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After a short discussion of the intimate relation between the generalized statistics and su-
persymmetry, we review the recent results on the nonlinear supersymmetry obtained in
the context of the quantum anomaly problem and of the universal algebraic construction
associated with the holomorphic nonlinear supersymmetry.

Introduction

Nonlinear supersymmetry is a natural generalization of the usual linear supersymmetry [1, 2]. It
is realized variously in such different systems as the parabosonic [3] and parafermionic [4] oscil-
lator models, and the P, T -invariant models of planar fermions [5] and Chern–Simons fields [6].
It is also the symmetry of the fermion-monopole system [7, 8]. The algebraic structure of the
nonlinear supersymmetry resembles the structure of the finite W -algebras [9] for which the com-
mutator of generating elements is proportional to a finite order polynomial in them. In the
simplest case the nonlinear supersymmetry is characterized by the superalgebra of the form

[Q±, H] = 0, (Q±)2 = 0, {Q+, Q−} = Pn(H), (1)

where Pn(·) is a polynomial of the n-th degree. The nonlinear supersymmetry with such a su-
peralgebra was investigated for the first time by Andrianov, Ioffe and Spiridonov [10].

The pseudoclassical construction underlies the supersymmetric quantum mechanics of Witten
[1, 2] corresponding to the linear (n = 1) case of the superalgebra (1). Though the nonlinear
supersymmetry can also be realized classically, there is an essential difference from the linear
case: the attempt to quantize the nonlinear supersymmetry immediately faces the problem of
the quantum anomaly [3, 11]. It was shown [12] that the universal algebraic structure with
associated “integrability conditions” in the form of the Dolan–Grady relations [13] underlies the
so called holomorphic nonlinear supersymmetry [11]. This structure allows one to find a broad
class of anomaly-free quantum mechanical systems related to the exactly and quasi-exactly
solvable systems [14, 15, 16, 17, 18, 19], and gives a nontrivial centrally extended generalization
of the superalgebra (1) [12].

In this talk, after a short discussion of the intimate relation between the generalized statis-
tics and supersymmetry [3], we shall review the recent results on the nonlinear supersymmetry
obtained in the context of the quantum anomaly problem and of the universal algebraic con-
struction associated with the holomorphic nonlinear supersymmetry [11, 12].

Nonlinear supersymmetry in purely parabosonic systems

Some time ago it was shown that the linear supersymmetry can be realized without fermions
[20, 21, 22]. The nonlinear supersymmetry admits a similar realization revealing the close
relationship between the generalized statistics and supersymmetry [3]. The relationship can be
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observed in the following way. Let us consider a single-mode paraboson system defined by the
relations

[{a+, a−}, a±] = ±a±, a−a+|0〉 = p|0〉, a−|0〉 = 0,

where p ∈ N is the order of a paraboson [23]. Then the direct calculation shows that the pure
parabosonic system of the even order p = 2(k+1), k ∈ Z+, with the Hamiltonian of the simplest
quadratic form H = a+a− reveals a spectrum typical for the nonlinear supersymmetry: all its
states are paired in doublets except the k + 1 singlet states |2l〉 ∝ (a+)2l|0〉, l = 0, . . . , k. In
correspondence with this property, the system has two integrals of motion

Q+ = (a+)2k+1 sin2 π

4
{a+, a−}, Q− = (a−)2k+1 cos2

π

4
{a+, a−}, (2)

which together with the Hamiltonian form the nonlinear superalgebra (1) of the order n = 2k+1

with P2k+1(H) = H ·
k∏

m=1

(
H2 − 4m2

)
. This simplest system reflects the peculiar feature of the

parabosonic realization of supersymmetry: the supercharges are realized in the form of the
infinite series in a±, and the role of the grading operator is played here by R = (−1)N = cos πN ,
where N = 1

2{a+, a−} − 1
2p is the parabosonic number operator.

It is known that the deformed Heisenberg algebra with reflection

[a−, a+] = 1 + νR, {R, a±} = 0, R2 = 1, (3)

underlies the parabosons [24, 25]. This algebra possesses unitary infinite-dimensional represen-
tations for ν > −1, and at the integer values of the deformation parameter, ν = p − 1, p ∈ N,
is directly related to parabosons of order p [23, 24, 25]. On the other hand, at ν = −(2p + 1)
the R-deformed Heisenberg algebra has finite-dimensional representations corresponding to the
deformed parafermions of order 2p [25]. In the coordinate representation the operator R is
the parity operator and the operators a± can be realized in the form a± = 1√

2
(x ∓ iDν) with

Dν = −i
(

d
dx − ν

2xR
)
. In the context of the Calogero-like models, the operator Dν is known

as the Yang–Dunkl operator [26, 27], where R is treated as the exchange operator. In the
coordinate representation the Hamiltonian H = a+a− and supercharges (2) read as [3]

