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Quantum algebras Uq(sun) used as the algebras of flavour symmetry (usually described by
SU(n)) to study static properties of hadrons lead to intriguing results. In this contribution
we focus on the peculiar properties manifested by different q-deformed structures (e.g., the
braided line, the quantum algebras Uq(su2) and Uq(sun), n ≥ 3) in the special limit of
q = −1. Similarities (complete or partial) with supersymmetry that emerge in this special
limit are discussed.

1 Introduction

Our goal is to pay special attention to the exotic situation that arises if, within the application
of quantum algebras Uq(sun) [1, 2] to phenomenological description (see [3, 4] and refs. therein)
of basic static properties of hadrons – vector mesons as well as baryons, one restricts itself to
the peculiar case q = −1 of the deformation parameter. In the paper, we first briefly mention
the two more or less realistic appearances of supersymmetry (SUSY) algebras applied directly
in the sector of hadron mass spectrum. Note that the first appearance of SUSY in the context
of hadron physics goes back to Miyazawa’s paper [5]. It employs a kind of superalgebra which
is connected with internal symmetry and extends the usual SU(3) scheme by means of baryon
number changing currents. In that paper, the author has succeeded to derive, based on a super-
algebra, the mass sum rules other than the celebrated Gell-Mann–Okubo (GMO) one, that is,
mN +mΞ = 3

2mΛ+ 1
2mΣ. On the contrary, the spectrum generating (or dynamical) superalgebra

used in [6] incorporated a superization of space-time symmetry and gave a possibility to analyse
the towers of excited states, for each ground state baryon (e.g., nucleon) or vector meson (e.g.,
ρ-meson). We discuss these two examples in Section 2. Then, Sections 3 and 4 are devoted to
the very instructive examples of q-deformed structure which, if one sends q → −1, show either
exact SUSY (the case of braided line whose relation to SUSY is considered in Section 3), or the
features only reminiscent of supersymmetry, see Section 4. In the 5th section we deal with the
peculiar case of q = −1 concerning the quantum algebras Uq(sun) which appear in the context
of their use as the algebras describing flavor symmetries of hadrons and enabling to derive new,
very precise mass relations. In this scheme, the restriction to the limit q = −1 is physically
motivated.

2 Dynamical supersymmetry and hadron mass spectrum

In [5] the two copies of superalgebra, namely,

[Fi, Fj ] = ifijkFk, [Fi, Gj ] = ifijkGk, {Gi, Gj} = dijkFk,

[F̄i, F̄j ] = ifijkF̄k, [F̄i, Ḡj ] = ifijkḠk, {Ḡi, Ḡj} = −dijkF̄k, (1)

have been introduced. For their realization, the conventional 3 × 3 Hermitian matrices λi (i =
0, 1, 2, 3, 8 for the Fi, F̄i, and i = 4, 5, 6, 7 for the Gi, Ḡi) have been utilized. By means of
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symmetry breaking terms (C3b
3b , Ca3

a3 and C33
33 in the notation of [5]) which provide mass splitting

between quarks and diquarks (i.e., SUSY breaking), as well as splitting between isomultilplets
(breaking of SU(3) to SU(2)), instead of the standard GMO mass relation the formulas

mN + mΞ = mΛ + mΣ, mY ∗
0

= mΣ, 2mK∗ = mρ + mφ, mρ = mω (2)

for baryons and for vector mesons have been obtained.
A completely different scheme for treating hadron mass spectrum developed in [6] employs

a particular dynamical superalgebra Osp(1|4) connected with space-time symmetries. The dy-
namical superalgebra with generators Sµν , Γµ, Qα respects the chain

Osp(1|4)Sµν ,Γµ,Qα ⊃ SO(3, 2)Sµν ,Γµ ⊃ SO(3, 1)Sµν ,

where for the subalgebras SO(3, 1)Sµν and SO(3, 2)Sµν ,Γµ the generators Sµν and Γµ obey

[Sµν , Sρσ] = −i(ηµρSνσ + ηνσSµρ − ηνρSµσ − ηµσSνρ), (3)
[Sµν , Γρ] = −i(ηµρΓν − ηνρΓµ), [Γµ, Γν ] = −iSµν . (4)

