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Transformation Operators for Integrable Hierarchies

with Additional Reductions
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New integrable reductions of the modified Kadomtsev–Petviashvili (mKP) hierarchy was
obtained. We solve the so-called D-Hermitian constrained mKP (DHcmKP) hierarchy by
using the dressing transformation technique. The dressing (transformation) operator for
the DHcmKP hierarchy is defined, and multicomponent derivative nonlinear Schrödinger
equation was integrated as an example.

1 Introduction

We consider Lax–Zakharov–Schabat equations

βUt − αVy + UV − V U = 0 ⇔ [α∂y − U, β∂t − V ] = 0,

α, β ∈ C, ∂y :=
∂

∂y
, ∂t :=

∂

∂t
, (1)

in the algebra ζ of the microdifferential operators (MDO) [1].

U, V ∈ ζ :=


L =

n(L)∑
i=−∞

aiDi : ai = ai(x, y, t); i, n(L) ∈ Z


 , (2)

where MDO U , V satisfy additional constraints, which are concretely defined in the following
section, and coefficients ai are, in general, smooth (N×N) matrix-valued functions of x, y, t,∈ R.
In the algebra MDO ζ (2) operation of multiplication is induced by the generalized Leibnitz rule

Dnf :=
∞∑

j=0

(
n
j

)
f (j)Dn−j , n ∈ Z, Dm(f) :=

∂mf

∂xm
= f (m), m ∈ Z+, (3)

where(
n
j

)
:=

n(n − 1) . . . (n − j + 1)
j!

, DnDm := Dn+m, n, m ∈ Z,

and f is the operator of multiplication by function f(x, y, t), which belongs to the same functional
space as the coefficients of microdifferential operators L ∈ ζ do. Lie’s commutator in algebra ζ

is defined as [U, V ] := UV − V U , and Hermitian-conjugated operator L∗ :=
n(L)∑

i=−∞
(−1)iDia∗i ,

a∗i = ā�, (α∂y)∗ := −ᾱ∂y, (β∂t)∗ := −β̄∂t.

2 Reduction of D-Hermitian conjugation

Definition 1. We say that an operator L ∈ ζ is D-Hermitian (D-skew-Hermitian) if

L∗ = DLD−1
(
L∗ = −DLD−1

)
.
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Definition 2. We say that an integral operator W ∈ ζ<1 :=
{

L<1 :=
0∑

i=−∞
uiDi

}
is D-unital

if W−1 = D−1W ∗D.

Lemma 1. Let L∗ = µDLD−1, µ = ±1, and W−1 = D−1W ∗D. Then L̂∗ = µDL̂D−1, where
L̂ := WLW−1.

Proof. L̂∗ :=
(
WLW−1

)∗ =
(
W−1

)∗
L∗W ∗ = µDWD−1DLD−1DW−1D−1 = µDL̂D−1. �

Lemma 2. Let hi, gi be smooth (N×K) matrix-valued functions of real variable x ∈ R, i = 1, 2;
A = (amn) = const ∈ MatK×K(C) and a ∈ R ∪ {±∞}. Then

h1D−1g�1 h2D−1g�2 = h1

(
A +

∫ x

a
g�1 h2dx

)
D−1g�2 − h1D−1

(
A +

∫ x

a
g�1 h2dx

)
g�2 .

Proof. By direct calculation from the Leibnitz rule (3) for n = −1 we obtain:

h1D−1g�1 h2D−1g�2 = h1

∞∑
i=0

(−1)i(g�1 h2)(i)D−i−2g�2 ,

h1

(
A +

∫ x

a
g�1 h2dx

)
D−1g�2 − h1

∞∑
i=0

(−1)i

(
A +

∫ x

a
g�1 h2dx

)(i)

D−i−1g�2

= −h1

∞∑
i=1

(−1)i

(
A +

∫ x

a
g�1 h2dx

)(i)

D−i−1g�2 = h1

∞∑
i=0

(−1)i(g�1 h2)(i)D−i−2g�2 . �

Lemma 3. Let C∗ = −C = const ∈ MatK×K(C), ϕ = ϕ(x) be a matrix (N × K) function and
ϕ ∈ L2(−∞, s) ∀ s ∈ R. Then w−1

