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A parameter-homogeneous manifestly covariant Lagrangian of second order is considered,
which covers the case of the free relativistic top at constraint manifold of constant accelera-
tion. Relation to other models is discussed in brief.

1 Introduction

The interest to the description of quasi-classical physical particle by the means of some higher-
order equations of motion and the methods of generalized Ostrohrads’kyj mechanics arose some
60 years ago and since then has been continuous [1–7]. Recently renewed attention was paid
to such the models, which basically involve the notions of the first and higher curvatures of
the particle’s world line [8–12]. In most cases, people start with an a priori given higher order
Lagrangian, and then try to interpret the dynamical system thus obtained as one describing the
motion of quasi-classical spin (the relativistic top). Technical misunderstanding of two kinds
happens to arise. First, certain nonholonomic constraints sometimes are imposed from the very
beginning. These constraints are chosen in such a way as to ensure that the Lagrangian is in fact
written in terms of the moving frame components [13]. But, as shown in [14], non-holonomic
constraints require a more subtle approach. In particular, the constraint system does not retain
the property of variationality any more. Second, sometimes the very tempting assumption of
unit four-velocity vector is imposed after the variation procedure has already been carried out
(cf. [15]). Such approach was quite justifiably criticized by several authors [16, 17]. On the other
hand, there exist the established equations of Mathisson & Papapetrou [18] and of Dixon [19],
which are believed to be well based from the point of view of physics. In 1945 Weyssenhoff [2]
asserted, referring to one paper of Mathisson [20], “Even for a free particle in Galileian do-
mains the equations of motion of a material particle endowed with spin do not coincide with
the Newtonian laws of motion; there remains an additional term depending on the internal an-
gular momentum or spin of the particle, which raises the order of these differential equations to
three”. We add to this that the procedure of complete elimination of spin variables in fact raises
the order of the differential equations to four. In the present note this fourth order differential
equation will be shown to follow from Dixon’s form of the relativistic top equation of motion and
in case of flat space-time a Lagrange function will be proposed which produces the world lines
of thus governed spinning particle without any preliminary constraints being imposed before the
variation procedure in undertaken. A constraint of constant curvature must be imposed after the
variation, and this is why we call the corresponding Lagrange function a covering Lagrangian.

2 Relativistic top

To start from the lowest possible order let us recall the Dixon equations of the quasi-classical
spinning particle in the gravitational field:

Ṗα =
1
2
Rα

βγδu
βSγδ, Ṡαβ = Pαuβ − Pβuα. (1)
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This system (1) does not prescribe any preferable way of parametrization along the world line
of the particle.

It was proved in [21] and announced in [22] that under the so-called auxiliary condition of
Pirani

uβSαβ = 0, (2)

equations (1), (2) are equivalent to the following system of equations (3), (4), and (5)

εαβγδü
βuγsδ− 3

u̇βuβ

‖u‖2
εαβγδu̇

βuγsδ − m
(
‖u‖2u̇α− u̇βuβuα

)
=

‖u‖2

2
εµνγδRαβ

µνuβuγsδ, (3)

‖u‖2ṡα + sβu̇β uα = 0, (4)
sαuα = 0. (5)

The correspondence between the skewsymmetric spin tensor Sαβ and spin four-vector sα under
the assumption that we recognize Pirani’s condition is given by

sα =
1

2‖u‖ εαβγδu
βSγδ, Sαβ =

1
‖u‖ εαβγδu

γsδ.

Equation (3) in flat space-time was considered from variational point of view in [21] and some
Lagrange functions for it were offered in [23].

As promised, from now on we put Rαβ
µν = 0 and proceed to eliminate the variable sα (in

fact, a four-vector constant quantity). To facilitate the calculations, it is appropriate to chose
the would line parametrization in the usual way: ‖u‖ = 1. Then we get immediately that (3)
takes on the shape (“∗” denotes the dual tensor)

∗ ü ∧ u ∧ s + mu̇ = 0 (6)

and possesses the first integral k2 = u̇2, which is nothing but the squared first curvature of the
world line.

Now contract the above vector equation with the tensor ∗u∧s and remember of (5) to obtain
after some algebraic manipulations

s2
(
ü + k2u

)
= −m ∗ u̇ ∧ u ∧ s.

