
Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 520–529

Time-Dependent Supersymmetry

and Parasupersymmetry in Quantum Mechanics

Boris F. SAMSONOV

Physics Department, Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
E-mail: samsonov@phys.tsu.ru

Concepts of supersymmetry and parasupersymmetry known for the one-dimensional statio-
nary Schrödinger equation are generalized to the time-dependent equation. Our approach is
based on differential transformation operators for the non-stationary Schrödinger equation
called Darboux transformation operators and on chains of such operators. As an illustration
new exactly solvable time-dependent potentials are derived.

1 Introduction

Supersymmetry has been introduced in quantum mechanics by Nicolai [1] and later by Witten [2].
It was realized afterwards that this approach is really a particular case of transformation ope-
rators method well known in mathematics (see e.g. [3]) when it is applied to the stationary
Schrödinger equation and when the transformation operator has a differential form [4]. In
particular, when the transformation operator is a first order differential operator this approach
is equivalent to the one studied by Darboux in 1882 [5]. When the same method is applied to
the transformed equation one gets a chain of transformations. We shall see further that the
algebraic structure underlying such a chain is parasupersymmetry.

In this lecture I am planning to show how this approach may be generalized to the time-
dependent case, i.e. to the time-dependent Schrödinger equation. This generalization is straight-
forward. Therefore I will develop the time-dependent constructions in parallel lines with the
time-independent ones. The left-hand lines of the most formulae will be devoted to the stationary
(known) results and the right-hand lines will show their time-dependent generalization.

2 Time-dependent Darboux transformations
and time-dependent supersymmetry

The main idea of the transformation operators method is so called intertwining relation (see
e.g. [4]). Let us suppose that one knows the solutions of the Schrödinger equation (stationary
or non-stationary)

h0ψE = EψE , (i∂t − h0)ψ = 0, (1)

h0 = −∂2
x + V0(x), x ∈ [a, b].

For the stationary case they are supposed to be known for all real and if necessary complex
values of the parameter E.

To solve another Schrödinger equation

h1ϕE = EϕE , (i∂t − h1)ψ = 0, (2)

h1 = −∂2
x + V1(x), x ∈ [a, b]
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one may introduce so called transformation operator which I will denote by L. The defining
relation for this operator is the intertwining relation

Lh0 = h1L, L(i∂t − h0) = (i∂t − h1)L. (3)

Therefore it is also called intertwiner. It is clear from (3) that ϕ = Lψ is a solution to (2)
provided ψ is a solution to (1). The equation (1) is called the initial equation, the Hamilto-
nian h0 is the initial Hamiltonian and the potential V0 is the initial potential. The equation (2),
Hamiltonian h1 and the potential V1 are transformed entities.

In the simplest case one can try to find the operator L as a first order differential operator

L = L0(x) + L1(x)∂x, L = L0(x, t) + L1(x, t)∂x.

Note that for the time-dependent case I do not include to L the derivative with respect to time.
If it would be included to it, L should become a second order operator since it follows from (1)
that i∂t = −∂2

x+V0 but we want to have the operator L only as a first order differential operator.
If one introduces the potential difference A = h1 − h0 = V1(x) − V0(x) then the intertwining

relation reduces to the system of differential equations for A and for the coefficients of the
operator L. Note that this system can be integrated both in stationary and in non-stationary
cases. I give here only the final result

L = −ux(x)
u(x)

+ ∂x, L = L1(t)
(
−ux(x, t)

u(x, t)
+ ∂x

)
. (4)

Here u is a solution to the initial equation

h0u(x) = αu(x), (i∂t − h0)u(x, t) = 0.

The main difference between time-dependent and time-independent cases is that for the time-
independent case the coefficient L1 is an arbitrary constant which always may be put equal to
equal to 1, but for the time-dependent case it is an arbitrary function of time.

The potential difference depends on the function u but for the time-dependent case it depends
also on the function L1(t). For the time-independent case the function u can always be chosen
real for all real values of the parameter E whereas for the time-dependent case this function
takes essentially complex values. Our main idea for the time-dependent case is to dispose of
the arbitrary function L1(t) for satisfying the reality condition for the potential difference. As
it happens this is possible only if the function u is subject to an additional condition which we
call the reality condition of the new potential or simply the reality condition

[log u/u]xxx = 0.

