(t, ε) =
∞∑
s=0

εsAs(t), ar(t) =
∞∑
s=0

εsars(t);

3) matrix As(t) and vectors ars(t) (s = 0, 1, . . .) are infinite differentiable on the segment
[0;L];

4) solutions of characteristic equation

det ‖A0(t)− λ(t)E‖ = 0 (3)

are simple on the segment [0;L], where E is the identity matrix that has order n.
Let us use substitution into system (1)

x(t, ε) = Um(t, ε)y(t, ε), (4)

where y(t, ε) is an n-dimensional vector, Um(t, ε) is an n× n matrix

Um(t, ε) =
m∑
s=0

εsUs(t)
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the result

εUm(t, ε)y′ = (A(t, ε)Um(t, ε)− εU
′
m(t, ε))y(t, ε) + f(t, ε, Um(t, ε)y), (5)

here ()′ means the derivative with respect to t.
We will construct matrix Us(t), (s = 0, . . . ,m) in the way that the matrix equation takes

place:

A(t, ε)Um(t, ε)− εU
′
m(t, ε) = Um(t, ε)(Λm(t, ε) + εm+1Cm(t, ε)), (6)

where Λm(t, ε) is a diagonal matrix in form

Λm(t, ε) =
∞∑
s=0

εsΛs(t),

Cm(t, ε) is n×n matrix. Matrices Us(t), Λs(t) (s = 0, . . . ,m) are obtained by using methods [1, 2]
from equation (6). So, from system (1) we obtain system

εy′(t, ε)y′ = (Λm(t, ε)εm+1Cm(t, ε))y + U
′
m(t, ε)f(t, ε, Um(t, ε)y), (7)

Let us substitute y(t, ε) = z + q(t, ε, z) to (7), where q(t, ε, z) has the development

q(t, ε, z) =
∞∑
|r|=2

qr(t, ε)zr.

So system (7) has form

εz′(t, ε) = (E +Qz(t, ε, z))−1
(
− εq′(t, ε, z)

+ (Λm(t, ε) + εm+1Cm(t, ε))z + (Λm(t, ε) + εm+1Cm(t, ε))q(t, ε, z)
)

+ U−1
m (t, ε)f(t, ε, Um(t, ε)(z + q(t, ε, z)), (8)

where Qz(t, ε, z) is matrix that consist of partial derivative components of vector q(t, ε, z).
Let us choose vector q(t, ε, z) in a way that

(E +Qz(t, ε, z))−1
(
− εq′(t, ε, z) + Λm(t, ε)(z + q(t, ε, z))

)
+ U−1

m (t, ε)f(t, ε, Um(t, ε)(z + q(t, ε, z))) = (Λm(t, ε) + εm+1Cm(t, ε))z (9)

takes place. After multiplying (9) by matrix E + Qz(t, ε, z) and grouping similar terms with
Λm(t, ε)z we will obtain

εq′(t, ε, z) = (Λm(t, ε) + εm+1Cm(t, ε))q(t, ε, z)

+ U−1
m (t, ε)f(t, ε, Um(t, ε)(z + q(t, ε, z))−Qz(t, ε, z)(Λm(t, ε) + εm+1Cm(t, ε))z. (10)

Let us present matrix Qz(t, ε, z) in the form

Qz(t, ε, z) =
∞∑
|r|=2

zrqr(t, ε)rz,
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where rz =
(
r1z
−1
1 , . . . , rnz

−1
n

)
. So, we have

Qz(t, ε, z)Λm(t, ε)z =
∞∑
|r|=2

n∑
j=1

zrqr(t, ε)rjλmj(t, ε),

Qz(t, ε, z)Cm(t, ε)z =
∞∑
|r|=2

gr(t, ε, z),

gr(t, ε, z) = zrqr(t, ε)rzCm(t, ε)z,

g(t, ε, z) =

Um(t, ε)

z +
∞∑
|s|=2

qs(t, ε)zs

r

,

where λmj(t, ε) are elements of the matrix λm(t, ε). Decomposing functions gr(t, ε, z), gr(t, ε, z)
into power series, substituting to (10) and equating coefficient with similar degrees zr11 · · · zrnn
we will obtain

εq′(t, ε) =

Λm(t, ε)−
n∑
j=1

rjλmj(t, ε) · E

 qr(t, ε)

+ εm+1Cm(t, ε)qr(t, ε) + Vr(t, ε, q1, . . . , qr−1) + εm+1V r(t, ε, q1, . . . , qr−1),
qr(0, ε) = 0, (11)

where Vr(t, ε, q1, . . . , qr−1), V r(t, ε, q1, . . . , qr−1) are expressed in terms of partial derivatives
respectively to function gr(t, ε, z), gr(t, ε, z).

System of equation has form

εz′(t, ε) = (Λm(t, ε) + εm+1Cm(t, ε))z,

z(0, ε) = U−1
m (0, ε)x0 (12)

approximate [1] m (11) we will write in the form

qrm(t, ε) = − exp
(

1
ε

∫ t

0
Λm(t, ε)dt

)
qrm(0, ε) + qrm(t, ε),

where

qrm(t, ε) =
m∑
s=β

εsqrs(t)

the particular solution (11); β = 0 or β = −1.
Approximate m (12) we will write in the form

zm(t, ε) = exp
(

1
ε

∫ t

0
Λm(t, ε)dt

)
U−1
m (0, ε)x0.

So, approximate m (1) takes the form

xm(t, ε) = Um(t, ε) exp
(

1
ε

∫ t

0
Λm(t, ε)dt

)
U−1
m (0, ε)x0

+ Um(t, ε)
∞∑
|r|=2

(
qrm(t, ε)− exp

(
1
ε

∫ t

0
Λm(t, ε)dt

)
qrm(0, ε)

)

×
(

exp(
1
ε

∫ t

0
Λm(t, ε)dt

)
U−1
m (0, ε)x0)r. (13)
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We proved that (13) consists of convergent series, and approximate m has an asymptotic
property.

[1] Shkil N., The asymptotic methods in differential equations, Kyiv, 1971 (in Russian).

[2] Shkil N., Starun I. and Yakovets V., The asymptotic integration of the linear systems of differential equations,
Kyiv, 1991.
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The solution to the Davey–Stewartson I equation is analyzed to show that the resonance
between periodic soliton and growing-and-decaying mode exists. Under the quasi-resonant
condition, the mode develops first in the one side region of the periodic soliton. The periodic
soliton is accelerated as a result of the growth and decay of the mode existed in the region
and the wave field shifts to the intermediate state, where only the periodic soliton exists.
This intermediate state persists over a comparatively long time interval. After sufficiently
long time, the mode starts to grow in the opposite side of the periodic soliton.

1 Introduction

A uniform train of weakly nonlinear deepwater waves is unstable to long wave modulational
perturbations of the envelope, which is known as the Benjamin–Feir instability [1]. It is well
known that the long time evolution of the unstable wave train is described by the nonlinear
Schrödinger (NLS) equation [2, 3, 4]. The extension to the two-dimensional case was examined
by Zakharov, Benney and Roskes and Davey and Stewartson [2, 5, 6]. The long time evolution
of a two-dimensional wave-packet is described by the Davey–Stewartson (DS) equation [6]

iut + puxx + uyy + r|u|2u− 2uv = 0,

vxx − pvyy − r(|u|2)xx = 0, (1)

where p = ±1, r is constant. Equation (1) with p = 1 and p = −1 are called the DS I and DS II
equations, respectively. The time evolution of the solution of the 1D-NLS equation with periodic
boundary condition and with Benjamin–Feir unstable initial condition was studied numerically
by Lake et al. [7]. They found that a modulated unstable wave train achieves a state of maximum
modulation and returns to an unmodulated initial state. The nonlinear evolution of an unstable
mode is described by the growing-and-decaying mode soluiton to the 1D-NLS equation [8].

