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We derive the basic principles of Electromagnetism and general relativity from a common
(geometrical) starting formulation we call START, from its geometrical structure as a Space–
Time–Action Relativity Theory. Gravitation results from the epistemological approach of
defining a test particle which explores the physical world in such a form that its trajectory
indicates the influence of the rest of the system. Electromagnetism defines a collection
of test particles, we call carriers, in interaction among themselves and with the rest of the
system. General Relativity is then derived from a symmetry transformation of the quadratic
space geometry corresponding to space–time and action and the philosophical principles of
Einstein’s general relativity theory.

1 Introduction

We present a deductive approach to General Relativity (GR) Theory, deriving it from the
quadratic space geometry corresponding to the, in our approach fundamental concepts, of space,
of time, and of action and from the philosophical principles of Einstein’s general relativity theory.
Our basic and more fundamental idea is that the physical world can be described as a distri-
bution of action density in space–time. The properties of matter fields and their interaction
are represented by the mathematical properties of this distribution. Action is considered as
a fundamental variable, not as a quantity resulting from some calculation.

In [6, 7, 12] we analyzed a classical theory of fields in (complex) space–time geometry and ar-
rived to the conclusion that this geometry corresponds to a unified space–time–action geometry.
We started from three basic assumptions: a) The use of space–time as a basic frame of refer-
ence; b) The introduction of physical phenomena as an action density function over space–time;
and c) The geometrical (vectorial) union of space, time, and action in a quadratic space where
a relativistic condition (dS)2 = 0 defines both kinematics and dynamics. The basic principles
of this Space–Time–Action Relativity Theory (START) are used to derive General Relativity.

In the construction of General Relativity the procedure is to perform a symmetry transfor-
mation which modifies the space–time components, and then the metric, by the allocation of the
appropriate amount of action corresponding to the additional action attributed to a test particle
as a result of the interaction with the rest of the world. This transformation is made at the
level of the quadratic form. This kind of transformations which transfer action into equivalent
space–time to modify the metric tensor will be interpreted by the observer as those changes in
the metric corresponding to its clocks running slower and the space intervals becoming larger,
as is customary in the analysis of general relativity.
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1.1 Carriers, Action, Space and Time

Action, as a fundamental variable, is distributed among a set of carrier (of action) fields. An
action density a(x, t) is the fundamental concept defining all three space (parametrized by x),
time (parametrized by t) and action density (parametrized by an scalar analytical function
a(x, t)) as primitive concepts from which all other physical quantities will be derived or at
least related directly or indirectly. The density of a carrier field can be defined through a set of
scalar constants such that the integral of the product of these constants and the density gives
the experimentally attributed value of a property for that carrier. A carrier field identified will
have a density ρ(x, t) and if the property is Q we will obtain the definition Q =

∫
q(x, t)dx =∫

Qρ(x, t)dx for all t, which defines that Q is a constant property (in space and time) for that
field. The set of properties {Q} characterizes a carrier field and in turn establishes the conditions
for a density field to correspond to an acceptable carrier.

We already stated that in our theory space and time are fundamental, primordial, concepts.
The geometrical unification of these concepts into a space–time coordinate x = (x, ct) and an
interval ds2 requires the introduction of a universal constant: the speed of light c. As we will
also use action as a fundamental concept we need another universal constant κ = d0/h which we
will construct from a fundamental distance d0 and a fundamental unit of action we will choose
to be Planck’s action constant h. In this form we will have a five dimensional, START, manifold
3 + 1 + 1 with all dimensions in units of length. To agree with standard formulations energy
E = ∂a/∂t and momentum pi = ∂a/∂xi are the fundamental rates of change of the primitive
concept of action. It is also appropriate to say that the concept of matter, hitherto formally
undefined, will acquire proper formal definition in the context of the different structural theories.
Then the START theory presented here corresponds to a geometrization beyond Minkowski’s
fundamental paper. In fact that author, introducing the space-time interval squared ds2, adds:
“the axiom signifies that at any world-point the expression c2dt2 − dx2 − dy2 − dz2 always has
a positive value, or, what comes to the same thing, that any velocity v always proves less than c”.
In our full geometrization scheme action change dK = P · dX is introduced through a series
|dK|2 of quadratic terms

