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The notion of a scalar equation describing pseudo-spherical surfaces is reviewed. It is shown
that if an equation admits this structure, the existence of conservation laws, symmetries,
and quadratic pseudo-potentials, can be studied by geometrical means. As an application,
it is pointed out that the important Camassa–Holm and Hunter–Saxton equations possess
features considered to be characteristic of standard “soliton” equations: an infinite number of
local conservation laws, “Miura transformations”, a zero curvature formulation, and nonlocal
symmetries.

1 Introduction

In this contribution we review some recent developments linking differential geometry of surfaces
and integrability of nonlinear partial differential equations. We concentrate on the notion of a
scalar equation describing pseudo-spherical surfaces (or “of pseudo-spherical type”) introduced
by S.S. Chern and Keti Tenenblat [6, 18]: these equations share with the sine–Gordon equation
the property that their (suitably generic) solutions determine two-dimensional surfaces equipped
with metrics of constant Gaussian curvature −1.

Equations of pseudo-spherical type are introduced in Section 2, and we point out that equa-
tions possessing this structure are naturally the integrability condition of an sl(2, R)-valued
linear problem. We then survey in Section 3 two standard aspects of the geometric theory
of differential equations, conservation laws and symmetries: for equations describing pseudo-
spherical surfaces, they can be understood by geometrical means. In Section 4 we consider our
main application, the Camassa–Holm (Camassa and Holm [5]) and Hunter–Saxton (Hunter and
Saxton [8], Hunter and Zheng [9]) equations. We show that for these important examples, the
geometric approach reviewed in Sections 2 and 3 allows us to construct explicitly the following:
quadratic pseudo-potentials, Miura transformations, “modified” equations, local conservation
laws, zero curvature representations, and non-local symmetries.

2 Equations of pseudo-spherical type

This structure was introduced by S.S. Chern and K. Tenenblat in 1986 [6], motivated by the
fact that [17] generic solutions of equations integrable by the Ablowitz, Kaup, Newell and Segur
(AKNS) inverse scattering scheme determine – whenever their associated linear problems are
real – pseudo-spherical surfaces, that is, Riemannian surfaces of constant Gaussian curvature −1.

Definition 1. A scalar differential equation Ξ(x, t, u, ux, . . . , uxntm) = 0 in two independent
variables x, t is of pseudo-spherical type (or, it is said to describe pseudo-spherical surfaces) if
there exist one-forms ωα �= 0,

ωα = fα1(x, t, u, . . . , uxrtp) dx + fα2(x, t, u, . . . , uxstq) dt, α = 1, 2, 3 (1)
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whose coefficients fαβ are differential functions, such that the one-forms ωα = ωα(u(x, t)) satisfy
the structure equations

d ω1 = ω3 ∧ ω2, d ω2 = ω1 ∧ ω3, d ω3 = ω1 ∧ ω2, (2)

whenever u = u(x, t) is a solution to Ξ = 0.

We recall that a differential function is a smooth function which depends on x, t, and a finite
number of derivatives of u [13]. We sometimes use the expression “PSS equation” instead of
“equation of pseudo-spherical type”. Also, we exclude from our considerations the trivial case
when the functions fαβ all depend only on x, t.

Example 1. Burgers’ equation ut = uxx + uux + hx(x), is a PSS equation with

ω1 = ((1/2)u − (β/η))dx +
(
(1/2)ux + (1/4)u2 + (1/2)h(x)

)
dt,

ω2 = −ω3 = η dx + ((η/2)u + β)dt,

in which η �= 0 is a parameter, and β is a solution of the equation β2 − ηβx +
(
η2/2

)
h(x) = 0.

The geometric interpretation of Definition 1 is based on the following genericity notions ([15]
and references therein):

Definition 2. Let Ξ = 0 be a PSS equation with associated one-forms ωα, α = 1, 2, 3. A solution
u(x, t) of Ξ = 0 is I-generic if

(
ω3 ∧ ω2

)
(u(x, t)) �= 0, II-generic if

(
ω1 ∧ ω3

)
(u(x, t)) �= 0, and

III-generic if
(
ω1 ∧ ω2)(u(x, t)

) �= 0.

For instance, u(x, t) = x+t is a I- and III-generic solution of the PSS equation ut = uxx+ux

with associated one-forms ω1 = udx + uxdt, ω2 = dx, and ω3 = udx + uxdt.

