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We present a new form of supersymmetric quantum mechanics which is characterized by
presence of non-trivial central charges. We show that the corresponding extended SUSY
appears in a number of popular quantum mechanical models.

1 Introduction

Supersymmetric quantum mechanics (SUSY QM) [1] appeared first as a toy model for better
understanding of SUSY itself. However, it turns out that SUSY QM systems themselves are so
rich in structure and deal with new properties which became recently subjects per se studied by
many mathematicians and theoretical physicists. The basic problems and various applications
of SUSY quantum mechanics are discussed in a number of papers, refer, e.g., to surway [2].

Soon it appears that SUSY QM systems can admit more than two supercharges and so to have
richer symmetry called extended SUSY. Such extended SUSY has good physical grounds, since
there exists a number of realistic physical systems which admit more than two supercharges, see
e.g., [3, 4, 6, 7]. Moreover, it was demonstrated in [3, 6, 7] that the Schrödinger–Pauli and the
Dirac equations admit not only extended SUSY but also rather large algebras of discrete invo-
lutive symmetries isomorphic to gl(4, C) and gl(8, R) respectively. Thus it seams that extended
SUSY is closely connected to discrete symmetries.

In the present paper we continue in our investigations [3, 6, 7] and study QM systems which
admit extended SUSY. Moreover, we consider generalized extensions of symmetry superalgebras
generated by additional supercharges and even operators as well. We prove that the Coulomb,
Aharonov–Bohm–Colomb (ABC) and Aharonov–Casher systems admit extended SUSY with
six supercharges and central charge and, besides, they admit extended algebras of discrete
symmetries isomorphic to gl(8, R). All mentioned symmetries are responsible for degeneracy of
the corresponding energy spectra.

We introduce the concept of general SUSY QM systems with central charges, and prove that
many popular quantum mechanical models are perfect examples of them.

2 Quantum mechanics with extended SUSY

We say that the Schrödinger type equation

Hψ = Eψ (1)
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is supersymmetric and has N = 2n SUSY, if it admits a set of integrals of motion Q1, Q2, . . . , Qn

which commute with Hamiltonian H and satisfy the following relations

{Qa, Q̄b} = QaQ̄b + Q̄bQa = 2δabH, a, b = 1, 2, . . . , n,

{Qa, Qb} = {Q̄a, Q̄b} = 0 (2)

with δab being the Kronecker symbol and Q̄ = Q†.
For n = 1 we recognize in (2) the Witten superalgebra which is characteristic algebra ap-

pearing in SUSY QM models. This algebra contains two odd elements (supercharges) Q1 and Q̄1

and the only even element H, thus in this case we have N = 2 SUSY. For n > 1 one has a QM
model with the so-called extended SUSY. Realistic QM models admitting extended SUSY are
discussed in [3, 4, 6, 7].

Of course, relations (2) admit a formal generalization to the case when the number of even
elements is larger than 1. Then the corresponding defining relations can be transformed to the
following ones:

{Qa, Q̄b, } = 2δabH + Zab, a, b = 1, 2, . . . , n,

{Qa, Qb} = {Q̄a, Q̄b} = 0, (3)

where Zab are the so called central charges which commute with all elements Qa, Q̄a, H of the
superalgebra.

We shall show in Sections 3, 4 that such a generalization appears naturally for some popular
QM problems.

3 Extended SUSY for the Coulomb problem

First we shall consider the free Dirac equation

(γµpµ − m)ψ(x) = 0, (4)

where pµ = i ∂
∂xµ , µ = 0, 1, 2, 3, x = (x0, x1, x2, x3), γµ are the Dirac matrices.

It was shown in [3, 6] that equation (4) admits a 64-dimensional algebra of involutive discrete
symmetries. Basis elements of this algebra can be chosen in the following form

Γm, ΓmΓn, ΓmΓnΓp, I4, (5)

were m, n, p = 0, 1, . . . , 6, I4 is the 4 × 4 unit matrix,

Γµ = iγ4γµθ̂µ (no sum over µ), Γ4 = iγ4θ̂, γ4 = γ0γ1γ2γ3,

Γ5 = γ4γ2cθ, Γ6 = Γ0Γ1Γ2Γ3Γ4Γ5, (6)

θ̂ and c are reflection and complex conjugation operators defined by the following relations:

θ̂µψ(x) = ψ(θµx), θ̂ψ(x) = ψ(−x), cψ(x) = ψ∗(x),
θ0x = (−x0, x1, x2, x3), θ1x = (x0,−x1, x2, x3), θ2x = (x0, x1,−x2, x3),
θ3x = (x0, x1, x2,−x3).