H =
1
2

(
− d2

dx2
+ x2 +

ν2

4x2
− 1 + ν

(
1

2x2
− 1

)
R

)
, (4)

Q+ = (Q−)† =
1

23(k+ 1
2)

((
− d

dx
+ x +

ν

2x

)
(1 − R)

)2k+1

(5)

with ν = 2k + 1. The system given by the Hamiltonian (4) can be treated as a 2-particle
Calogero-like model with exchange interaction, where x has a sense of a relative coordinate
and R has to be understood as the exchange operator [28, 29]. Therefore, at odd values of the
parameter ν, the class of Calogero-like systems (4) possesses a hidden supersymmetry, which
at ν = 1 is the linear (n = 1) supersymmetry in the unbroken phase, whereas at ν = 2k + 1,
the supersymmetry is characterized by the supercharges being differential operators of order
2k + 1 satisfying the nonlinear superalgebra (1). Recently the realization of the nonlinear
supersymmetry was extended within the standard approach with fermion degrees of freedom to
the case of multi-particle Calogero and related models [30].

Classical supersymmetry

Let us turn now to the classical formulation of the supersymmetry (1). For the purpose, we
consider a non-relativistic particle in one dimension described by the Lagrangian

L =
1
2
ẋ2 − V (x) − L(x)N + iθ+θ̇−, (6)
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where θ± are the Grassman variables, (θ+)∗ = θ−, N = θ+θ−, and V (x) and L(x) are two real
functions. The nontrivial Poisson–Dirac brackets for the system are {x, p}∗ = 1 and {θ+, θ−}∗ =
−i, and the Hamiltonian is

H =
1
2
p2 + V (x) + L(x)N. (7)

The Hamiltonian H and the nilpotent quantity N are the even integrals of motion for any
choice of the functions V (x) and L(x), and one can put the question: when the system (6) has
also local in time odd integrals of motion of the form Q± = B∓(x, p)θ±, where (B+)∗ = B−?
It is obvious that such odd integrals can exist only for a special choice of the functions V (x)
and L(x). Restricting ourselves to the physically interesting class of the systems given by the
potential V (x) bounded from below, we can generally represent it in terms of a superpotential
W (x): V (x) = 1

2W 2(x) + v, v ∈ R. Then all the supersymmetric systems are separated into the
three classes defined by the behaviour of the superpotential and the results can be summarized
as follows [11].

i) When the physical domain given by z = W (x)+ip includes the origin z = 0 (a < W (x) < b,
a < 0, b > 0), the corresponding supersymmetric system is characterized by the Hamiltonian
and the supercharges of the form

H =
p2

2
+

1
2
W 2(x) + v + W ′(x)

[
n + W (x)M

(
W 2(x)

)]
N, (8)

Q+ = (Q−)∗ = znei
∫ p
0 M(p2−y2+W 2(x))dyθ+, n ∈ Z,

where M(W 2) is an arbitrary regular function, |M(0)| < ∞. The appearance of the integer
parameter illustrates in this case the known classical “quantization phenomenon” [31]. The ap-
propriate canonical transformation reduces the system with these Hamiltonian and supercharges
to the form of the supersymmetric system with the holomorphic supercharges [11]:

H =
1
2
p2 +

1
2
W 2(x) + v + nW ′(x)θ+θ−, Q+ = (Q−)∗ = znθ+, n ∈ Z+. (9)

The integrals (9) obey the classical nonlinear superalgebra:{
Q−, Q+

}
∗ = −iHn, {Q±, H}∗ = 0. (10)

The presence of the integer number n in the Hamiltonian means that the instant frequencies of
the oscillator-like odd, θ±, and even, z, z̄, variables are commensurable. Only in this case the
regular odd integrals of motion can be constructed, and the factor zn in the supercharges Q±

corresponds to the n-fold conformal mapping of the complex plane (or the strip a < Re z < b)
on itself (or on the corresponding region in C).

ii) The physical domain is defined by the condition Re z ≥ 0 (or Re z ≤ 0) and also includes
the origin of the complex plane. But unlike the previous case, there are no closed contours
around z = 0. In this case the most general form of the Hamiltonian and the supercharge is

H =
p2

2
+

1
2
W 2(x) + v + W ′(x) [α + R(W (x))] N, Q+ = zαe

i
∫ ϕ

ϕ0
R(ρ cos λ) dλ

θ+, (11)

where α ∈ R, and we assume that the function R(W ) is analytical at W = 0 and R(0) = 0. By
the canonical transformation [11], the Hamiltonian and the supercharges can be reduced to

H =
1
2
p2 +

1
2
W 2(x) + v + αW ′(x)θ+θ−, Q+ = (Q−)∗ = zαθ+, α ∈ R+.
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iii) The physical domain is defined by the condition Re z > 0 (or Re z < 0), i.e. the origin of
the complex plane is not included. Though in this case the Hamiltonian and the supercharges
have a general form

H =
p2

2
+

1
2
W 2 + v + W ′(x)φ(W (x))N, Q+ = (Q−)∗ = f(H)ei

∫ ϕ
ϕ0

φ(ρ cos λ) dλ
θ+, (12)

where φ is some function, the appropriate canonical transformation reduces it to [11]

H =
1
2
p2 +

1
2
W 2(x) + v, Q± = θ±.

