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“Leonard Pairs” in Classical Mechanics
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We propose a concept of Leonard duality in classical mechanics. It is shown that Leonard
duality leads to non-linear relations of the AW-type with respect to Poisson brackets.

1 Introduction

Let F , G, . . . be classical dynamical variables (DV) that can be represented as differentiable
functions of the canonical finite-dimensional variables qi, pi, i = 1, 2, . . . , N .

The Poisson brackets (PB) {F, G} are defined as [1]

{F, G} =
N∑

i=1

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
.

The PB satisfies fundamental properties [1]

(i) PB is a linear function in both F and G;

(ii) PB is anti-symmetric {F, G} = −{G, F};
(iii) PB satisfies the Leibnitz rule {F1F2, G} = F1{F2, G} + F2{F1, G};
(iv) for any dynamical variables F, G, H PB satisfies the Jacobi identity

{F, {G, H}} + {G, {H, F}} + {H, {F, G}} = 0.

PB are important in classical mechanics because they determine time dynamics: if the DV H
is a Hamiltonian of the system, then for any DV G one has Poisson equation

Ġ = {G, H}.

In particular, the DV F is called an integral if it has zero PB with the Hamiltonian {F, H} = 0.
In this case F does not depend on t.

In many problems of the classical mechanics DV form elegant algebraic structures which are
closed with respect to PB.

The Poisson structures with non-linear PB were discussed in [9] and [6]. Sklyanin intro-
duced [9] the so-called quadratic Poisson algebra consisting of 4 DV S0, S1, S2, S3 such that
PB {Si, Sk} is expressed as a quadratic function of the generators Si. The Sklyanin algebra
appears quite naturally from theory of algebraic structures related to the Yang–Baxter equation
in mathematical physics. Sklyanin also proposed to study general non-linear Poisson struc-
tures. Assume that there exists N dynamical variables Fi, i = 1, 2, . . . , N such that PB of these
variables are closed in frames of the non-linear relations

{Fi, Fk} = Φik(F1, . . . , FN ), i, k = 1, 2, . . . , N,

where Φik(F1, . . . , FN ) are (nonlinear, in general) functions of N variables.
Several interesting examples of such non-linear Poisson structures are described in [6].
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In [4] another example of such non-linear Poisson algebra was proposed. This example is
connected with the property of “mutual integrability” and leads to the so-called classical AW-
relations, where abbreviation AW means “Askey–Wilson algebra”. Indeed, as was shown in [11]
the operator (i.e. non-commutative) version of AW-relations has a natural representation in
terms of generic Askey–Wilson polynomials, introduced in [2] (see also [7]).

In the present work we show that the property of “Leonard pairs” proposed in [5, 10] for
matrices can be naturally generalized to the case of classical mechanics. For details and proofs
of corresponding statements see [12].

Recall that two N ×N matrices X, Y form the Leonard pair if there exists invertible matri-
ces S and T such that the matrix S−1XS is diagonal whereas the matrix S−1Y S is irreducible
tri-diagonal and similarly, the matrix T−1Y T is diagonal whereas the matrix T−1XT is irre-
ducible tri-diagonal. We will call such the property “mutual tri-diagonality”. Leonard showed [8]
that the eigenvalue problem for a Leonard pair X, Y leads to the q-Racah polynomials (for de-
finition see, e.g. [7]).

Terwilliger showed [5, 10] that a Leonard pair X, Y satisfies a certain algebraic relations with
respect to commutators. In turn, the Terwilliger relations follow from to the so-called relations
of the AW-algebra studied in [11] and [4].

We say that X and Y form a classical Leonard pair (CLP) whenever X, Y are of the form

X = φ(x), Y = A1(x) exp(p) + A2(x) exp(−p) + A3(x)

and

Y = ψ(Q), X = B1(Q) exp(P ) + B2(Q) exp(−P ) + B3(Q),

where φ(x), Ai(x), ψ(x), Bi(x) are some functions such that at least A1 or A2 are non-zero, and
x, p, Q, P are some canonical variables such that

{x, p} = 1, {Q, P} = 1.

Note that the concept of the Leonard pair is closely related with the so-called “bispectrality
problem” [3]. We thus arrive also at the classical analogue of the bispectral problem.

Assuming that X, Y are algebraically independent we can show that the following algebraic
relations hold

{Z, X} = −1/2 FY (X, Y ) = − (
Y

(
α1X

2 + α3X + α5

)
+

(
α2X

2 + α6X + α8

)
/2

)

and

{Y, Z} = −1/2 FX(X, Y ) = − (
X

(
α1Y

2 + α2Y + α4

)
+

(
α3Y

2 + α6Y + α7

)
/2

)
.

This is classical version of the AW-algebra introduced in [4] (i.e. Askey–Wilson algebra).
We mention also a remarkable property of the classical AW-algebra [4]. Assume that X is

chosen as Hamiltonian: H = X. Then we have Ẏ = {Y, H} = −Z. Hence Ẏ 2 = F (H, Y ) + α9

quadratic in Y . Hence Y (t) is elementary function in the time t. This means that

Y (t) = G1(H) exp(ω(H)t) + G2(H) exp(−ω(H)t) + G3(H)

or

Y (t) = G1(H)t2 + G2(H)t + G3(H),

where Gi(H), ω(H) are some functions in the Hamiltonian H. Due to obvious symmetry between
X, Y , the same property holds if one chooses Y as Hamiltonian: H = Y . In this case X(t)
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behaves as elementary function in the time t. This property was called “mutual integrability”
in [4]. It can be considered classical analogues of the property of “mutual tri-diagonality” [10, 5]
in the “quantum” case.

It is interesting to note that when dynamics of the system is described by elliptic functions
it is possible to generalize AW-algebra obtaining algebra with cubic non-linearity. We announce
here the following result: Euler and Lagrange tops (which are known to be integrated in terms of
Jacobi elliptic funcitons) have the same symmetry Poisson algebra with cubic non-linearity [13].
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