
Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 1, 372–376
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We report an infinite class of discrete hierarchies which naturally generalize familiar discrete
KP one.

1 Introduction

The interrelation between discrete and differential integrable hierarchies plays crucial role in
obtaining solutions to the discrete multi-matrix models [1, 2]. At a level of KP-type differential
hierarchies the discrete structure of multi-matrix models is captured by the Darboux–Bäck-
lund (DB) transformations. In turn partition functions of multi-matrix models turns out to be
τ -functions of differential hierarchies and are constructed as DB orbits of certain simple initial
conditions [2]. The well known discrete KP (1-Toda lattice) hierarchy [3] together with its reduc-
tions can be viewed as a container for a set of KP-type differential hierarchies whose solutions
are generated by DB transformations.

This paper is designed to exhibit certain class of discrete hierarchies which generalize discrete
KP and show the relationship with general (unconstrained) differential KP. This relationship
yields bi-infinite sequences of differential KP equipped with two compatible gauge transforma-
tions. We believe that these results might be of potential interest from the physical point of
view.

2 nth discrete KP

Given the shift operator Λ = (δi,j−1)i,j∈Z one considers the Lie algebra of pseudo-difference
operators

D =

{ ∑
−∞<k�∞

�kΛk

}
= D− + D+

with usual splitting into “negative” and “positive” parts:

D− =




∑
−∞<k≤−1

�kΛk


 and D+ =

{ ∑
0<k�∞

�kΛk

}
.

We assume that entries of bi-infinite diagonal matrices �k ≡ (�k(i))i∈Z may depend on “spectral”
parameter z and multi-time t ≡ (t1 ≡ x, t2, t3, . . .). In what follows ∂ ≡ ∂/∂x and ∂p ≡ ∂/∂tp.

Let us define1

Q = Λ + a0z
n−1Λ1−n + a1z

2(n−1)Λ1−2n + · · · ∈ D, n ∈ N (1)

with ak = (ak(i))i∈Z being functions on t only.
1Here z acts as component-wise multiplication.
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Proposition 1. Lax equations of Q-deformations

zp(n−1)∂pQ =
[
Qpn

+ , Q
]
, p = 1, 2, . . . (2)

make sense.

Proof. One needs to use standard simple arguments to prove correctness of equations (2). It
is enough to show that

[
Qpn

+ , Q
]

= − [
Qpn

− , Q
]

is of the same form as l.h.s. of (2). �

We will refer to (2) as nth discrete KP hierarchy. Let us represent Q as a dressing up of Λ
by a “wave” operator as Q = WΛW−1 where

W = I + w1z
n−1Λ−n + w2z

2(n−1)Λ−2n + w3z
3(n−1)Λ−3n + · · · ∈ I + D−.

Then Q-deformations are induced by W -deformations

zp(n−1)∂pW = Qpn
+ W − WΛpn,

zp(n−1)∂p

(
W−1

)T =
(
W−1

)T Λ−pn − (
Qpn

+

)T (
W−1

)T
. (3)

Define χ(t, z) =
(
zieξ(t,z)

)
i∈Z

, χ∗(t, z) =
(
z−ie−ξ(t,z)

)
i∈Z

with ξ(t, z) ≡
∞∑

p=1
tpz

p and wave vectors

Ψ(t, z) = Wχ(t, z), Ψ∗(t, z) =
(
W−1

)T
χ∗(t, z). (4)

Discrete linear system

QΨ(t, z) = zΨ(t, z), QT Ψ∗(t, z) = zΨ∗(t, z),

zp(n−1)∂pΨ = Qpn
+ Ψ, zp(n−1)∂pΨ∗ = −(Qpn

+ )T Ψ∗ (5)

are evident consequence of (3) and (4). Making use of obvious relations zχ = Λχ and χi = ∂i−jχj

with i and j being arbitrary integers, we deduce

Ψi(t, z) = zi
(
1 + w1(i)z−1 + w2(i)z−2 + · · · ) eξ(t,z)

= zi
(
1 + w1(i)∂−1 + w2(i)∂−2 + · · · ) eξ(t,z) ≡ ziŵi(∂)eξ(t,z) ≡ ziψi(t, z).