dS2 − ds2 = − |dK|2 = −
{(

E2/c2
)
c2dt2 − p2

xdt2 − p2
ydt2 − p2

zdt2
}

, (1)

joined in one unified geometrical quadratic form dS2. The dK vector, the directional in space-
time change of action, is a new theoretical quantity formally defined by (1). It acquires additional
relevance because action density will be described as a sum of contributions over carriers, a =∑
c

ac .We are constructing a systematic deductive approach to Physics and it is essential that

we derive many of the basic useful structures which have been used.
For a given observer the carrier field c is defined to have an energy density 1

Nc
Ecρ

(x,t)
c with Ec

a constant in space and Nc the integer number of carrier units of type c. The density ρc(x, t) is
required to obey

∫
V ρc(x, t)dx = Nc in the system volume V .

Action is in our approach a coordinate (expressed in units of distance) and one of the prop-
erties of a distribution describing, in relation to an observer, the contents of the physical world
in space–time. The concept of Physical Phenomena refers to the existence and change of this
distribution. Physics corresponds to the description of the action distribution and its changes
in relation to a given observer.

The action density function in space–time a(X), or energy density in space for a given ob-
server, can be considered as a density of action trajectories in space–time. For elementary
carriers the trajectories would be elementary trajectories. Both the density function a(X) and
the splitting among carrier fields will be considered analytically well behaved functions.

The energy is E =
∑
c
Ec a sum of constants for a given observer, assumed to be distributed

among the different carriers {c} and can furthermore be described as a sum of contributions
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per carrier. The simplest, almost universal, type of distribution per carrier type is into the
constitution energy E0, the position dependent kinetic energy Ek(X), and the position dependent
sum of potential energies Ev(X)

Ec = Ec
0 + Ec

k(X) + Ec
v(X) + Ec

∆(X). (2)

It is precisely this distribution (2) which defines the carrier for a given observer. Ec
0 defines the

basic carrier, Ec
k(X) the state of motion relative to the observer, and Ec

v(X) the relation between
that carrier and the rest of the system as defined by the observer. The Ec

∆(X) term is required
to make Ec a position independent constant, this is needed to have a meaningful definition of the
carriers of type c. The action is considered to be distributed among interacting carriers, and the
concept of charges of the carriers has been introduced. Consider the simplest possibility that
this action does not depend on the direction, and that at a given distance from the source, in
concentric spheres, the total force field per charge should be independent of the distance from
the charge then

FQ = F (r)4πr2 =
Q

ε04πr2
4πr2 = Q/ε0 (3)

which expresses that a definite capability is attributed to a charge Q. The factor 1/ε0 represents
any additional condition that the observer has to include to match its definitions.

We use in the analysis a tetrad of, observer dependent, basis vectors {e0, e1, e2, e3}, with
e2
0 = −e2

1 = −e2
23

= −e2
3 = 1 and the definition property eµeν = −eνeµ. We also use the

notation e0j = e0ej = ej (i, j, k = 1, 2, 3) and e5 = e0e1e2e3 = e0123. For a given observer
a space–time d’Alembertian operator � has the property e0� = 1

c∂t + ∇ = 1
c∂t + ei∂i, with ∇

the (ordinary space) Laplacian operator for that observer.
a) In space–time–action the action density a(x, t) is inhomogeneously distributed, corre-

sponding to the different material objects to which this action corresponds, in a possible relative
motion in the spatial directions with speeds 0 ≤ v ≤ c. Distributions which move with relative
velocities 0 ≤ v < c with respect to a given observer are called matter-like.

b) The matter-like energy distributions are to be considered as sources of (infinite extension,
in principle) decaying deformations of action distribution of several types. This second property
is not given a priori but it is a consequence of the description of the objects, as developed in
the previous section, shown below.

c) We introduce now a third fundamental concept: energy–momentum carriers, the definition
of identical carriers as a density in a space volume Vs such that at time t = t′∫

Vs

ρbdx = nb, h

∫
Vs

∂tabdx =
∫

Vs

ρbεbdx = nbεb = Eb, (4)

and Et′ =
[ ∑

b

Eb

]
t′

for a collection {b} of (by construction) independent types of carriers.