The bar means the complex conjugation. Under this condition the function L1(t) becomes real

L1(t) = exp
[
2

∫
dt Im (log u)xx

]
(5)

and for the potential difference one gets

A(x) = − [
log u2(x)

]
xx

, A(x, t) = − [
log |u(x, t)|2]

xx
. (6)

We see from (4), (5), (6) that the potential difference and the transformation operator are
defined only by the function u. Therefore we call it the transformation function. As it follows
from (6) a sole condition which should be imposed on u is the absence of zeros for x belonging to
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the interval (a, b) where the initial Schrödinger equation is solved. No boundary or asymptotic
condition should be imposed on it.

Note, that when the potential V0 is independent of time, one can take u(x, t) in the form

u(x, t) = u(x)e−iαt.

In this case the reality condition is satisfied and the function L1 = const. The time-dependent
transformation reduces just to the known time-independent one.

Once one knows the operator L one can introduce so called Laplace adjoint to it which is
defined by the formal relations

(c∂x)+ = −c∂x, c ∈ C, (AB)+ = B+A+.

Then

L+ = −ux(x)
u(x)

− ∂x, L+ = −L1(t)
(

ux(x, t)
u(x, t)

+ ∂x

)

and

(i∂t − h0)+ = i∂t − h0.

The conjugation of the intertwining relations gives us corresponding relations for L+

h0L
+ = L+h1, (i∂t − h0)L+ = L+(i∂t − h1).

These relations mean that the operator L+ realizes the transformation in the inverse direction,
i.e. from the solutions of the transformed equation to the solutions of the initial one. It is clear
now that the superposition L+L transforms solutions of the initial equation into solutions of the
same equation and hence this is a symmetry operator for the initial Schrödinger equation. By
the same reason the operator LL+ is a symmetry operator for the transformed equation. For
the stationary case there exists only one second order differential symmetry operator, this is the
Hamiltonian (may be displaced by a constant). For the non-stationary case the Hamiltonian in
general is not an integral of motion. So, our transformation is possible only for such systems
which have symmetry operators either of the second order in ∂x or of the first order in ∂x and ∂t.
In other words

L+L = h0 − α, L+L = g0 − α (7)

and

LL+ = h1 − α, LL+ = g1 − α. (8)

We denote by g0 and g1 corresponding symmetry operators for the nonstationary Schrödinger
equation. These relations may be treated as factorizations of the operators g0 (h0) and g1 (h1).

It follows from (7) and (8) that for the non-stationary case the following intertwining relations
take place

Lg0 = g1L, g0L
+ = L+g1. (9)

Moreover, when a Hilbert space is introduced and formally adjoint operator coincides with
the adjoint with respect to an inner product, the operators L+L and LL+ are nonnegative.
Hence, the symmetry operators g0 (h0) and g1 (h1) are bounded from below. Furthermore, by
constructions one has Lu = 0. It follows from here and (7) that g0u = αu.
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The intertwining relations and factorization properties may be rewritten in another form.
Let us introduce the following matrices

H =
(

h0 0
0 h1

)
, G =

(
g0 0
0 g1

)

and

Q+ =
(

0 L+

0 0

)
, Q =

(
0 0
L 0

)
.

It is easy to see now that the factorization property may be rewritten in the form

Q+Q + QQ+ = H− αI, Q+Q + QQ+ = G − αI,

where I is the unity 2 × 2 matrix, and the intertwining relations result in

QH−HQ = 0, QG − GQ = 0.

We see from here that the operators H, Q, Q+ or G, Q, Q+ form a simplest superalgebra. In
the time-dependent case the operators G, Q, Q+ depend on time. Therefore we have a time-
dependent superalgebra.

The operators L and L+ have non-trivial kernels. Nevertheless if one introduces the space
of the solutions of the initial equation, T0, and the space of the solutions of the transformed
equation, T1, one can establish a one-to one correspondence between these spaces. Let us
decompose the spaces T0,1 into a direct sums

T0,1 = T 0
0,1 ⊕ T 1

0,1, T 1
0 = ker L+L, T 1

1 = kerLL+.

