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In [1, 2, 3, 4, 5] there was proposed a method of a factorization of PDE. The method is based
on reduction of complicated systems to more simple ones (for example, due to dimension
decrease). This concept is proposed in general case for the arbitrary PDE systems, and its
concrete investigation is developing for the heat equation case. The category of second order
parabolic equations posed on arbitrary manifolds is considered. In this category, for the given
nonlinear heat equation we could find morphisms from it to other parabolic equations with
the same or a smaller number of independent variables. This allows to receive some classes
of solutions of original equation from the class of all solutions of such a reduced equation.
Classification of morphisms (with the selection from every equivalence class of the simplest
“canonical” representatives) is carried out. Necessary and sufficient conditions for canonical
morphisms of heat equation to the parabolic equation on the other manifold are derived.
These conditions are formulated in the differential geometry language. The comparison with
invariant solutions classes, obtained by the Lie group methods, is carried out. It is proved
that discovered solution classes are richer than invariant solution classes, even if we find any
(including discontinuous) symmetry groups of original equation.

1 General equation category

Definition 1. Task is a pair A = (NA, EA), where NA is a set, EA is a system of equations for
graph Γ ⊂ NA = MA × KA of a function u : MA → KA.

Let S (A) be a set of all subsets Γ ⊂ NA satisfying EA.

Definition 2. We will say that a (ordered) pair of a tasks A = (NA, EA), B = (NB, EB) admits
a map FAB : NA → NB, if for any Γ ⊂ NB, Γ ∈ S (B) ⇔ F−1

AB (Γ) ∈ S (A).

Of course, these definitions are rather informal, but they will be correct when we define more
exactly the notion “system of equations” and the class of assumed subsets Γ ⊂ NA. Let us
consider the general equation category E , whose objects are tasks (with some refinement of the
sense of the notion “system of equations”), and morphisms Mor (A, B) are admitted by the pair
(A, B) maps with natural composition law.

For the given task A we could define the set Mor (A,A) of all morphisms A in a framework
of some fixed subcategory A of the general equation category (let us call such morphisms and
corresponding tasks B “factorization of A”). The tasks, which factorize A, are naturally divided
into classes of isomorphic tasks, and morphisms Mor (A, ·) are divided into equivalence classes.

The proposed approach is conceptually close to the developed in [6] approach to investigation
of dynamical and controlled systems. In this approach as morphisms of system A to the system B
smooth maps of the phase space of system A to the phase space of system B are considered, which
transform solutions (phase trajectories) of A to the solutions of B. By contrast, in the approach
presented here, for the class of all solutions of reduced system B there is a corresponding class of
such solutions of original system A, whose graphs could be projected onto the space of dependent
and independent variables of B; when we pass to the reduced system, the number of dependent
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variables remains the same, and the number of independent variables does not increase. Thus
the approach proposed is an analog to the sub-object notion (in terminology of [6]) with respect
to information about original system solutions, though it is closed to the factor-object notion
with respect to relations between original and reduced systems.

If G is symmetry group of EA, then natural projection p : N → N/G is admitted by the pair
(A, A/G) in the sense of Definition 2, that is our definition is a generalization of the reduction
by the symmetry group. Instead of this the general notion of the group analysis we base on a
more wide notion “a map admitted by the task”. We need not require from the group preserving
solution of an interesting class (if even such a group should exist) to be continuous admitted by
original system. So we could obtain more general classes of solutions and than classes of invariant
solutions of Lie group analysis (though our approach is more laborious owing to non-linearity
of a system for admissible map). Besides, when we factorize original system, a factorizing map
defined here is a more natural object than the group of transformations operating on space of
independent and dependent variables of the original task.

2 Category of parabolic equations

Let us consider subcategory PE of the general equation category, whose objects are second order
parabolic equations:

E : ut = Lu, M = T × X, K = R,

where L is differential operator, depending on the time t, defined on the connected manifold X,
which has the following form in any local coordinates

(
xi

)
on X:

Lu = bij (t, x, u)uij + cij (t, x, u)uiuj + bi (t, x, u) ui + q (t, x, u) .

Here a lower index i denotes partial derivative by xi, form bij = bji is positively defined, cij =
cji. Morphisms of PE are all smooth maps admitted by PE task pairs. Let us describe this
morphisms:

Theorem 1. Any morphism of the category PE has the form

(t, x, u) → (
t′ (t) , x′ (t, x) , u′ (t, x, u)

)
. (1)

Set of isomorphisms of the category PE is the set of all one-to-one maps of kind (1).

Let us consider full subcategory PE ′ of the category PE , whose objects are equations ut = Lu,
where operator L in local coordinates has the following form:

Lu = bij (t, x) (a (t, x, u)uij + c (t, x, u)uiuj) + bi (t, x, u) ui + q (t, x, u) ,

and all morphisms are inherited from PE .