In agreement with our freedom of description we could also allow the nb not to be integers,
provided Et′ is not changed. Here

ε = mcc
2 + kin

[
ρ

(N)
0 (x)

]
+ V (x) + W int,xc

[
ρ

(N)
0 (x)

]
+ ε0

[
ρ

(N)
0 (x)

]
, (5)

the constitutional energy of the carriers mcc
2, actual local kinetic energy per carrier kin

[
ρ

(N)
0 (x)

]
,

external potential energy per carrier (in its simplest form) V (x). Second W int,xc

[
ρ

(N)
0 (x)

]
to

define independent carriers and finally a local energy term ε0

[
ρ

(N)
0 (x)

]
to compensate for any

difference in the sum of the previous ones with respect to ε. The last two terms define in
practice an actual carrier in the system (a pseudo-carrier in condensed matter physics language)
as different from an isolated carrier.
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2 Space–Time–Action Relativity Theory

Our basic and more fundamental idea [6, 7, 8, 10, 11, 12] is that the physical world can be
described as a distribution of action density in space–time. The properties of matter fields and
their interaction are represented by the mathematical properties of this distribution. Action is
considered as a fundamental variable, not as a quantity resulting from some calculation.

We use the traditional indices 0, 1, 2, 3 for the joint time and space coordinates xµ, also,
the vectors eµ in the geometry of space–time. They generate GST a 16 dimensional space–
time geometry of multivectors. A special property of the pseudo-scalar (and also volume or
inverse volume) in space–time e5 = e0e1e2e3, and of the linearly independent combination e4 ⇒
ije5, is that e5eµ = −eµe5 (from eµeν = −eνeµ, µ �= ν). Its use allows the construction of
a geometrical framework for the description of physical processes: a unified space–time–action
geometry GSTA = GST⊗C, mathematically a vector space with a quadratic form. The auxiliary
element j commutes with all eµ : eµj = jeµ. In the GSTA geometry the coordinates are real
numbers.

2.0.1 Formal presentation

The ideas developed in START (Space–Time–Action Relativity Theory) are derived from the
systematic use of the following principles and postulates [10, 11, 12].

First Principle: Principle of Relativity. Constancy of the value of the observed velocity
of light in vacuum. Independently of the state of movement of the source or of the observer
(Poincaré–Einstein Relativity {Poincaré 1904, Einstein 1905 [1]}). The Principle of Relativity
in full also requires that the laws of Physics should have the same form for all observers.

First Postulate. There is a geometry, corresponding to space–time, where the First Prin-
ciple is satisfied (Minkowski space–time with local pseudo-Euclidean structure). Here it is clear
that the velocity of light is a fundamental geometrical parameter and the First Principle could
be rephrased to assign a unit value to it.

Second Principle: Principle of Existence. Constancy of the action corresponding to a phy-
sical system and in particular to an elementary physical phenomenon. Independently of the state
of movement of the phenomenon or of the observer. Each observer considers the physical entity
as an amount of action A contained in a given space-time volume VST, A is a relativistic invariant
in the sense of Minkowski’s discussion.

Second Postulate. There is a geometry corresponding to the union of space–time and
action where the First and Second Principles are satisfied (pseudo-Euclidean structure).

Main Theorem KT: Complex Structure Theorem. The geometry where the Second Postu-
late is satisfied is a five-dimensional basis geometry, mathematically corresponding to a particular
complexification of space–time. The relation between a 5-dimensional geometry and the com-
plexification of the basis set has been briefly presented in the introduction and will be discussed
below.

Third Principle: Principle of Quantization. The exchanges in action always occur as
integer multiples of h. (This has to be a constitutive part of the units and practical use of KT
theorem). This makes Planck’s principle a universal principle which requires the definition of
the entities we have called action carriers, because if there are not differentiated action carriers
there is not a proper definition of the exchanges of action. This is also a guide and a limitation
in the definition of the action carriers and of the equivalent length associated to the time interval
in which the system with total action A is defined.

