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Recently obtained via ∂-dressing method new exact solutions of some (2 + 1)-dimensional
integrable nonlinear evolution equations such as Nizhnik–Veselov–Novikov (NVN), genera-
lized Kaup–Kuperschmidt (2DKK) and generalized Savada–Kotera (2DSK) equations are
discussed.

1 Introduction

In the last two decades the Inverse Spectral Transform (IST) method has been generalized
and successfully applied to various (2 + 1)-dimensional nonlinear evolution equations such
as Kadomtsev–Petviashvili, Davey–Stewardson, Nizhnik–Veselov–Novikov, Zakharov–Manakov
system, Ishimory, two dimensional integrable sine-Gordon and others (see books [1, 2, 3, 4]
and references therein). The nonlocal Riemann–Hilbert [5], ∂-problem [6] and more general
∂-dressing method of Zakharov and Manakov [7, 8] are now basic tools for solving (2 + 1)-
dimensional integrable nonlinear equations (see also the reviews [10, 11, 12] and books [1, 2, 3, 4]).

In the present short paper new exact solutions calculated via ∂-dressing method of some
two-dimensional integrable nonlinear equations such as Nizhnik–Veselov–Novikov (NVN) [13,
14], generalized Kaup–Kuperschmidt (2DKK) [16, 17] and generalized Savada–Kotera (2DSK)
[16, 17] equations are reviewed.

It is well known that ∂-dressing method is very powerful method for the solution of integrable
nonlinear evolution equations. This method has been discovered by Zakharov and Manakov
[7, 8] (see also the books [3, 4]) and applies now successfully as to (1 + 1)-dimensional and
also to (2 + 1)-dimensional integrable nonlinear evolution equations. The ∂-dressing method
allows to construct Lax pairs (auxiliary linear problems); to solve initial and boundary value
problems, to calculate the broad classes of exact solutions of integrable nonlinear equations. By
the use of ∂-dressing method one can construct simultaneously broad classes of exactly solvable
potentials (variable coefficients of linear PDE’s) and corresponding wave functions of auxiliary
linear problems.

Let us remind following to [7, 8] basic ingredients of ∂-dressing method for (2+1)-dimensional
case. At first one postulates nonlocal ∂-problem:

∂χ(λ, λ)
∂λ

= (χ ∗ R) (λ, λ) =
∫∫

C
dλ′ ∧ dλ′χ(λ′.λ′)R(λ′, λ′; λ, λ). (1)

For the sake of definiteness we restrict the attention to the case of the scalar complex-valued
functions χ and R with the canonical normalization (χ → χ0 = 1, as λ → ∞). We assume
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also that the problem (1) is uniquely solvable. The equation (1) defines behavior of the wave
function χ in the spectral or momentum space.

Then one introduces dependence of kernel R and consequently the function χ on space and
time variables ξ, η, t:

∂R

∂ξ
= I1(λ′)R(λ′, λ′; λ, λ; ξ, η, t) − R(λ′, λ′; λ, λ; ξ, η, t)I1(λ),

∂R

∂η
= I2(λ′)R(λ′, λ′; λ, λ; ξ, η, t) − R(λ′, λ′; λ, λ; ξ, η, t)I2(λ),

∂R

∂t
= I3(λ′)R(λ′, λ′; λ, λ; ξ, η, t) − R(λ′, λ′; λ, λ; ξ, η, t)I3(λ), (2)

i.e.

