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Classification of finite dimensional irreducible representations of nonstandard q-deformation
U ′

q(son) of the universal enveloping algebra U(so(n, C)) of the Lie algebra so(n, C) (which
does not coincide with the Drinfeld–Jimbo quantized universal enveloping algebra Uq(son))
is given for the case when q is not a root of unity. It is shown that such representations
are exhausted by representations of the classical and nonclassical types. Examples of the
algebras U ′

q(so3) and U ′
q(so4) are considered in detail. Notions of weights, highest weights,

highest weight vectors are introduced. Raising and lowering operators for irreducible finite
dimensional representations of U ′

q(son) are introduced. They depend on weight upon which
they act. Explicit formulas for these operators are given.

1 Introduction

Quantum orthogonal groups, quantum Lorentz groups and their quantized universal envelop-
ing algebras are of special interest for modern mathematics and physics. M. Jimbo [1] and
V. Drinfeld [2] defined q-deformations (quantized universal enveloping algebras) Uq(g) for all
simple complex Lie algebras g by means of Cartan subalgebras and root subspaces (see also [3]
and [4]). However, these approaches do not give a satisfactory presentation of the quantized
algebra Uq(so(n, C)) from a viewpoint of some problems in quantum physics and mathematics.
Considering irreducible representations of the quantum groups SOq(n + 1) and SOq(n, 1) we
are interested in reducing them onto the quantum subgroup SOq(n). This reduction would
give an analogue of the Gel’fand–Tsetlin basis for these representations. However, defini-
tions of quantized universal enveloping algebras, mentioned above, do not allow the inclusions
Uq(so(n + 1, C)) ⊃ Uq(so(n, C)) and Uq(so(n, 1)) ⊃ Uq(so(n)). To be able to exploit such reduc-
tions we have to consider q-deformation of the universal enveloping algebra of the Lie algebra
so(n+1, C) defined in terms of the generators Ik,k−1 = Ek,k−1−Ek−1,k (where Eis is the matrix
with elements (Eis)rt = δirδst) rather than by means of Cartan subalgebras and root elements.
To construct such deformations we have to deform trilinear relations for elements Ik,k−1 instead
of Serre’s relations (used in the case of quantized universal enveloping algebras of Drinfeld and
Jimbo). As a result, we obtain an associative algebra which will be denoted as U ′

q(son).
This q-deformation was first constructed in [5]. It permit us to construct the reductions of

U ′
q(son,1) and U ′

q(son+1) onto U ′
q(son). The q-deformed algebra U ′

q(son) leads for n = 3 to the
q-deformed algebra U ′

q(so3) defined by D. Fairlie [6]. The cyclically symmetric algebra, similar
to Fairlie’s one, was also considered somewhat earlier by Odesskii [7]. The algebra U ′

q(so4) is
a q-deformation of the algebra U(so(4, C)) given by means of commutation relations between the
elements Iji, 1 ≤ i < j ≤ 4. For the Lie algebra so(4, C) we have so(4, C) = so(3, C) + so(3, C),
while in the case of our q-deformation U ′

q(so4) this is not the case (see e.g. [8]).
In the classical case, the imbedding SO(n) ⊂ SU(n) (and its infinitesimal analogue) is of

great importance for nuclear physics and in the theory of Riemannian symmetric spaces. It is
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well known that in the framework of Drinfeld–Jimbo quantum groups and algebras one cannot
construct the corresponding embedding. The algebra U ′

q(son) allows to define such an em-
bedding [9], that it is possible to define the embedding U ′

q(son) ⊂ Uq(sln), where Uq(sln) is
a Drinfeld–Jimbo quantum algebra.

As a disadvantage of the algebra U ′
q(son) we have to mention the difficulties with Hopf algebra

structure. Nevertheless, U ′
q(son) turns out to be a coideal in Uq(sln) (see [9]) and this fact allows

us to consider tensor products of finite dimensional irreducible representations of U ′
q(son) for

many interesting cases (see [10]).
Finite dimensional irreducible representations of the algebra U ′

q(son) for q being not a root
of unity were constructed in [5]. The formulas of action of the generators of U ′

q(son) upon the
basis (which is a q-analogue of the Gel’fand–Tsetlin basis) are given there. A proof of these
formulas and some their corrections were given in [11]. However, finite dimensional irreducible
representations described in [5] and [11] are representations of the classical type. They are q-
deformations of the corresponding irreducible representations of the Lie algebra son, that is, at
q → 1 they turn into representations of son.