Fourth Principle: Principle of Choice. The distribution of action in space–time corre-
sponding to a physical system is unique and any description of this distribution should be
equally acceptable. The acceptability of a description, in relation to the Third Principle, is
interpreted here as implying an optimization of the action distribution among the available
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number of START cells of action and a mechanism to allow the system of carriers to arrive to
this optimized state.

Third Postulate. The equivalent acceptable descriptions, for a physical system of carriers,
are related by isometries and gauge transformations in the space–time–action geometric space
corresponding to the Second Postulate.

Proof of KT. We have the kinematical concept of trajectory (µ, ν = 0, 1, 2, 3) with a quad-
ratic form

ds2 = gµνdxµdxν , (6)

generated by the dxµ and we want to include as a fifth coordinate the dynamical concept of
action and its distribution at each space–time point X = xµeµ, use the real scalar quantity

dA(X) = pµ(X)dxµ which defines pµ(X) = ∂A(X)/∂xµ, (7)

here pµ(X) is a distribution itself, write pµ(X) = tanΘ(X, µ) and join formally, defining the
(hyper)complex numbers j2 = −1 and i2 = −1, into

dSµ = dxµ(1 + jκ0i tanΘ(X, µ)), (8)

to obtain from the real quadratic form (in units of distance square)

dS2 = gµνdxµdxν
(
1 − κ2

0 tanΘ(X, µ) tanΘ(X, ν)
)
, (9)

or, in five-dimensional-like formulation

dS2 = guvdxudxv = ds2 − κ2
0 |dK(X)|2 , u, v = 0, 1, 2, 3, 4, (10)

where κ2
0 |dK(X)|2 corresponds to the sum of the squares of action contributions. Both quantities

i and j are necessary to explicitly show the complex structure and give simultaneously the
desired metric. This has introduced a new 4 − D vector function (remark: eµ and ieµ are
linearly independent vectors)

dK(X) = dK(X)µieµ =
∑

µ

tanΘ(X, µ)dxµieµ,

dKµ =
(

∂A

∂xµ

)
dxµ = tanΘ(X, µ)dxµ.

It is important to notice that it is not the actual value of the action density which is dynamically
important but its space-time variations. Even more important for dynamics is that, when the
action density is considered a sum a =

∑
c

ac over carriers, the contributions to dK =
∑
c

(dK)c

per carrier could be non-zero even is the sum could itself be null. That is the dynamics could
be purely relative dynamics. The basic dynamical equation is proposed to be

δ

∫
dS2 = 0, (11)

in a joint minimization of trajectory and action. The universal constant κ0, the ratio of a
fundamental distance to the fundamental unit of action, expresses the action as an equivalent
distance in such a form that (dx4)2 = |(κ0dK)|2, with gmn = diag(1,−1,−1,−1,−1) defines the
metric of the equivalent five dimensional geometry basis vectors. �

For the units to be used in the unified geometry consider the definition (m0 electron rest
mass, c speed of light, h = 2π� Planck’s constant, e electron charge, r0 classical electron radius
and α = e2/�c)

rCompton =
�

2m0c
=

r0

2α
, κ0 =

d0

h
= 4πrCompton/h =

1
m0c

. (12)
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The classical limit of the unification of action to space–time is obtained when κ0 → ∞ in a form
similar to the classical limit of the unification of space and time being obtained when c → ∞.
Note κ0 � c.

From our definitions we are considering two quantities: energy
∫

dV ∂t a(X) and the cor-
responding momenta

∫
dV ∂xi a(X). One of the basic relations in relativistic dynamics is the

transformation of the above quantities with respect to observers in relative motion with a relative
velocity v12.

For observer 1 E = mc2 =
∫

dV ∂t a(X), if by definition for this observer that object is at
rest and then the energy corresponds to a mass m and no momenta are involved.

For observer 2 the same relations hold. The energy for this observer will be E ′=m′c2 =∫
dV ′∂t′ a

′(X ′), larger than E

E ′ =
∂

∂t′
A =

mc2√
1 − v2

c2

→ with lim(v 	 c) → mc2 +
1
2
mv2 + · · · , (13)

and he can call the energy E ′ the sum of the rest (mass) energy E and the kinetic energy Ek.