The DS I equation has also the growing-and-decaying mode solution, which is given by [9]

u = u0e
iζ g

f
, v = − 2 (ln f)xx (2)

with

f = 1− e−Ωt+σ cos η +
M

4
e−2Ωt+2σ,

g = 1− e−Ωt+σ+iφ cos η +
M

4
e−2Ωt+2σ+2iφ,

where

ζ = kx+ ly − ωt, ω = k2 + l2 − ru2
0, η = βx+ δy − γt+ θ,

Ω = (β2 + δ2) cot
φ

2
, γ = 2kβ + 2lδ, M =

2
1 + cosφ

> 1, sin2 φ

2
=
δ2 − β2

2ru2
0

,



Asynchronous Development of the Growing-and-Decaying Mode 761

σ and θ are arbitrary phase constants. The existence condition for the nonsingular solution is
given by M > 1 for real φ, which is satisfied for

0 <
(
δ2 − β2

)
< 2ru2

0,

which is in agreement with the Benjamin–Feir unstable condition. This solution grows ex-
ponentially at initial stage, and reaches a state of maximum modulation and after reaching
maximum modulation, demodulates and finally returns to an unmodulated initial state. There-
fore, the solution (2) describes the nonlinear evolution of monochromatic perturbation with the
Benjamin–Feir unstable condition in two-dimension.

The interactions between two-periodic solitons, between periodic soliton and line soliton
and between periodic soliton and algebraic soliton to the DS equation have been investigated
in detail [10, 11, 12]. It was shown that the periodic soliton resonances exist in each case.
Pelinovsky pointed out the existence of the resonance between line soliton and growing-and-
decaying mode [10]. The growing-and-decaying mode exists substantially only a finite period
in time, but the resonance between line soliton and growing-and-decaying mode brings about
the infinite phase shift to the line soliton. If the growing-and-decaying mode exists within only
a finite time in reality, the mechanism bringing about the infinite phase shift to the line soliton
is puzzle. Recently, we have investigated the time evolution of the quasi-resonant interaction
between line soliton and growing-and-decaying mode and found the existence of an asynchronous
development of the growing-and-decaying mode [13].

In this paper, it is shown that under the quasi-resonant condition for the interaction between
periodic soliton and growing-and-decaying mode, the asynchronous development of the growing-
and-decaying mode also exists.

2 Quasi-resonance between periodic soliton
and growing-and-decaying mode

The interaction between periodic soliton and growing-and-decaying mode to the DS I equa-
tion is studied in this section. The solution describing the interaction can be obtained by the
N -soliton solution of Satsuma and Ablowitz [14]. The solution consisting of a periodic soliton
and growing-and-decaying mode is given by

u = u0e
iζ g

f
, v = − 2 (ln f)xx (3)

with

f = 1− 1
L1L2

eξ1 cos η1 − eξ2 cos η2 +
M1

4L2
1L

2
2

e2ξ1 +
M2

4
e2ξ2

− 1
4
eξ1+ξ2

{
M1

L1L2
eξ1 cos(η2 + Ψ1 −Ψ2) +M2e

ξ2 cos(η1 + Ψ1 + Ψ2)
}

+
1

2L1L2
eξ1+ξ2

{
L1 cos(η1 + η2 + Ψ1) + L2 cos(η1 − η2 + Ψ2)

}
+
M1M2

16
e2(ξ1+ξ2), (4)

g = 1− 1
L1L2

eξ1+iφ1r cos(η1 + iφ1i)− eξ2+iφ2 cos η2 +
M1

4L2
1L

2
2

e2ξ1+2iφ1r +
M2

4
e2ξ2+2iφ2

− 1
4
eξ1+ξ2+i(φ1r+φ2)

{
M1

L1L2
eξ1+iφ1r cos(η2 + Ψ1 −Ψ2)

+M2e
ξ2+iφ2 cos(η1 + iφ1i + Ψ1 + Ψ2)

}
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+
1

2L1L2
eξ1+ξ2+i(φ1r+φ2)

{
L1 cos(η1 + η2 + iφ1i + Ψ1)

+ L2 cos(η1 − η2 + iφ1i + Ψ2)
}

+
M1M2

16
e2(ξ1+ξ2)+2i(φ1r+φ2), (5)

where

ξ1 = αx+ κy − Ω1t+ σ1, ξ2 = −Ω2t+ σ2,

η1 = β1x+ δ1y − γ1t+ θ1, η2 = β2x+ δ2y − γ2t+ θ2,

sin2 φ1

2
=

(α+ iβ1)2 − (κ+ iδ1)2

2ru2
0

, sin2 φ2

2
=
δ22 − β2

2

2ru2
0

,

Ω1 = 2kα+ 2lκ−3
{{

(α+ iβ1)2 + (κ+ iδ1)2
}

cot
φ1

2

}
,

γ1 = 2kβ1 + 2lδ1 −1
{{

(α+ iβ1)2 + (κ+ iδ1)2
}

cot
φ1

2

}
,

Ω2 = (β2
2 + δ22) cot

φ2

2
, γ2 = 2kβ2 + 2lδ2,

M1 =
2ru2

0| sin φ1

2 |2 coshφ1i − (α2 + β2
1) + (κ2 + δ21)

2ru2
0| sin

φ1

2 |2 cosφ1r − (α2 + β2
1) + (κ2 + δ21)

, M2 =
2

1 + cosφ1
,

L1e
iΨ1 =

2ru2
0 sin φ1

2 sin φ2

2 cos φ1−φ2

2 − i{(α+ iβ1)β2 − (κ+ iδ1)δ2}
2ru2

0 sin φ1

2 sin φ2

2 cos φ1+φ2

2 − i{(α+ iβ1)β2 − (κ+ iδ1)δ2}
,

L2e
iΨ2 =

2ru2
0 sin φ1

2 sin φ2

2 cos φ1−φ2

2 + i{(α+ iβ1)β2 − (κ+ iδ1)δ2}
2ru2

0 sin φ1

2 sin φ2

2 cos φ1+φ2

2 + i{(α+ iβ1)β2 − (κ+ iδ1)δ2}
,

where we have assumed that φ2 is real and θ1, θ2, σ1 and σ2 are arbitrary constants. When we
consider the case: 0 < Ω2, 0 < α, 0 < κ and 0 < Ω1, the solutions long before and after the
mode growing are given by

f =
M2

4
e2ξ2

{
1− eξ1 cos(η1 + Ψ1 + Ψ2) +

M1

4
e2ξ1

}
, (6)

g =
M2

4
e2(ξ2+iφ2)

{
1− eξ1+iφ1r cos(η1 + iφ1i + Ψ1 + Ψ2) +

M1

4
e2(ξ1+iφ1r)

