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Davide FIORAVANTI

Dept. of Mathematical Sciences, University of Durham, South Road, DH1 3LE Durham, UK
E-mail: Davide.Fioravanti@durham.ac.uk

As a prototype of powerful non-Abelian symmetry in an Integrable System, I will show the
appearance of a Witt algebra of vector fields in the SG theory. This symmetry does not
share anything with the well-known Virasoro algebra of the conformal c = 1 unperturbed
limit. Although it is quasi-local in the SG field theory, nevertheless it gives rise to a local
action on N -soliton solution variables. I will explicitly write the action on special variables,
which possess a beautiful geometrical meaning and enter the Form Factor expressions of
quantum theory. At the end, I will also give some preliminary hints about the quantisation.

1 Introduction

Nowadays the very peculiar rôle of symmetries is clearly recognised in all the areas of Mathe-
matical Physics also thanks to the recent developments of Quantum Physics. In fact, it was in
the context of Classical Physics that Liuoville defined as integrable a system having a number
of local integrals of motion in involution (LIMI’s) equal to the degrees of freedom and proposed
a theorem (Liouville–Arnold theorem [1]) to solve the motion up to quadratures – in the case
of finite number of degrees of freedom. Nevertheless, there is no equivalent theorem when the
degrees of freedom become infinite as well as the number of Abelian symmetries: the classical
field theories represent an important example which attracted more and more interest. The sit-
uation is even more complicated when the system is a quantum field theory: in this case we may
be interested, for instance, in the energy spectrum [2, 3] or in the spectrum of fields or in the
correlation functions of those fields [4], as the usual meaning of motion is definitely lost. In fact,
in systems with infinite degrees of freedom non-Abelian symmetries revealed to be more useful:
let us think of Classical Inverse Scattering Method [5] and Bethe Ansatz [2, 3] as two illustra-
tive examples among the others. Moreover, the Virasoro algebra in two Dimensional Conformal
Field Theories (CFT’s) represents perhaps the most successful example of how a non-Abelian
symmetry can solve a quantum field theory and in this case a theory realising a physical system
at the very important critical point [6].

Unfortunately, this Virasoro algebra does not exist any longer if the system is pushed out
of the critical point, still preserving Liouville integrability [6]. For instance, the Sine-Gordon
(SG) theory is one of the simplest massive Integrable Field Theories (IFT’s), although it is the
first theory in a series of structure richer theories, the Affine Toda Field Theories (ATFT’s) [7]
and possesses all the features peculiar to the more general IFT’s [8]. Actually, non-Abelian
infinite-dimensional symmetries were found in all Toda theories and they are called dressing
symmetries at classical level [9] and become (level 0) affine quantum algebras after quantisa-
tion [10]. Nevetheless, because of their affine and highly non-local characters those symmetries
are not of large use.

In this talk I present the appearance of infinitesimal symmetry transformations (vector fields)
acting on the boson field of the classical Sine-Gordon theory. These vector fields turn out to
close a Witt (centerless Virasoro) algebra. Since the only ingredient of the recipe is the Lax
pair formulation of SG equation, it is clear how to generalise the construction to more general
field theories like, for instance, ATFT’s. Nevertheless, I rather would like to focus my attention
on the origin and form of the infinitesimal transformations in the particular case of SG theory.
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Specifically, I will show how to introduce the SG theory starting from the simpler Korteweg-de
Vries (KdV) theory and how to frame this symmetry inside the KdV theory. Actually, I will not
give a complete proof of all the statements I will formulate, leaving this part to a more systematic
publication [11]. On the contrary, the restriction of these vector fields on the variables of the
N -soliton solutions was described and analysed in [12]: in this talk I sketch only how to derive
this action on a more intuitive ground. In the soliton phase space the infinitesimal transforma-
tions are realised in a much simpler form and in particular they become local contrary to the
field theory case (in which these are quasi-local). At the end, I will deliver few comments about
how much easier quantisation of the soliton phase space might appear.