Operators (5) transform solutions of the Dirac equation into solutions and form a Lie algebra
isomorphic to gl(8, R). We notice that the set of operators (5) include reflections Γµ, Γ4 and
pure rotations ΓµΓν as well.
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The Dirac equation with non-trivial potentials

Lψ ≡ (γµπµ − m) ψ = 0, πµ = pµ − eAµ (7)

does not admit all symmetry operators (5) but only a part of them instead. Nevertheless, we
shall show that for some vector-potentials Aµ equation (7) admits extra symmetries which form
basses of extended algebras isomorphic to (5).

As an example consider the relativistic Coulomb system described by the Dirac equation (7)
with

A1 = A2 = A3 = 0, eA0 =
α

|x| (8)

and |x| =
(
x2

1 + x2
2 + x2

3

)1/2
.

Equation (7), (8) admits a specific integral of motion discovered by Johnson and Lippman [8].
We present this constant of motion in the following form

Q̂ = mα
σ · x
|x| + iD

(
σ · p + iγ4

α

|x|
)

. (9)

Here D = γ0

(
σ · J − 1

2

)
with J = x × p + σ/2 is the Dirac constant of motion, σ = iγ × γ/2.

Operators Q̂ and D commute with the Dirac Hamiltonian H = γ0γ · p + γ0m + α
|x| and

anticommute among themselves. They are odd elements of the five dimensional superalgebra
which contains also three even elements, namely H, Q̂2 and D2. The commutation relations for
odd-even and even-even elements have the form [A, B] = 0.

We notice that eigenvalues of Hamiltonian H can be expressed via eigenvalues of D and Q̂.
Indeed, using the relations

D2 = J2 +
1
4
, Q2 = D2

(
H2 + m2

) − α2m2

and denoting eigenvalues of mutually commuting operators D2, Q2 and H by κ2, q2 and E
respectively, we obtain the following relation

E2 =
q2

κ2
+ m2

(
1 − α2

κ2

)
, κ = 0, 1, 2, . . . .

Using this expression we shall demonstrate that the Coulomb system defined in (7)and (8)
admits extended superalgebra which include six supercharges Qa, Q̄a, a = 1, 2, 3 and one central
charge Zab = δabZ where

Q1 = (1 + iΓ5Γ1Γ2)Q̂, Q̄1 = (1 − iΓ5Γ1Γ2)Q̂,

Q2 = i(Γ1 + Γ5)Γ2Γ3)Q̂, Q̄2 = i(Γ1 − G5)Γ2Γ3)Q̂,

Q3 = Γ5(1 + iΓ1Γ3)Q̂, Q̄3 = Γ5(1 − iΓ1Γ3)Q̂,

Z =
(
α2 − D2

)
m2/κ2, Ĥ = H2. (10)

Using the relations

[Γk, H] = [Γk, D] = 0, {Γk, Q} = {Γ5, Γa} = {Γ5, i} = 0, {Γa, Γb} = 2δab,

where k = 1, 2, 3, 5, a, b = 1, 2, 3, we find that operators (10) commute with H and satisfy super-
algebra (3). Thus, the Coulomb system admits N = 6 extended SUSY with non-trivial central
charge. This symmetry algebra is closely related to the 64-dimensional algebra of involutive
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symmetries described in [3, 6]. Indeed, for any q �= 0 we can define the following symmetry
operators of the stationary Dirac equation

Γ̂0 = iΓ1Γ2Γ3, Γ̂a = (Qa + Q̄a)/2q, Γ̂3+a = (Qa − Q̄a)/2iq, a = 1, 2, 3 (11)

which satisfy

{Γ̂K , Γ̂N} = 2gKN , K, N = 0, 1, . . . , 6.

The only nonzero elements of tensor gKN are g00 = g11 = g22 = g33 = −g44 = −g55 = −g66 = 1.
All linearly independent products of Γ̂K have the same form (5) as for Γµ and form again

a basis of algebra gl(8, R).

