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Quantum algebras Uy (su,,) used as the algebras of flavour symmetry (usually described by
SU(n)) to study static properties of hadrons lead to intriguing results. In this contribution
we focus on the peculiar properties manifested by different g-deformed structures (e.g., the
braided line, the quantum algebras U,(suz) and U,(su,), n > 3) in the special limit of
g = —1. Similarities (complete or partial) with supersymmetry that emerge in this special
limit are discussed.

1 Introduction

Our goal is to pay special attention to the exotic situation that arises if, within the application
of quantum algebras U, (suy,) [1, 2] to phenomenological description (see [3, 4] and refs. therein)
of basic static properties of hadrons — vector mesons as well as baryons, one restricts itself to
the peculiar case ¢ = —1 of the deformation parameter. In the paper, we first briefly mention
the two more or less realistic appearances of supersymmetry (SUSY) algebras applied directly
in the sector of hadron mass spectrum. Note that the first appearance of SUSY in the context
of hadron physics goes back to Miyazawa’s paper [5]. It employs a kind of superalgebra which
is connected with internal symmetry and extends the usual SU(3) scheme by means of baryon
number changing currents. In that paper, the author has succeeded to derive, based on a super-
algebra, the mass sum rules other than the celebrated Gell-Mann—Okubo (GMO) one, that is,
my—+ms= = %mlﬁ— %mg. On the contrary, the spectrum generating (or dynamical) superalgebra
used in [6] incorporated a superization of space-time symmetry and gave a possibility to analyse
the towers of excited states, for each ground state baryon (e.g., nucleon) or vector meson (e.g.,
p-meson). We discuss these two examples in Section 2. Then, Sections 3 and 4 are devoted to
the very instructive examples of g-deformed structure which, if one sends ¢ — —1, show either
exact SUSY (the case of braided line whose relation to SUSY is considered in Section 3), or the
features only reminiscent of supersymmetry, see Section 4. In the 5th section we deal with the
peculiar case of ¢ = —1 concerning the quantum algebras U,(suy,) which appear in the context
of their use as the algebras describing flavor symmetries of hadrons and enabling to derive new,
very precise mass relations. In this scheme, the restriction to the limit ¢ = —1 is physically
motivated.

2 Dynamical supersymmetry and hadron mass spectrum
In [5] the two copies of superalgebra, namely,
[Fi, Fj] = ifijiFy, [Fi, Gj] = 1fijk Gk, {Gi, G} = dijiFy,
[Fi, Fj] = ifijiFy, [Fi, Gj] = 1fijkGr, {Gi, Gy} = —dijiFi, (1)

have been introduced. For their realization, the conventional 3 x 3 Hermitian matrices \; (i =
0,1,2,3,8 for the F;, F;, and i = 4,5,6,7 for the G;, G;) have been utilized. By means of
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symmetry breaking terms (Csy, C%5 and C33 in the notation of [5]) which provide mass splitting
between quarks and diquarks (i.e., SUSY breaking), as well as splitting between isomultilplets
(breaking of SU(3) to SU(2)), instead of the standard GMO mass relation the formulas

my +m=s = mp +my, mygy = msy, 2mg+ = m, 4+ my, m, = My, (2)

for baryons and for vector mesons have been obtained.
A completely different scheme for treating hadron mass spectrum developed in [6] employs
a particular dynamical superalgebra Osp(1]4) connected with space-time symmetries. The dy-
namical superalgebra with generators S, I',, Q. respects the chain
OSp<1’4)5W7ru7Qa D) 80(3, Q)Suwru D SO(3, 1)5

v

where for the subalgebras SO(3,1)s,, and SO(3,2)s,, r, the generators S, and I';, obey

pv

[S/wa Spcr] = _i(nupsl/o + Mo Sup — MupSpo — Uuosup)a (3)
(S, Tpl = —=i(nupl'y — mupl'n), Iy, T =—iSu. (4)
The relations involving anticommuting charges Q, and Qs = —(Q7 ()3, namely
1 8 1
[S,uuv Qa] - _5 (UZV)Q Qﬁv [F,u? Qa] - _5 (7/.1;)046 Q,@a
1

Qs @5t = =5 (") Sy + (") T

along with (3), (4), complete the symmetry algebra to the superalgebra Osp(1/4)s,,.r,,Qq-
To construct the Hamiltonian, supercharges should be incorporated (like in supersymmetric

n
quantum mechanics), through the term % > {Qa, QL} The resulting Hamiltonian
a=1

4

11 -

H:’U PMPM_JZZ{QB7QTB}_mg
[B=1

is to be completed by Casimirs of subalgebras in the chain Osp(1[4) > SO(3,2)s,,.r, D SO(3)s,,
x SO(2)r,. In its final form, the Hamiltonian reads

1

Oé,

H=v (PuP“ BI* — X2W + 5050(372) - m%) (5)

and, correspondingly, hadron mass spectrum is described by the formula [6]
1 . -
m2:—Ju+/\2](3+1)+ﬁ(2—232)—I—m%. (6)

In this expression, 1/a’ (related to the slope of Regge trajectory), A?, and 3 are empirical system
parameters; u resp. j(j+ 1) are eigenvalues of PNF“ resp. W; s labels SO(3, 2) representations,
and g is the background mass.