If q is not a root of unity, the algebra U ′
q(son) has other classes of finite dimensional irreducible

representations which have no classical analogues. These representations are singular at the
limit q → 1. They are described in [12]. A detailed description of these representations for the
algebra U ′

q(so3) is given in [13]. A classification of irreducible ∗-representations of real forms of
the algebra U ′

q(so3) is given in [14].
The aim of this paper is to give classification theorem for finite dimensional irreducible

representations of the algebra U ′
q(son) on complex vector spaces when q is not a root of unity. We

show that in this case all irreducible finite dimensional representations of U ′
q(son) are exhausted

by representations of the classical and nonclassical types. Detailed proofs of propositions and
theorems, given in this paper, will be given separately.

Everywhere below we assume that q is not a root of unity.

2 Definition of the q-deformed algebra U ′
q(son)

An existence of a q-deformation of the universal enveloping algebra U(so(n, C)), different from
the Drinfeld–Jimbo quantized universal enveloping algebra Uq(son), is explained by the following
reason. The Lie algebra so(n, C) has two structures:

(a) The structure related to existing in so(n, C) a Cartan subalgebra and root elements.
A quantization of this structure leads to the Drinfeld–Jimbo quantized universal enveloping
algebra Uq(son).

(b) The structure related to realization of so(n, C) by skew-symmetric matrices. In the Lie
algebra so(n, C) there exists a basis consisting of the matrices Iij , i > j, defined as Iij = Eij−Eji,
where Eij is the matrix with entries (Eij)rs = δirδjs. These matrices are not root elements.

Using the structure (b), we may say that the universal enveloping algebra U(so(n, C)) is
generated by the elements Iij , i > j. But in order to generate the universal enveloping algebra
U(so(n, C)), it is enough to take only the elements I21, I32, . . . , In,n−1. It is a minimal set of
elements necessary for generating U(so(n, C)). These elements satisfy the relations

I2
i,i−1Ii+1,i − 2Ii,i−1Ii+1,iIi,i−1 + Ii+1,iI

2
i,i−1 = −Ii+1,i,

Ii,i−1I
2
i+1,i − 2Ii+1,iIi,i−1Ii+1,i + I2

i+1,iIi,i−1 = −Ii,i−1,

Ii,i−1Ij,j−1 − Ij,j−1Ii,i−1 = 0 for |i − j| > 1.

The following theorem is true [15] for the universal enveloping algebra U(so(n, C)):
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Theorem 1. The universal enveloping algebra U(so(n, C)) is isomorphic to the complex asso-
ciative algebra (with a unit element) generated by the elements I21, I32, . . . , In,n−1 satisfying the
above relations.

We make the q-deformation of these relations by fulfilling the deformation of the integer 2 in
these relations as

2 → [2]q :=
(
q2 − q−2

)
/

(
q − q−1

)
= q + q−1.

As a result, we obtain the complex unital (that is, with a unit element) associative algebra
generated by elements I21, I32, . . . , In,n−1 satisfying the relations

I2
i,i−1Ii+1,i −

(
q + q−1

)
Ii,i−1Ii+1,iIi,i−1 + Ii+1,iI

2
i,i−1 = −Ii+1,i, (1)

Ii,i−1I
2
i+1,i −

(
q + q−1

)
Ii+1,iIi,i−1Ii+1,i + I2

i+1,iIi,i−1 = −Ii,i−1, (2)

Ii,i−1Ij,j−1 − Ij,j−1Ii,i−1 = 0 for |i − j| > 1. (3)

This algebra was introduced by us in [5] and is denoted by U ′
q(son).

The analogue of the elements Iij , i > j, can be introduced into U ′
q(son) (see [16]). In order to

give them we use the notation Ik,k−1 ≡ I+
k,k−1 ≡ I−k,k−1. Then for k > l + 1 we define recursively

I+
kl := [Il+1,l, Ik,l+1]q ≡ q1/2Il+1,lIk,l+1 − q−1/2Ik,l+1Il+1,l, (4)

I−kl := [Il+1,l, Ik,l+1]q−1 ≡ q−1/2Il+1,lIk,l+1 − q1/2Ik,l+1Il+1,l.

The elements I+
kl, k > l, satisfy the commutation relations

[I+
ln, I+

kl]q = I+
kn, [I+

kl, I
+
kn]q = I+

ln, [I+
kn, I+

ln]q = I+
kl for k > l > n, (5)

[I+
kl, I

+
nr] = 0 for k > l > n > r and k > n > r > l, (6)

[I+
kl, I

+
nr]q =

(
q − q−1

) (
I+
lr I+

kn − I+
krI

+
nl

)
for k > n > l > r. (7)

For I−kl, k > l, the commutation relations are obtained from these relations by replacing I+
kl by

I−kl and q by q−1.
The algebra U ′

q(son) can be defined as a unital associative algebra generated by I+
kl, 1 ≤ l <

k ≤ n, satisfying the relations (5)–(7). In fact, using the relations (4) we can reduce the relations
(5)–(7) to the relations (1)–(3) for I21, I32, . . . , In,n−1.