4 Extended SUSY for Aharonov–Bohm–Coulomb
and Aharonov–Casher systems

Let us search for extended SUSY of the system defined by the Dirac equation (7) with an
external field being a superposition of the Coulomb potential and the potential generated by
a solenoid directed along the third co-ordinate axis. Such configuration corresponds to the
so-called Aharonov–Bohm–Coulomb (ABC) system which has been studied by a number of
investigators (see, e.g., [9, 10]). The related vector-potential has the form

eA0 =
α

|x| , eA1 = ξ
x2

r2
, eA2 = −ξ

x1

r2
, A3 = 0, (12)

where r2 = x2
1 + x2

2.
Using the fact that A1 and A2 are locally pure gauges we can prove that there exist constants

of motion for the ABC system which are analogues of Johnson–Lippman and Dirac constants of
motion for the Coulomb system. They have the following form

Q̂′ = mα
σ · x
x2

+ iD′
(

σ · p + iγ4
α

|x|
)

,

D′ = γ0

(
σ · J +

1
2

+
ξ

x2

(
σ3x

2 − x3σ · x))
(13)

and commute with the corresponding Hamiltonian

H ′ = γ0γ · π + γ0m +
α

|x| .

Commutation and anticommutation relations for operators Q̂′, D′ and H ′ are the same as for
unprimed operators considered in the previous section. Thus we can construct two supercharges
Q = 1

κ
√

2
(1 + P )Q̂′, Q̄ = 1

κ
√

2
(1 − P )Q̂′ and central charge Zab = 2δab(α2 − D′2)m2/κ2 which

satisfy relations (3) together with Ĥ ′ = H ′2. Thus the ABC system admits extended SUSY with
one non-trivial central charge.

Additional involutive symmetries for this system can be found in the form

R12 = iγ1γ2θ̂1θ̂2, R31 = iγ3γ1θ̂3θ̂1, R = γ4γ0θ̂,

R23 = i exp(iϕ)γ2γ3θ̂2θ̂3, Ĉ = i exp(iϕ)γ2c. (14)

Here ϕ = 2 arctan x1
x2

, θ̂, θ̂a and c are reflection and complex conjugation operators defined in
the previous section.
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Operators (14) commute with the Dirac operator L of equation (7), with potentials (12) and
satisfy the following relations

{R, Q̂′} = {Ĉ, Q′} = {R, Ĉ} = {Ĉ, Rab} = {Rab, Rcd} = 0,

[Rab, R] = [Rab, Q
′] = 0. (15)

Using (15) we can construct six supercharges for the ABC system, namely

Q′
1 = (1 + ĈR12)Q′, Q′

2 = (ĈR23 + R)Q′, Q′
3 = Ĉ(1 + R31),

Q̄′
1 = (1 − ĈR12)Q′, Q̄′

2 = (ĈR23 − R)Q′, Q̂′
3 = Ĉ(1 + R31)Q′. (16)

Operators (16) and Ĥ ′ = Q′2 satisfy relations (3) and form a basis of N = 6 extended
superalgebra for ABC system. This system admits also the 64-dimensional algebra gl(8, R) of
involutive symmetries. Basis elements of this algebra can be obtained using formulae (11) with
Q′

a, Q̄′
a (16) instead of operators (10).

Let us consider now the relativistic Aharonov–Casher (AC) system [9, 12]. This system
includes chargeless particle with non-trivial electric quadrupole momentum, interacting with an
infinite homogeneously charged cylinder. It is described by the Dirac equation with anomalous
interaction instead of a minimal one:(

γµpµ − m +
ik

m
γµγνF

µν

)
ψ = 0, (17)

where Fµν is the strength tensor of the external electromagnetic field generated by infinite
homogeneously charged cylinder which we suppose be directed along the third co-ordinate axis.

We shall consider more general system (17) with an external field of the following form

Fab = 0, F0a =
∂ϕ

∂xa
, a, b = 1, 2, 3,

where ϕ = ϕ(x) is a potential of the electric field which is an even function of spatial variables.
In the case ϕ =

√
x2

1 + x2
2 equation (17) reduces to the AC system.

The considered system admits N = 6 extended SUSY generated by the following supercharges

Q1 = (Γ1 + Γ0)H, Q̄1 = (Γ1 − Γ0)H,

Q2 = (Γ2 + Γ5)H, Q̄2 = (Γ2 − Γ5)H,

Q3 = (Γ3 + Γ6)H, Q̄3 = (Γ3 − Γ6)H, (18)

where Γ1, . . . ,Γ6 are discrete symmetries (6) and

H = γ0γαpα +
ik

m
γαEα + γ0m.