This means that classically the supersymmetry of any system with bounded non-vanishing su-
perpotential has a “fictive” nature.

In what follows we will refer to the nonlinear supersymmetry generated by the holomorphic
supercharges with the Poisson bracket (anticommutator) being proportional to the n-th order
polynomial in the Hamiltonian as to the holomorphic n-supersymmetry.

Though the form of the Hamiltonians (8), (11), and (12) can be simplified by applying in
every case the appropriate canonical transformation reducing the associated supercharges to the
holomorphic or antiholomorphic form, the quantization breaks the equivalence between the cor-
responding classical systems (even in the linear case n = 1) [11]. Moreover, alternative classical
forms for the Hamiltonians and associated supercharges are important because of the quantum
anomaly problem to be discussed below. Having in mind the importance of alternative classical
formulations of the nonlinear supersymmetry from the viewpoint of subsequent quantization,
one can look for the classical formulation characterized by the supercharges of the n-th degree
polynomial form in p [11]. The problem of finding such a formulation can be solved completely
in the simplest case n = 2, for which the supercharges are given by

Q± =
1
2

[
( ± ip + W (x))2 +

c

W 2(x)

]
θ±, c ∈ R, (13)

while the Hamiltonian is

H =
1
2

[
p2 + W 2(x) − c

W 2(x)

]
+ 2W ′(x)N + v. (14)

Note that the Hamiltonian (14) has the Calogero-like form: at W (x) = x its projection to the
unit of Grassman algebra takes the form of the Hamiltonian of the two-particle Calogero system.
Depending on the value of the parameter c, classically the Calogero-like n = 2 supersymmetric
system (14) is symplectomorphic to the holomorphic n-supersymmetry with n = 0 (c > 0),
n = 1 (c < 0) or n = 2 (c = 0) [11].

Quantum anomaly and quasi-exactly solvable (QES) systems

According to the results on the supersymmetry in pure parabosonic systems, a priori one cannot
exclude the situation characterized by the supercharges to be the nonlocal operators represented
in the form of some infinite series in the operator d

dx . Since such nonlocal supercharges have to
anticommute for some function of the Hamiltonian being a usual local differential operator of
the second order, they have to possess a very peculiar structure. We restrict ourselves by the
discussion of the supersymmetric systems with the supercharges being the differential operators
of order n. Classically this corresponds to the system (9) with the holomorphic supercharges or
to the system (14).

In the simplest case of the superoscillator possessing the nonlinear n-supersymmetry and
characterized by the holomorphic supercharges of the form (9) with W (x) = x, the form of the
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classical superalgebra {Q+
n , Q−

n } = Hn is changed for {Q+
n , Q−

n } = H(H − �)(H − 2�) · · · (H −
�(n − 1)). Moreover, it was pointed out in [3] that for W (x) �= ax + b a global quantum
anomaly arises in a generic case: the direct quantum analogues of the superoscillators and the
Hamiltonian do not commute, [Q±

n , Hn] �= 0. Therefore, we arrive at the problem of looking
for the classes of superpotentials and corresponding quantization prescriptions leading to the
anomaly-free quantum n-supersymmetric systems.

Let us begin with the quantum supercharges in the holomorphic form corresponding to the
classical n-supersymmetry,

Q± = (A∓)nθ±, where A± = ∓ �
d

dx
+ W (x). (15)

Choosing the quantum Hamiltonian in the form (7), from the requirement of conservation of
the supercharges, [Q±, H] = 0, one arrives at the supersymmetric quantum system given by the
Hamiltonian [11]

H =
1
2

(
−�

2 d2

dx2
+ W 2(x) + 2v + n�σ3W

′
)

, W (x) = w2x
2 + w1x + w0. (16)

For any other form of the superpotential, the nilpotent operators (15) are not conserved. The
family of supersymmetric systems (16) is reduced to the superoscillator at w2 = 0 with the
associated exact n-supersymmetry [3]. For w2 �= 0, the n-supersymmetry is realized always in
the spontaneously broken phase since in this case the supercharges (15) have no zero modes
(normalized eigenfunctions of zero eigenvalue).