Theorem 2. If set of morphisms MorPE (A, B) is nonempty and A ∈ PE ′, then B ∈ PE ′.

3 Category of autonomous parabolic equations

Let us call the map (1) autonomous, if it has the form

(t, x, u) → (
t, x′ (x) , u′ (x, u)

)
. (2)

Let us call a parabolic equation from the category PE ′, defined on a Riemann manifold X,
autonomous, if it has the form:

ut = Lu = a (x, u) ∆u + c (x, u) (∇u)2 + ξ (x, u)∇u + q (x, u) , ξ (·, u) ∈ T ∗X.
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Theorem 3. Let F : A → B be a morphism of the category PE, F be an autonomous map, A be
an autonomous equation. Then we could endow with Riemann metric the manifold, on which B
is posed, in such a way, that B becomes an autonomous equation.

Let APE be the subcategory of PE ′, objects of which are autonomous parabolic equations,
and morphisms are autonomous morphisms of the category PE .

4 Classification of morphisms of nonlinear heat equation

Let us consider a nonlinear heat equation A ∈ APE , posed on some Riemann manifold X:

ut = a (u) ∆u + q(u). (3)

(note that any equation ut = a(u)∆u + c(u)(∇u)2 + q(u)) is isomorphic to some equation (3) in
APE). We will investigate set of morphisms Mor (A,PE) and classes of solutions of equation A,
corresponding these morphisms.

Note, that two morphisms F : A → B and F ′ : A → B′ are called to be equivalent if there
exists such isomorphism G : B → B′ that F ′ = G ◦ F . From the point of view of classes of
original task solutions obtained from factorization, equivalent morphisms have the same value,
that is solution classes are the same for these morphisms. So it is interesting to select from any
equivalence class of the simplest (in some sense) morphism, or such morphism for which the
factorized equation is the simplest.

When we classify morphisms for the original equation (3), a form of coefficient a (u) is im-
portant. We will distinguish such option:

a(u) is arbitrary function

a(u) = a0(u − u0)λ a(u) = a0e
λu

a(u) = a0

The lower the option is situated on this scheme, the richer a collection of morphisms is. Note,
that similar relation is observed in the group classification of nonlinear heat equation [7].

Theorem 4. If a �= const then for any morphism of equation (3) into the category PE there
exists an equivalent in PE autonomous morphism (that is morphism of the category APE).

Let us give a map p : X → X ′ from the manifold X to the manifold X ′ and a differential
operator D on X. We will say that D is projected on X ′, if such a differential operator D′ on X ′

exists that the following diagram is commutative:

C∞ (X ′) p∗−−−−→ C∞ (X)

D′
�

�D

C∞ (X ′) −−−−→
p∗

C∞ (X)
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Theorem 5. Let a �= const. For any morphism of the equation A into the category PE there
exists an equivalent in PE autonomous morphism (t, x, u) → (t, y (x) , v (x, u)) A to B ∈ APE,
for which factorized equation B is vt = a (v)Lv + Q(v), operator L is projection onto Y at
map x → y (x) of the described below operator D (note that this condition is limitation on the
projection y (x)), where:

1) if A is arbitrary (not any of the following special form): D = ∆, v (x, u) = u;
2) if A is ut = a0u

λ (∆u + q0u) + q1u up to shift u → u − u0, λ �= 0, a0, q0, q1 = const:
Df = βλ−1 (∆ (βf) + q0βf) for some function β : X → R, v (x, u) = β−1 (x)u, Q = q1v;

3) if A is ut = a0e
λu (∆u + q0) + q1, λ �= 0, a0, q0, q1 = const: Df = eλβ (∆f + ∆β + q0) for

some function β : X → R, v (x, u) = u − β (x), Q = q1.

We will call such morphisms “canonical”. In the category PE the canonical representative
in any class of morphisms is defined uniquely up to diffeomorphism of manifold Y , and in the
category APE it is defined uniquely up to conformal diffeomorphism of Y .

Further we restrict ourselves by the investigation of the canonical maps for the first option,
that is will look for such maps p from the given Riemann manifold X onto arbitrary Riemann
manifolds Y , for which Laplacian on X is projected to some operator on Y (note that this
canonical maps will be canonical for given X in the cases (2), (3) too).

Note that isomorphic autonomous equations B, factorized given A, are distinguished only by
arbitrary transformations v → v′(y, v) and has the same projection p : x → y(x) up to conformal
diffeomorphism of Y . Therefore to find such projection p : X → Y for canonical morphism is to
find all autonomous morphisms from this equivalence class.