Operators (18) and Ĥ = H2 satisfy relations (3) with Zab ≡ 0 and so generate N = 6 SUSY
algebra for the AC system.

The AC system admits also the algebra gl(8, R) whose basis elements are given by rela-
tions (6), and so has the same involutive symmetry algebra as the free Dirac equation.

5 Stueckelberg systems

Relativistic Stueckelberg equation [13] describes quantum mechanical systems which have two
spin states corresponding to values of spin s = 1 and s = 0. It is a system of equations for an
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antisymmetric tensor field ψµν , a four-vector field ψµ and a scalar field ψ of the following form

pµψν − pνψµ = mψµν ,

pνψ
µν = pµψ + mψµ,

pνψ
ν = mψ. (19)

Introducing the minimal and anomalous interaction with an external e.m. field into (19) we
obtain the following system

πµψν − πνψµ = mψµν ,

πνψ
µν = πµψ + mψµ +

e

m
Fµνψ

ν ,

πνψ
ν = mψ. (20)

Here πµ = pµ − eAµ and Fµν = − i
e [πµ, πν ] is the strength tensor of the electromagnetic field.

A special form of anomalous interaction chosen in (20) yields to extended SUSY for this
equation. Other interactions for the Stueckelberg equation are discussed in [14].

Expressing ψµν , and ψ in (20) via ψµ we come to the second-order equation(
πνπ

ν − m2
)
ψµ + 2eFµνψν = 0. (21)

Its symmetries will be investigated in few steps.
We begin with the constant and homogeneous external magnetic field directed along the third

co-ordinate axis. The corresponding vector-potential and tensor Fµν have the form

A0 = A2 = A3 = 0, A1 = −Hx2, F0a = F23 = F31 = 0, F12 = H. (22)

Substituting (22) into (21) and representing ψν as

ψν = exp (iEt + ip1x1 + ip3x3)ϕν(x2), x2 =
(

p1√
eH

+ y

)

equation (21) can be reduced to the form

E2ϕ =
(

m2 + p2
3 −

∂2

∂y2 + ω2y2 + 2S3ω

)
ϕ, (23)

where ω = eH, ϕ = column(ϕ0ϕ1ϕ2ϕ3) and

S3 =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


 .

Equation (23) admits a large extended supersymmetry. First, we indicate two sets of con-
stants of motion which generate extended SUSY with non-trivial central charges. The basis
elements of the corresponding superalgebras have the following forms:

Q̃1 =
1
2
(σ1 + iσ2)(p + iωy), ¯̃Q1 =

1
2
(σ1 − iσ2)(p − iωy),

Ĥ = − ∂2

∂y2
+ ω2y2 + 2S3ω + p2

3 + m2, Z̃ab = 2δab

(
p2
3 + m2 − 1

2
τ3ω

)
(24)
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and

Q̃′
1 =

1
2
(τ1 + iτ2)(p + iωy), ¯̃Q′

1 =
1
2
(τ1 − iτ2)(p − iωy),

Ĥ ′ = Ĥ, Z̃ ′
ab = 2δab

(
p2
3 + m2 − 1

2
σ3ω

)
. (25)

Here

σ1 =




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0


 , σ2 =




0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0


 , σ3 =




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0


 ,

τ1 =




0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0


 , τ2 =




0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0


 , τ3 =




0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0


 . (26)

It can be verified by a direct calculation that operators (24) and (25) commute with Ĥ and
are, therefore, constants of motion for equation (23). In addition, operators (24) and (25) satisfy
relations (3), so the Stueckelberg equation with the constant and homogeneous external magnetic
field admits extended SUSY with non-trivial central charges.