The Poincaré–Birkhoff–Witt theorem for the algebra U ′
q(son) can be formulated as follows

(a proof of this theorem is given in [17]): The elements

I+
21

m21I+
31

m31 · · · I+
n1

mn1I+
32

m32I+
42

m42 · · · I+
n2

mn2 · · · I+
n,n−1

mn,n−1 , mij = 0, 1, 2, . . . , (8)

form a basis of the algebra U ′
q(son). This assertion is true if I+

ij are replaced by the corresponding
elements I−ij .

Example 1. Let us consider the case of the algebra U ′
q(so3). It is generated by two elements

I21 and I32, satisfying the relations

I2
21I32 −

(
q − q−1

)
I21I32I21 + I32I

2
21 = −I32, (9)

I21I
2
32 −

(
q + q−1

)
I32I21I32 + I2

32I21 = −I21. (10)

Introducing the element I+
31 ≡ I31 = q1/2I21I32−q−1/2I32I21 we have for I21, I32, I31 the relations

[I21, I32]q = I31, [I32, I31]q = I21, [I31, I21]q = I32, (11)

where the q-commutator [·, ·]q is defined as [A, B]q = q1/2AB − q−1/2BA.
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Note that the algebra U ′
q(so3) has a large automorphism group. In fact, it is seen from (9)

and (10) that these relations do not change if we permute I21 and I32. From relations (11) we see
that the set of these relations do not change under cyclic permutation of the elements I21, I32, I31.
The change of a sign at I21 or at I32 also does not change the relations (9) and (10). Generating
a group by these automorphisms, we may find that they generate the group isomorphic to the
modular group SL(2, Z). It is why the algebra U ′

q(so3) is interesting for algebraic geometry and
quantum gravity (see, for example, [18] and [19]).

Example 2. Let us consider the case of the algebra U ′
q(so4). It is generated by the elements

I21, I32 and I43. We create the elements

I31 = [I21, I32]q, I42 = [I32, I43]q, I41 = [I21, I42]q. (12)

Then the elements Iij , i > j, satisfy the following set of relations

[I21, I32]q = I31, [I32, I31]q = I21, [I31, I21]q = I32,

[I32, I43]q = I42, [I43, I42]q = I32, [I42, I32]q = I43,

[I31, I43]q = I41, [I43, I41]q = I31, [I41, I31]q = I43,

[I21, I42]q = I41, [I42, I41]q = I21, [I41, I21]q = I42,

[I21, I43] = 0, [I32, I41] = 0, [I42, I31] =
(
q − q−1

)
(I21I43 − I32I41)

which completely determine the algebra U ′
q(so4). At q = 1 these relations define just the

Lie algebra so(4, C). Each of the sets (I21, I32, I31), (I32, I43, I42), (I31, I43, I41), (I21, I42, I41)
determine a subalgebra isomorphic to U ′

q(so3).
The algebra U ′

q(so4) is also important for quantum gravity and algebraic geometry (see [20]
and [21]). The algebra U ′

q(son) for general n is also used in quantum gravity [22].

Let us describe the automorphism group G of the algebra U ′
q(son). It is clear from the

defining relations of the algebra U ′
q(son) that for each i (i = 2, 3, . . . , n) this algebra admits an

automorphism τi given by the formulas

τi : Ij,j−1 → Ij,j−1, j �= i, τi : Ii,i−1 → −Ii,i−1.

These automorphisms generate a group of automorphisms which will be denoted by G. Elements
of G can be denoted by g = (ε2, ε3, . . . , εn), where εj runs independently the values +1 and −1.
Namely, if under action of g generating elements Ij1,j1−1, . . . , Ijs,js−1 change a sign, then in
g = (ε2, ε3, . . . , εn) εj1 = · · · = εjs = −1 and other εi are equal to 1. It is clear that the group G
has 2n−1 elements.

If n = 3, then the group G does not coincide with the group of all automorphisms of U ′
q(so3).

It is not known if this assertion is true for n > 3.

3 Representations of classical and nonclassical types

The elements of the set

I21, I43, . . . , I2k,2k−1, (13)

where n = 2k if n is even and n = 2k + 1 if n is odd, commute pairwise.