0 = w∗
0, where

w0 := I − ϕ

(
C +

∫ x

−∞
ϕ∗ϕxdx

)−1

ϕ∗ := I − ϕΩ−1ϕ∗. (4)

Proof.

w∗
0 = I − ϕΩ∗−1ϕ∗ = I − ϕ


ϕ∗ϕ − C −

x∫
−∞

ϕ∗ϕxdx




−1

ϕ∗, (5)

w0w
∗
0 = I − ϕ

[(
C +

∫ x

−∞
ϕ∗ϕxdx

)−1

+
(

ϕ∗ϕ − C −
∫ x

−∞
ϕ∗ϕxdx

)−1

−

C +

x∫
−∞

ϕ∗ϕxdx




−1

ϕ∗ϕ


ϕ∗ϕ − C −

x∫
−∞

ϕ∗ϕxdx




−1
ϕ∗

= I − ϕΩ−1
[
I + (Ω − ϕ∗ϕ)Ω∗−1

]
ϕ∗ = I. �

Theorem 1. Let W := w0 +ϕΩ−1D−1ϕ∗
x (see conditions of Lemma 3). Then W−1 = D−1W ∗D

(i.e. W is a D-unital operator).

Proof.

1. W = I − ϕΩ−1ϕ∗ + ϕΩ−1D−1ϕ∗
x = I − ϕΩ−1D−1ϕ∗D,

W ∗ = I −DϕD−1Ω∗−1ϕ∗,

D−1W ∗D = I − ϕD−1Ω∗−1ϕ∗D = w−1
0 + ϕD−1

(
Ω∗−1ϕ∗

)
x
.
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2. WD−1W ∗D =
(
w0 + ϕΩ−1D−1ϕ∗

x

) (
w−1

0 + ϕD−1(Ω∗−1ϕ∗)x

)
= I + w0ϕD−1

(
Ω∗−1ϕ∗

)
x
+ ϕΩ−1D−1ϕ∗

xw−1
0 + ϕΩ−1D−1ϕ∗

xϕD−1
(
Ω∗−1ϕ∗

)
x
, (6)

and using Lemma 2, the definitions of Ω and Ω∗ (4)–(5) by direct calculation we obtain that the
sum of integral operators in (6) is equal to zero, i.e. WD−1W ∗D = I. �

3 Lax equation invariant under reductions
of D-Hermitian conjugation

In this paper we restrict ourselves by the scalar cases (N = 1) of the algebra (2).
We consider the modified Kadomtsev–Petviashvili (mKP) hierarchy [2]

αn
∂Z

∂tn
= − (

ZDnZ−1
)
<1

Z, αn ∈ C, n ∈ N, t1 := x, (7)

where integral operator Z is given by

ζ<1 � Z = z0 + z1D−1 + z2D−2 + · · · (
z−1
0 exists

)
. (8)

With the use of the MDO L := ZDZ−1 := LmKP = D+U0+U1D−1+U2D−2+· · · , system (7)
can be rewritten in the form of the Lax representation

αmLtm = [Bm, L] := BmL − LBm, (9)

where Bm := (Lm)>0, m ∈ N.
The mKP hierarchy (7) can be transformed into Zakharov–Schabat equations

αnBmtn
− αmBntm

+ [Bm, Bn] = 0, m, n ∈ N, αm, αn ∈ C. (10)

Note that the subscripts mean partial differentiations with respect to the indicated variables
(evolutionary parameters tj , j ∈ N). If we eliminate U0, U1, U2, . . . from (9), the remaining
equations for the function U := U0 in (9) (or in (10) ) for t1 := x, t2 := y, t3 := t would
represent the mKP equation

α3Ut =
1
4
Uxxx − 3

2
U2Ux +

3
4
α2

2∂
−1
x Uyy +

3
2
α2Ux∂−1

x Uy, (11)

where ∂−1
x f :=

∫ x
fdx, and its hierarchy flows.