}
, (7)

and

f = 1− 1
L1L2

eξ1 cos η1 +
M1

4L2
1L

2
2

e2ξ1 , (8)

g = 1− 1
L1L2

eξ1+iφ1r cos(η1 + iφ1i) +
M1

4L2
1L

2
2

e2(ξ1+iφ1r), (9)

respectively, which are periodic soliton solutions. It is shown that the phase shift of the periodic
soliton due to the growing-and-decaying mode is given by the amount ln(L1L2) (or − ln(L1L2)).
(L1L2) = ∞ and 0 may be thought of as resonance between periodic soliton and growing-and-
decaying mode, the conditions of which are obtained by equating the denominator and numerator
of L1 or L2 to zero, respectively: We now investigate the condition which L1 becomes infinity,
namely

D = 2ru2
0 sin

φ1

2
sin

φ2

2
cos

φ1 + φ2

2
− i {(α+ iβ1)β2 − (κ+ iδ1)δ2} = 0. (10)
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When we express α, κ, β1, δ1, β2 and δ2 in term of φ1, φ2, θ1 and θ2 as follows,

α+ iβ1 = i
√

2ru2
0 sin

φ1

2
sinh θ1, κ+ iδ1 = i

√
2ru2

0 sin
φ1

2
cosh θ1,

β2 =
√

2ru2
0 sin

φ2

2
sinh θ2, δ2 =

√
2ru2

0 sin
φ2

2
cosh θ2.

Equation (10) is rewritten as

D = 2ru2
0 sin

φ1

2
sin

φ2

2

{
cos

φ1 + φ2

2
− cosh(θ1 − θ2)

}
.

Therefore, the resonant condition is given by

φ2 = 2θ1i − φ1r, θ2 = θ1r +
φ1i

2
.

We study the time evolution of soliton in the following five periods in time. The solutions (4)
and (5) are approximated in each period as follows:

(p1) t→ −∞ (before the mode grows). The solution is given by equations (6) and (7), only
the periodic soliton exists in the wave field.

(p2) t ∼ σ2

Ω2
; (e−Ω2t+σ2 ∼ O(1)). The solutions in the backward region and forward region

of the periodic soliton are given by

f � 1− eξ2 cos η2 +
M2

4
e2ξ2 , (11)

g � 1− eξ2+iφ2 cos η2 +
M2

4
e2(ξ2+iφ2), (12)

and

f � M1M2

16
e2(ξ1+ξ2), (13)

g � M1M2

16
e2(ξ1+ξ2)+2iφ1r+φ2), (14)

respectively. The solutions corresponding to equations (11)–(12) and (13)–(14) denote the
growing-and-decaying mode and uniform state, respectively. Therefore, in this period, the mode
is growing only in the backward region of the periodic soliton, but the mode has not grown as
yet in the forward region.

(p3) t ∼
σ2 + 1

2 lnL1L2

Ω2
; (
√
L1L2e

−Ω2t+σ2 ∼ O(1))

f � 1 +
1

2L2
eξ1+ξ2 cos(η1 + η2 + Ψ1) +

M1M2

16
e2(ξ1+ξ2),

g � 1 +
1

2L2
eξ1+ξ2+i(φ1r+φ2) cos(η1 + η2 + iφ1i + Ψ1) +

M1M2

16
e2(ξ1+ξ2)+2i(φ1r+φ2).

Only the periodic soliton in the resonant state exists in the wave field.

(p4) t ∼ σ2 + lnL1L2

Ω2
; (L1L2e

ξ2 ∼ O(1)). The solutions in the backward region and forward

region of the periodic soliton are given by

f � 1, g � 1,
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and

f � M1

4L2
1L

2
2

e2ξ1
{

1− L1L2e
ξ2 cos(η2 + Ψ1 −Ψ2) +

M2L
2
1L

2
2

4
e2ξ2

}
,

g � M1

4L2
1L

2
2

e2(ξ1+iφ1r)

{
1− L1L2e

ξ2+2iφ2 cos(η2 + Ψ1 −Ψ2) +
M2L

2
1L

2
2

4
e2(ξ2+iφ2)

}
,

respectively. In this period, the mode is developed only in the forward region of the periodic
soliton.

(p5) t → +∞. The solution is given by equations (8) and (9) which is the periodic soliton
after the grow and decay of the mode.

3 Conclusions

We have investigated the time evolution of the quasi-resonant interaction between periodic
soliton and growing-and-decaying mode. Under the quasi-resonant condition, the mode develops
first in the one side region of the periodic soliton. The periodic soliton is accelerated as a result of
the grow and decay of the mode existed in the region and the wave field shifts to the intermediate
state, where only the periodic soliton in the resonant state exists. This intermediate state persists
over a comparatively long time interval. After sufficient long time, the mode starts to grow in
the opposite side of the periodic soliton. The existence of soliton changes the evolution of the
growing-and-decaying mode drastically as if the periodic soliton dominated the evolution of the
instability in whole region of the wave field.
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Integrable Polynomial Potentials

in N -Body Problems on the Line

Andrij VUS
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E-mail: matmod@franko.lviv.ua

Integrable natural systems of n interacting particles on the line are investigated under as-
sumption that the interacting potential is a polynomial. Restriction for degree of these
potentials is obtained both for systems with pairwise interaction and for the case of lattices.

Dynamics of n equal pair-interactive particles on the line is described by the Hamiltonian
system with the Hamiltonian

H =
1
2

n∑
i=1

p2
i +

∑
i<j

V (xi − xj), (1)

where the xi and pi, i = 1, . . . , n, are the coordinates and momenta of the particles. We hence-
forth call the function V a potential. Complete integrability of this system was established
in [1, 2] for the Weierstrass P-function as the interaction potential. Moreover, this system
possesses a complete collection of integrals which are polynomials in the momenta and are in
involution. It is therefore natural to obtain a description of Hamiltonians (1) which admit in-
tegrals that are polynomials in the momenta. We are interested in considering the problem of
integrability of such natural system of interacting particles in Liouville’s sense for polynomial
potential V (z), such that deg V (z) = k > 2.

Theorem 1. Let the potential V (z) admit an integral F , which is polynomial in the momenta.
Then the potential zk admits a nontrivial integral, which is also polynomial.

Theorem 2. The 3-body problem with the Hamiltonian (1) is integrable if and only if k � 4.

Proof. The total momentum P =
∑
pi is the first integral of the system under considera-

tion. Therefore this system can be reduced to the system with two degrees of freedom and the
Hamiltonian

H =
1
2

(
p2
1 + p2

2

)
+ V (x) + V

(
−x

2
+
y
√

3
2

)
+ V

(
−x

2
− y

√
3

2

)
.

Now we shall use the Yoshida’s theorem [3] on the nonintegrability of natural systems with
homogeneous potential. According to his algorithm, we calculate the Kowalewski’s indicators

∆�i =
(
1 + 8kλi/(k − 2)2

)1/2
,

where λi are the eigenvalues of the matrix Γ = ∂2W
∂x2 (c), c ∈ Cn is a nontrivial solution of the

system of equations

∂W

∂xj
(c) = cj , 1 � j � n. (2)
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In our case

W = xk +

(
−x

2
+
y
√

3
2

)k

+

(
−x

2
− y

√
3

2

)k

.