The relations involving anticommuting charges Qα and Q̄β = −(QT C)β , namely

[Sµν , Qα] = −1
2

(
σs

µν

) β

α
Qβ , [Γµ, Qα] = −1

2
(γµ) β

α Qβ ,

{Qα, Q̄β} = −1
2

(σµν)αβ Sµν + (γµ)αβ Γµ,

along with (3), (4), complete the symmetry algebra to the superalgebra Osp(1|4)Sµν ,Γµ,Qα .
To construct the Hamiltonian, supercharges should be incorporated (like in supersymmetric

quantum mechanics), through the term 1
2n

n∑
α=1

{Qα, Q†
α}. The resulting Hamiltonian

H = v


PµPµ − 1

α′
1
4

4∑
β=1

{Qβ , Q†
β} − m̃2

0




is to be completed by Casimirs of subalgebras in the chain Osp(1|4) ⊃ SO(3, 2)Sµν ,Γµ ⊃ SO(3)Sij

×SO(2)Γ0 . In its final form, the Hamiltonian reads

H = v

(
PµPµ − 1

α′ P̂µΓµ − λ2Ŵ + βĈSO(3,2) − m̃2
0

)
(5)

and, correspondingly, hadron mass spectrum is described by the formula [6]

m2 = − 1
α′µ + λ2j(j + 1) + β

(
2 − 2s2

)
+ m̃2

0. (6)

In this expression, 1/α′ (related to the slope of Regge trajectory), λ2, and β are empirical system
parameters; µ resp. j(j + 1) are eigenvalues of P̂µΓµ resp. Ŵ ; s labels SO(3, 2) representations,
and m̃0 is the background mass.

Comparison of the mass formula (6) with experimental data, using the particular representa-
tion D

(
3
2 , 1

2

) ⊕ D(2, 1) of the dynamical superalgebra, shows that the series (tower) of excited
states over the lowest lying 1− vector mesons ρ or ω and the 1

2

+ nucleon’s tower (its resonances)
fit the data very well if one sets: 1

α′ (meson) ∼ 1
α′ (nucleon) and λ2(meson) ∼ λ2(nucleon). It is

this fact that was interpreted in [6] as a kind of empirical evidence for supersymmetry in the
hadron mass spectra. This observation may be considered as an extension of the well-known
success of dynamical supersymmetries in nuclear physics [7] to the level of hadrons.
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3 q-deformed oscillator at q → −1 and supersymmetry

In [8] it was shown that the q-deformed calculus on the braided line [9] (tightly connected
with q-deformed oscillator), in the nontrivial particular case of q = −1 exhibits supersymmetric
properties. In this section we discuss some details of this correspondence, following [8].

The braided (or q-deformed) line is defined [9] in terms of a single non-commuting variable θ
which obeys a Hopf algebra structure operating with coproduct,

∆θ = θ ⊗ 1 + 1 ⊗ θ, (7)
(1 ⊗ θ)(θ ⊗ 1) = qθ ⊗ θ, (θ ⊗ 1)(1 ⊗ θ) = θ ⊗ θ. (8)

as well as a counit and antipode. Note that it is the first relation in (8) that determines the
nontrivial (for q �= 1) braiding.

With [X, Y ]z ≡ XY − zY X, denoting θ = 1 ⊗ θ and δθ = ε = θ ⊗ 1 as in Ref. [9], yields

[ε, θ]q−1 = 0 and ∆θ = ε + θ.

Here the latter equality corresponds to (7); it encodes the action upon θ of the left translation
by ε, Lεθ : θ 	→ ε + θ. As seen, ε and θ anticommute when q = −1.

To construct a differential calculus on the braided line, one introduces a left derivation ope-
rator with respect to θ, obeying [εDL, θ] = ε, so that

[DL, θ] = 1,
d

dθ
θ = 1. (9)

Likewise, one can introduce right shifts Rηθ : θ 	→ θ + η by odd parameter η so that [θ, η]q−1 =
[η, θ]q = 0 (again, θ and η anticommute if q = −1). The right derivative operator satisfies
[θ,DR] = 1 and also the relation

DR = −q−(1+N)DL (10)

involving the number operator N defined according to

[N, θ] = θ, [N,DL] = −DL. (11)

The differential calculus defined by (9)–(11) at generic q is called q-calculus.
With the identification θ = a†, DL = qN/2a, the q-calculus is related to the q-deformed

harmonic oscillator [10]

aa† − q∓1/2a†a = q±N/2. (12)

The entity q1/2 and its power
(
q1/2

)N
in (12) are of importance since, from (12), by exploiting

Hermitian conjugacy one comes to the formulas aa† = [N +1]q1/2 and a†a = [N ]q1/2 valid for the
q-deformed oscillator [10] of Biedenharn and Macfarlane. Here [A]z ≡ (

zA − z−A
)
/

(
z − z−1

)
.