Differentiating and then substituting the right hand side from (6), we finally obtain

...
u +

(
k2 − m2

s2

)
u̇ = 0. (7)

Now let us return to equations (1) and recall the standard fact that under Pirani’s condi-
tion (2) the particle’s momentum P may be expressed in terms of spin tensor Sαβ , or, equiva-
lently, in terms of spin for-vector s

P =
m

‖u‖ u +
1

‖u‖3
∗ u̇ ∧ u ∧ s,

where m = P·u
‖u‖ is a constant of motion, and that the square momentum

P2 = m2 − k2s2 +
1

‖u‖6
[(u̇·s)u − (u·s) u̇]2 = m2 − k2s2

by virtue of (2) is a constant of motion too. Thus denoting ω2 = −P2

s2 , we finally obtain the
desired fourth-order equation for the free relativistic top:

...
u + ω2u̇ = 0 (8)
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3 Hamilton–Ostrohrads’kyj approach

Let us again notify that we tend to set a parameter-invariant variational problem in order to
get the world lines without any additional parametrization. Recall the general formula for the
first curvature of the world line in arbitrary parametrization

k =
‖u ∧ u̇‖
‖u‖3

(9)

and consider the following Lagrange function:

L =
1
2
‖u‖ (

k2 + A
)
. (10)

This Lagrange function (10) constitutes a parameter-homogeneous variational problem because
it satisfies the Zermelo conditions:(

u.
∂

∂u
+ 2 u̇.

∂

∂u̇

)
L = L, u.

∂L
∂u̇

= 0. (11)

Variational equations are given by

−℘̇ = 0, (12)

where

℘ =
∂L
∂u

−
(

∂L
∂u̇

)·
.

Now, one can calculate the quantity ℘̇ and afterwards set ‖u‖ = 1, thus benefiting from the
parameter homogeneity of equation (12). We get for (12):

...
u +

(
3
2

u̇2 − A

)
u̇ + 3 (ü·u̇)u = 0. (13)

Now, on the surface k = k0 equation (13) will coincide with (8) if we put

A =
3
2

k0
2 − ω2.

This completes the proof, as asserted in [24].
To pass to the canonical formalism, it is necessary to introduce the parametrization by time,

setting x0 = t, u0 = 1, and denoting dxi

dt = vi. In this coordinates formula (10) suggests the
following expression for the Lagrange function:

L =
1
2

√
1 + v2

(
k2 + A

)
, k2 =

v′2 + (v′ × v)2

(1 + v2)3
. (14)

Generalized Hamilton function H is expressed in terms of v and the couple of momenta

p′ =
∂L

∂v′ , p =
∂L

∂v
− d

dt
p′, (15)

namely,

H = p.v + p′.v′ − L.

It is possible to find the inverse of the generalized Legendre transformation (15) and after
some laborious calculating efforts the generalized Hamiltonian reads:

H = p.v +
1
2

(
1 + v2

)3/2 (
p′2 + (p′.v)2

) − A√
1 + v2

.
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4 Concluding notes

1. Equation (8) was known to Riewe [15], but its deduction directly from (1) or from the
Mathisson–Papapetrou equations [18] apparently was not obvious.

2. By means of the formula kk2k3 = ‖u∧ u̇∧ ü∧ ...
u‖, which presents the relationship between

the successive curvatures of a curve (in natural parametrization), we see immediately, that all
the extremals of (10) have zero third curvature, and in terms of the space-like world line it means
that the particle evolves in a plane.

3. In [21] we proved by means of generalized Ostrohrads’kyj momenta approach, that ev-
ery one of the successive curvatures of a curve, taken as the Lagrange function, produces the
extremals with this same curvature being the constant of motion. This was also observed by
Arodź for the first curvature [9]. But the problem of the simultaneous conservation of all the
curvatures, i.e. the variational description of helices, remains open (cf. [25]).

4. Surprisingly enough, the Lagrange function (10) in fact coincides with one, considered by
Bopp in [1] for the motion of a charged particle in electromagnetic field (in part, not including
the external four-potential itself). That equations (1) in their differential prolongation cover
both the Mathisson–Papapetrou equations of spinning particle and the Lorentz–Dirac equations
of self-radiating particle, was already noted in [23] in relation to the prediction of Barut [26].
This gives still more grounds to call (10) the covering Lagrangian.

5. Following the ideas of [6] we considered in [27] some non-local transformations which leave
invariant the exact form of the action integral

∫ √
ε2dτ2 − dα2 =

∫
Lεdτ, (16)

where dα measures the rotation of the tangent to the world line during the increment dτ of the
proper time along it, so the curvature k = dα

dτ . There was an attempt to interpret these non-local
transformations (linear in α and τ) as such that explain the transition between the uniformly
accelerated frames of reference in special relativity. Treating in quite formal way the variables α
and τ as independent, one may stay hoping that the variation of (16) will produce the world
lines of constant curvature (i.e. constant acceleration). On the other hand, looking more closely
at the Lagrange function

Lε =
√

ε2 − k2, (17)

immediately leads to the concept of maximal acceleration ε = c7/2G(−1/2)
�
−1/2 = 3/5·1052m/sec2

[28].
Two shortcomings spring up. First, the Lagrange function (17), viewed as a higher-order

Lagrangian, does not correspond to constant curvature world lines. Second, the variational
problem is not parameter-independent, at least because Lε, with k given by (9), does not satisfy
the Zermelo conditions (11). The Lagrangian (10) is free of these shortcomings.
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