The superalgebras (24) and (25) can be jointed in frames of a more extended superalgebra
including ten elements. Four of them are odd elements (supercharges), namely, Qα, Q̄α, α = 1, 2:

Q1 =
1
2

(σ1p + σ2ωy + iσ3(τ1p + τ2ωy)) ,

Q̄1 = Q†
1 =

1
2

(σ1p + σ2ωy − iσ3(τ1p + τ2ωy)) ,

Q2 =
1
2
(σ2p − σ1ωy + iσ3(τ2p − τ1ωy)),

Q̄2 = Q†
2 =

1
2
(σ2p − σ1ωy − iσ3(τ2p − τ1ωy)) (27)

and six of them are even. They include the central charge Zab = 2δab(p2
3+m2), and five additional

elements of the form

Ĥ = − ∂2

∂y2
+ ω2y2 + 2S3ω + p2

3 + m2, I0 = ω(σ3 + τ3)/2,

I1 = ω(σ2τ1 − σ1τ2)/2, I± = ω (σ3 − τ3 ± (σ1τ1 + σ2τ2)) /4. (28)

Anticommutation relations for odd elements are given by the following formulae

{Qa, Q
†
b} = δab(H − Z − I0) − iεabI1, {Qa, Qb} = δabI−, (29)

where ε12 = −ε21 = 1, ε11 = ε22 = 0. The remaining (commutation) relations of odd elements
with even and even elements with even ones are of the form

[Qa, Ĥ] = [I0, Ĥ] = [I±, Ĥ] = 0, [Qa, I0] = −iεabQb, [Qa, I1] = Qa,

[Qa, I−] = 0, [Qa, I+] = −iεabQ
†
b, [I0, I1] = [I0, I±] = 0,

[I1, I±] = ±I±, [I+, I−] = I1. (30)

In addition Z commutes with all operators enumerated in (27), (28).
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Thus Stueckelberg particle interacting with a constant homogeneous external magnetic field
forms a system admitting extended superalgebra characterized by relations (29), (5). We will
further denote this algebra as A.

Consider now Stueckelberg equation for the case when external field is generated by a point
charge. The related vector-potential can be chosen in the form (8) and equation (21) reads

(
p0 +

α2

|x|
)2

Ψ =
(

p2 + m2 + iα
(σa − τa)xa

|x|3
)

Ψ, (31)

where Ψ = column (ψ0, ψ1, ψ2, ψ3).
Rather surprisingly, equation (31) also admits extended invariance superalgebra, isomorphic

to A. This can be shown by writing Ψ in the form Ψ = exp(iEt)ϕ(x) (i.e., considering the
related eigenvalue problem) and introducing new space variables r = Ex. Equation (31) then
takes the form

µϕ = Ĥϕ,

where

Ĥ = p′2 + iα
(σa − τa)ra

|r|3 −
(

α

|r| − 1
)2

, and µ = −m2

E2
.

The corresponding radial equation can be written as [15]:

µϕ(r) = Ĥϕ ≡


− d2

dr2
+




V1 0 0 0
0 V2 0 0
0 0 V3 0
0 0 0 V4





ϕ(r), (32)

where

V1 =
b2 − 1

4

r2
− 2α

r
, V2 = V3 =

(b + 1)2 − 1
4

r2
− 2α

x
, V4 =

(b − 1)2 − 1
4

r2
− 2α

r
. (33)

It can be proven by a direct verification that equation (32) admits nine constants of motion,
namely

Q1 =




0 a1− ia1− 0
a1

+ 0 0 −ia2−
ia1

+ 0 0 a2−
0 −ia2

+ a2
+ 0


 , Q2 =




0 −ia1− a1− 0
ia1

+ 0 0 −a2−
−a1

+ 0 0 −ia2−
0 a2

+ ia2
+ 0


 ,

Q̄1 =




0 a1
+ −ia1

+ 0
a1− 0 0 +ia2

+

−ia1− 0 0 a2
+

0 ia2
+ a2− 0


 , Q̄2 =




0 +ia1
+ −a1

+ 0
−ia1− 0 0 a2

+

a1− 0 0 ia2
+

0 −a2− −ia2
+ 0


 ,

I0 = C




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 , I1 = iC




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 ,

I± = C




0 0 0 0
0 1 ±1 0
0 ±1 −1 0
0 0 0 0


 , Z = m2 + p2

3 (34)
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which satisfy relations (29) and (5). Here

a1
± = p′ ± i

(
b + 1

2

x
+

α

b + 1
2

)
, a2

± = p′ ± i

(
b − 1

2

x
+

α

b − 1
2

)
,

C =
αb

a2 − 1
4

, b2 =
(

j +
1
2

)2

and j is the quantum number defining the spectrum of total angular momentum J = r×p′+σ+τ
of a system in state Ψ, i.e., J2Ψ = j(j + 1)Ψ.

