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Khokhlov–Zabolotskaya–Kuznetsov equation (φt + φφx − αφxx)x − 1/2(φyy + φzz) = 0 and
its solutions are analyzed. A series of complete exact analytical solutions related to the
one-dimensional and vectorial inhomogeneous Burgers equation are presented. A concrete
example which corresponds to a special form of the inhomogeneous term is analyzed. Re-
duction to the traveling wave solution is considered.

1 Introduction

The Khokhlov–Zabolotskaya–Kuznetsov equation (KhZKE) describes the evolution of the spre-
ading of nonlinear diffraction waves whose cross-section is large compared to their length. This
is one of the basic equations of nonlinear wave processes. As the generalized KhZKE usually
the equation

∂
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)
=

c
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∆⊥p (1)

is accepted, where p = p(z, τ) usually means pressure, z, t are space and time coordinates,
λ = ε/c3

0ρ0 is a parameter characterizing nonlinearity, c is the velocity of sound in the medium;
∆⊥ = ∆(x, y) is a two-dimensional Laplacian according to the parameters in the cross-section
of the wave packet; L̂ in the general case is an integro-differential operator determined by
the frequency dependence of weak dispersion and dissipative properties of the medium. Most
frequently a generalization of KhZKE containing the second derivative

L̂ = −b
∂2

∂τ2
(2)

is used, which describes dissipation, the finite width of the weak shock wave front in particular.
KhZKE (1) looks rather awkward, nevertheless, it is known to have the exact analytical solu-

tion [1]. The present work contains the whole series of exact KhZKE solutions with the second-
order operator L̂. A concrete solution corresponding to the traveling wave solution is considered.

2 One-dimensional case

Let us divide our search for KhZKE solution into two stages. First of all, we will write the KhZKE
as an inhomogeneous Burgers equation and then try to find its exact complete solutions. For
the sake of further simplification, it is feasible to represent the constant b in the expression for
operator L̂ as

b → b

2c3ρ
, (3)

where ρ is the density index of the medium.
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Then, through substitution of variables

z → 1
λp0

t, τ → −x, p → p0φ,
b

2εp0

→ ν, x → 2λp0

c
x, y → 2λp0

c
y, (4)

KhZKE (1) transforms into

(φt + φφx − αφxx)x − 1
2
(φyy + φzz) = 0. (5)

By integrating equation (5) by x variable, let us represent the KhZKE as an inhomogeneous
Burgers equation (IBE):

φt + φφx − αφxx = βf, (6)

where f = 1/2
∫ x
x0

(φyy +φzz) dx, and β is a certain constant introduced to ensure the possibility
of changing the influence of the inhomogeneous term f = f(x, y, z, t). In a whole series of cases
when the dependence of φ(y, z) solution is negligible, or if we are interested in the asymptotic
solution resulting form the mediumization of the initial equation KhZK (zonal mediumization,
Reynold’s mediumization, etc.), the righthand part can be presented as f(x, t).

The Hopf and Cole transformation [2, 3]

φ = −2α∂x lnw (7)

relates each solution of the diffusion equation (DE)

wt = αwxx (8)

to a corresponding solution φ(x, t) of Burgers equation (BE) [4]:

φt + φφx − αφxx = 0 . (9)

This allows a detail analysis of the formation and evolution of shock waves in a nonlinear
environment.

However, upon introducing into equation (8) even a simplest inhomogenous term, the inter-
relation between BE and DE through Hopf and Cole transformation (7) disappears. DE (8) is
a simplest parabolic equation, therefore, searching for solutions of the inhomogeneous diffusion
equation

wt + αwxx = h(x, t) (10)

and of the corresponding inhomogeneous BE (9) generalization, approximate methods of calcu-
lation (most frequently the method of finite differences) are applied [5, 6].

To obtain a pithy inhomogeneous generalization of BE, let us consider a commutative dia-
gram:

SE
t→−it−−−−→ DE

h−1

�
�h

SENT ←−−−−
t←it

IBE

(11)

where SE is Schrödinger equation, DE is diffusion equation, IBE is inhomogeneous Burgers
equation (6) and SENT is Schrödinger equation with a nonlinear term (not to be mixed with
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nonlinear Schrödinger equation). The map h is the Hopf–Cole transformation (7) and h−1 is
the inverse Hopf–Cole transformation

w
h−1−−→ w0 exp

{
− 1

2α

∫
φ(x, t) dx

}
. (12)

It is important that IBE (6) can be got by the transformation (7) of a linear type diffusion
equation

wt = αwxx − β

2α
F (x, t)w, (13)

where

F (x, t) =
∫ x

x0

dξ f(ξ, t) + C(t), (14)

with x0 as an arbitrary constant, while C(t) is an arbitrary function of t.