Proposition 1. (a) If T is a finite dimensional irreducible representation of the algebra U ′
q(son),

then the operators

T (I21), T (I43), . . . , T (I2k,2k−1)

are simulteneously diaginalizable.
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(b) Possible eigenvalues of any of these operators can be as i[m]q, m ∈ 1
2Z, or as [m]+,

m ∈ 1
2Z, m �∈ Z, where

[m]q =
qm − q−m

q − q−1
, [m]+ =

qm + q−m

q − q−1
.

Eigenvalues of the form i[m]q are called eigenvalues of the classical type. Eigenvalues of the
form [m]+ are called eigenvalues of the nonclassical type.

The following proposition is important for construction of weight theory for finite dimensional
representations of U ′

q(son).

Proposition 2. Let T be a finite dimensional irreducible representation of U ′
q(son). Then

(a) Eigenvalues of any operator T (I2i,2i−1) are all of the classical type or all of the nonclassical
type.

(b) Moreover, all operators T (I2i,2i−1), i = 1, 2, . . . , k, have eigenvalues of the same type.

This proposition is proved by restricting the representation T to the subalgebras U ′
q(so4)

generated by the elements Ij,j−1, Ij+1,j , Ij+2,j+1, j = 2, 3, . . . , n − 2 and using the results of the
paper [8].

Definition 1. A finite dimensional irreducible representation T of the algebra U ′
q(son) is called

a representation of classical (nonclassical) type if the operators T (I2i,2i−1), i = 1, 2, . . . , k have
eigenvalues of the classical (of the nonclassical) type.

Proposition 3. Let T be a finite dimensional irreducible representation of U ′
q(son) of the clas-

sical (nonclassical) type. Then a restriction of T to the subalgebra U ′
q(son−1) decomposes into

a direct sum of irreducible representations of this subalgebra belonging to the same type.

4 Weights of representations

In this section we construct a q-analogue of weights for finite dimensional irreducible representa-
tions of the algebra U ′

q(son). Note that this algebra has no elements which can be treated as root
elements (similar to root elements of semisimple Lie algebras or quantized universal enveloping
algebras of Drinfeld and Jimbo). For this reason, we do not have a weight theory for finite
dimensional representations of U ′

q(son) similar to that for semisimple Lie algebras. However, we
can construct the theory which can replace the weight theory of representations of semisimple
Lie algebras.

Definition 2. Let T be a finite dimensional representation of the algebra U ′
q(son). Eigenvec-

tors v of operators T (I2j,2j−1), j = 1, 2, . . . , k, are called weight vectors of the representation T .
If T (I2j,2j−1)v = mjv, then the the set of numbers m = (m1, m2, . . . , mk), where n = 2k + 1 or
n = 2k, is called a weight of the vector v.

The set of all weights of an irreducible representation T of U ′
q(son) is called a weight diagram

of the representation T .

Proposition 4. A weight diagram of a finite dimensional irreducible representation T of the
classical type is invariant with respect to the Weyl group W of the Lie algebra so(n, C).

This proposition is proved by restriction of the representation T to the subalgebras U ′
q(so3)

generated by the pairs of generators I2j,2j−1, I2j+1,2j , j = 1, 2, . . ., and using the results of the
paper [23].

Note that a weight diagram of a finite dimensional irreducible representation of the nonclas-
sical type is not invariant with respect to the Weyl group W .
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5 Raising and lowering operators

Recall that in the Lie algebra so(n, C) there exist root elements Eα1 , Eα2 , . . . , Eαk
, corresponding

to simple roots, and root elements Fα1 , Fα2 , . . . , Fαk
, corresponding to simple roots taken with

sign minus. If T ′ is a finite dimensional irreducible representation of so(n, C) and |m〉 is its
weight vector, then

T ′(Eαi)|m〉 = βm|m + αi〉, T ′(Fαi)|m〉 = γm|m − αi〉,

where βm and γm are complex numbers. In the algebra U ′
q(son) there exist no elements similar

to Eαj and Fαj . However, in finite dimensional representations of U ′
q(son) there exist operators

having properties of the operators T ′(Eαi) and T ′(Fαi). These operators depend on a weight
on which they act and are called raising and lowering operators of the representation. They are
described as follows.