2.1 Dynamical principles as symmetries

In space–time–action geometry the main dynamical principle should be that all elementary tra-
jectories be minimal. That is, from our definition of carriers above where dA = {εc

∫
ρc(X)dx}dt,

a minimization of a total action A ( in the case when we admit that the κ0 � 1 predo-
minates) or a minimization of a START trajectory. Defining the (square of the) differential
(dS)2 = (ds)2 − (da)2, where (ds)2 = gµνdxµdxν is the space–time differential and (da)2 the
action differential, the minimal principle

δ(dS)2 = 0, (14)

could be separated into a kinematical principle similar to the one of (general) relativity and an
additional principle of minimum action

δ(ds′)2 = 0, δ(da′)2 = 0, (15)

(ds′)2 = (ds)2 −
[
(da)2 − (da′)2

]
, (16)

as a modified space–time interval square which, in fact, corresponds to considering a curved
effective space–time as will be shown below. The action interval square (da′)2 corresponds to
some ‘inactive’ part of the action in relation to a given geometrical description.

3 Maxwell and Newton equations from START

Let us formally show that the Maxwell equations in their standard textbook form are analytical
properties of the third derivatives of the action density attributed to a test carrier (with ‘electric’
charge).

In the reference frame of a given observer the induced action density, denoted by ae(X), per
unit charge (⇒ puch) of a test carrier at space–time point X = xµeµ (here the greek indices
µ = 0, 1, 2, 3 and x0 = ct whereas the space vectors q = qiei = qie

i, i = 1, 2, 3 are written in bold
face letters), the related energy density Ee(X) and the total (external plus induced) momentum
density pe, per unit charge of the test carrier, would be

Ee(X) =
∂ae(X)

∂t
, pe = pe,ie

i =
(

∂ae(X)
∂xi

+ ∆Rpe,i

)
ei, (17)
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and the, by definition, electric field intensity E is the force (puch) corresponding to this terms

E =
(

∂Ee(X)
∂xi

+
∂pe,i

∂t

)
ei = ∇Ee(X) +

∂pe

∂t
,

with time dependence

∂E

∂t
=

(
∂2Ee(X)

∂t∂xi
+

∂2pe,i

∂t∂t

)
ei = 2

∂3ae(X)
∂t∂xi∂t

ei +
∂2 (∆Rpe,i)

(∂t)2
ei.

By definition of interacting carriers, we have added in (17) the term ∆Rpe,ie
i as the effect of the

conservation of interaction transverse momenta between the field representing the rest of
the carriers with that sort of charges. This is by definition the origin, in START, of a magnetic
field intensity B = Bke

k that will appear as the curl of the momentum (puch) of an interaction
field acting on a carrier of type b. The axial vector

B =
(

∂pe,i(X)
∂xj

)
ej × ei = ∇× pe,

∂B

∂t
=

∂2pe,i(X)
∂t∂xj

ej × ei.

Otherwise the space variation of E, including the interaction transverse momenta,

∇E = ∇ · E + ∇× E, (18)

will then also include a transversal (rotational) term

∇× E =
∂2pe,j(X)

∂xi∂t
ei × ej = −∂B

∂t
, (2nd Maxwell Equation)

relation which is the direct derivation in START of this well known Maxwell equation. The
scalar term ∇ · E being a divergency of a vector field should be defined to be proportional to a
source density

∇ · E =
1
ε0

ρ =
∑

i

(
∂3ae(X)
∂xi∂xi∂t

)
=

∂

∂t
∇2ae(X), (1st Maxwell Equation)

and will be given full physical meaning below. For the space variation of B we have

∇B = ∇ · B + ∇× B.