The spaces T 1
0,1 are two-dimensional. It is clear by constructions that u ∈ T 1

0 . The equation
L+L = 0 except for u has another solution linearly independent with u which has the form

ũ = uL−2
1

∫
dx

uu
.

It is easy to show that the function v = Lũ = 1/(L1u ) is such that L+v = 0. This means
that v ∈ kerLL+. Another solution of the equation LL+ = 0 linearly independent with v has
the form ṽ = vL−2

1

∫
1/(vv ) dx and L+ṽ = u. Once we know the basis functions u, ũ ∈ T 1

0

and v, ṽ ∈ T 1
1 we can define a linear one-to-one correspondence between T 1

0 and T 1
1 by defining

the correspondence between the bases: u ←→ ṽ and ũ ←→ v. The equations L+Lψ = 0
and LL+ϕ = 0 has no solutions when solving on T 0

0 and T 1
0 respectively. These operators are

hence invertible on these spaces. This means that they establish the one-to-one correspondence
between T 0

0 and T 1
0 . So, we have established the one-to one correspondence between T0 and T1.

This correspondence is very useful for finding all square integrable solutions of the transformed
equation. It is easy to see that the function ϕ = Lψ is square integrable provided so is ψ ∈ T 0

0

and when ψ is not square integrable ϕ is not either. Hence, to find all square integrable solutions
of the transformed equation it remains to analyze the functions v and ṽ.

As I have mentioned, u should be a nodeless solution of the initial Schrödinger equation and
the operator g0 is bounded from below. Let E0 be its lower bound. Then, according to the
oscillator theorem u may be nodeless only if α ≤ E0. When g0 has a discrete spectrum, E0 may
be associated with the ground state level. If we take α = E0 then neither v nor ṽ are square
integrable and this level will be absent in the spectrum of g1. All other levels of g0 are unchanged
in the course of the Darboux transformation. When α < E0 there are two possibilities. The
first one corresponds to the case when the function v = 1/(L1u ) is square integrable. In this
case the operator g1 has an additional discrete spectrum level with respect to g0. In the second
case neither v nor ṽ are square integrable and g1 has exactly the same spectrum as g0, i.e. they
are strictly isospectral.
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3 Chains of transformations and parasupersymmetry

Once we know the potential V1 we can take it as V0 and realize the Darboux transformation
once again, etc. In such a way we obtain a chain of exactly solvable symmetry operators

h0 → h1 → · · · → hN , g0 → g1 → · · · → gN (10)

and a chain of first order transformation operators

L0,1 → L1,2 → · · · → LN−1,N .

If one is not interested in the intermediate operators, one can expunge all the intermediate
transformation functions from the final result and express it only in terms of solutions of the
initial equation. Moreover, in this case one does not have to impose the reality condition on the
intermediate potentials. This leads to the following formulae for solutions of the transformed
equation

ϕ = L0N (t)W (u1, u2, . . . , uN )

∣∣∣∣∣∣∣∣
u1 u2 · · · ψ
u1x u2x · · · ψx

· · · · · · · · · · · ·
u

(N)
1x u

(N)
2x · · · ψ

(N)
x

∣∣∣∣∣∣∣∣
. (11)

Here g0uk = αkuk. For the stationary case L0N (t) = 1 and this formula reduces to the known
Krum–Krein formula [6, 7]. The formula (11) defines an N -order transformation operator ϕ =
L0,Nψ, L0,N = LN−1,NLN−2,N−1 · · ·L0,1. This operator is an intertwiner for the symmetry
operators g0 and gN . The operators L0,N and its adjoint L+

0,N factorize now a polynomial of the
operators g0 and gN

L+
0,NL0,N =

N∏
k=1

(h0 − αk), L+
0,NL0,N =

N∏
k=1

(g0 − αk), (12)

L0,NL+
0,N =

N∏
k=1

(hN − αk), L0,NL+
0,N =

N∏
k=1

(gN − αk). (13)

