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R-Matrix Approach to the Krall–Sheffer Problem
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The complete set of commuting invariants for integrable systems arising in the framework
of the Krall–Sheffer problem is derived using the classical R-matrix approach, based on the
loop algebra s̃l(2)R. The separating coordinates are also deduced from this framework.

1 Introduction

Krall and Sheffer studied the problem of finding all polynomial eigenfunctions of second order
linear differential operators in two variables having polynomial coefficients of degree equal to
the order of derivative under certain further restrictions relating to its symmetrizability and the
orthogonality of its eigenfunctions (for details see [2]). They classified all possible normal forms
of the operators satisfying the required properties. It was shown in [3] that all the operators in
the Krall–Sheffer list are reducible by gauge transformations to the form of a Laplace–Beltrami
operator on a space of constant curvature plus some potential, the magnetic field being absent.
Moreover, they all are related to two-dimensional superintegrable systems on spaces of constant
curvature [2].

In this paper we show how to construct a complete set of commuting invariants to the
integrable systems arising in the Krall–Sheffer framework using the classical R-matrix approach,
based on the loop algebra s̃l(2)R. We give both the quantum and classical formulations in
terms of Lax matrices depending on a loop parameter. The main construction is based on the
well-known procedure of symmetry reduction from a free system in a higher dimension space
(in particular, quadrics in R

6 or C
6). Classically this corresponds to reduction of geodesic flow,

while quantum mechanically it involves reduction of the Laplacian. The reduction process leaves
a residue of the original system, providing a complete set of commuting integrals.

2 General construction scheme

We begin with a phase space M of dim M = 12, with canonical variables (xi, yi)i=1,...,6 which
form the components of a pair (X, Y ) of (either real or complex) column vector.

From these we form a Lax matrix N(λ), depending on a spectral parameter λ ∈ C as follows:

N(λ) :=
1
2

(
Y T ,−XT J

)
(λ − A)−1(X, JY ) =

n∑
i=1

mi∑
a=1

Na
i

(λ − αi)a
,
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where A, J are fixed 6 × 6 matrices with A having either n = 1, 2 or 3 distinct eigenvalues
{αi}i=1,...,n and minimal polynomial

n∏
i=1

(λ − αi)mi

and J is a symmetric real matrix with antidiagonal blocks of the form


0 0 . . . 1
0 . . . 1 0

. . .
1 . . .




for each Jordan block of A.
The dynamics is generated by Hamiltonians chosen from the algebra of spectral invariants

of N(λ). Classically, these Poisson commute and hence generate isospectral flows satisfying
a Lax equation:

dN

dt
= [B, N ] .

It is easily verified that N(λ) satisfies the standard rational R-matrix Poisson bracket rela-
tions:

{N(λ) ⊗ N(µ)} = [r(λ), N(λ) ⊗ I + I ⊗ N(µ)],

where both sides are viewed, for fixed λ �= µ as elements of End
(
C

6 ⊗ C
6
)

and

r(λ) =
P1,2

(λ − µ)
, P1,2(u ⊗ v) = v ⊗ u.

In the cases considered below, we only study Hamiltonians that are O(6, J) invariant and
restrict to the quadric defined by

XT JX = 1.

Quotienting by the stabilizer GA ⊂ O(6, J) of A we reduce to a 2-dimensional configuration
space, however the reduced system is no longer free.

In this case the algebra of spectral invariants is generated by the coefficients of:

−1
2

Tr N(λ)2 =
n∑

i=1

2mi∑
d=1

Hi

(λ − αi)d

with 2mi ≤ ni. The numerators Hi of this partial fraction expansion all Poisson commute and
generate the algebra of spectral invariants. They are not all independent, however, since:

n∑
i=1

Hid = 0

and Hid with mi < d ≤ 2mi are Casimir invariants.
The connection between configuration space coordinates in 6-dimensional space and the sepa-

rating coordinates λ1, λ2 in the reduced 2-dimensional space is given by

XT J(λ − A)−1X =
(λ − λ1)(λ − λ2)

a(λ)
,

where a(λ) is the minimal polynomial of the matrix A.
The quantum version of this approach is simply obtained through canonical quantization

with conjugate (momentum) variables yj replaced by the partial derivatives i ∂/∂xj . The relation
between the quantum integrals and the ones in the corresponding Krall–Sheffer cases is obtained
applying a suitable gauge transformation.
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3 Case 1. Sphere. Neuman–Rosochatius system

