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In this article, I will report a Lax pair structure, a Bäcklund–Darboux transformation, and
the investigation of homoclinic structures for 2D Euler equations of incompressible inviscid
fluids.

1 Introduction

The governing equation of turbulence, that we are interested in, is the incompressible 2D Navier–
Stokes equation under periodic boundary conditions. We are particularly interested in investi-
gating the dynamics of 2D Navier–Stokes equation in the infinite Reynolds number limit and
of 2D Euler equation. Our approach is different from many other studies on 2D Navier–Stokes
equation in which one starts with Stokes equation to prove results on 2D Navier–Stokes equa-
tion for small Reynolds number. In our studies, we start with 2D Euler equation and view
2D Navier–Stokes equation for large Reynolds number as a (singular) perturbation of 2D Euler
equation. 2D Euler equation is a Hamiltonian system with infinitely many Casimirs. To under-
stand the nature of turbulence, we start with investigating the hyperbolic structure of 2D Euler
equation. We are especially interested in investigating the possible homoclinic structures.

In [1], we studied a linearized 2D Euler equation at a fixed point. The linear system decou-
ples into infinitely many one-dimensional invariant subsystems. The essential spectrum of each
invariant subsystem is a band of continuous spectrum on the imaginary axis. Only finitely many
of these invariant subsystems have point spectra. The point spectra can be computed through
continued fractions. Examples show that there are indeed eigenvalues with positive and negative
real parts. Thus, there is linear hyperbolicity.

In [2] and [3], a Lax pair and a Bäcklund–Darboux transformation were found for the 2D Euler
equation. Typically, Bäcklund–Darboux transformation can be used to generate homoclinic
orbits [4].

The 2D Euler equation can be written in the vorticity form,

∂tΩ + {Ψ, Ω} = 0, (1)

where the bracket { , } is defined as

{f, g} = (∂xf)(∂yg) − (∂yf)(∂xg),

where Ψ is the stream function given by,

u = −∂yΨ, v = ∂xΨ,

u and v are the velocity components, and the relation between vorticity Ω and stream function Ψ
is,

Ω = ∂xv − ∂yu = ∆Ψ.
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2 A Lax pair and a Darboux transformation

Theorem 1 (Li, [2]). The Lax pair of the 2D Euler equation (1) is given as

Lϕ = λϕ,

∂tϕ + Aϕ = 0, (2)

where

Lϕ = {Ω, ϕ}, Aϕ = {Ψ, ϕ},
and λ is a complex constant, and ϕ is a complex-valued function.

Consider the Lax pair (2) at λ = 0, i.e.

{Ω, p} = 0, (3)
∂tp + {Ψ, p} = 0, (4)

where we replaced the notation ϕ by p.

Theorem 2 (Li and Yurov, [3]). Let f = f(t, x, y) be any fixed solution to the system (3),
(4), we define the Gauge transform Gf :

p̃ = Gfp =
1

Ωx
[px − (∂x ln f)p], (5)

and the transforms of the potentials Ω and Ψ:

Ψ̃ = Ψ + F, Ω̃ = Ω + ∆F, (6)

where F is subject to the constraints

{Ω, ∆F} = 0, {Ω + ∆F, F} = 0. (7)

Then p̃ solves the system (3), (4) at (Ω̃, Ψ̃). Thus (5) and (6) form the Darboux transformation
for the 2D Euler equation (1) and its Lax pair (3), (4).

3 Preliminaries on linearized 2D Euler equation

We consider the two-dimensional incompressible Euler equation written in vorticity form (1)
under periodic boundary conditions in both x and y directions with period 2π. We also require
that both u and v have means zero,

∫ 2π

0

∫ 2π

0
u dxdy =

∫ 2π

0

∫ 2π

0
v dxdy = 0.