The first term vanishes identically in our theory because it corresponds to the divergence of the
curl of a vector field

∇ · B = 0, (3rd Maxwell Equation)

while the last term, using U × V × W = V (U · W ) − (U · V )W

∇× B = ∇
(
∇2ae(X)

)
−∇2pe = µ0

(
J + ε0

∂E

∂t

)
, (4th Maxwell Equation)

where the additional dimensional constant µ0 is needed to transform from time units (used in
the conceptual definition of a current J = ∇

(
∇2ae(X)

)
/µ0) into distance units and in fact

ε0µ0 = c−2.
The derived Maxwell equations are formally equivalent to the original Maxwell equations.
Both the 4th Maxwell Equation, defining J , related to a Lorentz transformation of the 1st

Maxwell Equation, defining ρ, can immediately be integrated using geometric analysis tech-
niques, the standard approach being of fundamental conceptual consequences in START. The
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space divergence of a non-solenoidal vector field like E is immediately interpreted as its ‘source’
given that ∆E = (∇ · E)S∆x, and this equation is integrated using the standard geometric
theorem that the volume integral of a divergency ∇·E equals the surface integral of the normal
(to the surface) component of the corresponding vector field n · E. Where n is a unit vector
perpendicular to the surface S (in the text-book formula below S = 4πr2 corresponding to an
integration sphere of radius r containing a spherically symmetric source density ρ(r) generating
a force field per unit charge E = E(r)r

r ) of the integration volume V = 4πr3/3:∫
V

(∇ · E) dV =
∫

V

4π

ε0
ρ(r′)r′2dr′ =

1
ε0

Q =⇒ E = E(r)
r

r
=

Q

4πε0r2

r

r
.

In the case of the, generated by a current, magnetic force field intensity B, being a space
bivector, it is also a direct geometrical consequence that its source can (must) be a current
vector density J . For a small (l 	 r) current source at the origin of coordinates: (in the sphere
rt(θ, φ) • rct = 0,

(
rt

)2 =
(
rct

)2 = 1)∫
V

4πµ0Jδ
(
r′

)
r′2dr′ = µ0Mrct = 4πr2fB(r)rct =⇒ B = B(r)rt =

µ0M

4πr2f
rt.

3.1 Newtonian gravity

The analysis above depends only on the assumption of the decomposition of the action and of the
energy momentum into contributions per carrier. The solution of the first Maxwell equation,
when applied to gravitation considering the mass M = E/c2, implies (as shown above) the
Newtonian gravitational potential equation per unit test mass m:

E = V = −G
M

r
, that is E = −G

M

r2

the usual relations in the textbook formulation of Newtonian gravity. The constant G = 1/4πε
(g)
0 .

If we define c2µ
(g)
0 ε

(g)
0 = 1 then µ

(g)
0 = 4πG/c2.

4 General relativity and the test particle

The Schwarzschild solution. In our present theory there are two fundamental carrier struc-
tures: the massless fields and the massive electron field with basic relation

E2 = (E0 + ∆E)2 , E2 − E2
0 = (pc)2, (19)

where ∆E is any gauge-free energy contribution and E0 = m0c
2 the energy, at rest relative to

some observer, considered to be the mass of the carrier.
The concept of test particle in general relativity in the Schwarzschild solution is compatible

with the Newtonian limit for the interaction gravitational energy

∆E (r) = −m0
GM

r
, (20)

where M is the total mass of ‘the system’ of radius rs we are exploring with the test particle
and, conceptually, with the START use of the action square difference, writing E = E0 + ∆E for
large (classical limit) values of r > rs

E2 − E2
0 = E2

0 + 2E0∆E + (∆E)2 − E2
0 = (pc)2

= 2E0∆E + (∆E)2 → −2m0c
2m0

GM

r
+

(
m0

GM

r

)2

, (21)
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this corresponds to the energy and radial momentum terms in (da)2−(da′)2 if (da′)2 = (m0c
2dt)2,

and substituting in (16) using κ0 = 1/m0c and space spherically symmetric coordinates t, r, θ,
φ we obtain

(dS)2 =

(
1 − 2

GM

c2r
+

(
GM

c2r

)2
)

c2 (dt)2

−
(

1 +
2GM

c2r
−

(
GM

c2r

)2
)

(dr)2 − r2
[
(dθ)2 + sin2 θ (dφ)2

]
, (22)

which is the Schwarzschild metric in the limit of r � GM/c2.
It is customary to write [15] the interval square using in our case f (r) = 1 + b2 (r) and

h (r) = 1 − b2(r)

f (r) =

(
1 − 2

GM

c2r
+

(
GM

c2r

)2
)

and h (r) =

(
1 +

2GM

c2r
−

(
GM

c2r

)2
)

, (23)

for c2r � GM we obtain the Schwarzschild relation f ∼= h−1.
The result (22) shows that our approach provides a conceptual understanding of the role of

sources carriers and test particles in general relativity. It also shows the possibility of extending
the analysis to circumstances more difficult to consider within the traditional approaches.