One can also look for the supercharges in the form of polynomial of order n in the oscillator-
like operators A± defined in (15):

Q± =
(
A∓)n

θ± +
n−1∑
k=0

qn−k

(
A∓)k

θ±, (17)

where qk are real parameters which have to be fixed. As in the case of the supercharges (15),
the requirement of conservation of (17) results in the Hamiltonian (16) but with the exponential
superpotential [11]:

W (x) = w+eωx + w−e−ωx + w0, ω2 = − 24q

n (n2 − 1)
, (18)

where all the parameters w±,0 are real, while the parameter ω is real or pure imaginary depending
on the sign of the real parameter q, and for the sake of simplicity we put � = 1. In the limit
ω → 0 this superpotential is reduced to the quadratic form (16) via the appropriate rescaling of
the parameters w±,0.

The family of n-supersymmetric systems given by the superpotential (18) is tightly related
to the so called quasi-exactly solvable problems [15, 16, 17, 18, 19]. Indeed, both of the Hamil-
tonians constituting the supersymmetric Hamiltonian of the form (16) with the exponential
superpotential belong to the sl(2, R) scheme of one-dimensional QES systems [15, 16, 17]. Be-
sides, the QES family given by the superpotential (18) is related to the exactly solvable Morse
potential for some choice of the parameters [11].

The n = 2 non-holomorphic supersymmetry corresponding to equations (13), (14) occupies
an especial position. Like the linear supersymmetry, it admits the anomaly-free quantum formu-
lation in terms of an arbitrary superpotential. Indeed, the quantization of the supersymmetric
system (14) leads to [11]

H =
1
2

[
−�

2 d2

dx2
+ W 2 − c

W 2
+ v + 2�W ′σ3 + ∆(W )

]
, (19)
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Q+ = (Q−)† =
1
2

[(
�

d

dx
+ W

)2

+
c

W 2
− ∆(W )

]
θ+, (20)

∆ =
�

2

4W 2

(
2W ′′W − W ′2) . (21)

Looking at the quantum Hamiltonian (19) and supercharges (20), we see that the presence of the
quadratic in �

2 term (21) in the operators H and Q+ is crucial for preserving the supersymmetry
at the quantum level. Therefore, one can say that the quantum correction (21) cures the problem
of the quantum anomaly since without it the operators Q± would not be the integrals of motion.
The supercharges (20) satisfy the relation {Q+, Q−} = (H − v)2 + c, and the structure of the
lowest bounded states in the cases c > 0, c < 0 and c = 0 for v = 0 is reflected in the table and
on the figure (for the details see Ref. [11]).

E �

a)

� �

� �

� �

� �

b)

�

�

� �

� �

� �

� �

c)

�

� �

� �

� �

� �

� �

d)

�

�

�

� �

� �

� �

Figure. The four types of the spectra for the n = 2 supersymmetry for bounded states.

Table. The structure of the lowest states for the n = 2 supersymmetry.

c > 0 c = 0 c < 0

a) Completely broken phase, there are no singlet states + + +

b) One singlet state in either bosonic or fermionic sector + +

c) Two singlet states with E = 0, one is in fermionic
sector, another is in bosonic sector + +

d) Two singlet states in one of two sectors +

From this structure one can see, in particular, that the quantum theory “remembers” its
classical origin: the case c > 0 corresponding classically to the holomorphic n = 0 supersymmetry
gives the systems in the completely broken phase for any superpotential providing the existence
of bounded states.

In conclusion of the discussion of the nonlinear supersymmetry for the 1D quantum systems,
we note that for the first time the close relationship between the nonlinear supersymmetry and
QES systems was observed in Ref. [11]. Recently, it was demonstrated [32] that the so called
type A N -fold supersymmetry [33] being a generalization of the one-dimensional holomorphic
supersymmetry is, in essence, equivalent to the one-dimensional QES systems associated with
the sl(2, R) algebra.

Nonlinear supersymmetry on plane in magnetic field

The nonlinear holomorphic supersymmetry we have discussed has a universal nature due to the
algebraic construction underlying it and revealed in Ref. [12]. This universality allows us, in
particular, to generalize the above analysis to the case of the two-dimensional systems.
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The classical Hamiltonian of a charged spin-1/2 particle (−e = m = 1) with gyromagnetic
ratio g moving on a plane and subjected to a magnetic field B(x) is given by

H =
1
2
P2 + gB(x)θ+θ−, (22)

where P = p + A(x), A(x) is a 2D gauge potential, B(x) = ∂1A2 − ∂2A1. The variables
xi, pi, i = 1, 2, and complex Grassman variables θ±, (θ+)∗ = θ−, are canonically conjugate
with respect to the Poisson–Dirac brackets, {xi, pj}∗ = δij , {θ−, θ+}∗ = −i. For even values
of the gyromagnetic ratio g = 2n, n ∈ N, the system (22) is endowed with the nonlinear n-
supersymmetry. In this case the Hamiltonian (22) takes the form

Hn =
1
2
Z+Z− +

i

2
n

{
Z−, Z+

}
∗ θ+θ−, Z± = P2 ∓ iP1, (23)

which admits the existence of the odd integrals of motion

Q± = 2−
n
2

(
Z∓)n

θ± (24)

generating the nonlinear n-superalgebra (10). The n-superalgebra does not depend on the
explicit form of the even complex conjugate variables Z±. Therefore, in principle, Z± can be
arbitrary functions of the bosonic dynamical variables of the system.

