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An algebra generated by projections with relations of Temperley–Lieb type is considered.
Knowledge of Gröbner basis of the ideal allows to find a linear basis of the algebra. Some
questions of representation theory for this algebra were studied in [13]. Obtained in the
present paper are the additional relations, which hold in all finite-dimensional irreducible
∗-representations, although they do not hold in the algebra.

1 Introduction

Temperley–Lieb algebras generated by n projections p1, . . . , pn with relations

pipj = pjpi, |i − j| > 1, pipi±1pi = τpi, τ ∈ R,

appeared in [1, 2] in the context of ice-type models. On the other hand, they were applied
to studying of von Neumann algebras and problems of knots theory by V. Jones (see [3, 4]).
Representations of Temperley–Lieb algebras were studied and used by H. Wenzl, F.M. Goodman,
P.P. Martin (see, e.g., [5, 6, 7, 8, 9]) and other authors. Values of parameter τ such that the
representations exist were found, a description of irreducible representations was given, their
dimensions were calculated and other questions were considered.

In [13] we considered the analogous questions of representation theory for modification of
Temperley–Lieb algebra: algebra generated by projections p1, . . . , pn with relations

pipj = 0, |i − j| > 1, (i, j) �= (1, n) ; pipi±1pi = τpi, p1pnp1 = τp1, pnp1pn = τpn.

In the present paper we find the linear basis of this algebra and consider its properties. Fur-
thermore, some properties of the representations of the algebra are studied by using the results
of [13]. New relations in the finite-dimensional irreducible ∗-representations of the algebra allow
to prove that the representations obtained by the action of group Zn on the operators P1, . . . , Pn

are equivalent.
The paper is arranged as follows. In Section 2 we give main definitions and designations. A set

of values of parameter τ when the finite-dimensional ∗-representations exist and a description of
irreducible ∗-representations up to a unitary equivalence are presented (see [13]). In Section 3
we find the linear basis of algebra in question using the Diamond Lemma (see, e.g., [10, 11, 12])
and discovery additional relations in the finite-dimensional irreducible ∗-representations of the
algebra.

2 Description of all finite-dimensional irreducible
∗-representations of algebra TLτ,n,Γ

We are going to study ∗-algebra generated by n (n ≥ 3) projections with relations depending
on real parameter τ :

TLτ,n,Γ = C

〈
e, p1, . . . , pn | pi = p2

i = p∗i , pipjpi = γijpi,
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(γij) = Γ =




1 τ 0 · · · 0 τ
τ 1 τ 0 · · · 0

0 τ 1 τ
. . . 0

...
. . . . . . . . . . . .

...
0 0 · · · τ 1 τ
τ 0 · · · 0 τ 1




〉
.

The theorems giving information about all finite-dimensional ∗-representations of TLτ,n,Γ can
be found in [13], but we need some results about these representations here. First of all we
give the theorem about the set of the values of parameter τ when the ∗-representations exist
and the description of construction of operators of these representations. In the following we
consider only nontrivial finite-dimensional irreducible ∗-representations and name them simply
‘representations’. If π is a representation of algebra TLτ,n,Γ then Pi will denote π (pi) .

Theorem 1. Representations of algebra TLτ,n,Γ exist in finite-dimensional space H iff

τ ∈
[
0,

1
4 cos2 π

n

]
=: Σn.

Then, if τ = 0 all pi are orthogonal and if τ �= 0 then a basis of H exists such that operators of
the representation are as follows:

P1 = diag (1, 0, . . . , 0) ,

Pi =




0 · · · 0 0 0 0 · · ·
...

. . .
...

...
...

...
...

0 · · · 0 0 0 0 · · ·
0 · · · 0 τi−2

√
τi−2 − τ2

i−2 0 · · ·
0 · · · 0

√
τi−2 − τ2

i−2 1 − τi−2 0 · · ·
0 · · · 0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·




, i = 2, . . . , n − 1,

where τi = τ
1−τi−1

, i = 1, . . . , n − 3, τ0 = τ and the number of zeroes on the top of diagonal is
equal to i − 2.

Pn =




τ l1 l2 · · · ln−3 λ µ

l1
l21
τ

l1l2
τ · · · l1ln−3

τ
l1λ
τ

l1µ
τ

l2
l1l2
τ

l22
τ · · · l2ln−3

τ
l2λ
τ

l2µ
τ

...
...

...
. . .

...
...