What we are going to do next is to establish equivalence of nth discrete KP to bi-infinite
sequence of differential KP copies “glued” together by two compatible gauge transformations one
of which can be recognized as DB transformation mapping Qi ≡ ŵi∂ŵ−1

i to Qi+n ≡ ŵi+n∂ŵ−1
i+n.

By straightforward calculations one can prove

Proposition 2. The following three statements are equivalent
i) the wave vector Ψ(t, z) satisfies discrete linear system

QΨ(t, z) = zΨ(t, z), zn−1∂Ψ = Qn
+Ψ; (6)

ii) the components ψi of a vector ψ ≡ (ψi = z−iΨi)i∈Z satisfy

Giψi(t, z) = zψi+n−1(t, z), Hiψi(t, z) = zψi+n(t, z) (7)

with Hi ≡ ∂ −
n∑

s=1
a0(i + s − 1) and

Gi ≡ Hi + a0(i + n − 1) + a1(i + n − 1)H−1
i−n + a2(i + n − 1)H−1

i−2nH−1
i−n + · · · ;

iii) for sequence of dressing operators ŵi following equations

Giŵi = ŵi+n−1∂, Hiŵi = ŵi+n∂ (8)

hold.
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Consistency condition of (6) is given by Lax equation

zn−1∂Q =
[
Qn

+, Q
]

(9)

which in explicit form looks as

∂ak(i) = ak+1(i + n) − ak+1(i)

+ ak(i)

(
n∑

s=1

a0(i + s − 1) −
n∑

s=1

a0(i + s − (k + 1)n)

)
, k ≥ 0. (10)

Remark 1. One-field reductions of the systems (10) lead to Bogoyavlenskii lattices [4]

∂ri = ri

(
n−1∑
s=1

ri+s −
n−1∑
s=1

ri−s

)
, ri ≡ a0(i)

including well known Volterra lattice ∂ri = ri(ri+1 − ri−1) in the case n = 2.

Consistency condition of (8) is given by relations

Gi+nHi = Hi+n−1Gi, i ∈ Z (11)

which in fact are equivalent to (9).

Proposition 3. By virtue of (8) and its consistency condition, Lax operators Qi are connected
with each other by two invertible compatible gauge transformations

Qi+n−1 = GiQiG
−1
i , Qi+n = HiQiH

−1
i . (12)

Proof. By virtue of (8), we have

Qi+n−1 = ŵi+n−1∂ŵ−1
i+n−1 =

(
Giŵi∂

−1
)
∂

(
∂ŵ−1

i G−1
i

)
= Giŵi∂ŵ−1

i G−1
i = GiQiG

−1
i .

The similar arguments are applied to show second relation in (12). The mapping Qi → Q̃i =
Qi+n−1 we denote as s1, while s2 stands for transformation Qi → Qi = Qi+n. As for compati-
bility of s1 and s2, by virtue of (11), we have

Qi+2n−1 = Gi+nQi+nG−1
i+n = Gi+nHiQiH

−1
i G−1

i+n

= Hi+n−1GiQiG
−1
i H−1

i+n−1 = Hi+n−1Qi+n−1H
−1
i+n−1.

So we can write s1 ◦ s2 = s2 ◦ s1. The inverse maps s−1
1 and s−1

2 are well defined by the formulas
Qi−n+1 = G−1

i−n+1QiGi−n+1 and Qi−n = H−1
i−nQiHi−n. �

It is obvious that relation sn
1 = sn−1

2 holds. Indeed the l.h.s. and r.h.s. of this relation
correspond to the same mapping Qi → Qi+n(n−1). The Abelian group generated by s1 and s2

we denote by symbol G.
Rewrite second equation in (7) as zn−1HiΨi(t, z) = Ψi+n(t, z) = (ΛnΨ)i. From this we derive

zk(1−n)(ΛknΨ)i = Hi+(k−1)n · · ·Hi+nHiΨi,

zk(n−1)(Λ−knΨ)i = H−1
i−kn · · ·H−1

i−2nH−1
i−nΨi.