3 The vectorial Khokhlov–Zabolotskaya–Kuznetsov equation

While studying the spread of nonlinear waves in a three-dimensional space not in one, but in
all spatial directions, it is the three-dimensional vectorial Khokhlov–Zabolotskaya–Kuznetsov
equation that suits the purpose best:

∇ [φt + (φ∇)φ − α∇(∇φ)] − ∇2φ = 0, (15)

where φ = φ(x, t) ∈ R
3, α > 0, and ∇ is the gradient operator. If the influence of the medium

from the right-hand side of the equation can be reduced effectively to a function on space and
time coordinates, then the corresponding vectorial inhomogeneous Burgers equation (VIBE) is

φt + (φ∇)φ − α∇(∇φ) = βf , (16)

where f = f(x, t) is a function only of space–time coordinates.
In hydrodynamics, the VIBE and VBE are obtained by refusing the condition that the pres-

sure gradient disappears in the direction perpendicular to the direction of motion of the nonlinear
wave: ∇⊥p = 0 [7]. Such equation, together with the continuity equation, was proposed to study
the cosmological models of the Early Universe [8, 9]. Only comparatively recently a mathemat-
ically strict notion of the generalized solution of such a system was suggested, and it shows that
the variational representation of the generalized solution in the two-dimensional case essentially
differs from that of the one-dimensional case [10].

Like in the one-dimensional case, the linear type diffusion equation

wt = ∇(∇w) − β

2α
F (r, t)w, (17)

by the vectorial generalization of Hopf–Cole transformation

φ(r, t) = −2α∇ lnw (18)

can be mapped into an VIBE (16), where

F (r, t) =
∫ r

r0

dξ f(ξ, t) + C(t), (19)

with r0 as an arbitrary constant, while C(t) is an arbitrary function of t.
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The solution of linear equation (17) is

w(r, t) =
∫

dr′ K(r, t, r′, 0)w(r′, 0), (20)

where the kernel K(r, t, r′, 0) satisfies the heat type kernel equation,

Kt − α∇2K +
β

2α
F (r, t)K = 0, (21)

with the initial condition K(r, 0, r′, 0) = δ(r−r′). The solution of this equation can be expressed
by the Feynman–Kac path integral formula:

K(r, t, r′, 0) =
∫

[Dr] exp
(
− S

2α

)
, (22)

where S is the related action, i.e.,

S[r(t)] =
∫ t

0
dτ

[
1
2
ṙ2 + βF (r, τ)

]
. (23)

In the case of the traveling wave solution the function φ(ξ), where ξ = x − ut, obeys the
equation

[(φ − u)∇] φ = α∇(∇φ) + βf . (24)

According to the Helmholtz theorem, the field φ(ξ) can be split into the sum of the gradient
and vortex fields

φ = φg + φv, (25)

where φg = ∇ψ, i.e. ∇×φg = 0, and φv = ∇×χ, i.e. ∇·φv = 0.
In the same way also the inhomogeneous term βf can be represented: f(ξ) = fg(ξ) + fv(ξ).
From equation (26) it follows that φg(ξ) for φv(ξ)=fv(ξ)=0 must obey the equation

α∇φ =
1
2
φ2 − (uφ) − βϕ +

1
2
C1, (26)

where C1 is the integration constant independent of ξ, and f(ξ) = ∇ϕ.
Let ψ = ψ(ξ) be the solution of the three-dimensional Schrödinger equation

�ψ + (C2 + aϕ)ψ = 0. (27)

Then the gradient part of φ(ξ)

φ(ξ) = φ(x − ut) = −2α∇ lnψ + u (28)

is the solution of equation (26) and, consequently, of the initial VIBE (26) for

C1 = u2 + 4α2C2 and β = −2α2a. (29)

Equation (26) suggests that the vortical constituent φv(ξ) of the field obeys the equation