The solution of the system (2) is

c1 =
(

2k−1/k
(

1 + 2k−1
))1/(k−2)

, (3)

c2 = 0. (4)

The Kowalewski’s indicators are

∆�1 =
3k − 2
k − 2

∈ Q,

∆�2 =
(

1 +
24k(k − 1)

(k − 2)2(1 + 2k−1)

)1/2

. (5)

To show that ∆�2 /∈ Q consider the Diophantine equation

1 +
24k(k − 1)

(k − 2)2(1 + 2k−1)
=

(
l

(k − 2)(1 + 2k−1)

)1/2

.

One can easily prove that for k > 10 l /∈ N , and it is easy to calculate l for k � 10 directly and
check that l also is not natural. �

The analogous result is established for the case of n pair-interactive particles on the line.

Theorem 3. The n-body problem with the Hamiltonian (1) is nonintegrable for k > 2.

Proof. First of all we reduce the system of n particles to the system with two degrees of
freedom. Let the initial conditions of the dynamics are

x1 = x2 = · · · = xr = y, (6)
xr+1 = · · · = x2r = −y, (7)
x2r+1 = −x2r+2 = x, (8)
ẋ1 = ẋ2 = · · · = ẋr = py, (9)
ẋr+1 = · · · = ẋ2r = −py, (10)
ẋ2r+1 = −ẋ2r+2 = px (11)

for n = 2(r + 1), and additionally

x2r+3 = ẋ2r+3 = 0

for odd values of n (n = 2(r+ 1) + 1). Then the reduced Hamiltonian can be written in the form

H = p2
x + rp2

y +W (x, y),

where

W (x, y) = 2r
(

(x− y)k + (x+ y)k
)

+ (2x)k + r2(2y)k

for n = 2(r + 1) and

W (x, y) = 2r
(

(x− y)k + (x+ y)k
)

+ (2x)k + r2(2y)k + 2xk + 2ryk

for n = 2(r+ 1) + 1. The analogous Diophantine equations can be easily considered and one can
prove that these equations do not have solutions for k > 2. �
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Consider now the problem of integrability of the system of (n+ 1) interactive particles with
the Hamiltonian

H =
1
2

n+1∑
i=1

p2
i +

n∑
i=1

V (xi − xi+1) + λV (xn+1 − x1), (12)

where λ can be equal to 0 or 1.

Theorem 4. The system with the Hamiltonian (12) can be reduced to the system with two
degrees of freedom and the Hamiltonian

H =
1
2

(
p2
1 + p2

2

)
+ V (x) + λV

(
x

n
+
y
√
n2 − 1
n

)
+ (n− 1)V

(
x

n
− y

√
n2 − 1

n(n− 1)

)
. (13)

Theorem 5. The systems with the Hamiltonians (13) for λ ∈ {0, 1} do not possess the additional
first integral for k > 2.

The proof of the Theorem 5 is based on considering the Kowalewski’s indicators for the
Hamiltonian (13). In this case also ∆�1 = 3k−2

k−2 ∈ Q and it is proved that ∆�2 /∈ Q for values
k > 2.
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We extend our approach, used to classify separable Schrödinger equations [1], to the case
of the (1+3)-dimensional Pauli equations for a spin-1

2 particle interacting with the electro-
magnetic field. As a result, we get eleven classes of the vector-potentials of the electro-
magnetic field providing separability of the corresponding Pauli equations. It is shown, in
particular, that the necessary condition for the Pauli equation to be separable is that it must
be equivalent to the system of two Schrödinger equations and, furthermore, the magnetic
field must be independent of the spatial variables.

1 Introduction

The quantum mechanical system consisting of a spin-1
2 charged particle interacting with the

electro-magnetic field is described in a non-relativistic approximation by the Pauli equation
(see, e.g., [2])

(p0 − papa + eσ H)ψ(t, x) = 0, (1)

where ψ(t, x) is the two-component complex-valued function, e stands for the electric charge of
particle. Here we use the notations

p0 = i
∂

∂t
− eA0(t, x), pa = −i ∂

∂xa
− eAa(t, x), a = 1, 2, 3,

where A = (A0, A1, A2, A3) is the vector-potential of the electro-magnetic field, H = rot A is
the magnetic field, σ = (σ1, σ2, σ3) are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Hereafter the summation over the repeated Latin indices from 1 to 3 is understood.
Clearly, system (1) with arbitrary functions A0, Aa, (a = 1, 2, 3) is not separable. On the

other hand, there do exist configurations of the electro-magnetic field providing separability
of the Pauli equation. So a natural question arises whether it is possible to get a systematic
description of all the possible curvilinear coordinate systems and vector-potentials A such that
equation (1) is integrable by the variable separation. One of the principal objectives of the
present paper is to provide an efficient way for answering these kinds of questions for systems of
partial differential equations (PDEs). The approach used is the further extension of the method
developed in our paper [1], where the problem of separation of variables in the Schrödinger
equation has been solved.

For a solution to be found we adopt the following separation Ansatz:

ψ(t, x) = Q(t, x)ϕ0(t)
3∏

a=1

ϕa

(
ωa(t, x), λ

)
χ, (2)
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where Q, ϕµ, (µ = 0, 1, 2, 3) are non-singular 2 × 2 matrix functions of the given variables
and χ is an arbitrary two-component constant column. What is more, the usual condition of
commutativity of the matrices ϕµ is imposed, i.e.

[ϕµ, ϕν ] = ϕµϕν − ϕνϕµ = 0, µ, ν = 0, 1, 2, 3. (3)

We say that the Pauli equation (1) is separable in a coordinate system t, ωa = ωa(t, x),
(a = 1, 2, 3), if the separation Ansatz (2) reduces PDE (1) to four matrix ordinary differential
equations (ODEs) for the functions ϕµ, (µ = 0, 1, 2, 3)

iϕ′0 = − (P00(t) + P0b(t)λb)ϕ0,

ϕ′′a = (Pa0(ωa) + Pab(ωa)λb)ϕa, a = 1, 2, 3, (4)

where Pµν (µ, ν = 0, 1, 2, 3) are some smooth 2 × 2 matrix functions of the given variables, λ1,
λ2, λ3 are separation constants and, what is more,

rank ‖Pµa‖3 3
µ=0 a=1 = 6. (5)

The condition (5) secures essential dependence of a solution with separated variables on the
separation constants λ1, λ2, λ3.

Next, we introduce the equivalence relation on the set of all coordinate systems providing
separability of Pauli equation. We say that two coordinate systems t, ω1, ω2, ω3 and t̃, ω̃1, ω̃2,
ω̃3 are equivalent if the corresponding Ansätze (2) are transformed one into another by

• the continuous transformations from the Lie transformation group, admitted by the Pauli
equation (1),

• the reversible transformations of the form

t→ t̃ = f0(t), ωi → ω̃a = fa(ωa), a = 1, 2, 3,

Q→ Q̃ = Ql0(t)l1(ω1)l2(ω2)l3(ω3), (6)

where f0, . . . , f3 are some smooth functions and l0, . . . , l3 are some smooth 2 × 2 matrix
functions of the given variables.

This equivalence relation splits the set of all possible coordinate systems into equivalence
classes. In a sequel, when presenting the lists of coordinate systems enabling us to separate
variables in Pauli equation we will give only one representative for each equivalence class.

The principal steps of the procedure of variable separation in Pauli equation (1) are as follows:

1. We insert the Ansatz (2) into the Pauli equation and express the derivatives ϕ′0, ϕ′′a in
terms of the functions ϕ0, ϕa, ϕ′a (a = 1, 2, 3) using equations (4).