Thus the Stueckelberg equation with Coulomb potential is invariant with respect to extended
superalgebra whose generators are given in (34). As a consequence it admits two symmetry
superalgebras (24) and (25), and hence is characterized by extended SUSY with non-trivial
central charges. Using discrete involutive symmetries of the Stueckelberg equation it is possible
to construct extra supercharges which enlarge superalgebras (24) and (25) to N = 6 extended
SUSY.

6 Representations of superalgebra A
In order to describe other QM systems invariant with respect to superalgebra A which admit
extended SUSY we construct representations of this algebra realized by differential operators
defined on four-component vector-functions. The related supercharges and even elements of the
superalgebra can then chosen in the form (34) where

a±1 = p ± iW1, a±2 = p ± iW2, p = −i
d

dx
. (35)

Here W1 and W2 are functions of x satisfying the following relation

W 2
1 − W 2

2 + W ′
1 + W ′

2 = C (36)

with C being a constant and prime denoting derivative of Wα with respect to x.
Operators (34), (35) satisfy relations (29), (5) for the case when W1, W2 are arbitrary func-

tions satisfying condition (36). Choosing W1 = W2 = ωx in (35) we obtain supercharges
for the Stueckelberg system with constant, homogeneous external magnetic field. The choice

W1 = b+ 1
2

x + α
b+ 1

2

, W2 = b− 1
2

x + α
b− 1

2

corresponds to the Stueckelberg–Coulomb system. Two

other choices, namely, W1 = −W2 = ωx and W1 = −W2 = b
x + α

b correspond to Dirac particle
in the constant, homogeneous external magnetic field and Coulomb field respectively, where all
states have additional two fold degeneracy.

7 Discussion

We have shown that extended SUSY with non-trivial central charges appears as internal symme-
try of many quantum mechanical systems. In particular we have proven that symmetry of the
relativistic Coulomb system as well as of the Aharonov–Bohm–Coulomb and Aharonov–Casher
systems can be described by the superalgebra including six supercharges. The Stueckelberg
systems systems are characterized even by more extended SUSY described by ten-dimensional
superalgebra with non-trivial central charges.

One more goal of our analysis was searching for realistic quantum mechanical systems which
are invariant with respect to algebra gl(8, R) of involutive discrete symmetries. This invariance
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algebra for the free Dirac equation was found in papers [3, 6]. In the present paper we prove
that this symmetry is valid also for the Coulomb, ABC and AC systems.

A natural question arises what are the practical consequences of the found symmetries. Using
the technique developed in [3, 7] it is possible to use gl(8, R) symmetry to decouple the related
Dirac equation and construct complete sets of solutions.

A standard application of SUSY consists in prediction and interpretation of degeneration of
energy spectra of the related QM systems. Energy levels for the exactly solvable Coulomb–Dirac
problem are degenerated with respect to quantum numbers sign j3 and signκ where j3 and κ
are eigenvalues of mutually commuting operators of the third component of the total angular
momentum J3 and D respectively. One more degeneration which is non-observable is connected
with the change of sign of the phase multiplier of the Dirac-Coulomb wave function. Extended
SUSY presents a specific interpretation of these degenerations. A particular importance of such
interpretation consists in the fact that such a degeneration appears for all the systems which
admit extended SUSY, e.g., for the AC system.

The other application of (extended) SUSY is to construct exact solutions of QM systems
with sharp invariant potentials using purely algebraic methods [2] which admit a straitforward
generalization to the case of a more general superalgebra (29), (5). The potentials (33) of the
Stueckelberg–Coulomb system are shape invariant which enables us to find easily its energy
eigenvalues. They can be written in the following form

Enκλ = m

[
1 +

α2(
n + 1

2 + b + λ
)2

] 1
2

,

where n = 0, 1, 2, . . ., λ = 0,±1, b =
√

κ2 − α2, |κ| = 1, 2, . . .
Finally we notice that representations of superalgebra A considered in the previous section

can be used in non-relativistic quantum mechanics. It seems to us that such generalized SUSY
quantum mechanics has better physical grounds than parasupersymmetric quantum mecha-
nics [16, 17] and n = N (N > 1) SUSY quantum mechanics [18], since it is realized in a number of
quite realistic QM systems. We plane to study possible applications of superalgebra in quantum
mechanics A elsewhere.
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