Let T be a finite dimensional irreducible representation of U ′
q(son) of the classical type and

let |m〉 be its weight vector. If n = 2k we create the operators

Rm
αi

= −T (I2i+2,2i−1) + q−(mi+mi+1)/2T (I2i+1,2i) − iq−mi+1/2T (I2i+2,2i)

− iq−mi+1−1/2T (I2i+1,2i−1), i = 1, 2, . . . , k − 1, (14)

Lm
αi

= −T (I2i+2,2i−1) + q(mi+mi+1)/2T (I2i+1,2i) + iqmi+1/2T (I2i+2,2i)

+ iqmi+1−1/2T (I2i+1,2i−1), i = 1, 2, . . . , k − 1, (15)

and the operators

Rm
αk

= T (I2k,2k−3) + q(−mk−1+mk)/2T (I2k−1,2k−2) + iq−mk−1+1/2T (I2k,2k−2)

− iqmk−1/2T (I2k−1,2k−3), (16)

Lm
αk

= −T (I2k,2k−3) + q(mk−1−mk)/2T (I2k−1,2k−2) + iqmk−1+1/2T (I2k,2k−2)

+ iq−mk−1/2T (I2k−1,2k−3). (17)

If n = 2k + 1, then we create the operators (14), (15) and the operators

Rm
αk

= T (I2k+1,2k−1) + iq−mk+1/2T (I2k+1,2k), (18)

Lm
αk

= T (I2k+1,2k−1) − iqmk+1/2T (I2k+1,2k). (19)

If T is a finite dimensional representation of U ′
q(son) of the nonclassical type and |m〉 is its

weight vector, then we create the operators

Rm
αi

= −T (I2i+2,2i−1) + q−(mi+mi+1)/2T (I2i+1,2i) − q−mi+1/2T (I2i+2,2i)

− q−mi+1−1/2T (I2i+1,2i−1), i = 1, 2, . . . , k − 1, (20)

Lm
αi

= −T (I2i+2,2i−1) + q(mi+mi+1)/2T (I2i+1,2i) − qmi+1/2T (I2i+2,2i)

− qmi+1−1/2T (I2i+1,2i−1), i = 1, 2, . . . , k − 1, (21)

and the operators

Rm
αk

= T (I2k,2k−3) + q(−mk−1+mk)/2T (I2k−1,2k−2) + q−mk−1+1/2T (I2k,2k−2)

+ qmk−1/2T (I2k−1,2k−3), (22)

Lm
αk

= −T (I2k,2k−3) − q(mk−1−mk)/2T (I2k−1,2k−2) + qmk−1+1/2T (I2k,2k−2)

+ q−mk−1/2T (I2k−1,2k−3) (23)
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if n = 2k. If n = 2k + 1, then we create the operators (20), (21) and the operators

Rm
αk

= T (I2k+1,2k−1) + q−mk+1/2T (I2k+1,2k), (24)

Lm
αk

= T (I2k+1,2k−1) − qmk+1/2T (I2k+1,2k). (25)

The operators Rm
αk

and Lm
αk

correspond to the operators T ′(Eαi) and T ′(Fαi) of a represen-
tation T ′ of the Lie algebra so(n, C), respectively. We have

Rm
αk
|m〉 = βi|m + αi〉, Lm

αk
|m〉 = γi|m − αi〉, (26)

where αi and γi are complex numbers, which depend on the representation of U ′
q(son). Note

that the relations (26) are not true if we replace the vector |m〉 by some other weight vector
|m′〉, since in such a case in the right hand side we shall obtain, beside the vectors |m′ + αi〉
and |m′ − αi〉, other weight vectors.

Formulas (14)–(17) and (20)–(23) for raising and lowering operators follow from formulas of
section 8 of the paper [8] if to restrict the representation T of U ′

q(son) to the subalgebras U ′
q(so4)

generated by the elements I2j,2j−1, I2j+1,2j , I2j+2,2j+1, j = 1, 2, . . . , k − 1.
Formulas (18), (19), (24) and (25) for raising and lowering operators follow from formulas

for raising and lowering operators for irreducible representations of the algebra U ′
q(so3) of the

paper [8] if to restrict the representation T to the subalgebra U ′
q(so3) generated by the elements

I2k+1,2k and I2k,2k−1.

Definition 3. If T is a finite dimensional irreducible representation of the algebra U ′
q(son), then

a weight m of this representation is called a highest weight if Rm
αi
|m〉 = 0, i = 1, 2, . . . , k. The

corresponding vector |m〉 is called a highest weight vector.

Let us give a form of highest weights of irreducible representations of the classical and of the
nonclassical types. In order to determine such a form we restrict the corresponding irreducible
representations of U ′

q(son) to the subalgebras U ′
q(so4) and U ′

q(so3) and use the results of the
papers [8] and [23]. As a result, we find that if a weight m ≡ (m1, m2, . . . , mk) of an irreducible
representation T of the classical type is a highest weight, then the numbers mj are all integral
or all half-integral (but not integral) and satisfy the conditions

m1 ≥ m2 ≥ · · · ≥ mk if n = 2k + 1

and the conditions

m1 ≥ m2 ≥ · · · ≥ mk−1 ≥ |mk| if n = 2k.