2. We split the expression obtained by ϕ0, ϕa, ϕ′a, λa (a = 1, 2, 3) using the commutativity
condition (3) and get an over-determined system of nonlinear PDEs for unknown functions
A0, Aa, Q, ωa.

3. Integrating the obtained system yields all the possible configurations of the vector-poten-
tials of the electro-magnetic field providing separability of the Pauli equation and the
corresponding coordinate systems.

Having performed the first two steps of the above algorithm we obtain the system of nonlinear
matrix PDEs

(i)
∂ωb
∂xa

∂ωc
∂xa

= 0, b �= c, b, c = 1, 2, 3;
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(ii)
3∑

a=1

Pab(ωa)
∂ωa
∂xc

∂ωa
∂xc

= P0b(t), b = 1, 2, 3;

(iii) 2
(
∂Q

∂xb
− ieQAb

)
∂ωa
∂xb

+Q

(
i
∂ωa
∂t

+ ∆ωa

)
= 0, a = 1, 2, 3;

(iv) Q
3∑

a=1

Pa0(ωa)
∂ωa
∂xb

∂ωa
∂xb

+ i
∂Q

∂t
+ ∆Q− 2ieAb

∂Q

∂xb

+
(
−P00(t)− ie

∂Ab
∂xb

− eA0 − e2AbAb + eσ H

)
Q = 0.

So the problem of variable separation in the Pauli equation reduces to integrating system of
nonlinear PDEs for eight unknown functions A0, A1, A2, A3, Q, ω1, ω2, ω3 of four variables t, x.
What is more, some coefficients are arbitrary matrix functions, which are to be determined
while integrating system of PDEs (i)–(iv). We have succeeded in constructing the general
solution of the latter, which yields, in particular, all the possible vector-potentials A(t, x) =
(A0(t, x), . . . , A3(t, x)) such that Pauli equation (1) is solvable by the method of separation of
variables. Due to the space limitations we are unable to present the full integration details, since
the computations are very involved. The integration procedure is basically very much similar to
that for classifying separable Schrödinger equations [1] (though the matrix case is considerably
more difficult to handle). So that, we restrict ourselves to giving the list of the final results.

2 Principal results

Integration of the system PDEs (i)–(ii) yields the most general forms of coordinate systems t, ω
that provide separability of the Pauli equation. The general solution ω = ω(t, x) of system
of equations (i)–(ii) has been constructed in [1]. It is given implicitly within the equivalence
relation (6) by the following formulae:

x = T (t)L(t) (z(ω) + v(t)) . (7)

Here T (t) is the time-dependent 3× 3 orthogonal matrix with the Euler angles α(t), β(t), γ(t):

T (t) =

 cosα cosβ − sinα sinβ cos γ
sinα cosβ + cosα sinβ cos γ

sinβ sin γ
→

→
− cosα sinβ − sinα cosβ cos γ sinα sin γ
− sinα sinβ + cosα cosβ cos γ − cosα sin γ

cosβ sin γ cos γ

 ; (8)

v(t) stands for the vector-column whose entries v1(t), v2(t), v3(t) are arbitrary smooth functions
of t; z = z(ω) is given by one of the eleven formulas

1. Cartesian coordinate system,
z1 = ω1, z2 = ω2, z3 = ω3, ω1, ω2, ω3 ∈ R.

2. Cylindrical coordinate system,
z1 = eω1 cosω2, z2 = eω1 sinω2, z3 = ω3, 0 ≤ ω2 < 2π, ω1, ω3 ∈ R.

3. Parabolic cylindrical coordinate system,

z1 = (ω2
1 − ω2

2)/2, z2 = ω1ω2, z3 = ω3, ω1 > 0, ω2, ω3 ∈ R.
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4. Elliptic cylindrical coordinate system,
z1 = a coshω1 cosω2, z2 = a sinhω1 sinω2, z3 = ω3,

ω1 > 0, −π < ω2 ≤ π, ω3 ∈ R, a > 0.
5. Spherical coordinate system,

z1 = ω−1
1 sechω2 cosω3, z2 = ω−1

1 sechω2 sinω3, z3 = ω−1
1 tanhω2,

ω1 > 0, ω2 ∈ R, 0 ≤ ω3 < 2π.
6. Prolate spheroidal coordinate system,

z1 = a cschω1 sechω2 cosω3, z2 = a cschω1 sechω2 sinω3,

z3 = a cothω1 tanhω2, ω1 > 0, ω2 ∈ R, 0 ≤ ω3 < 2π, a > 0. (9)
7. Oblate spheroidal coordinate system,

z1 = a cscω1 sechω2 cosω3, z2 = a cscω1 sechω2 sinω3,

z3 = a cotω1 tanhω2, 0 < ω1 < π/2, ω2 ∈ R, 0 ≤ ω3 < 2π, a > 0.
8. Parabolic coordinate system,

z1 = eω1+ω2 cosω3, z2 = eω1+ω2 sinω3, z3 =
(
e2ω1 − e2ω2

)
/2,

ω1, ω2 ∈ R, 0 ≤ ω3 ≤ 2π.
9. Paraboloidal coordinate system,

z1 = 2a coshω1 cosω2 sinhω3, z2 = 2a sinhω1 sinω2 coshω3,

z3 = a(cosh 2ω1 + cos 2ω2 − cosh 2ω3)/2, ω1, ω3 ∈ R, 0 ≤ ω2 < π, a > 0.
10. Ellipsoidal coordinate system,

z1 = a
1

sn(ω1, k)
dn(ω2, k

′) sn(ω3, k), z2 = a
dn(ω1, k)
sn(ω1, k)

cn(ω2, k
′) cn(ω3, k),

z3 = a
cn(ω1, k)
sn(ω1, k)

sn(ω2, k
′) dn(ω3, k),

0 < ω1 < K, −K ′ ≤ ω2 ≤ K ′, 0 ≤ ω3 ≤ 4K, a > 0.
11. Conical coordinate system,

z1 = ω−1
1 dn(ω2, k

′) sn(ω3, k), z2 = ω−1
1 cn(ω2, k

′) cn(ω3, k),

z3 = ω−1
1 sn(ω2, k

′) dn(ω3, k), ω1 > 0, −K ′ ≤ ω2 ≤ K ′, 0 ≤ ω3 ≤ 4K;

and L(t) is the 3× 3 diagonal matrix

L(t) =

 l1(t) 0 0
0 l2(t) 0
0 0 l3(t)

 ,

where l1(t), l2(t), l3(t) are arbitrary non-zero smooth functions, that satisfy the following condi-
tion:

• l1(t) = l2(t) for the partially split coordinate systems (cases 2–4 from (9)),

• l1(t) = l2(t) = l3(t) for non-split coordinate systems (cases 5–11 from (9)).