Let us consider a chain in which all elements are good. Such chains are known as completely
reducible ones. For this chain one can consider nth order transformation operators

Lp,p+n = Lp+n−1,p+nLp+n−2,p+n−1 · · ·Lp,p+1, n ≤ N

and their adjoint. They factorize polynomials of the symmetry operators gp and gp+n

L+
p,p+nLp,p+n =

n∏
k=1

(gp − αp+k), Lp,p+nL+
p,p+n =

n∏
k=1

(gp+n − αp+k)

and they are intertwiners for gp and gp+n and for the Schrödinger equations with the Hamilto-
nians hp and hp+n.

Let us introduce now the diagonal matrix operators

H = diag (h0, h1, . . . , hN ), G = diag (g0, g1, . . . , gN )

and nilpotent supercharges

Q+
p ,q = Lp,qep,q, Qp,q = L+

p,qeq,p,
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where ep,q is (N + 1) × (N + 1) matrix with a single non-zero entry which is equal to one and
stands at the intersection of pth column and qth row.

Instead of the chain of the Schrödinger equations one can write now the single equation
(supersymmetric Schrödinger equation)

(iI∂t −H)Ψ(x, t) = 0.

Intertwining relations between transformation operators and i∂t −hp are equivalent to the com-
mutation of the supercharges Qp,q with iI∂t − H. This means that all Qp,q are integrals of
motion for the system with the superhamiltonian H. The condition of the complete reducibility
leads to the following non-linear algebra

Qs,pQp,q = Qs,q, N + 1 ≥ q > p > s,

Q+
p,p+nQp,p+n+m =

n∏
i=1

(G0 − αp+i)Qp+n,p+n+m, p + n + m ≤ N + 1,

Qp−n−m,pQ+
p−n,p =

n∏
i=1

(G0 − αp+i−1)Qp−n−m,p−n, p − n − m ≥ 0, p ≤ N + 1,

Qp,p+nQ+
p,p+nQp,p+n =

n∏
i=1

(G0 − αp+i)Qp,p+n, p + n ≤ N + 1, n, m = 1, 2, . . .

Similar non-linear algebras are known for the stationary Schrödinger equation as parasuperal-
gebras (see e.g. [8, 9]). The operators involved in this algebra depend on time. Hence one has
here a time-dependent parasuperalgebra.

4 Time-dependent exactly solvable potentials

4.1 Harmonic oscillator with a time varying frequency

Consider first a time-dependent generalization of the harmonic oscillator

h0 = −∂2
x + ω2(t)x2. (14)

Some solutions of the Schrödinger equation with such a Hamiltonian are well-known but we
will need other solutions for using as transformation functions. To get them we will use the
method of separation of the variables in its general formulation as R-separation of variables
well-described in the book by Miller [10]. This method is based on classification of orbits in
adjoint representation of a symmetry group for a given equation.

Symmetry algebra of the Schrödinger equation with the Hamiltonian (14) is the well-known
Schrödinger algebra. Consider first representation of this algebra suitable for our purpose.

Operators a = ε∂x − i
2 ε̇x, a+ = ε̄∂x + i

2
˙̄εx, aa+ − a+a = 1

4 , where ε = ε(t) is a solution of
a classical equation of motion for the Harmonic oscillator with a time-varying frequency ε̈(t) +
4ω2(t)ε(t) = 0 are creation and annihilation operators and together with the identity operator
close the Heisenberg–Weil algebra. All operators of the Schrödinger algebra are constructed in
terms of a and a+

K1 = a − a+, K−1 = −i(a + a+), K0 = i,

K−2 = −i(a + a+)2, K2 = −i(a − a+)2, K0 = −2
[
a2 − (a+)2

]
.

Symmetry operators are classified by the orbits of adjoint representation of the symmetry
group. It is well-known that in the case under consideration there exist five different orbits. We
shall consider every orbit successively.
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Two orbits with representatives J1 = K1 and J1 = K2 give the same solution of the
Schrödinger equation

ψ = γ−1/2 exp
[
iλx

8γ
+

ix2γ̇

4γ
− iλ2δ

64γ

]
, (15)

2γ = ε + ε̄, 2iδ = ε − ε̄, ε̇ε̄ − ε ˙̄ε =
i

2
.