W. Oevel and W. Strampp have also introduced so-called constrained modified Kadomtsev–
Petviashvili (cmKP) [3], apart from the cKP (constrained KP) hierarchy [4, 5, 6, 7] (see, also [8]).
The Lax operator of the cmKP hierarchy is defined by

LcmKP = Dn + un−1Dn−1 + · · · + u1D + u0 + D−1s, (12)

or

LcmKP := (Ln
mKP)≥0 + D−1s,

and the hierarchy flows are described by

αm
∂LcmKP

∂tm
=
[(

L
m/n
cmKP

)
>0

, LcmKP

]
, αmstm = −

(
L

m/n
cmKP

)∗
>0

(s). (13)



Transformation Operators for Integrable Hierarchies 355

We proposed another restriction of mKP hierarchy, so-called D-Hermitian cmKP (DHcmKP)
hierarchy in the form

LDHcmKP := Ln = Dn + un−1Dn−1 + · · · + u1D − V, (14)

where ζ<1 � V is D-Hermitian (D-skew-Hermitian) integral degenerated Volterra operator,
defined as

V = qMD−1q∗D = (qMq∗) − qMD−1q∗
x, if n = 2k,

where M∗ = M,(or V = iqMD−1q∗D, if n = 2k − 1); q = (q1, . . . , ql), k, l ∈ N, and additional
reduction for operator Ln:

L∗
n = µDLnD−1, µ = ±1.

In this case, the D-unital operator Z := W (the definition of integral operator W see below
in Theorem 1) is the transformation (dressing) operator for mKP hierarchy (7)–(10). We now
work out a few examples of restrictions of the mKP hierarchy connected with D-Hermitian Lax
operators of the form (14). We consider the evolution equations

αmLntm
= [Bm, Ln] , (15)

where Ln := LDHcmKP (14), and Bm are fractional powers m/n of Ln; n, m,∈ N. The “basic

root” L
1
n
n = D + a0 + a−1D−1 + · · · is calculated by requiring (L

1
n
n )n = LDHcmKP. This leads to

straightforward recursive scheme for the coefficients a0, a−1, . . . of L
1
n
n , from which these coeffi-

cients can be calculated as differential expressions of un−1, un−2, . . . , u1, q, q∗. Higher fractional
powers L

m/n
n of Ln are then calculated as powers L

m/n
n = (L1/n

n )m of this “basic root”. By con-
struction, the first question with m = 1 in the hierarchy (14) is given by Lnt1

= [D, Ln] = ∂Ln
∂x ,

so that the first time variable t1 may be identified with the underlying space variable x.

4 Some examples of equations from the DHcmKP flow

Let us n = 1. For L1 = D − iqMD−1q∗D the first nontrivial equations in (15) are given by
(α2 = i)

iqt2 = qxx − 2iqMq∗qx, (16)

which are the first equations in the multicomponent modified nonlinear Schrödinger hierarchy
discussed in [9].

n = 2. For L2 = D2 + iuD − qMD−1q∗D we obtain

iqt2 = qxx + iuqx, ut2 = 2(qMq∗)x, α2 = i, (17)

qt3 = qxxx +
3
2
iuqxx −

(
3
8
u2 +

3
2
qMq∗ − 3

4
iux

)
qx,

ut3 =
1
4
uxxx +

3
8
u2ux − 3

2
(qMq∗u)x , α3 = 1. (18)

This represents the modified KdV hierarchy coupled with its eigenfunctions. The system (17)
is the new multicomponent integrable model of Yajima–Oikawa type [9, 10]. The next higher
flow in this hierarchy has the following form (α4 = −i):

ut4 = 2
[
qMq∗

xx + qxxMq∗ + (qMq∗)2
]
x
, iqt4 =

(
L2

2

)
>0

(q). (19)
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5 Method of integration of the Lax equation
from the DHcmKP hierarchy

There are many mathematical and physical problems associated with the DHcmKP hierarchy.
However, the most important one, may be, is finding the soliton solutions for the equations
from this hierarchy. We have shown (see Lemma 1) that the D-unital MDO W transforms
D-Hermitian operator L into D-Hermitian operator L̂ by the dressing transformation L →
WLW−1 := L̂. Now, we want to extend the previous results to the equations from the DHcmKP
hierarchy.