These relations make connection between matrices of the form P =
∑
k∈Z

zk(1−n)pk(t)Λkn and

sequences of pseudo-differential operators {Pi, i ∈ Z} mapping the upper triangular part of
given matrix (including main diagonal) into the differential parts of Pi’s and the lower triangular
part of the matrix to the purely pseudo-differential parts. More exactly, we have (PΨ)i = PiΨi,
(P−Ψ)i = (Pi)−Ψi and (P+Ψ)i = (Pi)+Ψi, where

Pi =
∑
k>0

p−k(i, t)H−1
i−kn · · ·H−1

i−2nH−1
i−n +

∑
k≥0

pk(i, t)Hi+(k−1)n · · ·Hi+nHi = (Pi)− + (Pi)+.
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Proposition 4. Equations zp(n−1)∂pΨ = Qpn
+ Ψ, p = 2, 3, . . . lead to ∂pψi = (Qp

i )+ψi, p =
2, 3, . . ..

Proof. We have

zp(1−n)(QpnΨ)i = zpΨi = zi+pŵie
ξ(t,z) = ziŵi∂

peξ(t,z) = ziŵi∂
pŵ−1

i ψi = ziQp
i ψi = Qp

i Ψi.

Thus

zp(n−1)∂pΨi = zi+p(n−1)∂pψi = (Qpn
+ Ψ)i = zp(n−1)(Qp

i )+Ψi = zi+p(n−1)(Qp
i )+ψi.

The latter proves proposition. �

Let us establish equations managing Gi- and Hi-evolutions with respect to KP flows. Dif-
ferentiating l.h.s. and r.h.s. of (8) by virtue of Sato–Wilson equations ∂pŵi = (Qp

i )+ŵi − ŵi∂
p

formally leads to evolution equations

∂pGi =
(Qp

i+n−1

)
+

Gi − Gi (Qp
i )+ ,

∂pHi =
(Qp

i+n

)
+

Hi − Hi (Qp
i )+ . (13)

Standard arguments can be used to show that equations (13) are properly defined individually.
Let us show that permutation relations (11) are invariant under the flows given by equations (13).
We have

∂p(Hi+n−1Gi) =
{(Qp

i+2n−1

)
+

Hi+n−1 − Hi+n−1

(Qp
i+n−1

)
+

}
Gi

+ Hi+n−1

{(Qp
i+n−1

)
+

Gi − Gi (Qp
i )+

}
=

(Qp
i+2n−1

)
+

Hi+n−1Gi − Hi+n−1Gi (Qp
i )+

=
(Qp

i+2n−1

)
+

Gi+nHi − Gi+nHi (Qp
i )+ =

{(Qp
i+2n−1

)
+

Gi+n − Gi+n

(Qp
i+n

)
+

}
Hi

+ Gi+n

{(Qp
i+n

)
+

Hi − Hi (Qp
i )+

}
= ∂p(Gi+nHi).

Hence we proved that evolution equations (13) are consistent.

Define Φi = Φi(t) via HiΦi = 0 or equivalently through equation ∂Φi = Φi

n∑
s=1

a0(i + s − 1).

Taking into consideration second equation in (13), we have

∂p(HiΦi) =
(Qp

i+n

)
+

HiΦi − Hi (Qp
i )+ Φi + Hi∂pΦi = 0.

From this we derive ∂pΦi = (Qp
i )+ Φi + αiΦi where αi’s are some constants. Commutativity

condition ∂p∂qΦi = ∂q∂pΦi leads to evolution equations for KP eigenfunctions ∂pΦi = (Qp
i )+ Φi,

i.e. αi = 0. Thus the relations Qi+n = HiQiH
−1
i defines DB transformations with eigenfunctions

Φi = τi+n/τi. It should perhaps to recall that arbitrary eigenfunction of Lax operator Q contains
information about DB transformation τ → τ = Φτ while the identity2

{
τ

(
t − [

z−1
])

, τ(t)
}

+ z
(
τ

(
t − [

z−1
])

τ(t) − τ
(
t − [

z−1
])

τ(t)
)

= 0

holds.
So, we have shown that nth discrete KP is equivalent to sequence of differential KP linked

with each other by two compatible gauge transformations one of which, namely, s2 : Qi → Qi+n

are nothing but Darboux–Bäcklund transformation. The problem which can be addressed is
to describe nth discrete KP in the language of bilinear identities by analogy as was done for
ordinary discrete KP [5].

2Here conventional notations {f, g} = ∂f · g − ∂g · f and
[
z−1

]
=

(
1/z, 1

(
2z2

)
, . . .

)
are used.
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