5 Factorizing of heat equation in R
3

Let DAPE be full subcategory of APE , whose objects are autonomous parabolic equations of
divergent shape:

ut = c(x, u)−1 div (k(x, u)∇u) + q(x, u),

and morphisms are autonomous morphisms of the category APE .

Theorem 6. Let X be a connected region of R
3 with Euclidean metric, Y be a manifold without

boundary, A do not have form (2 or 3) from Theorem 5. Then p define canonical morphism of
A in DAPE iff p is restriction on X of factorization R

3 under some (may be discontinuous)
group G of isometries.

6 Factorizing with dimension decrease by 1

Theorem 7. Let A do not have form (2 or 3) from Theorem 5, and (a) p : X → Y is a fibering;
(b) X and Y are oriented; (c) X is an open domain in complete Riemann space X̃; (d) dimY =
dimX − 1. Then p define canonical morphism in DAPE iff the following conditions fulfilled:

a) p is a superposition of maps p1 : X → Y ′ and p0 : Y ′ → Y ;

b) p1 : X → Y ′ is a restriction on X of the projection X̃ → X̃
/

G1, where G1 is some

1-parameter subgroup of group Isom
(
X̃

)
of all isometries of X̃;

c) p0 : Y ′ → Ỹ is isomeric covering (for the metric on Y ′, inherited from X);
d) for the vector field η generating group G1, the function ϑ = 〈η, η〉, defined on Y ′, is

projectible on Y .
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7 Factorizing with dimension decrease by 1:
comparison with group analysis

As it was shown in the Section 5, when we were factorizing heat equation in R
3 with Euclidean

metric, the class of correspondent (3D) solutions of A coincides with a class of solutions of A,
which are invariant under some (maybe discontinuous) group of isometries of R

3.
But these results about coincidence of factorizing maps for the heat equation in R

3 with
Euclidean metric with factormaps by symmetry groups (that is isometries groups) are accidental.

At first, projection p0 : Y ′ → Y from previous section is not necessarily generated by some
group of transformation of Y ′.

At second, let even Y ′ = Y /G0, where G0 is some discrete group of the isometries of Y ′.
The question is: could group G0 be lifted to some group of the isometries of X, which preserves
projection onto Y ?

Let the group G1 be fixed that satisfies conditions of Theorem 7. We consider differential-
geometric connection χ on a fibering p1 : X → Y ′ with the structural group G1, which horizontal
planes are orthogonal to G1 orbits.

Theorem 8. (necessary condition). If a discrete group G0, which operates on Y ′ and satisfies
conditions of the Theorem 7, could be lifted to the subgroup of Isom(X), then curvature form dχ,
projected on Y ′, would be invariant respectively G0.

Lemma 1. χ may be decomposed on a sum χ = p1∗χ′ + dh, where χ′ ∈ T ∗Y ′, h is a function
from X to H, H is fiber of p1 (that is either R, or circle R mod H, where H = const is integral χ
on a vertical cycle).

Theorem 9. (necessary and sufficient condition). A discrete group G0, operating on Y ′ and
satisfying conditions of the Theorem 7, could be lifted to the subgroup of Isom (X), iff ∀g ∈ G0

the form gχ′ − χ′ is:
– exact, if the fiber of p1 is simply connected;
– closed with periods, multiply H, if the fiber of p1 is multiply connected.

Particularly, if X = R
n, and G1 is the rotations group, η =

m∑
i=1

ai∂ϕi , m ≥ 3, or G1 is the

screw motions group, η = ∂z +
m∑

i=1
ai∂ϕi , m ≥ 2, then such groups G0 exist, which does not lift

on X.

8 Factorizing with dimension decrease

Let us equip X with connection generated by planes orthogonal to fibers.

Theorem 10. Let (a) p : X → Y be a fibering; (b) dim Y < dimX. Then p defines canonical
morphism to DAPE iff the following conditions fulfilled:

1) the fibers of p are parallel;
2) the transformation of a fiber over an initial point to a fiber over a final point changes

volumes proportionally when we translate along any curve on Y ;
3) the holonomy group preserves volume on a fiber.
Moreover, p define canonical morphism to APE iff conditions 1)–2) fulfilled.