The set of these highest weights coincides with the set of highest weights of irreducible finite
dimensional representations of the Lie algebra so(n, C). These highest weights will be called
highest weights of the classical type.

If a weight m ≡ (m1, m2, . . . , mk) of an irreducible representation T of the nonclassical type
is a highest weight, then the numbers mj are all half-integral (but not integral). In order to
formulate the classification theorem for representations of the nonclassical type we shall need
only highest weights m for which all mj are positive. Such highest weights must satisfy the
conditions

m1 ≥ m2 ≥ · · · ≥ mk ≥ 1/2.

These highest weights will be called highest weights of the nonclassical type.
It is well known that the root elements Eαi and Fαi of the Lie algebra so(n, C) satisfy the

relations

[Eαi , Fαi ] = 2Hαi , [Eαi , Fαj ] = 0, i �= j.
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Instead of these relations for raising and lowering operators of representations of the classical
and nonclassical type of the algebra U ′

q(so2k) we have the relations

(
Rm−αi

αi
Lm

αi
− Lm+αi

αi
Rm

αi

) |m〉 = [2l]q
{(

q − q−1
)2

C4 −
(
q2l + q−2l

) (
q2 − q−2

)} |m〉, (27)
(
R

m−αj
αi Lm

αj
− Lm+αi

αj
Rm

αi

)
|m〉 = 0, (28)

where l = (mi −mi+1)/2 if i �= k and l = (mi + mi+1)/2 if i = k and C4 is the Casimir operator
of the subalgebra U ′

q(so4) generated by the elements I2i,2i−1, I2i+1,2i, I2i+2,2i+1, which is given as

C4 = q−1I2i,2i−1I2i+2,2i+1 − I2i+1,2i−1I2i+2,2i + qI2i+1,2iI2i+2,2i−1.

For the algebra U ′
q(so2k+1) we have the relations (27) for i �= k, (28) for i �= j and the relations

(
Rm−αk

αk
Lm

αk
− Lm+αk

αk
Rm

αk

) |m〉 = q[mk]q[mk]+
(
q − q−1

)2 |m〉. (29)

6 Classification theorems

For finite dimensional irreducible representations of the classical type the following theorem is
true.

Theorem 2. (a) Each irreducible finite dimensional representation of the classical type has
a highest weight. A highest weight is unique (up to a constant).

(b) Irreducible finite dimensional representations with different highest weights are not equi-
valent. Conversely, nonequivalent irreducible finite dimensional representations of U ′

q(son) have
different highest weights.

Existing of a highest weight is proved in the same way as in the case of irreducible repre-
sentations of the Lie algebra so(n, C) by using Propositions 1 and 2. A proof of uniqueness of
highest weight is not simple. The relations (27)–(29) are used in this proof.

The assertion (b) is proved by using a proof of the similar assertion for irreducible representa-
tions of the algebra U ′

q(so4) from paper [8]. Namely, if |m〉 is a highest weight vector, then we act
upon |m〉 successively by the corresponding operators Lm′

αi
, i = 1, 2, . . . , k. Then, as in [8], we can

find how the operators Rm′
αi

act upon weight vectors |m′〉. Therefore, by the method of the pa-
per [8] we evaluate uniquely how the operators T (I2i+2,2i−1), T (I2i+1,2i), T (I2i+2,2i), T (I2i+2,2i+1)
act upon the corresponding weight vectors. Thus, a highest weight determines uniquely (up to
equivalence) the operators T (Ij,j−1), j = 2, 3, . . . , n.

Thus, in order to obtain a classification of irreducible finite dimensional representations of
the classical type of the algebra U ′

q(son) we have to determine highest weights, described in the
previous section, to which such irreducible representations with these highest weights correspond.

It can be proved that the irreducible representation Tm of U ′
q(son) from the paper [5] are of

the classical type and has highest weight m. If we take all these irreducible representations Tm,
then they give all highest weights m, described in previous section for irreducible representations
of the classical type. That is, for each highest weight m of the classical type from the previous
section there corresponds an irreducible representation of U ′

q(son). Thus, we obtain the following
classification of irreducible representations of the classical type.

Theorem 3. Irreducible finite dimensional representations of the classical type of the algebra
U ′

q(son) are in one-to-one correspondence with highest weights of the classical type, described in
the previous section.
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Thus, irreducible finite dimensional representations of the classical type of the algebra U ′
q(son)

are in one-to-one correspondence with irreducible finite dimensional representations of the Lie
algebra son. The corresponding irreducible representations of U ′

q(son) and of son act on the
same vector space. Moreover, when q → 1, then operators of an irreducible representation of
U ′

q(son) tend to the corresponding operators of the corresponding irreducible representation of
son. This is a reason why the representations of Theorem 3 are called representations of the
classical type.