Here we use the standard notations for the trigonometric, hyperbolic and Jacobi elliptic func-
tions, k (0 < k < 1) being the module of the latter and k′ =

(
1− k2

)1/2.
With this result in hand it is not difficult to integrate the remaining equations (iii) and (iv)

from the system under study, since they can be regarded as the algebraic equations for the
functions Aa(t, x), (a = 1, 2, 3) and A0(t, x), correspondingly. The principal results can be
summarized as follows. The necessary condition for the Pauli equation (1) to be separable is
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that it is gauge equivalent to the Pauli equation with following space-like components of the
vector-potential A(t, x) of the electro-magnetic field

A(t, x) =
1
2

 0 −H3(t) H2(t)
H3(t) 0 −H1(t)
−H2(t) H1(t) 0

 x =
1
2
H(t)× x. (10)

So that the magnetic field H is independent of the spatial variables and related to the Euler
angles α(t), β(t), γ(t) of the matrix T (t) (8) through the following formulae:

eH1 = −γ̇(t) cosα(t)− β̇(t) sinα(t) sin γ(t),

eH2 = −γ̇(t) sinα(t) + β̇(t) cosα(t) sin γ(t),

eH3 = −α̇(t)− β̇(t) cos γ(t).

Next, keeping in mind that H depends on t only, we make in (1) the change of variables

ψ = U(t)ψ̃,

where U(t) is a unitary 2× 2 matrix function satisfying the matrix ODE

iUt = (−eσ H)U

with the initial condition U(0) = I. This transformation splits the separable Pauli equation into
two Schrödinger equations, i.e. the term eσ H is cancelled.

Summing up we conclude that the Pauli equation (1) admits separation of variables if and
only if it is equivalent to the system of two Schrödinger equations. Moreover the space-like
components A1, A2, A3 of the vector-potential of the electro-magnetic field are linear in the
spatial variables and given by (10).

The structure of the time-like component of the vector-potential A(t, x) providing separability
of Pauli equation is determined by the form of the corresponding coordinate systems ωa(t, x),
a = 1, 2, 3:

eA0(t, x) =
3∑

a=1

Fa0(ωa)
∂ωa
∂xb

∂ωa
∂xb

+ T0(t)− e2AbAb

− 1
4

3∑
a=1

(
l̈ala(za + va)2 + 2la(lav̈a + 2l̇av̇a)(za + va) + l2av̇

2
a

)
, (11)

where F10(ω1), F20(ω2), F30(ω3), T0(t) are arbitrary smooth functions defining the explicit form
of the reduced equations (4); A1, A2, A3 are given by (10); z1, z2, z3 are the functions given in
the list (9); and la(t), va(t), α(t), β(t), γ(t) are arbitrary smooth functions defining the form of
the new coordinate system (7).

Thus there are eleven classes of separable Pauli equations corresponding to eleven classes of
coordinate system (7). For instance, the general form of the time-like component of the vector-
potential A(t, x) providing separability of Pauli equation in the spherical coordinate system
reads as

eA0 = T0(t) + l−2
1 ω4

1F10(ω1) + l−2
1 ω2

1 cosh2 ω2 (F20(ω2) + F30(ω3))

− e2AbAb −
1
4

3∑
a=1

(
l̈1l1(za + va)2 + 2l1(l1v̈a + 2l̇1v̇a)(za + va) + l21v̇

2
a

)
,

z1, z2, z3 being given by the formulae 5 from (9).



Towards Classification of Separable Pauli Equations 773

The Pauli equation (1) for the class of functions A0(t, x), A(t, x) defined by (10), (11) under
arbitrary T0(t), Fa0(ωa) and arbitrarily fixed functions α(t), β(t), γ(t), va(t), la(t), a = 1, 2, 3 se-
parates in exactly one coordinate system. Properly specifying the functions Fµ0(ωa), µ = 0, 1, 2, 3
may yield additional possibilities for variable separation in the corresponding Pauli equation.
What we mean is that for some particular forms of the vector-potential A(t, x) (10), (11) there
might exist several coordinate systems (7) enabling to separate the corresponding Pauli equation.
Note that the quantum mechanical models possessing this property are called super-integrable
(see, e.g., [3]).

As an illustration, we consider the problem of separation of variables in the Pauli equation (1)
for a particle moving in the constant magnetic field. Namely, we fix the following form of the
vector-potential:

2e A =

 0 −c 0
c 0 0
0 0 0

 x, eA0 =
q

|x| −
c2

12
(
x2

1 + x2
2 − 2x2

3

)
, (12)

where q = const. As a direct check shows, this vector-potential satisfies the vacuum Maxwell
equations without currents

�A0 −
∂

∂t

(
∂A0

∂t
+ div A

)
= 0,

� A+ grad
(
∂A0

∂t
+ div A

)
= 0,

where � = ∂2/∂t2−∆ is the d’Alembert operator. Therefore, vector-potential (12) is the natural
generalization of the standard Coulomb potential, that is obtained from (12) under c→ 0.

The Pauli equation (1) with potential (12) separates in three coordinate systems

x = T (t)z,

where T is the time-dependent 3× 3 orthogonal matrix (8), with the Euler angles

α(t) = −ct, β = const, γ = const

and z is one of the following coordinate systems:

1) spherical (formula 5 from the list (9));

2) prolate spheroidal (formula 6 from the list (9));

3) conical (formula 11 from the list (9)).
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We propose a concept of Leonard duality in classical mechanics. It is shown that Leonard
duality leads to non-linear relations of the AW-type with respect to Poisson brackets.

1 Introduction

Let F , G, . . . be classical dynamical variables (DV) that can be represented as differentiable
functions of the canonical finite-dimensional variables qi, pi, i = 1, 2, . . . , N .

The Poisson brackets (PB) {F,G} are defined as [1]

{F,G} =
N∑
i=1

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
.

The PB satisfies fundamental properties [1]

(i) PB is a linear function in both F and G;

(ii) PB is anti-symmetric {F,G} = −{G,F};
(iii) PB satisfies the Leibnitz rule {F1F2, G} = F1{F2, G}+ F2{F1, G};
(iv) for any dynamical variables F,G,H PB satisfies the Jacobi identity

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0.

PB are important in classical mechanics because they determine time dynamics: if the DV H
is a Hamiltonian of the system, then for any DV G one has Poisson equation

Ġ = {G,H}.

In particular, the DV F is called an integral if it has zero PB with the Hamiltonian {F,H} = 0.
In this case F does not depend on t.

In many problems of the classical mechanics DV form elegant algebraic structures which are
closed with respect to PB.

The Poisson structures with non-linear PB were discussed in [9] and [6]. Sklyanin intro-
duced [9] the so-called quadratic Poisson algebra consisting of 4 DV S0, S1, S2, S3 such that
PB {Si, Sk} is expressed as a quadratic function of the generators Si. The Sklyanin algebra
appears quite naturally from theory of algebraic structures related to the Yang–Baxter equation
in mathematical physics. Sklyanin also proposed to study general non-linear Poisson struc-
tures. Assume that there exists N dynamical variables Fi, i = 1, 2, . . . , N such that PB of these
variables are closed in frames of the non-linear relations

{Fi, Fk} = Φik(F1, . . . , FN ), i, k = 1, 2, . . . , N,

where Φik(F1, . . . , FN ) are (nonlinear, in general) functions of N variables.
Several interesting examples of such non-linear Poisson structures are described in [6].
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In [4] another example of such non-linear Poisson algebra was proposed. This example is
connected with the property of “mutual integrability” and leads to the so-called classical AW-
relations, where abbreviation AW means “Askey–Wilson algebra”. Indeed, as was shown in [11]
the operator (i.e. non-commutative) version of AW-relations has a natural representation in
terms of generic Askey–Wilson polynomials, introduced in [2] (see also [7]).

In the present work we show that the property of “Leonard pairs” proposed in [5, 10] for
matrices can be naturally generalized to the case of classical mechanics. For details and proofs
of corresponding statements see [12].