Proposition 1. Let Ξ = 0 be a PSS equation with associated one–forms ωα.
(a) If u(x, t) is a I–generic solution, ω2 and ω3 determine a Lorentzian metric of Gaussian

curvature K = −1 on the domain of u(x, t), with connection one–form given by ω1.
(b) If u(x, t) is a II–generic solution, ω1 and −ω3 determine a Lorentzian metric of Gaussian

curvature K = −1 on the domain of u(x, t), with connection one–form given by ω2.
(c) If u(x, t) is a III–generic solution, ω1 and ω2 determine a Riemannian metric of Gaussian

curvature K = −1 on the domain of u(x, t), with connection one–form given by ω3.

As pointed out above, the main motivation for formulating Definition 1 is its relation with
integrable equations. The following notion is implicit in [6]:

Definition 3. An equation is geometrically integrable if it describes a non-trivial one-parameter
family of pseudo-spherical surfaces.

Proposition 2. A geometrically integrable equation Ξ = 0 with associated one-forms ωα, α =
1, 2, 3, is the integrability condition of a one-parameter family of sl(2, R)-valued linear problems.

Proof. The linear problem dψ = Ωψ, in which

Ω = Udx + V dt =
1
2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)
, (3)

is integrable whenever u(x, t) is a solution of Ξ = 0. �
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An important idea in integrable systems is that an equation Ξ = 0 is not just the integrability
condition of a linear problem ψx = Xψ, ψt = Tψ, but that the zero curvature equation Xt −
Tx + [X, T ] = 0 is equivalent to Ξ = 0. It is a crucial problem to formalize this remark within
the context of PSS equations. For evolutionary equations, we proceed thus [10, 15]: if ut =
F (x, t, u, . . . , uxk) is a kth order evolution equation, we consider the differential ideal IF generated
by the two-forms

du ∧ dx + F (x, t, u, . . . , uxk) dx ∧ dt, duxl ∧ dt − uxl+1 dx ∧ dt, 1 ≤ l ≤ k − 1,

on a manifold J with coordinates x, t, u, ux, . . . , uxk .

Definition 4. An evolution equation ut = F (x, t, u, . . . , uxk) is strictly pseudo-spherical if there
exist one-forms ωα = fα1 dx + fα2 dt, α = 1, 2, 3, whose coefficients fαβ are smooth functions
on J , such that the two-forms

Ω1 = dω1 − ω3 ∧ ω2, Ω2 = dω2 − ω1 ∧ ω3, Ω3 = dω3 − ω1 ∧ ω2, (4)

generate IF .

Note that local solutions of ut = F correspond to integral submanifolds of the exterior
differential system {IF , dx ∧ dt}. It follows that if ut = F is strictly pseudo-spherical, it is
necessary and sufficient for the structure equations Ωα = 0 to hold. The following lemma [14, 15],
used in Section 3 below, allows us to classify strictly pseudo-spherical equations [6, 10, 14]:

Lemma 1. Necessary and sufficient conditions for the kth order equation ut = F to be strictly
pseudo-spherical are the conjunction of (a) The functions fαβ satisfy fα1,uxa = 0; fα2,u

xk
= 0;

f2
11,u + f2

21,u + f2
31,u �= 0, in which a ≥ 1 and α = 1, 2, 3; and (b) F and fαβ satisfy the identities

−fα1,uF +
k−1∑
i=0

uxi+1fα2,uxi + fδ1fγ2 − fγ1fδ2 + fα2,x − fα1,t = 0, (5)

in which (α, δ, γ) is (1, 2, 3), (2, 3, 1), or (3, 2, 1).

3 Conservation laws and symmetries for PSS equations

By local conservation laws of Ξ = 0 we mean one-forms θ = fdx+gdt, f , g differential functions,
such that dHθ := (−Dtf + Dxg)dx ∧ dt = 0 on solutions of Ξ = 0, where Dx and Dt denote the
total derivatives operators with respect to x and t respectively [13]: cohomology questions [12]
are beyond the scope of this paper. Nonlocal conservation laws can be also considered [12], and
in fact, it is natural to study both cases simultaneously [18] when treating PSS equations. We
begin with a purely geometric result [6, 18]:

Proposition 3. Given a coframe
{
ω1, ω2

}
and corresponding connection one-form ω3 on a

surface M , there exists a new coframe
{

θ
1
, θ

2
}

and new connection one-form θ
3 on M satisfying

dθ
1 = 0, dθ

2 = θ
2 ∧ θ

1
, and θ

3 + θ
2 = 0, (6)

if and only if the surface M is pseudo-spherical.