We expand Ω into Fourier series,

Ω =
∑

k∈Z2/{0}
ωk eik·X ,

where ω−k = ωk, k = (k1, k2)T , X = (x, y)T . In this paper, we confuse 0 with (0, 0)T , the
context will always make it clear. By the relation between vorticity Ω and stream function Ψ,
the system (1) can be rewritten as the following kinetic system,

ω̇k =
∑

k=p+q

A(p, q) ωpωq, (8)
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where A(p, q) is given by,

A(p, q) =
1
2

[|q|−2 − |p|−2
]
(p1q2 − p2q1), (9)

where |q|2 = q2
1 + q2

2 for q = (q1, q2)T , similarly for p.
We denote {ωk}k∈Z2/{0} by ω. For any fixed p ∈ Z

2/{0}, we consider the simple fixed point ω∗:

ω∗
p = Γ, ω∗

k = 0, if k �= p or − p, (10)

of the 2D Euler equation (8), where Γ is an arbitrary complex constant. The linearized two-
dimensional Euler equation at ω∗ is given by,

ω̇k = A(p, k − p) Γ ωk−p + A(−p, k + p) Γ̄ ωk+p. (11)

Definition 1 (Classes). For any k̂ ∈ Z
2/{0}, we define the class Σk̂ to be the subset of Z

2/{0}:

Σk̂ =
{
k̂ + np ∈ Z

2/{0} ∣∣ n ∈ Z, p is specified in (10)
}
.

See Fig. 1 for an illustration. According to the classification defined in Definition 1, the
linearized two-dimensional Euler equation (11) decouples into infinitely many invariant subsys-
tems:

ω̇k̂+np = A(p, k̂ + (n − 1)p) Γ ωk̂+(n−1)p + A(−p, k̂ + (n + 1)p) Γ̄ ωk̂+(n+1)p . (12)
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Figure 1. An illustration of the classes Σk̂ and the disk D̄|p|.

Theorem 3. The eigenvalues of the linear operator Lk̂ defined by the right hand side of (12),
are of four types: real pairs (c,−c), purely imaginary pairs (id,−id), quadruples (±c± id), and
zero eigenvalues.
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The eigenvalues can be computed through continued fractions.

Definition 2 (The Disk). The disk of radius |p| in Z
2/ {0}, denoted by D̄|p|, is defined as

D̄|p| =
{
k ∈ Z

2/ {0} ∣∣ |k| ≤ |p|}.

Theorem 4 (The Spectral Theorem). We have the following claims on the spectra of the
linear operator Lk̂:

1. If Σk̂ ∩ D̄|p| = ∅, then the entire �2 spectrum of the linear operator Lk̂ is its continuous

spectrum. See Fig. 2, where b = −1
2 |Γ||p|−2

∣∣∣∣ p1 k̂1

p2 k̂2

∣∣∣∣ .

2. If Σk̂ ∩ D̄|p| �= ∅, then the entire essential �2 spectrum of the linear operator Lk̂ is its
continuous spectrum. That is, the residual spectrum of Lk̂ is empty, σr(Lk̂) = ∅. The
point spectrum of Lk̂ is symmetric with respect to both real and imaginary axes. See Fig. 2.
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Figure 2. The spectrum of Lk̂.

4 A Galerkin truncation

To simplify our study, we study only the case when ωk is real, ∀ k ∈ Z
2/{0}, i.e. we only study

the cosine transform of the vorticity,

Ω =
∑

k∈Z2/{0}
ωk cos(k · X),

and the 2D Euler equation (1), (8) preserves the cosine transform. To further simplify our study,
we will study a concrete line of fixed points (10) with the mode p = (1, 1)T parametrized by Γ.
When Γ �= 0, each fixed point has 4 eigenvalues which form a quadruple. These four eigenvalues
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Figure 3. The collocation of the modes in the Galerkin truncation.

appear in the only unstable invariant linear subsystem labeled by k̂ = (−3,−2)T . See Fig. 3 for
an illustration.

We computed the eigenvalues through continued fractions, one of them is [1]:

λ̃ = 2λ/|Γ| = 0.24822302478255 + i 0.35172076526520. (13)

We hope that a Galerkin truncation with a small number of modes including those inside the
disk D̄|p| can capture the eigenvalues. We propose the Galerkin truncation to the linear sys-
tem (12) with the four modes k̂ + p, k̂ + 2p, k̂ + 3p, and k̂ + 4p,

ω̇1 = −A2Γω2, ω̇2 = A1Γω1 − A3Γω3,

ω̇3 = A2Γω2 − A4Γω4, ω̇4 = A3Γω3.