Recall that two N ×N matrices X, Y form the Leonard pair if there exists invertible matri-
ces S and T such that the matrix S−1XS is diagonal whereas the matrix S−1Y S is irreducible
tri-diagonal and similarly, the matrix T−1Y T is diagonal whereas the matrix T−1XT is irre-
ducible tri-diagonal. We will call such the property “mutual tri-diagonality”. Leonard showed [8]
that the eigenvalue problem for a Leonard pair X, Y leads to the q-Racah polynomials (for de-
finition see, e.g. [7]).

Terwilliger showed [5, 10] that a Leonard pair X, Y satisfies a certain algebraic relations with
respect to commutators. In turn, the Terwilliger relations follow from to the so-called relations
of the AW-algebra studied in [11] and [4].

We say that X and Y form a classical Leonard pair (CLP) whenever X, Y are of the form

X = φ(x), Y = A1(x) exp(p) +A2(x) exp(−p) +A3(x)

and

Y = ψ(Q), X = B1(Q) exp(P ) +B2(Q) exp(−P ) +B3(Q),

where φ(x), Ai(x), ψ(x), Bi(x) are some functions such that at least A1 or A2 are non-zero, and
x, p, Q, P are some canonical variables such that

{x, p} = 1, {Q,P} = 1.

Note that the concept of the Leonard pair is closely related with the so-called “bispectrality
problem” [3]. We thus arrive also at the classical analogue of the bispectral problem.

Assuming that X, Y are algebraically independent we can show that the following algebraic
relations hold

{Z,X} = −1/2 FY (X,Y ) = −
(
Y

(
α1X

2 + α3X + α5

)
+

(
α2X

2 + α6X + α8

)
/2

)
and

{Y, Z} = −1/2 FX(X,Y ) = −
(
X

(
α1Y

2 + α2Y + α4

)
+

(
α3Y

2 + α6Y + α7

)
/2

)
.

This is classical version of the AW-algebra introduced in [4] (i.e. Askey–Wilson algebra).
We mention also a remarkable property of the classical AW-algebra [4]. Assume that X is

chosen as Hamiltonian: H = X. Then we have Ẏ = {Y,H} = −Z. Hence Ẏ 2 = F (H,Y ) + α9

quadratic in Y . Hence Y (t) is elementary function in the time t. This means that

Y (t) = G1(H) exp(ω(H)t) +G2(H) exp(−ω(H)t) +G3(H)

or

Y (t) = G1(H)t2 +G2(H)t+G3(H),

where Gi(H), ω(H) are some functions in the Hamiltonian H. Due to obvious symmetry between
X, Y , the same property holds if one chooses Y as Hamiltonian: H = Y . In this case X(t)
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behaves as elementary function in the time t. This property was called “mutual integrability”
in [4]. It can be considered classical analogues of the property of “mutual tri-diagonality” [10, 5]
in the “quantum” case.

It is interesting to note that when dynamics of the system is described by elliptic functions
it is possible to generalize AW-algebra obtaining algebra with cubic non-linearity. We announce
here the following result: Euler and Lagrange tops (which are known to be integrated in terms of
Jacobi elliptic funcitons) have the same symmetry Poisson algebra with cubic non-linearity [13].
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Sextic oscillator in D dimensions is considered as a typical quasi-exactly solvable (QES)
model. Usually, the QES N–plets of energies have to be computed using the nonlinear
and coupled Magyari’s algebraic equations. We propose and describe an alternative linear
method which works with power series (in 1/

√
D) in integer arithmetics.

1 Introduction

Sextic Hamiltonian in D dimensions

H = −�+ a |r |2 + b |r |4 + c |r |6, a = a(N)

enters many phenomenological and methodical considerations as a “next-to-solvable” model [1].
In fact, among all the real polynomial interactions, only the harmonic and sextic models can
generate an arbitrary N–plet of bound state wavefunctions in an elementary form. All the
similar models are often called quasi-exactly solvable (QES, cf. [2]).

Unfortunately, the close parallel between the sextic and harmonic oscillator is not too robust
and breaks down in practical applications [3]. For example, the Rayleigh–Schrödinger unper-
turbed propagator ceases to be diagonal in the sextic case [4]. Moreover, the key weakness of
any QES model lies in the nonlinearity of its secular equation which has the polynomial form
of degree N [5]. Non-numerical determination of the sextic energies is only feasible at N ≤ 4.
Otherwise, in a sharp contrast to harmonic case, the values of energies En are only available up
to some rounding errors.

In order to refresh the parallels we shall describe a new approach to the sextic QES bound
state problem. It is based on some surprising results of the symbolic manipulation experiments.
They were performed in MAPLE using the technique of Groebner bases. We revealed that the
QES energies become equidistant and proportional to integers in the limit of the large spatial
dimensions D →∞. This feature is presented in Sections 2 and 3.

In the second step of our analysis one discovers that the systematic evaluation of the Rayleigh–
Schrödinger corrections proves feasible in closed form. In spite of the non-diagonality of propa-
gators, a merely slightly modified form of construction can be used. It gives the energy formula

E(λ) = E(0) + λE(1) + λ2E(2) + · · ·+ λK E(K) +O
(
λK+1

)
, λ = 1/

√
D.

Its coefficients E(k) are obtainable without any rounding errors (cf. Sections 4 and 5 below).

2 An unusual solvable limit: Large dimensions D

All the sextic oscillator states are determined by the radial Schrödinger equation[
− d2

dr2
+
�(�+ 1)
r2

+ a r2 + b r4 + c r6
]
ψ(r) = E ψ(r). (1)
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It contains the dimension D and the angular momenta k = 0, 1, . . . in � = k + (D − 3)/2. The
elementary ansatz

ψ(r) =
∞∑
n=0

hn r
2n+�+1 exp

(
−1

2
β r2 − 1

4
γ r4

)
, c = γ2 > 0, b = 2βγ > 0 (2)

converts this ordinary differential equation into the linear algebraic system characterized by the
tridiagonal Hamiltonian matrix,

Q[N ]h = Eh, Q[N ] =


B0 C0

A1 B1 C1

. . . . . . . . .
AN−2 BN−2 CN−2

AN−1 BN−1

 , (3)

where the dimension is to be infinite, N →∞, and the matrix elements are elementary,

An = γ (4n+ 2�+ 1) + a− β2, Bn = Bn(E) = β (4n+ 2�+ 3),
Cn = −2(n+ 1) (2n+ 2�+ 3), n = 0, 1, . . . . (4)

The (quasi-)variational limit N → ∞ gives the numerically correct spectrum [6]. For the sake
of simplicity, let us now constrain our attention to the simplified model of Singh et al [5] cha-
racterized by the QES condition imposed upon the quadratic coupling a = a(N),

a(N) =
1

4γ2
b2 − γ (4N + 2�+ 1).

In this way one achieves the rigorous termination of the wavefunctions,

hN = hN+1 = hN+2 = · · · = 0. (5)

The latter assumption merely changes the lower diagonal in equations (3) and (4) to the shorter
formula An = 4γ (n−N). Exact energies become available only at the first few integers N ≤ 4.
Beyond N = 4, QES solutions remain numerical. Moreover, the intrinsic asymmetry of our
Hamiltonian (3) causes a loss of precision which grows quickly with the degree N [6].