Theorem 2. Let ϕ = (ϕ1, . . . , ϕK), K ∈ N be a smooth fast decreasing on the −∞ complex
value K-component vector-function of variable x ∈ R and an evolution parameter t2 ∈ R which
satisfy additional conditions:

a) ϕ be a solution of the equation iϕt2 = ϕxx,
b) ϕx = ϕΛ, where Λ = diag(λ1, λ2, . . . , λK) = const; λj := λj1+iλj2 ∈ C; λj1 > 0, j = 1, K.
Then the vector-function

q := ϕΩ−1 = ϕ

(
C +

∫ x

−∞
ϕ∗ϕdxΛ

)−1

(20)

is a solution of the mNSE (16) with the matrix M = −i(CΛ + Λ∗C), where C∗ = −C is a
skew-Hermitian (K × K) complex matrix.

Proof. The proof is constructed by direct calculation. Using the lemmas we get

L0 := D → L := WDW−1 = D − ϕΩ−1(CΛ − Λ∗C∗)D−1Ω∗−1ϕ∗D,

M0 := i∂t2 −D2 → M := WM0W
−1 =

(
L2
)
>0

, (21)

and from the trivial equation [L0, M0] = 0 we obtain that [L, M ] = 0. �

Corollary 1. Let K ≥ l ∈ N and matrix C = i
2 diag

(
µ1

λ11
, . . . , µl

λl1
, 0, . . . , 0

)
∈ MatK×K(iR).

Then the function q = (q1, . . . , ql)(x, t2), where q := ϕΩ−1 and

qj = (−1)K−j

∣∣∣∣Ω(j)

ϕ

∣∣∣∣
Ω

, j = 1, . . . , l (22)

is a solution of the l-component mNSE

iqt2 = qxx − 2i
l∑

j=1

µj |qj |2qx. (23)

Here Ω(j) is obtained from Ω by deletion of j-line and |Ω| := det Ω. In order to prove (22)
we use the well-known algebraic equality for framed determinant

det
(

Ω ϕ∗

ϕ α

)
:=

∣∣∣∣Ω ϕ∗

ϕ α

∣∣∣∣ = α det Ω − ϕΩcϕ∗, α ∈ C, (24)

where Ωc is the matrix of cofactors, and then

qj = ϕΩ−1eT
j , ek := (ek1 , ek2 , . . . , ekK

), ekm = δm
k .
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For l = 1 we obtain from the formula (22) the K-soliton solution for the scalar mNSE [11, 12]

q = (−1)K+1

∣∣∣∣Ω(1)

ϕ

∣∣∣∣
|Ω| , Ω = (wmn), m, n = 1, K,

ϕm = ϕm0 exp
{
λmx − iλ2

mt2
}

, ϕm0 = const,

wmn =
iµ

2λ11
δmn
1 +

λn

λ̄m + λn
ϕ̄m0ϕn0 exp

{(
λ̄m + λn

)
x + i

(
λ̄2

m − λ2
n

)
t2
}

,

iqt2 = qxx − 2iµ|q|2qx. (25)

In particular, if K = 1, then the previous formulas represent a one-soliton solution for the (25):

q =
2λ11ϕ0 exp{λx − iλ2t2}

iµ + |ϕ0|2 exp{2λ11x + 4λ11λ12t2} ,

where ϕ0 := ϕ10, λ := λ1 = λ11 + iλ12 := Re λ + i Im λ.

6 Conclusion

In conclusion, we hope that the method of integration of Lax equations with D-Hermitian
reductions presented here will be generalized to other nonlinear models from the DHcmKP
hierarchy (and in the matrix case too). Similar generalizations for Hermitian reductions in cKP
hierarchy [7, 8] were considered in the papers [13, 14], but these results were obtained using the
methods from the article [15].
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