In the case of a sphere in R
6, the matrices A and J are just:

A =




α 0 0 0 0 0
0 α 0 0 0 0
0 0 β 0 0 0
0 0 0 β 0 0
0 0 0 0 γ 0
0 0 0 0 0 γ




, J = id

with α �= β �= γ. The symmetry algebra gA corresponding to the stabilizer GA ⊂ O(6, R) is
a maximal torus with generators

{x1y2 − x2y1, x3y4 − x4y3, x5y6 − x6y5}

and the Lax matrix has the form:

N(λ) =
N1

(λ − α)
+

N2

(λ − β)
+

N3

(λ − γ)
=

(
h(λ) f(λ)
e(λ) −h(λ)

)
,

where the Ni are elements of sl(2)

N1 =
1
2

(
x1y1 + x2y2 y2

1 + y2
2

−x2
1 − x2

2 −x1y1 − x2y2

)
,

N2 =
1
2

(
x3y3 + x4y4 y2

3 + y2
4

−x2
3 − x2

4 −x3y3 − x4y4

)
,

N3 =
1
2

(
x5y5 + x6y6 y2

5 + y2
6

−x2
5 − x2

6 −x5y5 − x6y6

)
.

The invariants are the coefficients of:

−1
2

Tr N(λ)2 =
H1

(λ − α)
+

H2

(λ − β)
+

H3

(λ − γ)
+

µ2
1

(λ − α)2
+

µ2
2

(λ − β)2
+

µ2
3

(λ − γ)2
.

Here µ1, µ2 and µ3 are constants defining the restriction to level sets of invariants of motion
under the reduction procedure (the components of the moment map generating the torus action),
namely:

µ1 = x1y2 − x2y1, µ2 = x3y4 − x4y3, µ3 = x5y6 − x6y5.

Integrals H1, H2 and H3 are not all independent, since their sum is equal to zero. The
Hamiltonian of the problem is given by the linear combination:

H = αH1 + βH2 + γH3.

The constraint to a sphere S
5 ⊂ R

6 is given by XT JX = 1:

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 = 1.

The reduced ambient coordinates are given by the radial distance in three planes (X1, X2),
(X3, X4) and (X5, X6):

s2
1 = x2

1 + x2
2, s2

2 = x2
3 + x2

4, s2
3 = x2

5 + x2
6.
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The reduction of the constraint gives

s2
1 + s2

2 + s2
3 = 1.

The reduced Hamiltonian is:

H =
1
2

(
p2
1 + p2

2 + p2
3

)
+

µ2
1

s2
1

+
µ2

2

s2
2

+
µ2

3

s2
3

.

which is the kinetic energy on the sphere in R
3 plus Rosochatius potential. Here (p1, p2, p3) are

canonical conjugate to (s1, s2, s3).
The reduced separating coordinates (λ1, λ2) in this case are sphero-conical coordinates related

to (s1, s2, s3) by:

s2
1 =

(α − λ1)(α − λ2)
(α − β)(α − γ)

, s2
2 =

(β − λ1)(β − λ2)
(β − α)(β − γ)

, s2
3 =

(γ − λ1)(γ − λ2)
(γ − α)(γ − β)

.

In terms of the reduced ambient space coordinates the integrals H1, H2 and H3 are:

H1 = −1
2

L2
13 + µ2

3s
2
1/s2

3 + µ2
1s

2
3/s2

1

α − γ
− 1

2
L2

12 + µ2
1s

2
2/s2

1 + µ2
2s

2
1/s2

2

α − β
,

H2 = −1
2

L2
23 + µ2

3s
2
2/s2

3 + µ2
2s

2
3/s2

2

β − γ
+

1
2

L2
12 + µ2

1s
2
2/s2

1 + µ2
2s

2
1/s2

2

α − β
,

H3 =
1
2

L2
23 + µ2

3s
2
2/s2

3 + µ2
2s

2
3/s2

2

β − γ
+

1
2

L2
13 + µ2

3s
2
1/s2

3 + µ2
1s

2
3/s2

1

α − γ
,

where Lij = s1p2 − s2p1. The quantum versions of these integrals are denoted by (Ĥ1, Ĥ2, Ĥ3)
and are obtained by replacing the matrix elements of N(λ) by the corresponding differential
operators. This leads to replacing Lij by their quantum version:

L̂ij =
√−1(si∂/∂sj − sj∂/∂si).