In such a setting we have noticed, purely empirically, that the solutions are getting simpler
when the spatial dimensions grow, D % 1. In the leading-order approximation, the correspon-
ding matrix Schrödinger equation becomes diagonally dominated,

E − βD 2D
4(N − 1)γ E − βD 4D

. . . . . . . . .
6γ E − βD 2(N − 1)D

4γ E − βD




h0

h1
...

hN−2

hN−1

 = 0. (6)

This enables us to evaluate the fully degenerate dominant eigenvalue,

E = βD − 2
√

2γD z (7)

where z is a constant.
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3 The removal of degeneracy in sub-dominant approximation

Once we switch to the new energy variable z, we may pre-multiply equation (6) by a diagonal
and regular matrix with elements ρj , where ρ =

√
D/(2γ). This leads to the new, non-diagonal

matrix Schrödinger equation. It determines the leading-order components of the renormalized
Taylor coefficients pj = [D/(2γ)]j/2hj and has the following transparent form,

0 1
(N − 1) 0 2

. . . . . . . . .
2 0 (N − 1)

1 0




p0

p1
...

pN−2

pN−1

 = z ·


p0

p1
...

pN−2

pN−1

 . (8)

In spite of the manifest asymmetry of this equation, all its eigenvalues remain strictly real. We
computed these eigenvalues by symbolic manipulations in integer arithmetics and discovered
that the underlying nonlinear secular equation is solvable exactly and completely. The N–plets
of its energy roots proved nondegenerate, equidistant and extremely elementary,

(z1, z2, z3, . . . , zN−1, zN ) = (−N + 1,−N + 3,−N + 5, . . . , N − 3, N − 1) . (9)

This result is valid at an arbitrary finite matrix size N .
It is quite elementary to verify that also the respective left and right eigenvectors remain

real. Up to their norm, all of them can be represented in terms of integers. Their components
may be arranged in the rows and columns of certain square matrices,

P (0) = 1, P (1) =
1√
2

(
1 1
1 −1

)
,

P (2) =
1√
4

 1 1 1
2 0 −2
1 −1 1

 , P (3) =
1√
8


1 1 1 1
3 1 −1 −3
3 −1 −1 3
1 −1 1 −1

 ,

P (4) =
1√
16


1 1 1 1 1
4 2 0 −2 −4
6 0 −2 0 6
4 −2 0 2 −4
1 −1 1 −1 1


etc. These matrices P = P (N − 1) are all asymmetric but idempotent, P 2 = I.

We may summarize that in the limit D →∞, the QES sextic model may be factorized easily.
After a suitable normalization, all the components of the eigenvectors are integers.

4 An adapted Rayleigh–Schrödinger perturbation recipe

At the finite values of D and starting directly from the second-order precision of the preceding
section, the routine perturbation theory becomes applicable since the unperturbed Hamiltonian
remains diagonal and all its spectrum is safely non-degenerate.

At any D % 0 the Schrödinger equation (3) is an eigenvalue problem with the perturbed
Hamiltonian of the two-term form,

H(λ) = H(0) + λH(1) + λ2H(2), λ = 1/
√
D.
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Both the perturbations are one-diagonal matrices which depend on the value of the angular
momentum k,(

H(1)
)
nn

=
β√
2γ

(2n+ k), n = 0, 1, . . . , N − 1,(
H(2)

)
nn+1

= −(n+ 1)(2n+ 2k), n = 0, 1, . . . , N − 2.

We may re-write our Schrödinger equation (3) in the textbook perturbation-series representation
at any N ,(

H(0) + λH(1) + λ2H(2)
)
·
(
ψ(0) + λψ(1) + · · ·+ λKψ(K) +O

(
λK+1

))
=

(
ψ(0) + · · ·+ λKψ(K) +O

(
λK+1

))
·
(
ε(0) + · · ·+ λKε(K) +O

(
λK+1

))
. (10)

Let us again concatenate the (lower-case) zero-order vectors p = p(0) ≡ ψ(0) into an N by N
matrix P = P (0), with all the eigenvalues arranged also in a diagonal matrix ε(0). In this way
the zero-order equation H(0)ψ(0) = ψ(0)ε(0) is satisfied identically. Indeed, in our compactified
notation, it reads Pε(0)PP = Pε(0) and we know that P 2 = I.

With the factorized H(0) = Pε(0)P , we shall use the same convention in all orders and
concatenate the vectors ψ

(k)
j , j = 1, 2, . . . , N in the square matrix Ψ(k). In the first order of

perturbation analysis this replaces the O(λ) part of equation (10) by the matrix relation

ε(1) + P Ψ(1)ε(0) − ε(0)P Ψ(1) = P H(1) P. (11)

In the second order we get

ε(2) + P Ψ(2)ε(0) − ε(0)P Ψ(2) = P H(2) P + P H(1) Ψ(1) − P Ψ(1)ε(1) (12)

etc. The available expressions occur on the right-hand side of these equations while the unknown
quantities stand to the left. All the higher-order formulae have the same structure.

We may summarize that the diagonal part of equations (11) or (12) determines the energy
corrections ε(1) and ε(2), respectively. Non-diagonal components of these matrix relations are to
be understood as a definition of the eigenvectors.

5 Merits of the method: an N = 2 illustration

One has to move up to the higher-order level for the elimination of the normalization ambi-
guities. This has been multiply clarified in the literature on perturbation theory [7]. Still, we
should emphasize a user-friendliness of this normalization freedom within the framework of the
present formalism. For illustration, let us consider just the s–wave problem in the N = 2 case.
Immediately, our first-order formulae give the two energy corrections which are both equal to
each other,

ε
(1)
11 = ε

(1)
22 = β/

√
2γ. (13)

One discovers that the O(λ) level of precision provides just an incomplete information about
the norms of the first-order wave functions. This is the well known normalization freedom
manifesting itself in the present setting. On the O(λ) level of precision only two constraints
Ψ(1)

11 − Ψ(1)
21 = −β/

√
2γ and Ψ(1)

12 + Ψ(1)
22 = β/

√
2γ are imposed upon the wavefunctions. Their

definition must be completed in the subsequent order.
In any higher order computation, the use of the computerized symbolic manipulations is

strongly recommended. Their implementation is trivial. The algorithm can be written in integer
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mathematics and generates, therefore, the perturbation series without any errors. This is our
most important conclusion. One generalizes immediately the above leading-order results (7),
(9) and (13) to the compact energy series for our particular sextic k = N − 2 = 0 illustration,

E1,2 =
β

λ2
± 2

√
2γ
λ

+ 2β ± β2

√
2γ

λ+ 0 · λ2 ∓ β4

8γ
√

2γ
λ3 + 0 · λ4 +O

(
λ5

)
. (14)

One can observe the (complete) leading-order degeneracy of Section 2 as well as its immediate
next-order removal (9) as discussed in Section 3. It is also amusing to notice the above, hand-
evaluated and quite unexpected, degeneracy of the subsequent O(1) correction.

One can notice the existence of certain identically vanishing corrections here. In fact, their
rigorous evaluation would not be possible within the standard framework of perturbation theory
where the summations over the intermediate states must be computed in finite precision. Only
within the present formalism which is able to work in integer arithmetics, the unusual feasibility
of proving the precise cancellation of the series of corrections can be achieved. This is one of the
less expected though most important merits of our present methodical proposal and construction.
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