Example 1. (dimX = 4, dim Y = 2). Let X = {(x, y, z, w)} with the metric

gij =




1 0 0 0
0 1 + α2 + β2 α β
0 α 1 0
0 β 0 1


 , α = xew, β = xez,
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Y = {(x, y)} with the Euclidean metric, p (x, y, z, w) = (x, y). Then map p and equation
vt = vxx + vyy are factorization of the equation

ut = uxx + uyy − 2αuyz − 2βuyw +
(
1 + α2

)
uzz

+ 2αβuzw +
(
1 + β2

)
uww + (αβ)w uz + (αβ)z uw,

where α = xew and β = xez, by the map p : (x, y, z, w) → (x, y). (The same is true for the
equations vt = a(v)∆v on Y and ut = a(u)∆u on X for arbitrary function a, but for simplicity we
will write linear equations in examples.) However the only transformations X, under which both
the last equation and all it’s solutions projected by p are invariant, are (x, y, z, w) → (x, y, w, z)
and identity. Moreover, another transformation with such properties does not exist even locally
(i.e. it could not be defined in any small neighborhood on X), even if we replace the requirement
“to keep the equation invariant” by the requirement “to be conformal”.

Example 2. (dimX = 3, dim Y = 2). Let X̃ = R
3 = {(x, y, z)} with the metric

gij =




1 + z2 z −z
z 2 −1
−z −1 1


 ,

Ỹ = {(x, y)} with the Euclidean metric. Let us consider group H of isometries X̃, generated
by the screw motion (x, y, z) → (x + 1,−y,−z) (H is projectible on Ỹ ), X = X̃

/
H, Y =

Ỹ
/
H, p (x, y, z) = (x, y). Y is homeomorphic to the Mobius band without a boundary; X is

homeomorphic to the torus without a boundary.
Then map p and equation exvt = (exvx)x + (exvy)y, or vt = vxx + vyy + vx on Y are factori-

zations of the equation

ut = uxx + uyy + ux + 2zuxz + 2uyz +
((

2 + z2
)
uz

)
z

on X. However the only transformation X, under which both the last equation and all projected
by p it’s solutions are invariant, is identity map. Moreover, there does not exist a non-identity
conformal transformation X, under which all projected by p solutions of the last equation are
invariant.

Example 3. (dim X = 3, dimY = 1). Let X = S1 × R
2 = {(x, y, z) : x ∈ R mod 1, y, z ∈ R},

equipped with the metric

gij =




α2 + β2 α β
α 1 0
β 0 1


 , α = −ez, β = 2y,

Ỹ = S1 = {x ∈ R mod 1} equipped with the Euclidean metric, p (x, y, z) = x. Then map p and
equation a−1(v)vt = vxx on Y are factorizations of the equation

ut = uxx +
(
1 + α2

)
uyy +

(
1 + β2

)
uzz + 2αβuyz − 2αuxy − 2βuxz + (αβ)y uz + (αβ)z uy,

on X. However the only transformation X, under which both the last equation and all projected
by p it’s solutions are invariant, is identity map.

Example 4. (dim X = 2, dimY = 1). Let X = R
2
/
G with the Euclidean metric, when G is

the group generated by the sliding symmetry respectively the straight line l. The orthogonal
projection of X onto the mean circumference (image of the line l) define equation vt = vyy on l,
factorized the equation ut = uxx + uyy on X. However the only transformation X, under which
both the last equation and all projected by p its solutions are invariant, is reflection with respect
to l.
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9 Factorization without dimension decrease

If dimX = dim Y , then p : X → Ỹ projected Laplacian iff it is isometric projection up to some
conformal transformation Y .

Example 5. Let manifold X be a plane without 3 points: A (0, 0), B (1, 0) and C (0, 2). Let’s
consider heat equation on X with metric gij = λ2 (x) δij :

λ2 (x)ut = u11 + u22, (4)

where λ (x) = ρ (x, A) ρ (x, B) ρ (x, C), ρ is the distance function (in usual plane metric). Let
Y = X, and map p : X → Y is given by the formula y = 1

4x4 − 1+2i
3 x3 + ix2, where x, y are

considered as points at a complex plane.
Because of |yx| = |x (x − 1) (x − 2i)| = λ (x), heat equation ut = u11 + u22 on Y , equipped

by Euclidean metric gij = δij , is factorisation of the equation (4) on the manifold
◦
X, which is

obtained by deleting of pre-images of images of zeroes of λ from X. However, there does not exist
a non-identical transformation of

◦
X, under which all projected by p solutions of equation (4)

are invariant. Moreover, there does not exist a non-identical transformation of any manifold X ′,
under which an equation (4) is invariant, if X ′ is obtained by deleting an arbitrary discrete set
of points from X.

Example 6. Let us consider an equation on X = R
2:

ut =
(
1 + |x|2

)2
(u11 + u22) . (5)

Let g be the transformation of R
2
/{0} that maps x ∈ X to the point, obtained from x by

inversion under the unit circle with a center in an origin and consequent reflection under this
center. Equation (5) is invariant with respect to g, but g is not defined at origin. However
the map p : X → Y = P

2 onto the projective plane, which past together points x and gx at
x �= 0, is defined on all X and gives smooth projection. Then inducing on Y heat equation is
factorization of original equation on X.
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