R(λ′, λ′; λ, λ; ξ, η, t) = R0(λ′, λ′; λ, λ) exp(F (λ′) − F (λ)), (3)

where

F (λ) := I1(λ)ξ + I2(λ)η + I3(λ)t. (4)

Here Ii(λ) (i = 1, 2, 3) are some polynomial or rational functions of λ, the choice of these
functions depends on concrete integrable equation. The role of the variables ξ, η, t will be
played by the usual space and time variables x, y, t or their combinations ξ = x+σy, η = x−σy
with σ2 = ±1. By introducing the “long” derivatives

Dξ = ∂ξ + I1(λ), Dη = ∂η + I2(λ), Dt = ∂t + I3(λ) (5)

dependence of R on ξ, η, t can be expressed in the form

[Dξ, R] = 0, [Dη, R] = 0, [Dt, R] = 0. (6)

By use of derivatives (5) one constructs then linear operators

L =
∑

ulmn(ξ, η, t)Dl
ξD

m
η Dn

t (7)

which satisfy to the condition
[

∂
∂λ

, L
]

= 0 of absence of singularities on λ. For such operators L

the function Lχ obeys the same ∂-equation as the function χ. If there are several operators Li

of this type then by virtue of the unique solvability of (1) one has: Liχ = 0.
The solution of ∂-problem (1) with the canonical normalization χ0 = 1 is equivalent to the

solution of the following singular integral equation:

χ(λ) = 1 +
∫∫

C

dλ′ ∧ dλ′

2πi(λ′ − λ)

∫∫
C

dµ ∧ dµχ(µ, µ)R0(µ, µ; λ′, λ′)eF (µ)−F (λ′). (8)

From (8) one obtains for the coefficients χ̃0, χ−1 and χ−2 of series expansion of χ near the
points λ = 0 and λ = ∞ (χ = χ̃0 + χ1λ + · · · and χ = χ0 + χ−1

λ + · · · ):

χ̃0 = 1 +
∫∫

C

dλ ∧ dλ

2πiλ

∫∫
C

dµ ∧ dµχ(µ, µ)R0(µ, µ; λ, λ)eF (µ)−F (λ), (9)

χ−1 = −
∫∫

C

dλ ∧ dλ

2πi

∫∫
C

dµ ∧ dµχ(µ, µ)R0(µ, µ; λ, λ)eF (µ)−F (λ),

χ−2 = −
∫∫

C

dλ ∧ dλ

2πi
λ

∫∫
C

dµ ∧ dµχ(µ, µ)R0(µ, µ; λ, λ)eF (µ)−F (λ), (10)



304 V.G. Dubrovsky, I.B. Formusatik and Ya.V. Lisitsyn

where F (λ) is given by the formula (4). Through the coefficients χ̃0 and χ−1 usually the
reconstructions formulas for the potentials are defined. In order to calculate via ∂-dressing
method exact solutions of integrable nonlinear equations and auxiliary linear problems one
must to solve for given kernel R of ∂-problem (3) (usually one chooses the degenerate kernels)
singular integral equation (8) for wave function χ. Then by some reconstruction formulas one
calculates exact solutions. Going by this way one must to satisfy important reality, potentiality
or another conditions for the solutions.

In conclusion of this section let us obtain some useful general formulas for calculations of soli-
ton and rational solutions of integrable nonlinear equations. Soliton solutions can be generated
by the following delta-kernel R0(µ, µ; λ, λ) (3) of ∂-problem (1):

R0(µ, µ; λ, λ) =
π

2

N∑
p=1

Apδ(µ − Λp)δ(λ − Σp) (11)

which has nonzero values at the set of points

Λ := (Λ1, . . . ,ΛN ), Σ := (Σ1, . . . ,ΣN ) (12)

of complex plane, where Ap are arbitrary complex constants; here and below δ(µ − Λp) and
δ(λ−Σp) are complex δ-functions. Using (11) one obtains from (8) the following linear algebraic
system of equations for calculating the quantities χ(Λp)eF (Λp):

N∑
q=1

Apqχ(Λq)eF (Λq) = eF (Λp), Apq := δpq +
iAqe

F (Λp)−F (Σq)

Λp − Σq
, (p, q = 1, . . . , N). (13)

Coefficients χ−1 and χ−2 due to (10) are given by expressions:

χ−1 = −i
N∑

p=1

Apχ(Λp)eF (Λp)−F (Σp), χ−2 = −i
N∑

p=1

Apχ(Λp)Σpe
F (Λp)−F (Σp). (14)

Here as supposed all denominators in the formula (13) have nonzero values.
Rational solutions of integrable nonlinear equations can be generated by another delta-kernel

R0(µ, µ; λ, λ) (3) of ∂-problem (1):

R0(µ, µ; λ, λ) =
π

2

N∑
p=1

Ap δ(µ − Λp) δ(λ − Λp) (15)

which has nonzero values at the set of isolated points

Λ := (Λ1, Λ2, . . . ,ΛN ) (16)

of complex plane, where for simplicity we choose Ap as some complex constants. Using (15)
in (9) and (10) one obtains for χ̃0 and χ−1, χ−2 the expressions:

χ̃0 = 1 +
N∑

p=1

Ap

Λp
χ(Λp), χ−1 = −i

N∑
p=1

Ap χ(Λp), χ−2 = −i
N∑

p=1

ApΛpχ(Λp). (17)

For the quantities χ(Λp) from integral equation (8) a simple algebraic system of equations follows:

N∑
q=1

Apq χ(Λq) = 1, Apq = δpq(1 + i ApF
′(Λp)) +

i Aq(1 − δpq)
Λp − Λq

, (p, q = 1, . . . , N). (18)

The main problem in constructing soliton and rational solutions is the problem of choice of the
sets of points Λ and Σ (12), (16) and constants Ap in (11), (15) in order to satisfy the conditions
of reality, potentiality and so on.
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2 Exact rational solutions of NVN equations

In this section we present some new rational solutions with constant asymptotic values at infinity
of the famous (2+1)-dimensional Nizhnik–Veselov–Novikov (NVN) integrable equations [13, 14]:

ut + κ1uξξξ + κ2uηηη + 3κ1

(
u∂−1

ξ uη

)
η

+ 3κ2

(
u∂−1

η uξ

)
ξ

= 0 (19)

where u(ξ, η, t) is a scalar function; κ1, κ2 are arbitrary constants, ∂ξ = ∂x +σ∂y, ∂η = ∂x −σ∂y

and σ2 = ±1. Equation (19) was first introduced by Nizhnik [13] for σ = 1 and independently
by Veselov and Novikov [14] for σ = i, κ1 = κ2 = 1. Here and below ∂−1

ξ , ∂−1
η denote operators

inverse to ∂ξ, ∂η: ∂−1
ξ ∂ξ = ∂−1

η ∂η = 1.
The integrability of (19) by IST and by another means is based on the representation of this

equation as the compatibility condition for two linear auxiliary problems

L1ψ = (∂2
ξη + U)ψ = 0,

L2ψ = (∂t + κ1∂
3
ξ + κ2∂

3
η + 3κ1(∂−1

ξ uη)∂ξ + 3κ2(∂−1
η uξ)∂η)ψ = 0 (20)

in the form of Manakov’s triad

[L1, L2] = BL1, B := 3(κ1∂
−1
ξ Uηη + κ2∂

−1
η Uξξ). (21)

Integration of NVN equation (19) has remarkable history. In the work of Nizhnik [13] the
equation (19) with σ = 1 has been integrated by the technique of inverse problems for hyperbolic
systems on the plane. In the paper of Veselov and Novikov [14] for the construction of the
periodic finite-zone exact solutions of (19) with σ = i algebraic geometric methods have been
used. There exist several other beautiful works of Grinevich and Manakov, Grinevich and
S. Novikov, Grinevich and R. Novikov, Grinevich in which the problem of construction of exact
solutions of Veselov–Novikov (VN) equation [14] and transparent potentials for 2D stationary
Schrödinger equations via ∂-problem combined with nonlocal Riemann–Hilbert problem and so
on have been discussed (see [18, 19] and references therein).