Once we have obtained the Schwarzschild metric we can now find the curved hypersur-
face in START corresponding to the curved space–time where the test particles are
assumed to move. Formally we need to define a set of vectors eµ, µ = 0, 1, 2, 3, gµν =
diag (1,−1,−1,−1), and their reciprocal, in terms of a vierbein using the Minkowski space
reference vectors. From (22) it is clear (see [15]) how to construct an orthonormal system of
vectors.

One of the possible symmetries in START is the transformation of position vectors y in
START to a new set {y = xueu; u = 0, 1, 2, 3, 4}

y′ = f(y) = x′ue′u. (24)

which describes the curvature of the space–time part necessary for representing physical inter-
actions, at the expense of defining ‘test’ carriers.

4.0.1 General relativity in START

From our previous analysis, the structure equivalent to Einstein’s general relativity is the fol-
lowing:

• In the flat space–time–action geometry a distribution of action is given and analyzed as
corresponding to the total matter and interaction fields (radiation) content.

• Basically one obtains the structure corresponding to general relativity by the process of
transforming this 1 + 3 + 1 geometrical description into an equivalent 1 + 3 description
given by a curved space–time.

• Even if the projection of the surface in five dimensions as a four-dimensional space corre-
sponds to the curved space–time of general relativity, the physical meaning of this curved
space–time is given by defining the trajectories of ‘test’ particles as the geodesics in this
4-D space.

The analysis we have presented here corresponds to changing the status of general relativity
from a physical model to a part of a deductive theory.
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4.0.2 A charged carrier as a test particle in general relativity

A charged particle at rest which is acted on by gravitational and electromagnetic interactions
will have for the (attributed) total energy (at distances large enough such that the collection of
masses with which the test carrier interacts are collectively represented by the volume integral
of a mass density M(r)) in the presence of the mass M =

∫
D M(r)dv, the following description:

ε = m0c
2 − m0

GM

r
+ e

Q

r
.

Substituting this in (19)–(23) will change the functions f (r) and h (r) into

f(r) = 1 − 2
GM

c2r
+

(
GM

c2r

)2

− e

m0
Q

GM

c4r2
+ 2

eQ

m0c2r
+

(
eQ

m0c2r

)2

,

h(r) = 1 + 2
GM

c2r
−

(
GM

c2r

)2

+
e

m0
Q

GM

c4r2
− 2

eQ

m0c2r
−

(
eQ

m0c2r

)2

.

The analysis of these functions would lead to the following conclusions:

1. Besides the attractive gravitational term there is a (quadratic) repulsive term which will
dominate at intermediate distances. Time coordinates do not become imaginary or dis-
continuous.

2. The electric part of the interaction depends explicitly in the e/m0 ratio of the test particle,
and it can then not be a universal behavior of a test particle.

Otherwise, when the relations corresponding to general relativity are derived from START,
those entering into the experimental proofs of the validity of general relativity (considered this
far) are not changed and retain their validation status.

4.1 The mathematical structure of general relativity from START

Once we have seen that an electron used as a test particle in the START geometry allows us to
obtain the Schwarzschild metric we can now proceed to a systematic derivation of the structure
of general relativity from START.