2 The action of the Witt symmetry on fields

Let me recall the construction of the Witt symmetry in the context of (m)KdV theory [13, 14].
It was shown in [14], following the so-called matrix approach, that it appears as a generalisation
of the ordinary dressing transformations of integrable models. As integrable system the mKdV
equation enjoys a zero-curvature representation

[∂t − At, ∂x − Ax] = 0, (1)

where the Lax connections Ax, At belong to a finite dimensional representation of some loop al-
gebra and contain the fields and their derivatives. In this particular case the first Lax operator L
is given by

Ax =
(

φ′ λ
λ −φ′

)
, (2)

where I have denoted with φ′ the mKdV field (prime means derivative with respect to the space
variable x), with λ the A

(1)
1 loop algebra parameter (spectral parameter) and At can be found

using the dressing procedure I am going to describe [15]. The KdV variable u(x) is connected
to the mKdV field φ′ by the Miura transformation:

u = −(φ′)2 − φ′′. (3)

Key objects in the following construction are solutions T (x, λ) of the so-called associated linear
problem

(∂x − Ax(x, λ))T (x, λ) = 0, (4)

which may be called monodromy matrices. A formal (suitably normalised) solution of (4) can
be formally expressed by

Treg(x, λ) = eHφ(x)P exp
(

λ

∫ x

0
dy

(
e−2φ(y)E + e2φ(y)F

))
. (5)

Of course, this solution is just an infinite series in positive powers of λ ∈ C with an infinite
radius of convergence. I shall often refer to (5) as regular expansion. It is also clear from (5)
that any solution T (x, λ) possesses an essential singularity at λ = ∞ where it is governed by the
corresponding asymptotic expansion. In consequence, an asymptotic expansion has been derived
in detail in [15]

Tasy(x, λ) = KG(x, λ)e−
∫ x
0 dyD(y), (6)
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where K and G and D are written explicitly in [15]. In particular the matrix

D(x, λ) =
∞∑

i=−1

λ−idi(x)H i, H =
(

1 0
0 −1

)
(7)

contains the local conserved densities d2n+2(x).
Obviously, a gauge transformation for Ax

δAx(x, λ) = [θ(x, λ),L] (8)

preserves the zero-curvature form (1) if an analogous one applies to At: the vector field δ defines
a symmetry of the equation of motion (1) in the usual sense, mapping a solution into another
solution. Moreover, to build up a consistent gauge connection θ(x, λ) for the previous infinites-
imal transformation, I must pay attention to the fact that the r.h.s. needs to be independent
of λ since the l.h.s. is, as consequence of (2). Hence, a suitable choice for the gauge connection
goes through the construction of the following object

ZX(x, λ) = T (x, λ)XT (x, λ)−1, (9)

where X is such that

[∂x, X] = 0. (10)

Indeed, it is obvious from the previous definition that it satisfies the resolvent condition[L, ZX(x, λ)
]

= 0, (11)

for the first Lax operator L = ∂x − Ax(x, λ). Now, this property implies

[L, (ZX(x, λ))−
]

= −
[
L,

(
ZX(x, λ)

)
+

]
, (12)

where the subscript − (+) means that I restrict the series only to negative (non-negative) powers
of λ, and hence yields the construction of a consistent gauge connection defined as

θX(x, λ) =
(
ZX(x, λ)

)
− or θX(x, λ) =

(
ZX(x, λ)

)
+

. (13)

Further, I have to impose one more consistency condition implied by the explicit form of Ax (2),
namely δAx must be diagonal

δXAx = HδXφ′. (14)

This implies restrictions about the indices of the transformations [16]. After posing T = Treg

I obtain the so-called dressing symmetries [15] and the indices are even for X = H and odd for
X = E, F . Instead, after posing T = Tasy I get for X = H the commuting (m)KdV flows (or
the (m)KdV hierarchy), which define the different time t2k+1, k = 0, 1, 2, . . . evolutions and in
particular (1) with t = t3 [16].