Here we present some rational solutions of NVN equations (19) obtained recently in the
paper [20]. In the paper [20] the ∂-dressing method is applied to bare operators of linear
auxiliary problems (20) with constant asymptotic value of U at infinity

U(ξ, η, t) −→
x2+y2−→∞

−ε �= 0. (22)

In this case the first linear auxiliary problem (20) has the form:

(∂2
ξη + Ũ)ψ = εψ. (23)

For σ = 1 (23) can be interpreted (ξ ⇒ t − x, η ⇒ t + y) as one-dimensional Klein–Gordon or
perturbed telegraph equation; for σ = i (23) is nothing but the two-dimensional 2D stationary
Schrödinger equation. Construction of exact solutions of (19) with constant asymptotic values
at infinity means simultaneously calculation of exact wave function ψ and exactly solvable cor-
responding potentials for above mentioned classical linear equations; here we present also new
exact rational potentials for two-dimensional stationary Schrödinger equation which correspond
to two-pole wave functions. Our results partially interplay in the case σ = i with that obtained
by different methods in the papers of Grinevich and his co-authors (see [18, 19] and references
therein). The use of the celebrated ∂-method of Zakharov and Manakov for the construction of
new exact solutions for NVN equations (19) by our opinion is very instructive and useful.

The long derivatives (5) in the case of NVN equations (19) have the form:

D1 = ∂ξ + iλ, D2 = ∂η − iε/λ, D3 = ∂t + i
(
κ1λ

3 − κ2ε
3/

(
λ3

))
. (24)
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One can construct in this case two linear auxiliary problems of the type (7):

L1χ = (D1D2 + V1D1 + V2D2 + U)χ = 0,

L2χ =
(
D3 + κ1D

3
1 + κ2D

3
2 + W1D

2
1 + W2D

2
2 + W3D1 + W4D2 + W

)
χ = 0 (25)

satisfying to the condition of absence of singularities in λ. Reconstruction formulae for V1, V2,
U in the considered case have the form [20]:

V1 = −χ0η/χ0, V2 = −χ̃0ξ/χ̃0, U = −ε − iχ−1η = −ε + iχ1ξ. (26)

Due to canonical normalization of χ, χ0 = 1 and V1 = 0. Potentiality condition for the opera-
tor L1 in (25) means V2 = 0 or due to (26) χ̃0 = const, say χ̃0 = 1, and according to (9) has the
form: ∫∫

C

dλ ∧ dλ

λ

∫∫
C

dµ ∧ dµ χ(µ, µ) R0(µ, µ; λ, λ)eF (µ)−F (λ) = 0, (27)

where due to (4) and (24)

F (λ) := i
(
λξ − ε

λ
η
)
− i

(
κ1λ

3 − κ2
ε3

λ3

)
t. (28)

The conditions of reality U and of potentiality of the operator L1 give some restrictions on the
kernel R0 of ∂-problem (1). In Nizhnik case (σ = 1) of NVN equations (19) with real ξ = x + y,
η = x − y space variables and κ1 = κ1, κ2 = κ2 in the limit of weak fields from (10) and (26)
one can easily obtain the following restriction on the kernel R0 (3) of ∂-problem:

R0(µ, µ; λ, λ) = R0(−µ,−µ; −λ,−λ). (29)

To the Veselov–Novikov case (σ = i, κ1 = κ2 = κ) of NVN equations (19) with z = ξ = x + iy,
z = η = x − iy the condition of reality of U leads from (10) and (26) in the limit of weak fields
to another restriction on the kernel R0 of ∂-problem:

R0(µ, µ; λ, λ) =
ε

|µ|2|λ|2µλ
R0

(
− ε

λ
− ε

λ
;− ε

µ
,− ε

µ

)
. (30)

Various choices for the kernel R of ∂-problem (1) satisfying to restrictions (27), (29) and (30)
lead to various classes of exact solutions of integrable nonlinear NVN equations (19).