Let 
A�q ≡ (1− qA)/(1− q). A function of θ given by the expansion f(θ) =
∞∑

m=0
Cmθm/
m�q!

admits the derivative d
dθf(θ) =

∞∑
m=0

Cmθm/
m − 1�q! implying that

[
DL,

θm


m�q!

]
qm

=
θm−1


m − 1�q!
.

The difficulties appearing in the limit q → −1 already at m = 2 (since 
2�q = 0 in this limit)
are tamed by setting q = −1 + iy and letting y → 0. Then, the definition

t := lim
q→−1

(
iθ2/
2�q!

)
(13)
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implying that, with θ2 = 0 imposed, the limit of the ratio in (13) should be finite and nonzero,
imports the additional variable t as a necessary ingredient of the braided line if q → −1. As
shown in [8], in this limit the terms of the form θ2r+p/
2r + p�q! also can be handled by means
of t. Due to this, any function f(θ) on the braided line (generic q), reduces in the limit q → −1
to a ‘superfield’ given by the function f(t, θ).

It can be shown that [D2
L, t] = i and, with the definition

{DL,DL} = 2i∂t or ∂t = −iD2
L,

the relation [∂t, t] = 1 is valid. The operator DL then becomes the supercharge, DL ≡ Q, of
one-dimensional supersymmetry, and one comes to the relations:

Q = ∂θ + iθ∂t, {Q, Q} = 2i∂t.

Likewise, the operator D = DR = (−1)NDL becomes the (super)covariant derivative so that

D = ∂θ − iθ∂t, {D, D} = −2i∂t, and {Q, D} = 0.

Another interesting result derived in [8] is the coproduct for t with unusual θ-dependent term:

∆t = t ⊗ 1 + 1 ⊗ t + iθ ⊗ θ.

Thus, proper treatment of braided line in the peculiar limit q → −1 shows that, in this limit,
an additional variable t related to θ2 (see (13)), as well as to higher powers, must arise. As
a result, the braided line at q → −1 is made up of the two variables θ and t which span the
one-dimensional superspace, SUSY being the translational invariance along this line.

4 Example of Zachos, based on the q = −1 limit of Uq(su2)

Quantum algebra Uq(su2) [1, 2] is generated by the elements I+, I−, I0, obeying the relations

[I0, I±] = ±I±, [I+, I−] = [2J0]q ≡ (
q2J0 − q−2J0

)
/

(
q − q−1

)
,

∆(J0) = J0 ⊗ 1 + 1 ⊗ I0, ∆(J±) = J± ⊗ q−J0 + q+J0 ⊗ J± (14)

and the relations that involve antipode and counit (which will not be used here).
As shown in [11], this quantum algebra exhibits an intriguing features at the level of its

representations when the deformation parameter q = −1. Let us consider this example.
Using coproduct, one can form composites of two spin 1

2 doublets according to 2⊗2 = 3⊕1:

singlet ←→ α = |q1/2 ↑↓ −q−1/2 ↓↑〉,

triplet ←→




β = | ↑↑〉,
∆(J−)β = 1√

2
|q1/2 ↑↓ +q−1/2 ↓↑〉,

(∆(J−))2β = | ↓↓〉.
For q = 1, the singlet state is antisymmetric whereas each of the triplet states is symmetric.
Now let q = −1. In this case the multiplets turn into

α = |i ↑↓ −1
i
↓↑〉 (symmetric),

β = | ↑↑〉 (symmetric),

∆(J−)β =
1√
2
|i ↑↓ +

1
i
↓↑〉 (antisymmetric),

(∆(J−))2β = | ↓↓〉 (symmetric). (15)
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It is seen from (15) that the coproduct operation ∆(J−) changes the symmetry of wave func-
tion. That is, rasing and lowering operators in the coproduct act as statistics-altering operators.
Although the constituents of the states haven’t been converted to fermions, this alteration of
the symmetry of wave function is reminiscent of SUSY. It is instructive to compare this struc-
ture with N = 2 supersymmetric quantum mechanics, stressing both similarities and peculiar
features.