The nilpotent quantity N = θ+θ− is, as in the 1D case, the even integral of motion. When
the gauge potential A(x) is a 2D vector, the system (23) possesses the additional even integral
of motion L = εijxipj . The integrals N and L generate the U(1) rotations of the odd, θ±,
and even, Z±, variables, respectively. Their linear combination J = L + nN is in involution
with the supercharges, {J, Q±}∗=0, and plays the role of the central charge of the classical n-
superalgebra. As we shall see, at the quantum level the form of the nonlinear n-superalgebra (10)
is modified generically by the appearance of the nontrivial central charge in the anticommutator
of the supercharges.

A spin-1/2 particle moving on a plane in a constant magnetic field represents the simplest case
of a quantum 2D system admitting the nonlinear supersymmetry. Such a system corresponds
to the n-supersymmetric quantum oscillator [12]. As in the case of the one-dimensional theory,
the attempt to generalize the n-supersymmetry of the system to the case of the magnetic field of
general form faces the problem of quantum anomaly. The generalization is nevertheless possible
for the magnetic field of special form [12].

To analyse the nonlinear n-supersymmetry for arbitrary n ∈ N, it is convenient to introduce
the complex oscillator-like operators

Z = ∂ + W (z, z̄), Z̄ = − ∂̄ + W̄ (z, z̄), (25)

where the complex superpotential is defined by ReW = A2(x), ImW = A1(x), and the notations
z = 1

2(x1 + ix2), z̄ = 1
2(x1 − ix2), ∂ = ∂z, ∂̄ = ∂z̄ are introduced.

The magnetic field is defined by the relation [Z, Z̄] = 2B(z, z̄). The n-supersymmetric Hamil-
tonian has the form

Hn =
1
4

{
Z̄, Z

}
+

n

4
[
Z, Z̄

]
σ3. (26)

For n = 1 we reproduce the usual supersymmetric Hamiltonian. Unlike the linear supersym-
metry, the nonlinear holomorphic supersymmetry exists only when the operators (25) obey the
relations[

Z,
[
Z,

[
Z, Z̄

]]]
= ω2

[
Z, Z̄

]
,

[
Z̄,

[
Z̄,

[
Z, Z̄

]]]
= ω̄2

[
Z, Z̄

]
. (27)
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Here ω ∈ C and ω̄ = ω∗. Using equation (27), one can prove algebraically by the mathematical
induction that for the system (26) the odd operators defined by the recurrent relations

Q+
n+2 =

1
2

(
Z2 −

(
n + 1

2

)2

ω2

)
Q+

n , Q+
0 = θ+, Q+

1 = 2−
1
2 Zθ+, (28)

are the integrals of motions, i.e. they are supercharges. One can make sure [11] that in the 1D case
these operators generate the nonlinear supersymmetry with the polynomial superalgebra (1).

In the representation (25) the conditions (27) acquire the form of the differential equations
for magnetic field:(

∂2 − ω2
)
B(z, z̄) = 0,

(
∂̄2 − ω̄2

)
B(z, z̄) = 0. (29)

The general solution to these equations is

B(z, z̄) = w+eωz+ω̄z̄ + w−e−(ωz+ω̄z̄) + weωz−ω̄z̄ + w̄e−(ωz−ω̄z̄), (30)

where w± ∈ R, w ∈ C, w̄ = w∗. On the other hand, for ω = 0 the solution to equation (29) is
the polynomial,

B(x) = c
(
(x1 − x10)2 + (x2 − x20)2

)
+ c0, (31)

with c, c0, x10, x20 being some real constants. Though the latter solution can be obtained
formally from (30) in the limit ω → 0 by rescaling appropriately the parameters w±, w, the cor-
responding limit procedure is singular and the cases (30) and (31) have to be treated separately.

Since the conservation of the supercharges is proved algebraically, the operators Z, Z̄ can
have any nature (the action of Z, Z̄ is supposed to be associative). For example, they can have
a matrix structure. With this observation the nonlinear supersymmetry can be applied to the
case of matrix Hamiltonians [34, 35, 36].