In conclusion of this section let us cite several simplest exact rational solutions of NVN
equations (19) calculated in the paper [20].

Nizhnik equation, σ = 1. 1. The kernel R0 has the form (15) with N = 2, A2 = A1, with
the set (16) Λ = (λ1,−λ1), λ1 = λ1; the potentiality condition (27) is satisfied for 1

A1
− 1

A1
= i

λ1
.

The solution U of Nizhnik version of equations (19) has the form:

U = −ε − 2ε(
ξλ1 + ε

λ1
η + 3

(
κ1λ3

1 + κ2
ε3

λ3
1

)
t − a1λ1

)2 (31)

with the wave function of equation (23) of the following form [20]:

ψ =
exp

[±i
(
λ1ξ −

(
ε/λ2

1

)
η +

(
κ1λ

3
1 − κ2ε

3/λ3
1

)
t
)]

ξ +
(
ε/λ2

1

)
η + 3

(
κ1λ2

1 + κ2ε3/λ4
1

)
t − a1

. (32)
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2. The kernel R0 has the form (15) with N = 2 and the set (16) Λ = (iα1,−iα1), α1 = α1;
the potentiality condition (27) is satisfied for 1

A2
− 1

A1
= i

λ1
. The solution U of Nizhnik version

of equations (19) has the form:

U = −ε − 2ε(
ξα1 − ε

α1
η − 3

(
κ1α3 − κ2

ε3

α3
1

)
t − a1α1

)2 (33)

with the wave function of equation (23) of the following form [20]:

ψ =
exp

[± (
α1ξ +

(
ε/α2

1

)
η − (

κ1α
3
1 − κ2ε

3/α3
1

)
t
)]

ξ − (
ε/α2

1

)
η − 3

(
κ1α2

1 − κ2ε3/α4
1

)
t − a1

. (34)

The solutions (31), (33) and wave functions (32), (34) evidently are singular.
3. The kernel R0 has the form (15) with N = 4, A2 = A1, A4 = A3, with the set (16)

Λ = (λ1,−λ1,−λ1, λ1), the potentiality condition (27) is satisfied for 1
A3

− 1
A1

= i
λ1

. The
solution U of Nizhnik version of equations (19) has the form:

U(ξ, η, t) = −ε − 2ε
(λ1X(λ1))2 +

(
λ1X(λ1)

)2 − 1/2
(
λ2

1I − λ2
1R

)2
/

(
λ2

1Iλ
2
1R

)(
|λ1X(λ1)|2 + |λ1|2

4

(
1

λ2
1I

− 1
λ2
1R

))2 (35)

with X(λ1) = ξ + ε
λ2
1
η +3

(
κ1λ

2
1 + κ2

ε3

λ4
1

)
t−a1 and λ1 = λ1R + iλ2I . The solution (35) evidently

nonsingular for |λ1I | < |λ1R|.
Quite analogously one calculates rational solutions of Veselov–Novikov version of equations

(19) [20].
Veselov–Novikov equation, σ = i. 1. The kernel R0 has the form (15) with N = 2,

A2 = A1λ1/λ1, with the set (16) Λ = (λ1,−λ1), |λ1|2 = ε; the potentiality condition (27) is
satisfied for λ1

A1λ1
− 1

A1
= i

λ1
. The solution U of Veselov–Novikov version of equations (19) has

the form:

U(z, z, t) = −ε − 2ε(
λ1z + λ1z + 3

(
κλ3

1 + κλ1
3
)

t − ã1λ1

)2 (36)

with the wave function of equation (23) (in this case of 2D stationary Schrödinger equation) of
the following form [20]:

ψ =
exp

[
±i

(
λ1z − λ1z + 3

(
κλ3

1 − κλ1
3
)

t
)]

λ1z + λ1z + 3
(
κλ3

1 + κλ1
3
)

t − ã1λ1

. (37)