Consider (graded) direct product of two copies of SUSY QM algebras:

SS† + S†S = 1, ss† + s†s = 1, S†S† = s†s† = SS = ss = 0,

sS + Ss = 0, s†S† + S†s† = 0, sS† + S†s = 0, s†S + Ss† = 0. (16)

This graded Lie algebra can be obtained, using appropriate Wigner–Inonü contraction, from the
simple Lie superalgebra SU(2|1) (realizable in terms of Gell-Mann SU(3) λ-matrices so that
{λ1, λ2, λ3, λ8} constitute even generators whereas {λ4, λ5, λ6, λ7} constitute odd generators).

One can realize the algebra (16) on two boson states |B〉, |b〉, and two fermion states |F 〉,
|f〉, as: S |B〉 = |F 〉, s|b〉 = |f〉, S†|F 〉 = |B〉, s†|f〉 = |b〉. The (nullifying) rest of actions reads:
S |F 〉 = S|b〉 = s|B〉 = s†|F 〉 = s†|b〉 = S†|f〉 = S†|B〉 = s|f〉 = 0. With their use,

s|Bb + bB〉 = |Bf + fB〉, Ss|Bb + bB〉 = |Ff − fF 〉. (17)

Thus, ∆(J−) in (15) switches the symmetry of wave function like the even (bosonic) operator
Ss = −sS, see (17), but only the latter is nilpotent due to nilpotency of S, s. The other
important difference consists in the structure and dimensionality of multiplets. Namely, for
q = −1 these remain the same as in the classical case of su(2) Lie algebra. On the other hand,
for graded Lie algebra the representations are of different dimensions (compare, e.g., SU(2|1)
and SU(3)). Hence, the conclusion: this q = −1 case implies a kind of quasi-supersymmetry.

5 GMO formula and Uq(sun) at q = −1

One can either utilize representation-theoretic aspects of the quantum algebra Uq(sun) or, al-
ternatively, construct the mass operator using q-tensor operators. In the latter case [12], main
ingredients of the Hopf algebra structure of Uq(sun) (comultiplication ∆ and antipode S) play
the role. The ∆ and S are defined [1, 2] on the Uq(sun) generators E±

i and Hi as

S
(
E±

i

)
= −qHi/2E±

i , S(Hi) = −Hi, S
(
qHi/2

)
= q−Hi/2, S(1) = 1,

∆
(
E±

i

)
= E±

i ⊗ qHi/2 + q−Hi/2 ⊗ E±
i , ∆(Hi) = Hi ⊗ 1 + 1 ⊗ Hiq

−Hi/2. (18)

The adjoint action of Uq(sun) defined [2] as adAB =
∑

A(1)BS(A(2)) with A, B ∈ Uq(sun) and
A(1), A(2) determined from ∆(A) =

∑
A(1) ⊗ A(2), with the account of (18) reads:

adHiB = HiB1 + 1BS(Hi) = HiB − BHi,

adE±
i
B = E±

i Bq−Hi/2 − q−Hi/2BqHi/2E±
i q−Hi/2.

The q-tensor operators [13] transforming under the adjoint action of Uq(su3) as 3 and 3∗, consist
of the triples (V1, V2, V3) and (V1̄, V2̄, V3̄), respectively. Let [X, Y ]q ≡ XY − qY X. It can be
shown that the particular triple of elements from Uq(su4)

V1 = [E+
1 , [E+

2 , E+
3 ]q]q q−H1/3−H2/6,

V2 = [E+
2 , E+

3 ]q qH1/6−H2/6, V3 = E+
3 qH1/6+H2/3 (19)
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transform as 3 under Uq(su3), V1 corresponds to the highest weight vector, the pair (V1, V2) is
Uq(su2) (iso)doublet and V3 its singlet. Likewise one constructs from elements of Uq(su4) the
triple (V1̄, V2̄, V3̄) that transforms as 3∗ under adjoint action of Uq(su3), where V3̄ corresponds
to the highest weight vector, the pair (V1̄, V2̄) is isodoublet and V3̄ is Uq(su2) singlet.