Comparison of the mass formula (6) with experimental data, using the particular representa-
tion D (%, %) @ D(2,1) of the dynamical superalgebra, shows that the series (tower) of excited
states over the lowest lying 1~ vector mesons p or w and the %+ nucleon’s tower (its resonances)
fit the data very well if one sets: 2 (meson) ~ 2 (nucleon) and A?(meson) ~ A%(nucleon). It is
this fact that was interpreted in [6] as a kind of empirical evidence for supersymmetry in the
hadron mass spectra. This observation may be considered as an extension of the well-known

success of dynamical supersymmetries in nuclear physics [7] to the level of hadrons.
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3 g-deformed oscillator at ¢ — —1 and supersymmetry

In [8] it was shown that the g-deformed calculus on the braided line [9] (tightly connected
with g-deformed oscillator), in the nontrivial particular case of ¢ = —1 exhibits supersymmetric
properties. In this section we discuss some details of this correspondence, following [8].

The braided (or g-deformed) line is defined [9] in terms of a single non-commuting variable ¢
which obeys a Hopf algebra structure operating with coproduct,

A0=021+1x0, (7)
100)0e1)=¢x0, B(1x60)=0x0. (8)

as well as a counit and antipode. Note that it is the first relation in (8) that determines the
nontrivial (for ¢ # 1) braiding.
With [X,Y], = XY — 2Y X, denoting § = 1® 6 and 60 = € = 0 ® 1 as in Ref. [9], yields

[€,0],-1 =0 and Al =¢€+0.

Here the latter equality corresponds to (7); it encodes the action upon 6 of the left translation
by €, L#: 0— e+ 0. As seen, € and # anticommute when ¢ = —1.

To construct a differential calculus on the braided line, one introduces a left derivation ope-
rator with respect to 0, obeying [¢Dy, 0] = €, so that

d
Dr,0l =1 —0=1. 9
[ L’ ] ) de ( )
Likewise, one can introduce right shifts R,0 : ¢ ~ 6 +n by odd parameter 7 so that [0, 7],-1 =
[n,6]; = 0 (again, 6 and n anticommute if ¢ = —1). The right derivative operator satisfies

[0, Dr] = 1 and also the relation

Dp=—q "Dy (10)
involving the number operator N defined according to

[N, 0] =0, [N,Dr] = -Dr. (11)

The differential calculus defined by (9)—(11) at generic ¢ is called g-calculus.
With the identification § = af, D = ¢™/2a, the g-calculus is related to the g-deformed
harmonic oscillator [10]

aat — ¢ 2atq = ¢tN/2, (12)
The entity ¢*/2 and its power (ql/z)N in (12) are of importance since, from (12), by exploiting

Hermitian conjugacy one comes to the formulas aa’ = [N + 1],1/2 and ata = [N],1/2 valid for the
g-deformed oscillator [10] of Biedenharn and Macfarlane. Here [A], = (24 —274) / (2 — 271).

Let |A|, = (1—¢*)/(1—¢q). A function of § given by the expansion f(0) = Y C,,0™/|m],!
m=0

admits the derivative d%f(@) = > Cpd"/|m— 1], implying that
m=0
om em—l
L R
[ Lm]q! qm Lm —1]4!

The difficulties appearing in the limit ¢ — —1 already at m = 2 (since [2], = 0 in this limit)
are tamed by setting ¢ = —1 + iy and letting y — 0. Then, the definition

t= qlir{ll (i0°/12]4!) (13)
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implying that, with #? = 0 imposed, the limit of the ratio in (13) should be finite and nonzero,
imports the additional variable ¢ as a necessary ingredient of the braided line if ¢ — —1. As
shown in [8], in this limit the terms of the form > *?/|2r + p|,! also can be handled by means
of t. Due to this, any function f(#) on the braided line (generic ¢), reduces in the limit ¢ — —1
to a ‘superfield’ given by the function f(¢,0).