An analogue of Theorem 2 for irreducible representations of the nonclassical type is formulated
as follows.

Theorem 4. (a) Each irreducible finite dimensional representation of the nonclassical type has
a highest weight. A highest weight is unique (up to a constant).

(b) Irreducible finite dimensional representations with different highest weights are not equiv-
alent.

This theorem is proved in the same way as Theorem 2.
In order to formulate the classification theorem for irreducible representations of the nonclas-

sical type we first formulate the following proposition.

Proposition 5. If T is an irreducible representation of the nonclassical type and G is the
automorphism group of U ′

q(son) from section 2, then the composition T (g) := T ◦ g, g ∈ G,
g �= e, is a representation of the nonclassical type which is not equivalent to T .

This proposition is proved by showing that spectrum of the operator T (I2i,2i−1) (i = 1, 2, . . .,
k) coincides with the set [12 ]+, [32 ]+, . . . , [ s

2 ]+ or with the set −[12 ]+, −[32 ]+, . . . ,−[ s
2 ]+, where s is

some positive integer. In order to show this we use the method of mathematical induction. For
U ′

q(so4) this assertion is true (see [8]). The induction is proved by using Wigner–Eckart theorem
for irreducible representations of the nonclassical type derived by N. Iorgov (this theorem will
be published).

Thus, with every irreducible representation T of the nonclassical type we associate a set
of irreducible representations {T (g) | g ∈ G}, consisting of 2n−1 pairwise nonequivalent irre-
ducible representations of the nonclassical type. In this set there exists exactly one irreducible
representation with highest weight m = (m1, m2, . . . , mk) such that m1 ≥ m2 ≥ · · · ≥ mk ≥ 1

2 .
For every highest weight of the nonclassical type m with m1 ≥ m2 ≥ · · · ≥ mk ≥ 1

2 there
exists an irreducible representation of the nonclassical type having m as its highest weight.
Therefore, from above reasoning we derive the following classification of irreducible representa-
tions of the nonclassical type.

Theorem 5. Irreducible representations of the nonclassical type of the algebra U ′
q(son) are in

one-to-one correspondence with pairs (m, g), where m is a highest weight of the nonclassical
type with m1 ≥ m2 ≥ · · · ≥ mk ≥ 1

2 and g is an element of the automorphism group G.

Note that irreducible representations of the nonclassical type have no classical analogue.
Namely, operators of representations of the nonclassical type are singular at the point q = 1.

7 Irreducible representations of U ′
q(so3)

This and the next sections are devoted to examples of the theory described above. In this section
we describe irreducible finite dimensional representations of the algebra U ′

q(so3).
Irreducible finite dimensional representations of the classical type of this algebra are given by

nonnegative integral or half-integral number l. The irreducible representation Tl, given by such
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a number l, acts on (2l+1)-dimensional vector space Hl with a basis |l, m〉, m = −l,−l+1, . . . , l.
The operators Tl(I21) and Tl(I32) are given by the formulas

Tl(I21)|l, m〉 = i[m]q|l, m〉,
Tl(I32)|l, m〉 =

1
qm + q−m

([l − m]q|l, m + 1〉 − [l + m]q|l, m − 1〉) ,

where [a]q denotes a q-number. Note that for these representations we have

Tr Tl(I21) = 0, Tr Tl(I32) = 0.

Irreducible representations T ε1,ε2
n of the nonclassical type are given by the numbers εi = ±1

(they determine elements of the automorphism group G) and by the integer n = 1, 2, . . .. (Ac-
cording to Section 6, these representations are given by half-integral number l, but we replaced l
by n = l+1/2.) The representation T ε1,ε2

n acts on n-dimensional vector space with the basis |k〉,
k = 1, 2, . . . , n. The operators T ε1,ε2

n (I21) and T ε1,ε2
n (I32) are given by the formulas

T ε1,ε2
n (I21)|k〉 = ε1

qk−1/2 + q−k+1/2

q − q−1
|k〉,

T ε1,ε2
n (I32)|1〉 =

1
q1/2 − q−1/2

(ε2[n]q|1〉 + i[n − 1]q|2〉) ,

T ε1,ε2
n (I32)|k〉 =

1
qk−1/2 − q−k+1/2

(i[n − k]q|k + 1〉) + +i[n + k − 1]q|k − 1〉) ,

These representations have the properties

Tr T ε1,ε2
n (I21) �= 0, Tr T ε1,ε2

n (I32) �= 0.