Proof. Assume that the orthonormal frames dual to the coframes
{
ω1, ω2

}
and

{
θ
1
, θ

2
}

possess

the same orientation. The one-forms ωα and θ
α are connected by means of

θ
1 = ω1 cos ρ + ω2 sin ρ, θ

2 = −ω1 sin ρ + ω2 cos ρ, θ
3 = ω3 + dρ. (7)
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It follows that θ
1, θ

2, θ
3 satisfying (6) exist if and only if the Pfaffian system

ω3 + dρ − ω1 sin ρ + ω2 cos ρ = 0 (8)

on the space of coordinates (x, t, ρ) is completely integrable for ρ(x, t), and this happens if and
only if M is pseudo-spherical. �

Equations (6) and (8) determine geodesic coordinates on M . Now, if the equation Ξ = 0
describes pseudo-spherical surfaces with associated one-forms ωα = fα1dx + fα2dt, (6) and (8)
imply that

ω3(u(x, t)) + dρ − ω1(u(x, t)) sin ρ + ω2(u(x, t)) cos ρ = 0 (9)

is completely integrable for ρ(x, t) whenever u(x, t) is a local solution of Ξ = 0. Equations (6)
and (7) then imply that for each solution u(x, t) and a corresponding solution ρ(x, t) of (9), the
one-form θ1 = ω1 cos ρ + ω2 sin ρ is closed. If the functions fαβ can be expanded as power series
in a parameter η, so can ρ(x, t) and θ1. Thus, in principle, geometrically integrable equations
possess an infinite number of conservation laws. They may well be nonlocal, however, since they
depend on solutions of the Pfaffian system (9), see [18]. The following lemma [14] allows us to
construct them explicitly.

Lemma 2. Let Ξ = 0 be a PSS equation with associated one-forms ωα. Under the changes of
variables Γ = tan(ρ/2) and Γ̂ = cot(ρ/2), equation (9) and the one-form θ1 become,

−2dΓ =
(
ω3 + ω2

) − 2Γω1 + Γ2
(
ω3 − ω2

)
, (10)

Θ = ω1 − Γ
(
ω3 − ω2

)
, (up to an exact differential form) (11)

and

2dΓ̂ =
(
ω3 − ω2

) − 2Γ̂ω1 + Γ̂2
(
ω3 + ω2

)
, (12)

Θ̂ = −ω1 + Γ̂
(
ω3 + ω2

)
, (up to an exact differential form). (13)

We now turn to (generalized) symmetries. For ease of exposition, we restrict ourselves to
strictly pseudo-spherical equations. We recall that a differential function G is a generalized
symmetry of ut = F if and only if u(x, t) + τG(u(x, t)) is – to first order in τ – a solution of
ut = F whenever u(x, t) is a solution of ut = F .

Let ut = F be an mth order strictly pseudo-spherical equation with associated one-forms ωα.
Let u(x, t) be a local solution of ut = F , and set G = G(u(x, t)), in which G is a differential
function. We expand ωα(u(x, t) + τG(u(x, t)) about τ = 0, thereby obtaining an infinitesimal
deformation ωα +τΛα, Λα = gα1dx+gα2dt, of the one-forms ωα = ωα(u(x, t)). Lemma 1 implies

that gα1 = fα1,u(u(x, t))G, and gα2 =
m−1∑
i=0

fα2,uxi (u(x, t))
(
∂iG/∂xi

)
.

Theorem 1. Suppose that ut = F (x, t, u, . . . , uxm) is strictly pseudo-spherical with associated
one-forms ωα = fα1dx + fα2dt, α = 1, 2, 3, and let G be a differential function. The deformed
one-forms ωα + τΛα satisfy the structure equations of a pseudo-spherical surface up to terms of
order τ2 if and only if G is a generalized symmetry of ut = F .