Thus, the introduction of the operators Z, Z̄ allows us to reduce the two-dimensional holo-
morphic n-supersymmetry to the pure algebraic construction. It is worth noting that in the
literature the algebraic relations (27) are known as Dolan–Grady relations. The relations of
such a form appeared for the first time in the context of integrable models [13].

The essential difference of the n-supersymmetric 2D system (26) from the corresponding 1D
supersymmetric system is the appearance of the central charge

Jn = −1
4

(
ω2Z̄2 + ω̄2Z2

)
+ ∂BZ̄ + ∂̄BZ − B2 +

n

2
∂̄∂Bσ3, (32)

[Hn, Jn] = [Q±
n , Jn] = 0. The anticommutator of the supercharges contains it for any n > 1. For

example, the n = 2 nonlinear superalgebra is

{
Q−

2 , Q+
2

}
= H2

2 +
1
4
J2 +

|ω|4
64

. (33)

The systems (26) with the magnetic field (30) of the pure hyperbolic (w = 0) or pure trigono-
metric (w± = 0) form can be reduced to the one-dimensional problems with the nonlinear
holomorphic supersymmetry [12].

Let us turn now to the polynomial magnetic field (31). One can see that this case re-
veals a nontrivial relation of the holomorphic n-supersymmetry of the 2D system to the non-
holomorphic 1D N -fold supersymmetry of Aoyama et al [33].

In the system (26) with the polynomial magnetic field (31) the central charge has the form

Jn =
1
4c

(
∂B(z, z̄)Z̄ + ∂̄B(z, z̄)Z − B2(z, z̄) +

n

2
∂̄∂B(z, z̄)σ3

)
. (34)
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It can be obtained from the operator (32) in the limit ω → 0 via the same rescaling of the
parameters of the exponential magnetic field which transforms (30) into (31). The essential
feature of this integral is its linearity in derivatives.

The polynomial magnetic field (31) is invariant under rotations about the point (x10, x20).
Therefore, one can expect that the operator (34) should be related to a generator of the axial
symmetry. To use the benefit of this symmetry, one can pass over to the polar coordinate system
with the origin at the point (x10, x20). Then the magnetic field is radial, B(r) = cr2 + c0. The
supercharges have the simple structure: Q+

n = 2−
n
2 Znθ+ = (Q−

n )†. As in the case ω �= 0, the
anticommutator of the supercharges is a polynomial of the n-th degree in Hn, {Q−

n , Q+
n } =

Hn
n + P (Hn, Jn), where P (Hn, Jn) denotes a polynomial of the (n − 1)-th degree. For example,

for n = 2 one has

{Q−
2 , Q+

2 } = H2
2 + cJ2.

For the radial magnetic field it is convenient to use the gauge

Aϕ =
1
4
cr4 +

1
2
c0r

2, Ar = 0. (35)

In this gauge the Hamiltonian (26) reads

Hn = − 1
2

(
∂2

r + r−1∂r − r−2
(
A2

ϕ(r) − 2iAϕ(r)∂ϕ − ∂2
ϕ

))
+

n

2
B(r)σ3, (36)

while the central charge (34) takes the form Jn = − i∂ϕ − c20
4c + n

2 σ3. Thus, the integral Jn

is associated with the axial symmetry of the system under consideration. The simultaneous
eigenstates of the operators Hn and Jn have the structure

Ψm(r, ϕ) =

(
ei(m−n)ϕχm(r)

eimϕψm(r)

)
. (37)

Since the angular variable ϕ is cyclic, the 2D Hamiltonian (36) can be reduced to the 1D
Hamiltonian. The kinetic term of the Hamiltonian (36) is Hermitian with respect to the measure
dµ = rdrdϕ. In order to obtain a one-dimensional system with the usual scalar product defined
by the measure dµ = dr, one has to perform the similarity transformation Hn → UHnU−1,
Ψ → UΨ with U =

√
r. Since the system obtained after such a transformation is originated

from the two-dimensional system, one should keep in mind that the variable r belongs to the
half-line, r ∈ [0,∞). After the transformation, the reduced one-dimensional Hamiltonian acting
on the lower (Bose) component of the state (37) reads as

H(2)
n = − 1

2
d2

dr2
+

c2

32
r6 +

c0c

8
r4 +

1
8

(
c2
0 − 2c(2n − m)

)
r2 +

m2 − 1
4

2r2
− 1

2
(n − m)c0. (38)

This Hamiltonian gives the well-known family of the quasi-exactly solvable systems [15, 16, 34,
19]. The superpartner H(1)

n acting on the upper (Fermi) component of the state (37) can be
obtained from H(2)

n by the substitution n → −n, m → m − n.
The reduced supercharges have the form

Q+
n = 2−

n
2 Znθ+ = (Q−

n )†, Zn =
(

A − n − 1
r

) (
A − n − 2

r

)
· · ·A,

where A = d
dr + W (r) and the superpotential is

W (r) =
1
4
cr3 +

1
2
c0r +

m − 1
2

r
.
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The operators Q±
n , H(i)

n , i = 1, 2, generate the non-holomorphic type A N -fold supersymmetry
discussed in [33]. The supersymmetry is exact for c > 0 (c < 0) and corresponding zero modes
of the supercharge Q+

n (Q−
n ) can be found. The relation of the N -fold supersymmetry with the

cubic superpotential to the family of QES system (38) with the sextic potential was also noted
in Ref. [37].