From now on, the abbreviated notations,

ωn = ωk̂+np, An = A(p, k̂ + np), Am,n = A(k̂ + mp, k̂ + np), (14)

will be used. The eigenvalues of this four dimensional system can be easily calculated. It turns
out that this system has a quadruple of eigenvalues:

λ = ± Γ
2
√

10

√
1 ± i

√
35 =̇ ±

(
Γ
2

)
× 0.7746 × e±iθ1 , (15)

where θ1 = arctan(0.845), in comparison with the quadruple of eigenvalues (13), where

λ=̇ ±
(

Γ
2

)
× 0.43 × e±iθ2 ,
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and θ2 = arctan(1.418). Thus, the quadruple of eigenvalues of the original system is recovered
by the four-mode truncation. We further study the corresponding Galerkin truncation of 2D
Euler equation:

ω̇1 = −A2 ωp ω2, ω̇2 = A1 ωp ω1 − A2 ωp ω3, ω̇3 = A2 ωp ω2 − A1 ωp ω4,

ω̇4 = A2 ωp ω3, ω̇p = A1,2 (ω3 ω4 − ω1 ω2), (16)

and the equations for the decoupled variables ω0 and ω5 are given by,

ω̇0 = −A1 ωp ω1, ω̇5 = A1 ωp ω4,

where

A1 = − 3
10

, A2 =
1
2
, A3 = A2, A4 = A1,

A1,2 = A1 − A2 = −4
5
, A2,3 = 0, A3,4 = −A1,2.

There are three invariants for the system (16):

I = 2A1,2(ω1ω3 + ω2ω4) + A2ω
2
p, (17)

U = A1

(
ω2

1 + ω2
4

)
+ A2

(
ω2

2 + ω2
3

)
, (18)

J = ω2
p + ω2

1 + ω2
2 + ω2

3 + ω2
4. (19)

J is the enstrophy, and U is a linear combination of the kinetic energy and the enstrophy. I is
an extra invariant which is peculiar to this invariant subsystem. With I, the explicit formula
for the hyperbolic structure can be computed.

The common level set of these three invariants which is connected to the fixed point (10)
determines the stable and unstable manifolds of the fixed point and its negative −ω∗:

ωp = −Γ, ωn = 0 (n ∈ Z). (20)

Using the polar coordinates:

ω1 = r cos θ, ω4 = r sin θ; ω2 = ρ cos ϑ, ω3 = ρ sinϑ

we have the following explicit expressions for the stable and unstable manifolds of the fixed
point (10) and its negative (20) represented through the homoclinic orbits asymptotic to the
line of fixed points:

ωp = Γ tanh τ, r =
√

A2

A2 − A1
Γ sech τ,

θ = −A2

2κ
ln cosh τ + θ0, ρ =

√−A1

A2
r,

θ + ϑ =




− arcsin
[

1
2

√
A2
−A1

]
, (κ > 0),

π + arcsin
[

1
2

√
A2
−A1

]
, (κ < 0),

(21)

where A1 and A2 are given in (16), τ = κΓt + τ0, (τ0, θ0) are the two parameters parametrizing
the two-dimensional stable (unstable) manifold, and

κ =
√
−A1A2 cos(θ + ϑ) = ±

√
−A1A2

√
1 +

A2

4A1
.
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The two auxilliary variables ω0 and ω5 have the expressions:

ω0 =
αβ

1 + β2
sech τ

{
sin[β ln cosh τ + θ0] − 1

β
cos[β ln cosh τ + θ0]

}
,

ω5 =
αβ

1 + β2
sech τ

{
cos[β ln cosh τ + θ0] +

1
β

sin[β ln cosh τ + θ0]
}

,

where

α = −A1Γκ−1

√
A2

A2 − A1
, β = −A2

2κ
.

The graphs of these homoclinic orbits are spirals on a 2D ellipsoid, with turning points.

5 Conclusion

Certain newly developed results on 2D Euler equation have been discussed, which include a Lax
pair, a Darboux transformation, and the investigation on homoclinic structures.
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