The mass operator M̂ = M̂0+M̂8 involves M̂0, as Uq(su3) scalar, and the term M̂8 transform-
ing as the I = 0, Y = 0 component of tensor operator of 8-irrep of Uq(su3). The irrep 8 occurs
twice in the decomposition 8⊗8 = 1⊕8(1)⊕8(2)⊕10∗⊕10⊕27. Then, usage of Wigner–Eckart
theorem for Uq(sun) quantum algebras [13] applied to q-tensor operators transforming as irrep 8
of Uq(su3), turns the mass operator into M̂ = M̂0 + M̂8 = M01 + αV

(1)
8 + βV

(2)
8 . Here 1 is the

identity operator, V
(1)
8 and V

(2)
8 are two fixed tensor operators with non-proportional matrix

elements, each transforming as the I = 0, Y = 0 component of irrep 8 of Uq(su3); M0, α and β
are some constants depending on details (dynamics) of the model.

If |Bi〉 is a basis vector of representation 8 space which corresponds to some (1/2)+ baryon,
then the mass of this baryon is calculated as

MBi = 〈Bi|M̂ |Bi〉 = 〈Bi|
(
M01 + αV

(1)
8 + βV

(2)
8

)
|Bi〉. (20)

The decompositions 3⊗ 3∗ = 1⊕ 8, 3∗ ⊗ 3 = 1⊕ 8 imply that the operators V3V3̄ and V3̄V3

formed from V3 in (19) and V3̄ are just the two isosinglets V
(1)
8 , V

(2)
8 needed in (20). Hence, the

mass operator in (20) can be rewritten (redefining M0, α, β) in the equivalent form

M̂ = M01 + αV3V3̄ + βV3̄V3 = M̂ = M01 + αE+
3 E−

3 qY + βE−
3 E+

3 qY , (21)

where the hypercharge Y = (H1 + 2H2)/3 has been introduced.
To calculate matrix elements (20) using (21) we embed the octet 8 in a particular irrep of

Uq(su4); embedding it, e.g., in 15 (adjoint) irrep of Uq(su4), we get the octet baryon masses

MN = M0 +βq, MΣ = M0, MΛ = M0 +[2]q[3]−1
q (α+β), MΞ = M0 +αq−1 (22)

(obviously, the expressions for MN , MΞ are not invariant under q → q−1). Excluding M0, α
and β from (22) results in the following q-analogue of GMO formula for octet baryons:

[3]qMΛ + MΣ = [2]q
(
q−1MN + qMΞ

)
. (23)

Using empirical masses, the deformation parameter q is fixed by fitting: for each of the
q1,2 = ±1.035, q3,4 = ±0.903

√−1, the q-deformed mass relation (23) holds within experimental
uncertainty (although for q3, q4 the constants α and β in (22) must be pure imaginary).

The right hand side of equation (23) is invariant under q → q−1 only if q = q−1, that is, if
q = ±1. Behind the ‘classical’ GMO mass formula which obviously follows from (23) at q = 1 and
corresponds to the nondeformed unitary symmetries SU(4) ⊃ SU(3) ⊃ SU(2), there is also an
unusual ‘hidden symmetry’ reflecting the singular q = −1 case of Uq(su4) ⊃ Uq(su3) ⊃ Uq(su2)
algebras, undefined in this case. The relevant objects, however, exist as operator algebras [12].
Let us describe them in the part corresponding to n = 2 and n = 3.

At generic q, q �= −1, the algebra Uq(su2) is generated by the elements E+, E− and H, which
satisfy the relations

[H, E±] = ±2E±, [E+, E−] = [H]q. (24)

In the limit q → 1 it reduces to the nondeformed su2. We take the representation spaces of the
latter in order to construct operator algebras for the case q = −1. To each su2 representation
space given by j (which takes integral or half-integral nonnegative values) with basis elements
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|jm〉, m = −j,−j + 1, . . . , j, there corresponds an operator algebra generated by the operators
defined according to the formulas

H|jm〉 = 2m|jm〉, E+|jm〉 = αj,m|jm + 1〉, E−|jm〉 = αj,m−1|jm − 1〉, (25)

where

αj,m =

{ √−(j − m)(j + m + 1), j is an integer,√
(j − m)(j + m + 1), j is a half-integer.