Resume

To conclude, let us summarize the main results of our consideration of the nonlinear supersym-
metry.

• Generalized statistics and supersymmetry are intimately related.

• Linear supersymmetry at the classical level is a particular case of a classical supersymmetry
characterized by the Poisson algebra being nonlinear in Hamiltonian.

• Any classical 1D supersymmetric system is symplectomorphic to the supersymmetric sys-
tem of the canonical form characterized by the holomorphic supercharges. There are three
different classes of the classical canonical supersymmetric systems defined by the behaviour
of the superpotential.

• The anomaly-free quantization of the classical 1D holomorphic n-supersymmetry is possi-
ble for the quadratic and exponential superpotentials.

• The nonlinear supersymmetry is closely related to the quasy-exactly solvable systems.

• The n = 2 supersymmetric Calogero-like systems (14) admit the anomaly-free quantization
for any superpotential; the specific quantum term (∼ �

2) “cures” the quantum anomaly
problem.

• The anomaly-free quantization of the classical 2D holomorphic n-supersymmetry fixes the
form of the magnetic field to be the quadratic or exponential one.

• Realization of the holomorphic n-supersymmetry in 2D systems leads to the appearance
of the central charge entering nontrivially into the superalgebra.

• The holomorphic nonlinear supersymmetry can be related to other known forms of non-
linear supersymmetry via the dimensional reduction procedure.

• There is the universal algebraic foundation associated with the Dolan–Grady relations
which underlies the holomorphic n-supersymmetry.

The universal algebraic structure underlying the holomorphic nonlinear supersymmetry opens
the possibility to apply the latter for investigation of the wide class of the quantum mechanical
systems including the models described by the matrix Hamiltonians, the models on the non-
commutative space, and integrable models [38].

Acknowledgements

M.P. thanks the organizers for hospitality and A. Zhedanov for useful discussions. The work
was supported by the grants 1010073 and 3000006 from FONDECYT (Chile) and by DICYT
(USACH).



518 M. Plyushchay and S. Klishevich

[1] Witten E., Dynamical breaking of supersymmetry, Nucl. Phys. B, 1981, V.188, 513–554.

[2] Cooper F., Khare A. and Sukhatme U., Supersymmetry and quantum mechanics, Phys. Rep., 1995, V.251,
267–385; hep-th/9405029.

[3] Plyushchay M., Hidden nonlinear supersymmetries in pure parabosonic systems, Int. J. Mod. Phys. A, 2000,
V.23, 3679–3698; hep-th/9903130.

[4] Klishevich S. and Plyushchay M., Supersymmetry of parafermions, Mod. Phys. Lett. A, 1999, V.14, 2739–
2752; hep-th/9905149.

[5] Grignani G., Plyushchay M. and Sodano P., A pseudoclassical model for P , T invariant planar fermions,
Nucl. Phys. B, 1996, V.464, 189–212; hep-th/9511072.

[6] Nirov Kh.S. and Plyushchay M.S., P , T invariant system of Chern–Simons fields: pseudoclassical model
and hidden symmetries, Nucl. Phys. B, 1998, V.512, 295–319; hep-th/9803221.

[7] De Jonghe F., Macfarlane A.J., Peeters K. and van Holten J.W., New supersymmetry of the monopole,
Phys. Lett. B, 1995, V.359, 114–117; hep-th/9507046.

[8] Plyushchay M.S., On the nature of fermion monopole supersymmetry, Phys. Lett. B, 2000, V.485, 187–192;
hep-th/0005122.

[9] De Boer J., Harmsze F. and Tjin T., Nonlinear finite W symmetries and applications in elementary systems,
Phys. Rept., 1996, V.272, 139–214; hep-th/9503161.

[10] Andrianov A.A., Ioffe M.V. and Spiridonov V.P., Higher derivative supersymmetry and the Witten index,
Phys. Lett. A, 1993, V.174, 273–279; hep-th/9303005.

[11] Klishevich S. and Plyushchay M., Nonlinear supersymmetry, quantum anomaly and quasi-exactly solvable
systems, Nucl. Phys. B, 2001, V.606, 583–612; hep-th/0012023.

[12] Klishevich S. and Plyushchay M., Nonlinear supersymmetry on the plane in magnetic field and quasi-exactly
solvable systems, Nucl. Phys. B, 2001, V.616, 403–418; hep-th/0105135.