Using the function (15) we construct the transformation function

u = γ−1/2 cosh
λx

8γ
exp

[
ix2γ̇

4γ
− iλ2δ

64γ

]
, L1(t) = γ = (ε + ε)/2,

which gives us the following potential

V1 = ω2(t)x2 − λ2

32γ2
cosh−2 λx

8γ
.

When ω = 0 it reduces to the well-known one soliton potential. Therefore it may be considered
as a non-stationary generalization of the one soliton potential. The Fig. 1 shows the behavior
of this potential for ω = 1/2 (stationary case) and γ = 1

2 cos t. At the bottom of the harmonic
oscillator parabola one can see an additional minimum of the varying depth.

Figure 1. Potential with a time-dependent anharmonic member.

Using the same function (15) one can construct the transformation function of a more general
form

u = uλ + uλ̄ = γ−1/2 cosh
(

νx

8γ
+ µν

δ

32γ

)
exp

[
ix2γ̇

4γ
− iµx

8γ
+ i

(
ν2 − µ2

) δ

64γ

]
,

λ = −µ − iν, L1(t) = γ

which gives the following potential

V1 = ω2(t)x2 − ν2

32γ2
cosh−2

(
νx

8γ
+ µν

δ

32γ

)
. (16)

When ω = 0 this potential reduces to the known non-stationary soliton potential which gives
rise to a one soliton solution to the Kadomtsev–Petviashili (two-dimensional KdV) nonlinear
equation. The next figure shows the plot of this potential at different time-moments. Here an
additional minimum of a varying depth oscillates between the parabola walls.

The next orbit is presented by the operator J2 = K2 − K1. Corresponding solution of the
Schrödinger equation has the form

ψ = δ−1/2 exp

(
ix2 δ̇

4δ
− ix

γ

2δ1
+ i

γ3

6δ3
+ iλ

γ

δ

)
Q

(
2−1/2

(
x

δ
− γ2

2δ2

)
− 22/3λ

)
,
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Figure 2. Potential with a time-dependent anharmonic member at different time moments.

where γ = ε+ ε̄, iδ = ε− ε̄, and Q(z) is the Airy function satisfying the equation Qzz(z) = zQ(z).
Exactly solvable potential is expressed in this case in terms of the Airy function. To obtain a real
and regular on the whole real line potential one can realize a second order transformation with
the mutually conjugated transformation functions uλ and u

λ
. For ω = 0 the plot of one of these

potentials is shown by the Fig. 3.
The fourth orbit has the representative J3 = K2 − K−2 and creates the following solution of

the Schrödinger equation

ψ = γ−1/4
(ε

ε

)λ/2
exp

(
i
γ̇x2

8γ

)
Q

(
x

2
√

γ

)
, γ = εε,

where Q(z) is the parabolic cylinder function satisfying the equation Qzz(z)−(
z2/4 + λ

)
Q(z) =

0. At λ = −n − 1/2 one gets the discrete basis functions of corresponding Hilbert space

ψn = Nnγ−1/4

(
ε

ε

)n/2+1/4

exp
(

2iγ̇ − 1
16γ

x2

)
Hen

(
x

2
√

γ

)
,

where Hen(z) = 2−n/2Hn(z/
√

2) are Hermite polynomials.
The same functions with λ = n + 1/2 are suitable for the Darboux transformations and they

generate the following potential differences

Am,l
2 =

1
2γ

[
1 +

f ′′
ml(z)

fml(z)
−

(
f ′

ml(z)
fml(z)

)2
]

,

fml(z) = qm(z)ql+1(z) − ql(z)qm+1(z), z = x/(2
√

γ)

which are well-defined for m = 0, 2, 4, . . ., l = m+1, m+3, . . .. For m = 2 and l = 5 the behavior
of the transformed potential is shown by the Fig. 4.

Figure 3. Potential generated with the help of
the Airy function.