So defined operators E+, E− and H on the basis elements |jm〉 satisfy the relations (compare
with (24)), one of which depends on whether j is an integer or a half-integer:

[H, E±] = ±2E±, [E+, E−] =

{
−H, j is an integer;

H, j is a half-integer.
(26)

To treat the (singular) case q = −1 of Uq(su3) it is more convenient to deal with Uq(u3).
We take a representation space Vχ, labelled by {m13, m23, m33} ≡ χ, of the nondeformed u3

and the Gel’fand–Tsetlin basis with the basis elements |χ; m12, m22; m11〉 in each Vχ. Define the
operators E+

1 , E−
1 , H1, E+

2 , E−
2 , H2 that form the operator algebra of the χ-type by their action

according to the formulas (let us denote σ1,3 ≡ m11 + m13 + m23 + m33):

H2|χ; m12, m22; m11〉 = (2m12 + 2m22 − m13 − m23 − m33 − m11)|χ; m12, m22; m11〉,
E+

2 |χ; m12, m22; m11〉 = aχ,m11(m12, m22) |χ; m12 + 1, m22; m11〉
+ bχ,m11(m12, m22) |χ; m12, m22 + 1; m11〉,

E−
2 |χ; m12, m22; m11〉 = aχ,m11(m12 − 1, m22) |χ; m12 − 1, m22; m11〉r

+ bχ,m11(m12, m22 − 1) |χ; m12, m22 − 1; m11〉,
where

aχ,m11(m12, m22) =
(
(−1)σ1,3

(m13 − m12)(m23 − m12−1)(m33 − m12−2)(m11 − m12−1)
(m22 − m12 − 1)(m22 − m12 − 2)

)1/2

,

bχ,m11(m12, m22) =
(
(−1)σ1,3

(m13 − m22 + 1)(m23 − m22)(m33 − m22 − 1)(m11 − m22)
(m12 − m22 + 1)(m12 − m22)

)1/2

.

Action formulas for the operators E±
1 and H1 are completely analogous to formulas (25) above

(with account of m11 − m22 = 2j, 2m11 − m12 − m22 = 2m).
The presented action formulas for the operators that form the operator algebra of the χ-type

show that their matrix elements are, to some extent, similar to the ‘classical’ matrix elements
(i.e. to the matrix elements of the irrep χ operators for su(n)). However, there is an essential
distinction: now we observe the important phase factors (namely, (−1)m11+m13+m23+m33 under
the square root in aχ,m11 and bχ,m11) which depend on χ and a specified basis element. No such
basis-element dependent factors exist in the su(n) case.

Let us illustrate such treatment with the particular example of operator algebra appearing
in the singular q = −1 case of Uq(su3) and corresponding to the octet representation of su3. We
give here explicitly only those action formulas for E±

1 and E±
2 in which matrix elements differ

from their corresponding ‘classical’ counterparts:

E−
1 |Σ+〉 =

√−2|Σ0〉, E−
1 |Σ0〉 =

√−2|Σ−〉, E+
1 |Σ−〉 =

√−2|Σ0〉,
E+

1 |Σ0〉 =
√−2|Σ+〉, E−

2 |n〉 =
1√−2

|Σ0〉 +
√
−3/2|Λ〉, E−

2 |Λ〉 =
√
−3/2|Ξ0〉,
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E−
2 |Σ0〉 =

1√−2
|Ξ0〉, E+

2 |Ξ0〉 =
1√−2

|Σ0〉 +
√

−3/2|Λ〉, E+
2 |Λ〉 =

√
−3/2|n〉,

E+
2 |Σ0〉 =

1√−2
|n〉.

To complete this operator algebra, we must add the rest of action formulas for E±
1 and E±

2 (i.e.,
action on those basis elements) which coincide with the ‘classical’ ones, as well as the action
formulas for H1, H2 (these latter also coincide with ‘classical’ formulas).

Likewise, for Uq(su3) at q = −1 an operator algebra corresponding to any other irrep of su3

can be given. The treatment is obviously extendible to Uq=−1(sun), n > 3.
Let us also remark that SUSY-based mass relation mρ = mω, see (2), is obtainable from a

q-deformed structure. Indeed, it follows from the q-analog of vector meson mass relation,

mω8 + (2[2]q/[3]q − 1)mρ = (2[2]q/[3]q)mK∗

(which was derived [14] using Uq(sun) quantum algebras), if one fixes q as 4th root of unity:
q =

√−1 (then, [2]q = 0). The intriguing interplay between SUSY and the special cases q = −1
and q =

√−1 of the q-algebras Uq(sun) deserves further detailed study.
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