At this point I want to make an important observation. Let me consider the KdV variable x
as a space direction x− of some more general system (and ∂− = ∂x as a space derivative). Let
me introduce the time variable x+ through the corresponding evolution flow

∂+ =
(
δE
−1 + δF

−1

)
, (15)

defined by a zero curvature condition of the form (8)

∂+Ax−(x−, x+; λ) = [θ+(x−, x+; λ),L]. (16)
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This specific θ+(x−, x+; λ) is derived using (13) with the regular expansion. Then, it can be
proved [16] that the equation of motion for φ becomes:

∂+∂−φ = 2 sinh(2φ), or if φ → iφ, ∂+∂−φ = 2 sin(2φ), (17)

i.e. the Sine-Gordon equation. As we will see later, this observation will appear very fruitful for
my purpose since it provides an introduction of Sine-Gordon dynamics as a vector field in the
powerful algebraic framework of the KdV hierarchy and its symmetries. For instance, I obtain
as simple by-product the fact that mKdV hierarchy is a symmetry for SG equation. Of course,
the Hamiltonians – given by the part of the dressing charges corresponding to the (16) and the
higher flows ∂2k+1 = δE

−2k−1 + δF
−2k−1 [15] – coincide with the well-known ones [5].

Now, let me explain how the Witt symmetry appears in the KdV system [14]. The main idea
is that one may dress not only the generators of the underlying A

(1)
1 algebra but also an arbitrary

differential operator in the spectral parameter. I take for example λm+1∂λ which are the well
known vector fields of the diffeomorphisms of the unit circumference and close a Witt algebra.
Then I proceed in the same way as above defining the resolvent associated to the circumference
diffeomorphisms

ZV (x, λ) = T (x, λ)∂λT (x, λ)−1. (18)

When I consider the asymptotic case, i.e. I take T = Tasy in (18), I obtain the non-negative Witt
flows. In general they are written in terms of recursive quasi-local expressions αV

2m(x), m ≥ 0 as

δV
2mφ(x) = αV

2m(x), (19)

where

αV
0 (x) = −xφ′(x), αV

2m+2(x) =
[
−φ′∂−1

x φ′∂x +
1
4
∂2

x

]
αV

2m(x). (20)

Let me highlight the appearance of the pseudodifferential operator ∂−1
x , acting on a function f(x)

as

∂−1
x f(x) =

∫ x

dyf(y), (21)

which is responsible (together with the form of the initial condition (20)) for the non complete
locality. From these vector fields I can deduce the action on u(x) using (3)

δV
2mu(x) = 2∂xβV

2m+1(x) (22)

again in terms of recursive quasi-local expressions βV
2m−1(x)

βV
−1 = −x, βV

2m+1(x) =
[
1
2

(
u + ∂−1

x u∂x +
1
2
∂2

x

)]
βV

2m−1(x). (23)

For instance, the first two of (19) can be written as

δV
0 φ = −xφ′, δV

2 φ =
1
2
φ′ (∂−1

x φ′2) − 1
2
φ′′ − 1

2
x

[
1
2
φ′′′ − (φ′)3

]
. (24)

The negative Witt transformations can also be built up by taking T = Treg in (18) in such
a way to complete the algebra [14]. Unfortunately, those vector fields do not act as gauge
transformations on the SG equation of motion (16), actually they are not true symmetry trans-
formations [16].
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Nevertheless, thanks to the way (16) I have introduced SG theory through, I am in the
position to extend the (half) Witt symmetry algebra jumping from (m)KdV to the SG theory.
For obvious reasons I will rename in the following the KdV variable u with

u−(x−, x+) = −(∂−φ(x−, x+))2 − ∂2
−φ(x−, x+). (25)

Hence, after looking at the symmetric rôle that the derivatives ∂− and ∂+ play in the Sine-
Gordon equation, I can obtain the negative (m)KdV hierarchy, acting on the fields φ(x−, x+)
and

u+(x−, x+) = −(∂+φ(x−, x+))2 − ∂2
+φ(x−, x+), (26)

in the same way as above but with the change of rôles x− → x+ (and consequently ∂− → ∂+).
Similarly, I obtain the other half of a Witt algebra by using the same construction already
showed, but with x− substituted by x+.