There exist 4 one-dimensional irreducible representations of the nonclassical type. They are
equivalent to T ε1,ε2

1 , εi = ±1.
Note that a proof of the fact that these representations of U ′

q(so3) exhaust all irreducible
representations of this algebra is given in [23].

8 Irreducible representations of U ′
q(so4)

Irreducible finite dimensional representations of the classical type of the algebra U ′
q(so4) are

given by two integral or two half-integral (but not integral) numbers r and s such that r ≥ |s|.
These numbers constitute the highest weight of the representation. We define the numbers
j = (r + s)/2 and j′ = (r− s)/2 and denote the representation by Tjj′ . This representation acts
on the vector space with the basis

|k, l〉, k = −j,−j + 1, . . . , j, l = −j′,−j′ + 1, . . . , j′.

The operators Tjj′(Ii,i−1), i = 2, 3, 4, act upon these vectors by the formulas

Tjj′(I21)|k, l〉 = i[k + l]q|k, l〉, Tjj′(I43)|k, l〉 = i[k − l]q|k, l〉,
Tjj′(I32)|k, l〉 =

1
(qk+l + q−k−l)(qk−l + q−k+l)

×
{
−

(
qj−l + q−j+l

)
[j′ − l]q|k, l + 1〉 +

(
qj+l + q−j−l

)
[j′ + l]q|k, l − 1〉

+
(
qj′−k + q−j′+k

)
[j − k]q|k + 1, l〉 −

(
qj′+k + q−j′−k

)
[j + k]q|k − 1, l〉

}
.
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Irreducible finite dimensional representations of the nonclassical type of the algebra U ′
q(so4)

are given by two half-integral (but not integral) numbers r, s such that r ≥ s > 0 and by
the numbers ε1, ε2, ε3, εi = ±1, which determine elements of the automorphism group G. The
numbers r and s constitute a highest weight of the representation if ε1 = ε2 = ε3 = 1. We define
the numbers j = (r + s)/2 and j′ = (r − s)/2 and denote the corresponding representations
by T ε1ε2,ε3

jj′ .
If (r, s) runs over all highest weights of the nonclassical type with r ≥ s > 0, then j and j′

run over the values

j = 0, 1, 2, . . . , j′ = 1
2 , 3

2 , 5
3 , . . . or j = 1

2 , 3
2 , 5

3 , . . . , j′ = 0, 1, 2, . . . .

The representation T ε1,ε2,ε3

jj′ acts on the vector space H with the basis

|k, l〉, k = j, j − 1, . . . , 1
2 , l = j′, j′ − 1, . . . ,−j′,

if j′ is integral and with the basis

|k, l〉, k = j, j − 1, . . . ,−j, l = j′, j′ − 1, . . . , 1
2 ,

if j is integral. The representations are given by the formulas

T ε1,ε2,ε3

jj′ (I21)|k, l〉 = ε1[k + l]+|k, l〉, T ε1,ε2,ε3

jj′ (I43)|k, l〉 = ε2[k − l]+|k, l〉,
T ε1,ε2,ε3

jj′ (I32)|k, l〉 =
1

[k + l]q[k − l]q(q − q−1)
{−i[j′ − l]q[j − l]q|k, l + 1〉

+ i[j′ + l]q[j + l]q|k, l − 1〉 − i[j′ − k]q[j − k]q|k + 1, l〉 + i[j′ + k]q[j + k]q|k − 1, l〉},

where k �= 1
2 if j is half-integral and l �= 1

2 if j′ is half-integral, and by

T ε1,ε2,ε3

jj′ (I32)|12 , l〉 =
1

[l + 1
2 ][l − 1

2 ](q − q−1)
{−i[j − l]q[j′ − l]q|12 , l + 1〉

+ i[j + l]q[j′ + l]q|12 , l − 1〉 − i[j′ − 1
2 ]q[j − 1

2 ]q|32 , l〉 + i[j′ + 1
2 ]q[j + 1

2 ]qε3(−1)l|12 ,−l〉}

if j is half-integral and by

T ε1,ε2,ε3

jj′ (I32)|k, 1
2〉 = 1

[k+ 1
2
]q [k− 1

2
]q(q−q−1)

{−i[j − 1
2 ]q[j′ − 1

2 ]q|k, 3
2〉 + i[j+1

2 ]q[j′+1
2 ]q

× ε3(−1)k| − k, 1
2〉 − i[j′−k]q[j−k]q|k + 1, 1

2〉 + i[j′+k]q[j+k] + q|k − 1, 1
2〉}

if j′ is half-integral.
Note that a proof of the fact that these representations of U ′

q(so4) exhaust all irreducible
representations of this algebra is given in [8].
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