Figure 4. Potentials V m,l
2 (x, t) at m = 2 and

l = 5.
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One can take a general solution of the equation for the parabolic cylinder functions as trans-
formation function. For example, when λ = 1/2 one has

u = γ−1/4
(ε

ε

)
exp

(
2iγ̇ + 1

16γ
x2

) [
C + erf

(
x

2
√

2γ

)]
,

which gives the following potential

V1 = ω2(t)x2 − 1
4γ

[
1 − 2zQ−1(z)e−z2/2 − 2Q−2(z)e−z2

]
,

Q(z) =
√

π

2

[
C + erf

(
z√
2

)]
, z =

x

2
√

γ
, |C| > 1.

For ω = const �= 0 these potentials reduce to the known isospectral potentials with an equidistant
spectrum. For ω = 0 their behavior is shown by the Fig. 5. The cases a) and b) differ by the
values of parameters the potential depends on.

Figure 5. Time-dependent generalization of isospectral potentials.

4.2 Singular oscillator with a time dependent frequency

Consider now the following Hamiltonian:

h0 = −∂2
x + ω2 (t) x2 + gx−2.

Symmetry algebra of the Schrödinger equation with this Hamiltonian is su(1.1) ∼ sl(2, R). We
use the following representation for this algebra:

[K+ = 2
[(

a+
)2 − ε2gx−2

]
, K− = 2

[
a2 − ε2gx−2

]
,

K0 =
1
2

(K−K+ − K+K−) =
1
2

[K−, K+] .

Consider solutions of the Schrödinger equation which are eigenstates of K0: K0ϕλ(x, t) =
λϕλ(x, t). When λ = n + k, n = 0, 1, 2, . . . we have a discrete basis of the Hilbert space

ϕn(x, t) = 21/2−3k

√
n!

Γ (n + 2k)
γ−k

(
ε

ε

)n+k

x2k−1/2

× exp
[
i
x2γ̇

8γ
− x2

16γ

]
L2k−1

n

(
x2

8γ

)
, k =

1
2

+
1
4

√
1 + 4g, γ = εε.

To construct spontaneously broken supersymmetric model we need transformation functions
u(x, t) such that neither u(x, t) nor u−1(x, t) are from the Hilbert space and u(x, t) is nodeless
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for all real values of t and x > 0. These conditions are fulfilled for the functions

up(x, t) = γ−k

(
ε

ε

)−p−k

x2k−1/2 exp
[
i
x2γ̇

8γ
+

x2

16γ

]
L2k−1

p

(−x2

8γ

)
,

K0up(x, t) = −(p + k)up(x, t).

These transformation functions create the following exactly solvable family of potential diffe-
rences A(x, t) = ω2(t)x2 + gx−2 − V1(x, t):

A(x, t) = Ap(x, t) =
1
4γ

− 4k − 1
x2

− 1
8

(
xL2k

p−1 (z)

γL2k−1
p (z)

)2

+
x2L2k+1

p−2 (z) + 4γL2k
p−1 (z)

8γ2L2k−1
p (z)

, z = −x2

8γ
.

To construct a model with exact supersymmetry we need transformation functions u(x, t) such
that u−1(x, t) is square integrable on semiaxis x ≥ 0 and satisfies the zero boundary condition at
the origin for all values of t. The following solution of the Schrödinger equation may be chosen
in this case:

up(x, t) = γk−1

(
ε

ε

)k−p−1

x3/2−2k exp
[
i
x2γ̇

8γ
+

x2

16γ

]
L1−2k

p

(−x2

8γ

)
,

K0up (x, t) = (k − p − 1) up (x, t) .

It is not difficult to establish the possible values of p. If p is even it may takes the values
p < 2k− 1 and p = [2k] + 1, [2k] + 3, . . .. For odd p values we may use only p = [2k], [2k] + 2, . . .,
where [2k] ≡ entire (2k). For regular potential differences we obtain

Ap (x, t) =
1
4γ

+
4k − 3

x2
− 1

2

(
xL2−2k

p−1 (z)

2γL1−2k
p (z)

)2

+
x2L3−2k

p−2 (z) + 4γL2−2k
p−1 (z)

8γ2L1−2k
p (z)

.
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