Of course, it is not obvious at all that the two different halves will recombine into a unique
Witt algebra. Actually, even the first Witt vector field in the original construction (24) needs
a symmetrising improvement to leave exactly invariant the zero curvature form of SG equa-
tion (16):

δV
0 φ = −x−∂−φ − x+∂+φ. (27)

Nevertheless, I have checked this statement brute force in the case[
δV
2 , δV

−2

]
φ = 4δV

0 φ, (28)

and it works in a peculiar manner, simply using the transformation definitions (27) and the
second of (24). I would like to leave for future publication the detailed explanation of how
a complete proof of this proposition may be elaborated along smart lines [11].

In conclusion, I have found an entire Witt algebra of transformations acting as gauge sym-
metries on SG equation (16). Moreover, I sketch now how the restriction of the action on soliton
solution phase space yields the result argued in [12] following a slightly different procedure.

3 The Witt symmetry acting on the soliton solution variables

I start with a brief description of the well known soliton solutions of SG equation and (m)KdV
hierarchy in the infinite times formalism. To see how a N -soliton solution can be parametrised,
I need to go through the expression of the so-called tau-function. This can be written as
a determinant

τ(X1, . . . , XN |B1, . . . , BN ) = det(1 + V ), (29)

where V is a NxN matrix

Vij = 2
BiXi

Bi + Bj
, i, j = 1, . . . , N, (30)

and Xi({t2k+1}|xi, Bi) are exponential functions of of all the times {t2k+1}, k ∈ Z (e.g. in the
previous notation t−1 = x+, t1 = x−, t3 = t)

Xi({t2k+1}|xi, Bi) = xi exp

(
2

+∞∑
k=−∞

B2k+1
i t2k+1

)
. (31)
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The constant parameters Bi and xi describe the soliton velocities and positions respectively.
Now the SG or the mKdV field solution is expressed in a beautiful unitary way as

eφ =
τ−
τ+

, (32)

where simply

τ± = τ({±Xi}|{Bi}), (33)

in the sense that after putting all the negative (positive) times to zero, I end up with the
N -soliton solution of the mKdV hierarchy (the negative mKdV hierarchy), whereas after the
position to zero of all the times but t−1 = x+, t1 = x−, I end up with the N -soliton solution of
the SG equation.

The main goal of this Section is to find the action of the Witt symmetry on the N -soliton
solution and this is more conveniently achieved introducing other variables {Ai, Bi}, expressed
implicitly by the old variables {Xi, Bi} through the implicit formulae

Xj

∏
k �=j

Bj − Bk

Bj + Bk
=

N∏
k=1

Bj − Ak

Bj + Ak
, j = 1, . . . , N. (34)

In fact, the {Ai, Bi} are the soliton limit of certain variables describing the more general quasi-
periodic finite-zone solutions of (m)KdV [17], being the Bi the limit of the branch points of
the hyperelliptic curve describing a particular solution and the Ai the limit of the zeroes of the
so-called Baker–Akhiezer function defined on the curve. Actually, even for the description of the
quantum physics of Form Factors these variables are apparently more natural and suitable [18].
Although, in terms of these variables the tau functions have still a cumbersome form

τ+ = 2N
N∏

j=1

Bj




∏
i<j

(Ai + Aj)
∏
i<j

(Bi + Bj)∏
i,j

(Bi + Aj)


 ,

τ− = 2N
N∏

j=1

Aj




∏
i<j

(Ai + Aj)
∏
i<j

(Bi + Bj)∏
i,j

(Bi + Aj)


 , (35)

the SG (mKdV) field (32) enjoys a simple expression

eφ =
N∏

j=1

Aj

Bj
. (36)

In consequence, the two components of the stress-energy tensor (25) and (26) take a wieldy form
as well

u− = −2


 N∑

j=1

A2
j −

N∑
j=1

B2
j


 , u+ = −2


 N∑

j=1

A−2
j −

N∑
j=1

B−2
j


 . (37)

Now I am in the position to restrict the Witt symmetry of SG equation developed in the previous
Section to the case of soliton solutions. Although these transformations have been derived
in [12], here I will follow a more intuitive path, which underlines the geometrical meaning of this
symmetry. In other words our starting point consists in the transformations of the rapidities
under the Witt symmetry: I do expect that they change the conformal structure of the Riemann
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surface describing the finite-zone solutions. Actually, in the (m)KdV theory the soliton limit of
the Witt action on the Riemann surface reads simply [13]