2. The kernel R0 has the form (15) with N = 2, Akλk/λk = −Ak, k = 1, 2; with the set (16)
Λ = (λ1,−λ1), |λ1|2 = −ε; the potentiality condition (27) is satisfied for 1

A2
− 1

A1
= i

λ1
. The

solution U of Veselov–Novikov version of equations (19) has the form:

U(z, z, t) = −ε − 2ε(
λ1z + λ1z + 3

(
κλ3

1 + κλ1
3
)

t − ã1λ1

)2 (38)

with the wave function of equation (23) (in this case of 2D stationary Schrödinger equation) of
the following form [20]:

ψ =
exp

[
±i

(
λ1z − λ1z + 3

(
κλ3

1 − κλ1
3
)

t
)]

λ1z + λ1z + 3
(
κλ3

1 + κλ1
3
)

t − ã1λ1

. (39)

The solutions (36), (38) and wave functions (37), (39) evidently are singular.
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3. The kernel R0 has the form (15) with N = 4, A2k = εA2k−1/λk
2, k = 1, 2; with the

set (16) Λ = (λ1,−ε/λ1,−λ1, ε/λ1), |λ1|2 = −ε; the potentiality condition (27) is satisfied for
1

A2
− 1

A1
= i

λ1
. The solution U of Veselov–Novikov version of equations (19) has the form:

U(z, z, t) = −ε − 2ε
λ2

1X(λ1)2 + λ1
2
X(λ1)2 + 2

[(
ε2 + |λ1|4

)2
/

(
ε2 − |λ1|4

)2
]

(
|λ1X(λ1)|2 −

[
2ε|λ1|2 (ε2 + |λ1|4) / (ε2 − |λ1|4)2

])2 . (40)

The solution (40) evidently nonsingular for ε < 0 and have been obtained earlier (see [18, 19]
and references therein) by another method.

Let us mention that one can consider also the kernels R0 (3) of ∂-problem (1) with products
of delta-functions with derivatives, for example the kernel R0

R0(µ, µ; λ, λ) =
π

2

N∑
k=1

[
Ak δµ(µ − λk)δλ(λ − λk) +

ε3Ak

|µ|2|λ|2µλ
δε/λ

( ε

λ
+ λk

)
δε/µ

(
ε

µ
+ λk

)

+ Bk δµ(µ + λk) δλ(λ + λk) +
ε3Bk

|µ|2|λ|2µλ
δε/λ

( ε

λ
− λk

)
δε/µ

(
ε

µ
− λk

) ]
(41)

in the form of products of derivatives of the first order of complex delta functions which have
non-zero values on the set Λ of complex plane consisting N quartets of complex isolated points
Λ :=

⋃N
k=1(λk,−ε/λk,−λk, ε/λk) arranged symmetrically near the origin and going to each other

by inversion relative to the origin and/or to the circle of radius
√|ε|; Ak, Bk (k = 1, . . . , N) are

some complex constants. Such kernels correspond in the case σ = i to so called multiple-pole (to
pole of order two in considered case) wave functions of 2D stationary Schrödinger equation (23).
Recently following to the paper [21] new exact rational potentials of equation (23) by Dubrovsky
and Formusatik have been calculated. For the case |λ1|2 = ε > 0 and one quartet of the points the
potentiality condition (27) satisfies for the following choice of parameters 1/B1−1/A1 = i/

(
2λ3

1

)
,

λ3
1/A1 = −λ3

1/A1, λ3
1/B1 = −λ3

1/B1 and the corresponding exact potential has the form:

U = −2ε
4(x̃ − ỹ)6 − 9

(
x̃2 − ỹ2

)2

[2(x̃ − ỹ)4 + 3 (x̃2 + ỹ2)]2
, x̃ := λR(x − x̃0), ỹ := λI(y − ỹ0), (42)

where

x̃0 := −α1λI

|λ|2 + x0, ỹ0 := −α1λR

|λ|2 + y0, λ1 := λR + iλI . (43)