It can be shown that [D%,¢] =i and, with the definition

{Dr,Dr} =20y or 8 = —iD3,

the relation [0;,t] = 1 is valid. The operator Dy, then becomes the supercharge, Dy = @, of
one-dimensional supersymmetry, and one comes to the relations:

Q = O + 100, {Q,Q} = 2i0;.

Likewise, the operator D = D = (—1)VD}, becomes the (super)covariant derivative so that
D = 0y — 00, {D,D} = —2i0,, and {Q,D} =0.

Another interesting result derived in [8] is the coproduct for ¢ with unusual #-dependent term:
At=tR1+1t+i0®6.

Thus, proper treatment of braided line in the peculiar limit ¢ — —1 shows that, in this limit,
an additional variable ¢ related to % (see (13)), as well as to higher powers, must arise. As
a result, the braided line at ¢ — —1 is made up of the two variables # and t which span the
one-dimensional superspace, SUSY being the translational invariance along this line.

4 Example of Zachos, based on the ¢ = —1 limit of U,(suz)

Quantum algebra Ug(su2) [1, 2] is generated by the elements I, I_, Iy, obeying the relations

Lo, I+] = £14, I, 1-)=[20o)g = (" —q¢ )/ (a—q7'),
A(Jo) = Jo®@1+1@D,  A(Jz)=Je@q " +q" ey (14)
and the relations that involve antipode and counit (which will not be used here).
As shown in [11], this quantum algebra exhibits an intriguing features at the level of its
representations when the deformation parameter ¢ = —1. Let us consider this example.
Using coproduct, one can form composites of two spin % doublets according to 22 =3¢ 1:
singlet: — —— a=[¢"? 11 —¢7* I1),
B=111),
triplet — A(J-)B = %’qlﬂ TL+q7V2 11),
(A(J-))?B=111).

For ¢ = 1, the singlet state is antisymmetric whereas each of the triplet states is symmetric.
Now let ¢ = —1. In this case the multiplets turn into

a=li1l -3 1N

B=111)

AW)B =i 1]+ 11)
9p= it 4]

(A(J))?B=111)

symmetric),
symmetric),
antisymmetric),

(
(
(
(

symmetric). (15)
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It is seen from (15) that the coproduct operation A(J_) changes the symmetry of wave func-
tion. That is, rasing and lowering operators in the coproduct act as statistics-altering operators.
Although the constituents of the states haven’t been converted to fermions, this alteration of
the symmetry of wave function is reminiscent of SUSY. It is instructive to compare this struc-
ture with N = 2 supersymmetric quantum mechanics, stressing both similarities and peculiar
features.

Consider (graded) direct product of two copies of SUSY QM algebras:

SSt 4818 =1, ssT+sTs =1, STt = sfst = 99 = 55 =0,
55+ S5s5s=0, sTST+ STst =0, sST 4+ STs =0, s'S + Sst = 0. (16)

This graded Lie algebra can be obtained, using appropriate Wigner—Inonii contraction, from the
simple Lie superalgebra SU(2|1) (realizable in terms of Gell-Mann SU(3) A-matrices so that
{A\1, A2, A3, Ag} constitute even generators whereas {4, A5, A\g, A7} constitute odd generators).

One can realize the algebra (16) on two boson states |B), |b), and two fermion states |F),
|f), as: S |B) = |F), s|b) = |f), ST|/F) = |B), st|f) = |b). The (nullifying) rest of actions reads:
S |F) = S|b) = s|B) = sT|F) = sT|b) = ST|f) = ST|B) = s|f) = 0. With their use,

s|Bb+bB) = |Bf + fB),  Ss|Bb+bB) = |Ff — fF). (17)

Thus, A(J-) in (15) switches the symmetry of wave function like the even (bosonic) operator
Ss = —sS, see (17), but only the latter is nilpotent due to nilpotency of S, s. The other
important difference consists in the structure and dimensionality of multiplets. Namely, for
g = —1 these remain the same as in the classical case of su(2) Lie algebra. On the other hand,
for graded Lie algebra the representations are of different dimensions (compare, e.g., SU(2|1)
and SU(3)). Hence, the conclusion: this ¢ = —1 case implies a kind of quasi-supersymmetry.

