
Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 760–764

Asynchronous Development

of the Growing-and-Decaying Mode

Masayoshi TAJIRI

Department of Mathematical Sciences, Graduate School of Engineering,
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
E-mail: tajiri@ms.osakafu-u.ac.jp

The solution to the Davey–Stewartson I equation is analyzed to show that the resonance
between periodic soliton and growing-and-decaying mode exists. Under the quasi-resonant
condition, the mode develops first in the one side region of the periodic soliton. The periodic
soliton is accelerated as a result of the growth and decay of the mode existed in the region
and the wave field shifts to the intermediate state, where only the periodic soliton exists.
This intermediate state persists over a comparatively long time interval. After sufficiently
long time, the mode starts to grow in the opposite side of the periodic soliton.

1 Introduction

A uniform train of weakly nonlinear deepwater waves is unstable to long wave modulational
perturbations of the envelope, which is known as the Benjamin–Feir instability [1]. It is well
known that the long time evolution of the unstable wave train is described by the nonlinear
Schrödinger (NLS) equation [2, 3, 4]. The extension to the two-dimensional case was examined
by Zakharov, Benney and Roskes and Davey and Stewartson [2, 5, 6]. The long time evolution
of a two-dimensional wave-packet is described by the Davey–Stewartson (DS) equation [6]

iut + puxx + uyy + r|u|2u − 2uv = 0,

vxx − pvyy − r(|u|2)xx = 0, (1)

where p = ±1, r is constant. Equation (1) with p = 1 and p = −1 are called the DS I and DS II
equations, respectively. The time evolution of the solution of the 1D-NLS equation with periodic
boundary condition and with Benjamin–Feir unstable initial condition was studied numerically
by Lake et al. [7]. They found that a modulated unstable wave train achieves a state of maximum
modulation and returns to an unmodulated initial state. The nonlinear evolution of an unstable
mode is described by the growing-and-decaying mode soluiton to the 1D-NLS equation [8].

The DS I equation has also the growing-and-decaying mode solution, which is given by [9]

u = u0e
iζ g

f
, v = − 2 (ln f)xx (2)

with

f = 1 − e−Ωt+σ cos η +
M

4
e−2Ωt+2σ,

g = 1 − e−Ωt+σ+iφ cos η +
M

4
e−2Ωt+2σ+2iφ,

where

ζ = kx + ly − ωt, ω = k2 + l2 − ru2
0, η = βx + δy − γt + θ,

Ω = (β2 + δ2) cot
φ

2
, γ = 2kβ + 2lδ, M =

2
1 + cos φ

> 1, sin2 φ

2
=

δ2 − β2

2ru2
0

,
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σ and θ are arbitrary phase constants. The existence condition for the nonsingular solution is
given by M > 1 for real φ, which is satisfied for

0 <
(
δ2 − β2

)
< 2ru2

0,

which is in agreement with the Benjamin–Feir unstable condition. This solution grows ex-
ponentially at initial stage, and reaches a state of maximum modulation and after reaching
maximum modulation, demodulates and finally returns to an unmodulated initial state. There-
fore, the solution (2) describes the nonlinear evolution of monochromatic perturbation with the
Benjamin–Feir unstable condition in two-dimension.

The interactions between two-periodic solitons, between periodic soliton and line soliton
and between periodic soliton and algebraic soliton to the DS equation have been investigated
in detail [10, 11, 12]. It was shown that the periodic soliton resonances exist in each case.
Pelinovsky pointed out the existence of the resonance between line soliton and growing-and-
decaying mode [10]. The growing-and-decaying mode exists substantially only a finite period
in time, but the resonance between line soliton and growing-and-decaying mode brings about
the infinite phase shift to the line soliton. If the growing-and-decaying mode exists within only
a finite time in reality, the mechanism bringing about the infinite phase shift to the line soliton
is puzzle. Recently, we have investigated the time evolution of the quasi-resonant interaction
between line soliton and growing-and-decaying mode and found the existence of an asynchronous
development of the growing-and-decaying mode [13].

In this paper, it is shown that under the quasi-resonant condition for the interaction between
periodic soliton and growing-and-decaying mode, the asynchronous development of the growing-
and-decaying mode also exists.