[13] Dolan L. and Grady M., Conserved charges from self-duality, Phys. Rev. D, 1982, V.25, 1587–1604.

[14] Ulyanov V.V. and Zaslavskii O.B., New classes of exact solutions of the Schrödinger equation and a descrip-
tion of spin systems by means of potential field, Zh. Eksp. Teor. Fiz., 1984, V.87, 1724–1733.

[15] Turbiner A., Quasiexactly solvable problems and SL(2) group, Comm. Math. Phys., 1988, V.118, 467–474.

[16] Shifman M.A., New findings in quantum mechanics (partial algebraization of the spectral problem), Int. J.
Mod. Phys. A, 1989, V.4, 2897–2952.

[17] Ushveridze A., Quasi-exactly solvable models in quantum mechanics, Bristol, IOP Publishing, 1994.

[18] Finkel F., Gonzalez-Lopez A., Kamran N., Olver P.J. and Rodriguez M.A., Lie algebras of differential
operators and partial integrability, hep-th/9603139.

[19] Bender C.M. and Dunne G.V., Quasi-exactly solvable systems and orthogonal polynomials, J. Math. Phys.,
1996, V.37, 6–11; hep-th/9511138.

[20] Plyushchay M.S., Deformed Heisenberg algebra, fractional spin fields and supersymmetry without fermions,
Annals Phys., 1996, V.245, 339–360; hep-th/9601116.

[21] Plyushchay M.S., Minimal bosonization of supersymmetry, Mod. Phys. Lett. A, 1996, V.11, 397–408; hep-
th/9601141.

[22] Gamboa J., Plyushchay M. and Zanelli J., Three aspects of bosonized supersymmetry and linear differential
field equation with reflection, Nucl. Phys. B, 1999, V.543, 447–465; hep-th/9808062.

[23] Ohnuki Y. and Kamefuchi S., Quantum field theory and parastatistics, University Press of Tokyo, 1982.

[24] Macfarlane A.J., Generalized oscillator systems and their parabosonic interpretation, in Proc. Inter. Work-
shop on Symmetry Methods in Physics, Editors A.N. Sissakian, G.S. Pogosyan and S.I. Vinitsky, Dubna,
JINR, 1994, 319.

[25] Plyushchay M.S., Deformed Heisenberg algebra with reflection, Nucl. Phys. B, 1997, V.491, 619–634; hep-
th/9701091.

[26] Yang L.M., A note on the quantum rule of the harmonic oscillator, Phys. Rev., 1951, V.84, 788–790.

[27] Dunkl C.F., Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc., 1989,
V.311, 167–183.

[28] Polychronakos A.P., Exchange operator formalism for integrable systems of particles, Phys. Rev. Lett., 1992,
V.69, 703–705; hep-th/9202057.

[29] Polychronakos A.P., Exact spectrum of SU(N) spin chain with inverse square exchange, Nucl. Phys. B,
1994, V.419, 553–566; hep-th/9310095.



Nonlinear Supersymmetry 519

[30] Sasaki R. and Takasaki K., Quantum Inozemtsev model, quasi-exact solvability and N -fold supersymmetry,
J. Phys. A, 2001, V.34, 9533–9554; hep-th/0109008.

[31] Nirov K.S. and Plyushchay M., Symmetries and classical quantization, Phys. Lett. B, 1997, V.405, 114–120;
hep-th/9707070.

[32] Aoyama H., Nakayama N., Sato M. and Tanaka T., sl(2) construction of type-A N -fold supersymmetry,
Phys. Lett. B, 2001, V.519, 260–268; hep-th/0107048.

[33] Aoyama H., Sato M. and Tanaka T., General forms of a N -fold supersymmetric family, Phys. Lett. B, 2001,
V.503, 423–429; quant-ph/0012065.

[34] Turbiner A., Quasiexactly solvable differential equations, hep-th/9409068.

[35] Brihaye Y. and Kosinski P., Quasi-exactly solvable 2 × 2 matrix equations. J. Math. Phys., 1994, V.35,
3089–3098; hep-th/9307099.

[36] Finkel F., Gonzalez-Lopez A. and Rodriguez M.A., Quasi-exactly solvable spin 1/2 Schrödinger operators,
J. Math. Phys., 1997, V.38 2795–2811; hep-th/9509057.

[37] Dorey P., Dunning C. and Tateo R., Spectral equivalences from Bethe ansatz equations, J. Phys. A, 2001,
V.34, 5679–5704; hep-th/0103051.

[38] Klishevich S. and Plyushchay M., Nonlinear holomorphic supersymmetry, Dolan–Grady relations and On-
sager algebra, Nucl. Phys. B, 2002, to appear; hep-th/0112158.