5 GMO formula and U,(su,) at ¢ = —1

One can either utilize representation-theoretic aspects of the quantum algebra U, (su,) or, al-
ternatively, construct the mass operator using g-tensor operators. In the latter case [12], main
ingredients of the Hopf algebra structure of U, (su,) (comultiplication A and antipode S) play
the role. The A and S are defined [1, 2] on the U, (su,) generators Ei and H; as

S(BF) = —q™PEE,  S(H) =—H,  §("?) =g sa) =1,
A(BF)=Ef o+ P oS, A(H)=H;®1+1@ Hgq "/ (18)

The adjoint action of U, (suy,) defined [2] as adaB = ) A(1)BS(A(g)) with A, B € U,(su,) and
Ay, A(g) determined from A(A) = ) A1) ® A(g), with the account of (18) reads:

adEiiB = ]E?Z-jEB(fM/2 — q*Hi/quHi/iniq*H"/Q.
The ¢-tensor operators [13] transforming under the adjoint action of U, (su3) as 3 and 3*, consist
of the triples (V1,V2,V3) and (Vi, V3, V3), respectively. Let [X,Y], = XY — ¢Y X. It can be
shown that the particular triple of elements from Uj(suy4)

Vi = B, [ES, Efgly ¢~ /300,

Vo = (B, )y ™/ T00, vy = g/l (19)
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transform as 3 under Uy(sus), Vi corresponds to the highest weight vector, the pair (V1,V2) is
Uq(sug) (iso)doublet and V3 its singlet. Likewise one constructs from elements of Ug,(su4) the
triple (Vi, V3, V3) that transforms as 3* under adjoint action of U,(sus), where V3 corresponds
to the highest weight vector, the pair (Vf, V3) is isodoublet and V3 is Ug(suz) singlet.

The mass operator M = My+ Mg involves Mo, as U,(sug) scalar, and the term Mg transform-
ing as the I = 0,Y = 0 component of tensor operator of 8-irrep of U,(su3). The irrep 8 occurs
twice in the decomposition 88 = 1481 ®8(2) ©10* $10@ 27. Then, usage of Wigner-Eckart
theorem for Uy (suy,) quantum algebras [13] applied to g-tensor operators transforming as irrep 8
of Uy(sus), turns the mass operator into M = My + Mg = Myl + avg(l) + ﬁVS(Q). Here 1 is the
identity operator, V8(1) and VS(Q) are two fixed tensor operators with non-proportional matrix
elements, each transforming as the I = 0,Y = 0 component of irrep 8 of U, (su3); Mo, « and 3
are some constants depending on details (dynamics) of the model.

If | B;) is a basis vector of representation 8 space which corresponds to some (1/2)" baryon,
then the mass of this baryon is calculated as

My, = (BiM|B,) = (Bj| (Mol + oV + 5V ) By). (20)

The decompositions 3 ® 3* =168, 3" ® 3 = 1 ® 8 imply that the operators V3V5 and V5313
formed from V3 in (19) and V3 are just the two isosinglets Vé(l), 8(2) needed in (20). Hence, the
mass operator in (20) can be rewritten (redefining My, o, 3) in the equivalent form

M = Mol + aV3Vs + BV3Vs = M = Myl + aEf B3 ¢ + BE5 Ef ¢, (21)

where the hypercharge Y = (H; + 2H5)/3 has been introduced.
To calculate matrix elements (20) using (21) we embed the octet 8 in a particular irrep of
U,(sus); embedding it, e.g., in 15 (adjoint) irrep of Uy(su4), we get the octet baryon masses

My = Mo+ Bq, My, = My, My = Mo+ [2]4[3]; ' (a+ ), Mz = My+aq™' (22)

(obviously, the expressions for My, M= are not invariant under ¢ — ¢~ '). Excluding Mo, a
and 3 from (22) results in the following g-analogue of GMO formula for octet baryons:

[3]¢Ma + Ms, = [2], (¢ My + qMz) . (23)

Using empirical masses, the deformation parameter ¢ is fixed by fitting: for each of the
q1,2 = +£1.035, g34 = £0.903y/—1, the g-deformed mass relation (23) holds within experimental
uncertainty (although for g3, ¢4 the constants o and (3 in (22) must be pure imaginary).

The right hand side of equation (23) is invariant under ¢ — ¢~ ! only if ¢ = ¢!, that is, if
g = £1. Behind the ‘classical’ GMO mass formula which obviously follows from (23) at ¢ = 1 and
corresponds to the nondeformed unitary symmetries SU(4) D SU(3) D SU(2), there is also an
unusual ‘hidden symmetry’ reflecting the singular ¢ = —1 case of Uy(suq) D Uy(sus) D Uy(suz)
algebras, undefined in this case. The relevant objects, however, exist as operator algebras [12].
Let us describe them in the part corresponding to n = 2 and n = 3.