2 Quasi-resonance between periodic soliton
and growing-and-decaying mode

The interaction between periodic soliton and growing-and-decaying mode to the DS I equa-
tion is studied in this section. The solution describing the interaction can be obtained by the
N -soliton solution of Satsuma and Ablowitz [14]. The solution consisting of a periodic soliton
and growing-and-decaying mode is given by

u = u0e
iζ g

f
, v = − 2 (ln f)xx (3)

with

f = 1 − 1
L1L2

eξ1 cos η1 − eξ2 cos η2 +
M1

4L2
1L

2
2

e2ξ1 +
M2

4
e2ξ2

− 1
4
eξ1+ξ2

{
M1

L1L2
eξ1 cos(η2 + Ψ1 − Ψ2) + M2e

ξ2 cos(η1 + Ψ1 + Ψ2)
}

+
1

2L1L2
eξ1+ξ2

{
L1 cos(η1 + η2 + Ψ1) + L2 cos(η1 − η2 + Ψ2)

}
+

M1M2

16
e2(ξ1+ξ2), (4)

g = 1 − 1
L1L2

eξ1+iφ1r cos(η1 + iφ1i) − eξ2+iφ2 cos η2 +
M1

4L2
1L

2
2

e2ξ1+2iφ1r +
M2

4
e2ξ2+2iφ2

− 1
4
eξ1+ξ2+i(φ1r+φ2)

{
M1

L1L2
eξ1+iφ1r cos(η2 + Ψ1 − Ψ2)

+ M2e
ξ2+iφ2 cos(η1 + iφ1i + Ψ1 + Ψ2)

}
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+
1

2L1L2
eξ1+ξ2+i(φ1r+φ2)

{
L1 cos(η1 + η2 + iφ1i + Ψ1)

+ L2 cos(η1 − η2 + iφ1i + Ψ2)
}

+
M1M2

16
e2(ξ1+ξ2)+2i(φ1r+φ2), (5)

where

ξ1 = αx + κy − Ω1t + σ1, ξ2 = −Ω2t + σ2,

η1 = β1x + δ1y − γ1t + θ1, η2 = β2x + δ2y − γ2t + θ2,

sin2 φ1

2
=

(α + iβ1)2 − (κ + iδ1)2

2ru2
0

, sin2 φ2

2
=

δ2
2 − β2

2

2ru2
0

,

Ω1 = 2kα + 2lκ −�
{{

(α + iβ1)2 + (κ + iδ1)2
}

cot
φ1

2

}
,

γ1 = 2kβ1 + 2lδ1 −�
{{

(α + iβ1)2 + (κ + iδ1)2
}

cot
φ1

2

}
,

Ω2 = (β2
2 + δ2

2) cot
φ2

2
, γ2 = 2kβ2 + 2lδ2,

M1 =
2ru2

0| sin φ1

2 |2 cosh φ1i − (α2 + β2
1) + (κ2 + δ2

1)

2ru2
0| sin φ1

2 |2 cos φ1r − (α2 + β2
1) + (κ2 + δ2

1)
, M2 =

2
1 + cos φ1

,

L1e
iΨ1 =

2ru2
0 sin φ1

2 sin φ2

2 cos φ1−φ2

2 − i{(α + iβ1)β2 − (κ + iδ1)δ2}
2ru2

0 sin φ1

2 sin φ2

2 cos φ1+φ2

2 − i{(α + iβ1)β2 − (κ + iδ1)δ2}
,

L2e
iΨ2 =

2ru2
0 sin φ1

2 sin φ2

2 cos φ1−φ2

2 + i{(α + iβ1)β2 − (κ + iδ1)δ2}
2ru2

0 sin φ1

2 sin φ2

2 cos φ1+φ2

2 + i{(α + iβ1)β2 − (κ + iδ1)δ2}
,

where we have assumed that φ2 is real and θ1, θ2, σ1 and σ2 are arbitrary constants. When we
consider the case: 0 < Ω2, 0 < α, 0 < κ and 0 < Ω1, the solutions long before and after the
mode growing are given by

f =
M2

4
e2ξ2

{
1 − eξ1 cos(η1 + Ψ1 + Ψ2) +

M1

4
e2ξ1

}
, (6)

g =
M2

4
e2(ξ2+iφ2)

{
1 − eξ1+iφ1r cos(η1 + iφ1i + Ψ1 + Ψ2) +

M1

4
e2(ξ1+iφ1r)

}
, (7)

and

f = 1 − 1
L1L2

eξ1 cos η1 +
M1

4L2
1L

2
2

e2ξ1 , (8)

g = 1 − 1
L1L2

eξ1+iφ1r cos(η1 + iφ1i) +
M1

4L2
1L

2
2

e2(ξ1+iφ1r), (9)

respectively, which are periodic soliton solutions. It is shown that the phase shift of the periodic
soliton due to the growing-and-decaying mode is given by the amount ln(L1L2) (or − ln(L1L2)).
(L1L2) = ∞ and 0 may be thought of as resonance between periodic soliton and growing-and-
decaying mode, the conditions of which are obtained by equating the denominator and numerator
of L1 or L2 to zero, respectively: We now investigate the condition which L1 becomes infinity,
namely