Note that whereas the Hamiltonian H is independent of the parameters (α, β, γ), which only
serve to determine the separating coordinate system, the invariants H1, H2 individually do
depend on those. Therefore, different choices for these parameters give distinct integrals that
commute with H, but do not commute with each other. This provides an explanation for the
superintegrability of this system.

To relate the invariants to the ones obtained in [2] for the corresponding Krall–Sheffer case
we apply the gauge transformation consisting of conjugation by the function:

Φ = xd1yd2(1 − x − y)d3 ,

where

d1 =
1
2
(d00 + 1/2), d2 =

1
2
(e00 + 1/2), d3 =

1
2
(1/2 − d00 − e00 − B)

and d00, e00, B are the parameters appearing in Krall–Sheffer setting (see [2]).
The following are the relations between the integrals constructed in these two approaches:

H̃1 = 4
α1 − γ1

β1 − γ1
Îx + 4Îy − 4L̂ − c0, H̃2 = 4

γ1 − β1

γ1 − α1
Îy + 4Îx − 4L̂ − c1,

where H̃i = ΦĤΦ−1 and L̂ is the Krall–Sheffer operator corresponding to case I, c0 and c1

depend on α, β, γ, d00, e00, B.
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4 Case 2. Hyperboloid

For the case of a hyperboloid embedded in R
6, matrices (A, J) may be taken as

A =




α 1 0 0 0 0
0 α 1 0 0 0
0 0 α 1 0 0
0 0 0 α 0 0
0 0 0 0 β 0
0 0 0 0 0 β




, J =




0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




.

Note that J has an antidiagonal block corresponding to each Jordan block of A and a diagonal
block corresponding to the diagonal part of A.

The symmetry algebra gA again has three generators

{x1y1 + x2y2 − x3y3 − x4y4, x2y1 − x4y3, x5y6 − x6y5}

but the Lax matrix now has a second order pole at λ = α:

N(λ) =
N1

(λ − α)
+

N2

(λ − α)2
+

N3

(λ − β)
,

where

N1 =
1
2

(
x1y1 + x2y2 + x3y3 + x4y4 2y1y4 + 2y2y3

−2x1x4 − 2x2x3 −x1y1 − x2y21x3y3 − x4y4

)
,

N2 =
1
2

( −x4y3 + x2y1 −2y3y1

2x2x4 −x2y1 + x4y3

)
,

N3 =
1
2

(
x5y5 + x6y6 y2

5 + y2
6

−x2
5 − x2

6 −x5y5 − x6y6

)
.

Here (N1, N2) should be viewed as an element of the jet extension sl(2)(1)∗ while N3 ∈ sl(2).
The invariants again give us only two independent H1 and H2

−1
2

Tr N(λ)2 =
H1

(λ − α)
+

H2

(λ − α)2
− µ1µ2

(λ − α)3
+

µ2
2

2(λ − α)4
+

H3

(λ − β)
− µ2

3

2(λ − β)2
,

where

H1 + H3 = 0.

The Hamiltonian is now defined by:

H = (α − β)H1 + H2 − 1
2
µ2

3.

The reduced ambient space coordinates (s1, s2, s3) are now defined by:

s2
1 =

(x1x4 + x2x3)2

2x2x4
, s2

2 = 2x2x4, s2
3 = x2

5 + x2
6.

The constraint to the quadric XT JX = 1 reduces to define a hyperboloid in R
3

2s1s2 + s2
3 = 1.
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In these coordinates the integrals H1 and H2 are

H1 =
(s1p3 − s3p2)(s3p1 − s2p3) − µ2

3s1s2/s2
3 + µ1µ2s

2
3/s2

2 − µ2
2s1s

2
3/s2

2

α − β

− (s3p1 − s2p3)2 + µ2
3s

2
2/s2

3 − µ2
2s

2
3/s2

2

2(α − β)2
,

H2 =
1
2
(s1p1 − s2p2)2 − 2

µ2
2s

2
1

s2
2

+ 2
µ1µ2s1

s2
+

(s3p1 − s2p3)2 + µ2
3s

2
2/s2

3 − µ2
2s

2
3/s2

2

2(α − β)
.