...

ln−3
l1ln−3

τ
l2ln−3

τ · · · l2n−3

τ
ln−3λ

τ
ln−3µ

τ

λ̄ l1λ̄
τ

l2λ̄
τ · · · ln−3λ̄

τ
|λ|2
τ

λ̄µ
τ

µ l1µ
τ

l2µ
τ · · · ln−3µ

τ
µλ
τ

µ2

τ




,

where li = (−1)i τ
i−1∏
j=0

τj√
τj−τ2

j

. λ is such that


ln−3 + λ

√
τn−3 − τ2

n−3

τn−3





ln−3 + λ̄

√
τn−3 − τ2

n−3

τn−3


 =

τ2

τn−3
,

and µ2 = τ − τ2 −
n−3∑
j=1

l2j − |λ|2, µ ≥ 0.
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Proof. The proof of this theorem can be found in [13]. �

Remark 1. If τ ∈ Σn \{0} then dimension of H is equal to n if λ, µ �= 0, to n−1 if λ �= 0, µ = 0
and to n − 2 if λ = µ = 0 (i.e. τn−3 = 1).

In the following we assume that τ �= 0.

Remark 2. Theorem 1 gives explicit construction of operators of representations. One can
easily check that different λ’s define inequivalent representations. So, we say that each irreducible
representation of ∗-algebra TLτ,n,Γ is given by the number λ.

3 Linear basis in the algebra TLτ,n,Γ

To found a linear basis in the algebra TLτ,n,Γ we use the Diamond Lemma (see, e.g., [10, 11, 12]).
Let Fn = C 〈e, p1, . . . , pn〉 be a free associative algebra and W be a set of words on the

alphabet {e, p1, . . . , pn} with homogeneous lexicographic order and minimal element e.
Let I be the ideal generated by

R =
{
p2

i − pi, pipi±1pi − τpi, p1pnp1 − τp1, pnp1pn − τpn, pipj |
|i − j| > 1, (i, j) �= (1, n) , (n, 1)} .

It is not difficult to prove that R is the reduced Gröbner basis of the ideal I. This implies
that the next theorem holds:

Theorem 2. A linear basis of the algebra TLτ,n,Γ is:

e, p1, p1p2, . . . , (p1p2 . . . pn)k, (p1p2 . . . pn)k p1 . . . pj , k ∈ N, j = 1, . . . , n − 1;

p2, p2p3, . . . , (p2p3 . . . pnp1)
k , (p2p3 . . . pnp1)

k p2 . . . pj , k ∈ N, j = 2, . . . , n;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pn, pnp1, . . . , (pnp1p2 . . . pn−1)
k , (pnp1 . . . pn−1)

k pn . . . pj , k ∈ N, j = n, 1, . . . , n − 2

and adjoint elements of these words.

Direct calculations imply that the basis of modification of Temperley–Lieb algebra has the
analogous property to the basis of Temperley–Lieb algebra:

Proposition 1. Product of any two basis elements of algebra TLτ,n,Γ is either zero or a power
of τ times another basis element.

Proposition 2. For any representation π the following relations hold:

P1P2 · · ·PnP1 = f (λ) P1, PiPi+1 · · ·PnP1 · · ·Pi−1Pi = f (λ) Pi, i = 2, . . . , n,

where

f (λ) =
(

τn−3ln−3 +
√

τn−3 − τ2
n−3λ̄

) n−4∏
j=0

√
τj − τ2

j .

Note that these relations are not valid in the algebra TLτ,n,Γ because left and right parts of
the equations are the elements of the linear basis of the algebra TLτ,n,Γ.

Corollary 1. The algebra TLτ,n,Γ is infinite algebra. But for any finite-dimensional irreducible
∗-representation π the algebra π (TLτ,n,Γ) is infinite algebra.
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Corollary 2. (Action on the set {P1, . . . , Pn} of the group Zn.) Let π, π̃ be the representations
of the algebra TLτ,n,Γ such that π (pi) = Pi, π̃ (p1) = Pi, π̃ (p2) = Pi+1, . . ., π̃ (pn−i+2) = P1,
. . ., π̃ (pn) = Pi−1 (i = 1, . . . , n). Then π and π̃ are equivalent.

Proof. Theorem 1 implies that π̃ is equivalent to the representation π̂ such that π̂ (pi) = Pi

(but a parameter λ̂ which defines this representation is possible different from the parameter λ
that defines the representation π), i.e., there exists an unitary operator C that

CPiC
−1 = P1, CPi+1C

−1 = P2, . . . , CP1C
−1 = Pn−i+2, . . . , CPi−1C

−1 = Pn.

From Proposition 2 it follows that

P1P2 · · ·PnP1 = f
(
λ̂
)

P1

that implies

PiPi+1 · · ·PnP1 · · ·Pi−1Pi = f
(
λ̂
)

Pi.

But

PiPi+1 · · ·PnP1 · · ·Pi−1Pi = f (λ) Pi

that implies f (λ) = f
(
λ̂
)

or λ = λ̂ what proves the statement of Corollary 2. �
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