Thus, generalized symmetries of strictly pseudo-spherical equations ut = F are identified
with infinitesimal deformations of the pseudo-spherical structures determined by ut = F which
preserve the Gaussian curvature to first order in the deformation parameter. The proof of
Theorem 1 appears in [14, 15]. We note, finally, that nonlocal symmetries (see [4, 12] for
a formal definition and applications of this important concept) can be also included in this
geometrical framework [15], and that Theorem 1 can be used (see [14, 15]) to show the existence
of (generalized, nonlocal) symmetries of evolutionary PSS equations.
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4 The Camassa–Holm and Hunter–Saxton equations

Several facts about the important Camassa–Holm [5] and Hunter–Saxton equations [8] (the
former derivated as a shallow water equation, the later describing weakly nonlinear unidirectional
waves) are already known: for example, their inverse scattering solutions have been found (Beals,
Sattinger and Szmigielski [2, 3]), their bi-Hamiltonian character has been discussed (Camassa
and Holm [5], Hunter and Zheng [9]) and, it has been proven that the Korteweg-de Vries,
Camassa–Holm and Hunter–Saxton equations exhaust (in a precise sense) the bi-Hamiltonian
equations which can be modeled as geodesic flows on homogeneous spaces related to the Virasoro
group (Khesin and Misio�lek [11]). It is shown in this section that these three equations are of
pseudo-spherical type, and that therefore they can be studied using the results summarized in
Sections 2 and 3. We begin with the classical KdV:

Example 2. The KdV equation ut = uxxx + 6uux describes pseudo-spherical surfaces [17, 6]
with associated one-forms ωα = fα1dx + fα2dt, in which

ω1 = (1 − u) dx +
(−uxx + ηux − η2u − 2u2 + η2 + 2u

)
dt, (14)

ω2 = η dx +
(
η3 + 2ηu − 2ux

)
dt, (15)

ω3 = (−1 − u) dx +
(−uxx + ηux − η2u − 2u2 − η2 − 2u

)
dt, (16)

and η is an arbitrary parameter. After rotating the coframe
{
ω1, ω2

}
and changing Γ for −Γ,

we can write the Pfaffian system (10) as

(a) Γx = −u − ηΓ − Γ2, (b) Γt =
(
Γxx − 3Γ2η − 2Γ3

)
x
.

It follows from the fact that KdV is strictly pseudo-spherical that if Γ solves (b), u as given by (a)
solves KdV. We thus recover the Miura transformation and the modified KdV equation. Now
take a solution u(x, t) of KdV and compute Γ(x, t, η) from (a). Equation (b) is invariant under
the transformation (Γ �→ −Γ, η �→ −η), and therefore (a) implies that u(x, t, η) = Γx(x, t, η) −
Γ(x, t, η)η−Γ(x, t, η)2 is a one-parameter family of solutions of KdV. It follows that u(x, t, η) =
u(x, t) + 2Γx(x, t, η), and therefore we also recover the classical Darboux transformation!

We now consider the Camassa–Holm (CH)

m = uxx − u, mt = −mx u − 2 mux, (17)

and Hunter–Saxton (HS) equations

m = uxx, mt = −mx u − 2 mux. (18)

Below and henceforth, we let ε be equal to 1 for CH and 0 for HS.

Theorem 2. The Camassa–Holm and Hunter–Saxton equations, (17) and (18) respectively,
describe pseudo-spherical surfaces.

Proof. We consider one-forms σα, α = 1, 2, 3, given by

σ1 =
(
m − β + ε η−2(β − 1)

)
dx

+
(−uxβ η−1 − β η−2 − u m − 1 + uβ + ux η−1 + η−2

)
dt, (19)

σ2 = η dx +
(−β η−1 − η u + η−1 + ux

)
dt, (20)

σ3 = (m + 1) dx +
(

ε u η−2(β − 1) − u m + η−2 +
ux

η
− u − β

η2
− uxβ

η

)
dt, (21)
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in which the parameters η and β are constrained by the relation

η2 + β2 − 1 = ε

[
β − 1

η

]2

. (22)

It is not hard to check that the structure equations (2) are satisfied whenever u(x, t) is a solution
of (17) (if m = uxx − u) and whenever u(x, t) is a solution of (18) (if ε = 1 and m = uxx − u)
and whenever u(x, t) is a solution of (18) (if ε = 0 and m = uxx). �

The fact that the CH equation is of pseudo-spherical type first appeared in [16]. A natural
way to dispense with the constraint (22) is by using a parameterization of the curve η2+β2−1 =
ε [(β − 1)/η]2. We take

η =
√

ε + 1 − s2, β =
ε

s − 1
− s. (23)

It follows that the CH and HS equations are geometrically integrable, and it is not difficult to
write down sl(2, R)-valued linear problems associated to them, simply by applying Proposition 2.