The quantized operators Ĥ1, Ĥ2, Ĥ3 are obtained as before by replacing all conjugate variables
by corresponding differential operators. And again, whereas Hamiltonian H does depend on
the parameters (α, β) the integrals H1, H2 do, thereby again providing an explanation for the
superintegrability in this case.

5 Case 3. Pseudoeuclidean plane

Matrix A in this case has only one degenerate eigenvalue:

A =




α 1 0 0 0 0
0 α 1 0 0 0
0 0 α 0 0 0
0 0 0 α 1 0
0 0 0 0 α 1
0 0 0 0 0 α




, J =




0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0




,

J is antidiagonal.
The symmetry algebra gA is generated by

{−x1y4 − x2y5 − x3y6 + x4y1 + x5y2 + x6y3, x6y1 − x3y4, −x2y4 − x3y5 + x5y1 + x6y2}

and the Lax matrix is of the form:

N(λ) =
N1

(λ − α)
+

N2

(λ − α)2
+

N3

(λ − α)3
,

where

N1 =
1
2




x1y1 + x2y2 + x3y3

+ x4y4 + x5y5 + x6y6
2y1y3 + y2

2 + 2y4y6 + y2
5

−2x1x3 − x2
2 − 2x4x6 − x2

5
−x1y1 − x2y2 − x3y3

− x4y4 − x5y5 − x6y6


 ,

N2 =
1
2

( −x3y2 − x2y1 − x6y5 − x5y4 −2y2y1 − 2y4y5

2x2x3 + 2x5x6 x3y2 + x2y1 + x6y5 + x5y4

)
,

N3 =
1
2

(
x3y1 + x6y4 y2

1 + y2
4

−x2
3 − x2

5 −x3y1 − x6y4

)
.

The trace formula again gives only two independent integrals H1 and H2

−1
2

Tr N(λ)2 =
H1

(λ − α)2
+

H2

(λ − α)3
− 2µ1µ2 − µ2

3

2(λ − α)4
+

µ2µ3

2(λ − α)5
− µ2

2

2(λ − α)6
.
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The Hamiltonian of the problem is:

H = −2p1p3 − p2
2 + 2γ1γ3 + γ2

2 ,

γ1 =
µ1

s1
− µ2s2

s2
1

− µ3s
2
2

s2
1

− µ3s3

s2
1

, γ2 =
µ2

s1
− µ3s2

s2
1

, γ3 =
µ3

s1
.

In this case the parameter α may be absorbed in the definition of λ and therefore no parameter
dependence appears in the integrals H1 and H2:

H1 = (p2s3 − s2p1)(s1p1 − s3p3) − 2s2s3

(
p2
2 + 2p1p3

) − µ1µ2

s2
1

− 3µ3µ2s3

s3
1

− µ3µ2s1

s2
2

− 4s3µ3µ1(1 − 2s1s2)
s4
1

− µ3s
2
2

s2
1

− (µ2
2 + µ3µ1)s2

s3
1

,

H2 =
(
p2
2 + 2p1p3

) (
s2
2 + 2s1s3

)
+

2µ2
3s1

s2
2

+
4µ2

3s
2
3

s2
1

+
4µ3µ2s2

s3
1

− µ2
2 − 2µ3µ1

s2
1

+
µ2

3

(
1 − 2s2

2

)
s4
1

.

Reduced coordinates in R
3

s2
1 = −(x1x3 + x4x6)2

x2
3 + x2

6

, s2
2 = x2

2 + x2
5, s2

3 = − (
x2

3 + x2
6

)
.

The constraint to the quadric XT JX = 1 reduces to 2s1s3 + s2
2 = 1.

6 Conclusions

The approach based on Lax matrices satisfying the rational R-matrix structure gives a systematic
way to derive the Hamiltonians and commuting invariants for these three cases corresponding
to Krall–Sheffer operators on quadrics. This also provides a prescription for the separating co-
ordinates, both in the classical and quantum cases. The presence of the additional parameters
(α, β, γ) in the Case I, and (α, β) in the case II provides an explanation for their superintegra-
bility.

A similar analysis may be made for the cases of Euclidean space arised in the Krall–Sheffer
problem, they may be obtained as limiting cases of the above, providing an R-matrix approach to
the remaining Krall–Sheffer operators. The details for all these cases will be provided elsewhere.
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