The main considerations are the following.

a) General relativity is a geometric theory describing the trajectories of test particles as the
natural trajectories, geodesics, in curved space–time geometry.

b) The curved space–time is obtained by incorporating, within STA, equivalent distances
from the action part into the ST part. That is, general relativity is a theory where the
geometry describes everything that is to be described, through the curved space–time, and
the test particle is only an auxiliary in this description.

c) The quadratic form obtained was afterwards analyzed using intrinsic geometrical tech-
niques to have a purely geometrical theory. The basic equations, everywhere in space,
are the transfer of the intervals corresponding to the relevant action (squared) to the flat
quadratic form of space–time.

d) We can directly consider that the quadratic form defines the metric tensor of the new
geometry, and then use the definition of the curvature from the metric tensor in the
generated curved space–time, to obtain a relation between the curvature and the energy–
momentum–stress tensor.
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The metric in GR. Once we have created the equivalent curved space–time the metric
in GR is given through the use of the line element (here gµν = gGR

µν from the choice of action
allocation to geometry and g0

µν corresponds to flat space–time)

dS2 = gµνdxµdxν = g0
µν (1 + ∆gµν) dxµdxν , (25)

which in turn defines local vector frames (up to a gauge transformation)

eGR
µ = h (eµ) , such that gµν = eGR

µ · eGR
ν ,

with h (x) a vector-valued function of vectors usually represented through a vierbein hν
µ.

In practice the metric appears as an independent field in START which is defined according
to the Principle of Choice of Acceptable Descriptions, then once it is chosen the condition of
flat STA is that the total curvature vanishes. Otherwise (from the integral of the selected
contributions to action)

κ0
δA

δgµν (x)
≡ κ0

2
Tµν (x) , (26)

(the factor 1
2 is needed for convention reasons); also, from the Ricci scalar curvature R which

results from the chosen line elements

δR
δgµν (x)

= Rµν − 1
2gµνR, with Rµν − 1

2gµνR +
κ0

2
Tµν = 0 (27)

to obtain the equivalent to the GR basic equation.

4.2 Rumer (Kaluza–Klein) theory deduced from START

The Rumer form of the Kaluza–Klein–Einstein–Bergmann theory is deduced from START when
besides deriving the metric tensor from the square of the line element dS, as the symmetric part
of dS2, the antisymmetric, then imaginary, elements are kept and considered in turn as as real
elements of an extended metric tensor in a 5-D geometry. That is consider again the complex
line element and compute again the complex square, keeping now the scalar and the bivector
parts

(dS)2 = dS2 + eµνdxµdxνijκ0(p(X, µ) − p(X, ν))

where the antisymmetric product of two vectors, the bivectors eµν are also the generators of
spin angular momentum.

From the principles of General Relativity of considering the changes in energy-momentum
for the test particle, consider that in the case of an electromagnetic interaction the test particle
of charge e receives and additional energy momentum p(X, µ) = eAµ (X)

ijκ0p(X, µ) = ij
e

m0c
Aµ (X)

using the action equivalent distance κ0 = 1/m0c.
Besides the many papers which have been written about the Kaluza–Klein proposition and

their extension to the idea of hyper-space with one additional dimension (at least) for each
additional interaction included, the direct inclusion of action as a fifth dimension was proposed
as early as the 1949–1956 by the Russian physicist Y.B. Rumer [13, 14] under the name of
“Action as a spatial coordinate. I–X”. In the work of Rumer the main foreseen application is to
the case of optics in what he called 5-optics. We should remember that in this case the action
dA = 0 and then the fifth coordinate turns out to be identically null.
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5 Hypothesis and principles in START

The set of hypothesis and principles which are explicitly included are:

Physics is the science which describes the basic phenomena of Nature within the procedures
of the Scientific Method.We consider that the mathematization of the anthropocentric
primary concepts of space, time and the existence of the physical objects (action carriers),
is a suitable point of departure for creating intellectual structures which describe Nature.

We introduce a set of principles: Relativity, Existence, Quantization and Choice as the opera-
tional procedure, and a set of 3 mathematical postulates to give this principles a formal,
useful, structure.

In START, because of its equivalent complex structure and its quadratic forms we have,
besides the geometrical space–time Poincaré group P of transformations leaving the finite dif-
ference

(
dx0

)2 − (dx)2 invariant, an additional set of transformations related to the complex
structure. The additional operations are: a translation in the e4 direction, three rotations in
the eie4, i = 1, 2, 3 planes and one ‘boost’ in the e0e4 plane.

It is clear that most of the here presented relations are known relations as far as we are deriving
the structures and theories from START.
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