D = 2ru2
0 sin

φ1

2
sin

φ2

2
cos

φ1 + φ2

2
− i {(α + iβ1)β2 − (κ + iδ1)δ2} = 0. (10)
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When we express α, κ, β1, δ1, β2 and δ2 in term of φ1, φ2, θ1 and θ2 as follows,

α + iβ1 = i
√

2ru2
0 sin

φ1

2
sinh θ1, κ + iδ1 = i

√
2ru2

0 sin
φ1

2
cosh θ1,

β2 =
√

2ru2
0 sin

φ2

2
sinh θ2, δ2 =

√
2ru2

0 sin
φ2

2
cosh θ2.

Equation (10) is rewritten as

D = 2ru2
0 sin

φ1

2
sin

φ2

2

{
cos

φ1 + φ2

2
− cosh(θ1 − θ2)

}
.

Therefore, the resonant condition is given by

φ2 = 2θ1i − φ1r, θ2 = θ1r +
φ1i

2
.

We study the time evolution of soliton in the following five periods in time. The solutions (4)
and (5) are approximated in each period as follows:

(p1) t → −∞ (before the mode grows). The solution is given by equations (6) and (7), only
the periodic soliton exists in the wave field.

(p2) t ∼ σ2

Ω2
; (e−Ω2t+σ2 ∼ O(1)). The solutions in the backward region and forward region

of the periodic soliton are given by

f � 1 − eξ2 cos η2 +
M2

4
e2ξ2 , (11)

g � 1 − eξ2+iφ2 cos η2 +
M2

4
e2(ξ2+iφ2), (12)

and

f � M1M2

16
e2(ξ1+ξ2), (13)

g � M1M2

16
e2(ξ1+ξ2)+2iφ1r+φ2), (14)

respectively. The solutions corresponding to equations (11)–(12) and (13)–(14) denote the
growing-and-decaying mode and uniform state, respectively. Therefore, in this period, the mode
is growing only in the backward region of the periodic soliton, but the mode has not grown as
yet in the forward region.

(p3) t ∼ σ2 + 1
2 lnL1L2

Ω2
; (
√

L1L2e
−Ω2t+σ2 ∼ O(1))

f � 1 +
1

2L2
eξ1+ξ2 cos(η1 + η2 + Ψ1) +

M1M2

16
e2(ξ1+ξ2),

g � 1 +
1

2L2
eξ1+ξ2+i(φ1r+φ2) cos(η1 + η2 + iφ1i + Ψ1) +

M1M2

16
e2(ξ1+ξ2)+2i(φ1r+φ2).

Only the periodic soliton in the resonant state exists in the wave field.

(p4) t ∼ σ2 + lnL1L2

Ω2
; (L1L2e

ξ2 ∼ O(1)). The solutions in the backward region and forward

region of the periodic soliton are given by

f � 1, g � 1,
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and

f � M1

4L2
1L

2
2

e2ξ1

{
1 − L1L2e

ξ2 cos(η2 + Ψ1 − Ψ2) +
M2L

2
1L

2
2

4
e2ξ2

}
,

g � M1

4L2
1L

2
2

e2(ξ1+iφ1r)

{
1 − L1L2e

ξ2+2iφ2 cos(η2 + Ψ1 − Ψ2) +
M2L

2
1L

2
2

4
e2(ξ2+iφ2)

}
,

respectively. In this period, the mode is developed only in the forward region of the periodic
soliton.

(p5) t → +∞. The solution is given by equations (8) and (9) which is the periodic soliton
after the grow and decay of the mode.

3 Conclusions

We have investigated the time evolution of the quasi-resonant interaction between periodic
soliton and growing-and-decaying mode. Under the quasi-resonant condition, the mode develops
first in the one side region of the periodic soliton. The periodic soliton is accelerated as a result of
the grow and decay of the mode existed in the region and the wave field shifts to the intermediate
state, where only the periodic soliton in the resonant state exists. This intermediate state persists
over a comparatively long time interval. After sufficient long time, the mode starts to grow in
the opposite side of the periodic soliton. The existence of soliton changes the evolution of the
growing-and-decaying mode drastically as if the periodic soliton dominated the evolution of the
instability in whole region of the wave field.
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