δ2nBi = B2n+1
i , n ≥ 0, (38)

where I have forgotten the superscript V for indicating the action on soliton variables. Further,
the action of negative transformations should not be different

δ−2nBi = −B−2n+1
i , n > 0, (39)

save an additional − sign in the r.h.s. [12] which takes into account the Witt algebra commutation
relations. I have to show now the transformations of the Ai variables as consequences of (38)
and (39) once applied to the implicit map (34) by using the expression (31) of Xi in terms of Bi.
The problem is simplified by the fact that I know from the field theory that the symmetry algebra
is a Witt algebra, and hence I need to compute only the transformations δ0, δ±2 and δ±4,
for the higher vector fields are then furnished by commuting. In this way it is evident why
the Witt transformations become local when restricted on the soliton solutions, though the
transformations of φ and u± in the SG theory are quasi-local. Actually, I think more natural
and more compact to express the Witt action on Ai by using the equations of motion of Ai

derived from (31) and (34), like for instance

δ−1Ai = ∂+Ai =
N∏

j=1

(
A2

i − B2
j

)
B2

j

∏
j �=i

A2
j(

A2
i − A2

j

) ,

δ1Ai = ∂−Ai =
N∏

j=1

(
A2

i − B2
j

) ∏
j �=i

1(
A2

i − A2
j

) ,

δ3Ai = 3


 N∑

j=1

B2
j −

∑
k �=i

A2
k


 ∂−Ai,

1
5
δ5Ai =


 N∑

j=1

B4
j −

∑
k �=i

A4
k


 ∂−Ai −

∑
j �=i

(
A2

i − A2
j

)
∂−Ai∂−Aj . (40)

In conclusion, the direct calculation is quite tiresome and I present here only few results:

δ−2Ai =
1
3
x+δ−3Ai − A−1

i − ∂+Ai

N∑
j=1

A−1
j − x−∂+Ai, (41)

δ−4Ai =
1
5
x+δ−5Ai − A−3

i −



N∑
j �=i

1
Ai

(
1

A2
i

− 1
A2

j

)
+

N∑
j=1

1
Aj

N∑
k=1

1
B2

k


 ∂+Ai − x−δ−3Ai

and for non-negative vector fields

δ0Ai = (x−∂− − x+∂+ + 1)Ai, δ2Ai =
1
3
x−δ3Ai + A3

i −

 N∑

j=1

Aj


 ∂−Ai − x+∂−Ai,

δ4Ai =
1
5
x−δ5Ai + A5

i −



∑
j �=i

Ai

(
A2

i − A2
j

)
+

N∑
j=1

Aj

N∑
k=1

B2
k


 ∂−Ai − x+δ3Ai. (42)
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At this point, I need to carry out two important checks. First, I have to calculate the
commutators of the δ2m (with m ∈ Z) with the light-come SG flow ∂±, acting on Ai. These
are always zero and represent an equivalent way to express the symmetry action. Second,
I have to verify the algebra of the δ2m (with m ∈ Z) on Ai and this is a very non trivial check for
I have derived all the transformations (41) and (42) from the Witt algebra on Bi, written in (38)
and (39), and from the implicit map (34). Nevertheless the action on Ai is again a representation
of the Witt algebra:

[δ2n, δ2m]Ai = (2n − 2m)δ2n+2mAi, n, m ∈ Z. (43)

4 Comments about quantisation

Of course, I might be interested in the quantum Sine-Gordon theory. In the case of solitons
there is a standard procedure: the canonical quantisation of the N -soliton solutions. Indeed, let
me introduce the variables canonically conjugated to the Ai:

Pj =
N∏

k=1

Bk − Aj

Bk + Aj
, j = 1, . . . , N. (44)

In these variables one can perform the canonical quantisation of the N -soliton system introducing
the deformed commutation relations between the operators Âi and P̂i:

P̂jÂj = qÂjP̂j ,

P̂kÂj = ÂjP̂k, for k �= j, (45)

where q = exp(iξ), ξ = πγ
π−γ and γ is the coupling constant of the SG theory. Understanding

how the Witt symmetry is deformed after quantisation is a very seductive problem.
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