[(φ − u)∇] φ = βf , (30)

where now f = eifi = ∇×χ. The solution of this equation is

φ = u + ei
√

2βFi, (31)

where ei is the unit basis vector and ∂iFj = fj δij .
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Figure 1. Solution φ(ξ) = −2αψ′
n/ψn + u, where ψn(y) = y(l+1)/2e−

1
2 yL

l+1/2
n (y), y =

√
γ/2ξ2 of the

VIBE (16) in the case, when f(ξ) = γξ/2 −(l + 1)/ξ, integration constant α = β = 1, l = 7/2 and
parameter n changes from n = 4 to n = 6. All solutions are normalized to the amplitude values

Consider another potential. In the case of inhomogeneous term it looks like a three-dimen-
sional oscillator

f(ξ) =
1
2
γξ − l + 1

|ξ| e, ξ = r − ut. (32)

Such choice of the inhomogeneous term corresponds to the potential

ϕ(ξ) =
1
4
γ2ξ2 − l(l + 1)

ξ2 − γ

(
l +

3
2

)
. (33)

Then for the IBE

φt + (φ∇)φ − α∇(∇φ) = β

[
1
2
γ(r − ut) − l + 1

|r − ut|e
]

(34)

the solution is

φ(ξ) = −2α∇ψn/ψn + u, (35)

where ψn(y) = y(l+1)/2e−
1
2
yL

l+1/2
n (y), y =

√
γ/2ξ2. For a graphic representation of solution

φ(|r − ut|), see Fig. 1.
In the case of potential (33) we have an infinite number of constants C2 = 2γn and, conse-

quently, the same infinite number of integration constants

C1 = u2 − 8α2γn. (36)

We can see that the gradient constituent φg (28) of the VIBE qualitatively does not differ from
the one-dimensional case (6) and has the same number of exact complete analytical solutions
with the spatial variable x − ut. However, the presence of the vortical constituent φv in the
multi-dimensional case draws a qualitative difference between the VIBE and the one-dimensional
IBE (6). Note that φ = φg + φv, because of the nonlinearity of the VIBE, is not its solution.

4 Discussion and conclusions

Exact solutions of any evolution equation are known for very limited special cases, therefore new
exact solutions of KhZKE are very interesting in themselves.
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Besides, the KhZKE is a limit case of a lot of mathematical models of more complicated
nonlinear and dissipative systems. Exact analysis of a corresponding KhZKE provides a useful
information about the behavior of such systems.

Using the known relation between the diffusion and Schrödinger equations, which is contained
in diagram (11), we obtain that solution for ∇ϕ(ξ) expresses the solution of the Schrödinger
equation in the presence of nonlinearity.

iφt + φ(∇φ) − α∇(∇φ) = ϕ(x − ut), (37)

Sometimes, when the solutions of initial equations exhibit an exotic behavior, we can speak
only about solutions of the enveloping model in the neighborhood of the solutions of initial
equations. For instance, the one-dimensional equation of motion of ideal gas, as is well known,
has a discontinuity in the gas flow, at the same time viscous gas has no such discontinuities,
and only shock transitions at low meanings of viscosity are obtained. In this sense, the heat
equation

φt − α∇(∇φ) = f(x), (38)

describes the stationary heat distribution in a certain volume, because solutions of Poisson
equation can be obtained from the heat equation in the limit of transition at t → ∞. In this
same sense, an IBE with the time-independent right-hand side is a covering model of a stationary
nonlinear Poisson equation

φ∇φ − α∇(∇φ) = βf(x). (39)

This is especially actual for the sign changing coefficients α and β for so-called equations with
changing parabolicity [11].

The obtained KhZKE solutions, because of their general character, allow a wide range of
applications. As a concrete example, it is quite appropriate to mention the Kardar–Parisi–Zhang
(KPZ) equation in (1+1)-dimension systems and crystal growth [12], the nonlinear dynamics
of a moving line [13], galaxy formations [14, 15, 9], behavior of magnetic flux line in super-
conductor [16], and spin glasses [17]. Numerous examples of the applications are presented
in [18].

Finally, exact solutions can be considered as a test model for the very promising and actively
developing field of computer simulations [19].

Exact solutions of the Schrödinger equation are known to be related to the internal symmetry
of a corresponding Hamiltonian [20]. As follows from the considered above subject, the algebra
of supersymmetry should exist also in nonlinear and inhomogeneous cases of KhZKE, which in
the physical sense is far from obvious.
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