We turn to the quadratic pseudo-potential (12) associated with the CH and HS equations.
After parameterizing the one-forms σα using (23), rotating the resulting forms via (7), applying
the transformation Γ̂ �→ γ+

√
ε + 1 − s2/(1−s), and setting s−1 = 1/λ, we obtain the following

result:

Theorem 3. The CH equation (17) and the HS equation (18) admit quadratic pseudo-poten-
tials γ determined by

m = γx +
1
2λ

γ2 − 1
2
λ ε, γt =

γ2

2

[
1 +

1
λ

u

]
− uxγ − u m + ε

[
1
2
uλ − 1

2
λ2

]
, (24)

in which λ �= 0 is a parameter. Moreover, equations (17) and (18) possess the parameter-
dependent conservation law

γt = λ

(
ux − γ − 1

λ
uγ

)
x

. (25)

In view of Example 2, it is natural to postulate the first equation of (24) as the analog of the
Miura transformation for the CH and HS equations, and (25) as the corresponding “modified”
equation. Note that, in contradistinction with the KdV case, the modified CH and HS equations
are nonlocal equations for γ. We also remark that equations (24) determine very simple linear
problems for the CH and HS equations: setting γ = ψ1/ψ2 and replacing into (24), we find that
the compatibility condition of the linear problem dψ = (Xdx + Tdt)ψ, in which ψ = (ψ1, ψ2)t,
and

X =
1
2

[
0 ε λ + 2 m

λ−1 0

]
, T =

1
2

[ −ux −2u m + ε λu − ε λ2

−1 − uλ−1 ux

]
, (26)

is precisely the CH equation (17) (if m = uxx − u) and the HS equation (18) (if m = uxx). It is
not hard to check that this linear problem is related to the one obtained from (3) and (19)–(21)
by a gl(2, R)-valued gauge transformation.

We now use (24) and (25) to construct conservation laws for the CH and HS equations.

Setting γ =
∞∑

n=1
γnλn/2 yields the conserved densities

γ1 =
√

2
√

m, γ2 = −1
2

ln(m)x, γ3 =
1

2
√

2
√

m

[
ε − m2

x

4 m2
+ ln(m)xx

]
, (27)

γn+1 = − 1
γ1

γn,x − 1
2γ1

n∑
j=2

γj γn+2−j , n ≥ 3, (28)
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while the expansion γ = ε λ +
∞∑

n=0
γnλ−n implies

γ0,x + ε γ0 = m, γn,x + ε γn = −(1/2)
n−1∑
j=0

γj γn−1−j , n ≥ 1. (29)

It is not hard to see [16] that, in the CH case, the local conserved densities γn determined by (27)
and (28) correspond to the ones found by Fisher and Schiff [7] using an “associated Camassa–
Holm equation”, while (29) yields the local conserved densities u, u2

x + u2, and uu2
x + u3, and a

sequence of nonlocal conservation laws.
We finish with a theorem on nonlocal symmetries for the Camassa–Holm and Hunter–Saxton

equations:

Theorem 4. Let γ, δ and β be defined by the equations

γx = m − (1/2λ) γ2 + ε (1/2)λ, γt = λ (ux − γ − (1/λ)uγ)x; (30)
δx = γ, δt = λ (ux − γ − (1/λ)uγ); (31)

βx = m e(1/λ) δ, βt = e(1/λ) δ
(−(1/2) γ2 + ε (1/2)λ2 − u m

)
; (32)

which are compatible on solutions of (17) and (18). The systems of equations (17), (30)–(32)
and (18), (30)–(32), possess the classical symmetry

W = γ e(1/λ) δ ∂

∂u
+

(
mx +

2
λ

γ m

)
e(1/λ) δ ∂

∂m
+ m e(1/λ) δ ∂

∂γ

+ β
∂

∂δ
+

(
m e(2/λ) δ +

1
2λ

β2

)
∂

∂β
. (33)

Thus, in particular, the evolutionary vector field

V = γ e(1/λ) δ ∂

∂u
+

(
mx +

2
λ

γ m

)
e(1/λ) δ ∂

∂m

is a one-parameter family of nonlocal symmetries for (17) and (18).

Theorem 4 can be verified using the MAPLE package VESSIOT developed by I. Anderson
and his coworkers, see [1]. We remark that it is certainly possible (see [16] for the CH case) to
find the flow of W , and therefore Theorem 4 gives us a method to construct solutions to the CH
and HS equations!
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