At generic g, ¢ # —1, the algebra U, (sus) is generated by the elements E+, E~ and H, which
satisfy the relations

[H, E*] = £2F%, [ET,E7] = [H],. (24)

In the limit ¢ — 1 it reduces to the nondeformed sus. We take the representation spaces of the
latter in order to construct operator algebras for the case ¢ = —1. To each suy representation
space given by j (which takes integral or half-integral nonnegative values) with basis elements
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ljm), m = —j,—j 4+ 1,..., ], there corresponds an operator algebra generated by the operators
defined according to the formulas

H|jm) = 2m|jm), Eﬂjm) = o m|jm + 1), E~|jm) = ajm—1|jm — 1), (25)

where

V-G —m)(j+m+1), j Iisan integer,
Oéj7m = B B . . .
VG—-m)(G+m+1), j isa half-integer.

So defined operators E*, E~ and H on the basis elements |jm) satisfy the relations (compare
with (24)), one of which depends on whether j is an integer or a half-integer:

—H, j is an integer;
[H,E*] =+2E*, [Et,E7]= 2 N (26)
H, j is a half-integer.
To treat the (singular) case ¢ = —1 of Ugy(sus) it is more convenient to deal with Ug(us).

We take a representation space V,, labelled by {mi3,ma3, ms3} = x, of the nondeformed u3
and the Gel'fand-Tsetlin basis with the basis elements |x; mi2,ma2; m11) in each V.. Define the
operators Efr , BT, Hy, E; , B35, Ho that form the operator algebra of the x-type by their action
according to the formulas (let us denote 013 = my1 + mi3 + ma3z + ma33):

Ho|x; maz, mag;mir) = (2maz + 2maa — miz — masg — maz — ma1)|x; miz, maz; mai),
B3 |x;mi2, mag; ma1) = aymy, (M2, ma2) [x;maz + 1, mag; mar)

+ by, mi (Ma2, maz2) [x; miz, maa + 1;m11),
Ey |x;mi2, mag; mi1) = Gy my, (M2 — 1,ma2) [x;mi2 — 1,ma2;mar)r

+ by,miy (Maz, maz — 1) |x;mig, mag — 15ma1),

where

miz — miz)(ma3 — miz—1)(mgs — mia—2)(m1 — m12—1)) 1/2

(
— ((=1)013
@y (M12, M2z) <( ) (mag — mig — 1)(mag — miz — 2)

(m13 — mag + 1)(mas — mag)(ms3z — maz — 1)(my1 — m22)) 1/2

b mig, mog) = [(—1)7"3
o (M12, M2z) <( ) (myg — mag + 1)(Mm12 — ma2)

Action formulas for the operators Eli and H; are completely analogous to formulas (25) above
(with account of myi; — mag = 27, 2my1 — mig — maog = 2m).

The presented action formulas for the operators that form the operator algebra of the y-type
show that their matrix elements are, to some extent, similar to the ‘classical’ matrix elements
(i.e. to the matrix elements of the irrep x operators for su(n)). However, there is an essential
distinction: now we observe the important phase factors (namely, (—1)711Hmstm2s+mss ypder
the square root in aym,, and by m,,,) which depend on x and a specified basis element. No such
basis-element dependent factors exist in the su(n) case.

Let us illustrate such treatment with the particular example of operator algebra appearing
in the singular ¢ = —1 case of U,(su3) and corresponding to the octet representation of sus. We
give here explicitly only those action formulas for Efﬁ and E;E in which matrix elements differ
from their corresponding ‘classical’ counterparts:

Er[St) = v=2s’),  EE)=vo2sT),  Ef[S) = v=212Y),
EFIS%) = V=2SY),  Eyln) = %rz°> +VB2IN), By |A) = /32120,
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ByIS) = <5512, E{IE) = o5+ V32N, EfI) = V5720n)
B 1) = —=5in)

To complete this operator algebra, we must add the rest of action formulas for Eli and EQi (i.e.,
action on those basis elements) which coincide with the ‘classical’ ones, as well as the action
formulas for Hy, Hs (these latter also coincide with ‘classical’ formulas).

Likewise, for Uy(sus) at ¢ = —1 an operator algebra corresponding to any other irrep of sus
can be given. The treatment is obviously extendible to U,—_1(suy), n > 3.

Let us also remark that SUSY-based mass relation m, = my,, see (2), is obtainable from a
g-deformed structure. Indeed, it follows from the g-analog of vector meson mass relation,

Mg + (2[2]¢/[3lg — )my, = (2[2]¢/[3]¢) MK~

(which was derived [14] using Uy(suy,) quantum algebras), if one fixes ¢ as 4th root of unity:
q = +/—1 (then, [2]; = 0). The intriguing interplay between SUSY and the special cases ¢ = —1
and ¢ = v/—1 of the g-algebras Uj,(suy) deserves further detailed study.
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