For another case | λ1 |2= −ε > 0 and one quartet of the points the potentiality condition (27)
satisfies for the choice of parameters 1/B1 − 1/A1 = i/

(
2λ3

1

)
, λ3

1/A1 = λ3
1/B1 and the corre-

sponding exact potential has the form:

U = 2ε
4(x̃ + ỹ)6 + 9

(
x̃2 − ỹ2

)2

[2(x̃ + ỹ)4 − 3 (x̃2 + ỹ2)]2
, x̃ := λI(x − x̃0), ỹ := λR(y − ỹ0), (44)

where

x̃0 := −r1λR

|λ|2 + x0, ỹ0 :=
r1λI

|λ|2 + y0, λ1 := λR + iλI . (45)

In the formulas (42)–(45) x0, y0, α1, r1 are some real parameters. It occurs that the main
problem in calculating rational solutions corresponding to multiple pole wave functions of 2D
stationary Schrödinger equation (23) as in the case of wave functions with simple poles is the
fulfillment to the potentiality condition (27), in order to achieve this goal one must to choose
in (41) appropriately the constants Ak, Bk and the set Λ.
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3 Exact solutions of 2DKK and 2DSK equations

In this section following to the work [22] exact solutions of two-dimensional generalizations of
Sawada–Kotera and Kaup–Kuppershmidt equations [16, 17] are considered. The ∂-dressing
method can be applied also to the study of (2 + 1)-dimensional integrable generalizations of
Kaup–Kuperschmidt (2DKK)

Ut = Uxxxxx +
25
2

UxUxx + 5UUxxx + 5U2
x + 5Uxxy − 5∂−1

x Uyy + 5UUy + 5Ux∂−1
x Uy (46)

and Sawada–Kotera (2DSK)

Ut = Uxxxxx + 2UxUxx + 5UUxxx + 5U2
x + 5Uxxy − 5∂−1

x Uyy + 5UUy + 5Ux∂−1
x Uy (47)

equations. These equations were discovered in papers [16, 17], now they are known also as
a members of the so called CKP hierarchy [16] and can be represented as the compatibility
conditions in the Lax form [L1, L2] = 0; for the 2DKK equation – of the following two linear
auxiliary problems [17]:

L1Ψ =
(

∂3
x + U∂x +

1
2
Ux + ∂y

)
Ψ = 0,

L2Ψ =
[
∂t − 9∂5

x − 15U2∂3
x − 45

2
Ux∂2

x

−
(

35
2

Uxx + 5U2 − 5∂−1
x Uy

)
∂x −

(
5UUx − 5

2
Uy + 5Uxxx

)]
Ψ = 0 (48)

and for 2DSK equation – of another two linear auxiliary problems [17]:

L1Ψ =
(
∂3

x + U∂x + ∂y

)
Ψ = 0,

L2Ψ =
[
∂t − 9∂5

x − 15U2∂3
x − 15Ux∂2

x − (
10Uxx + 5U2 − 5∂−1

x Uy

)
∂x

]
Ψ = 0. (49)

Here and bellow ∂x ≡ ∂/∂x, ∂y ≡ ∂/∂y, ∂t ≡ ∂/∂t and ∂−1
x is an operator inverse to ∂x. The

first linear auxiliary differential problems in (48) and (49) are of the third order on ∂x, such
problems in general position have several fields as the coefficients at the various degrees of ∂x,
the 2DKK equation (46) and 2DSK equation (47) arise as special reductions of some integrable
nonlinear systems for these fields. It is well known that study of special reductions requires more
attention and may be more difficult than the consideration of nonlinear equations integrable by
auxiliary linear problems in general position. By our opinion application of ∂-dressing method in
nonstandard situations of special reductions may be very instructive and useful (in our case some
nonlinear constraint on the wave functions of the linear auxiliary problems must be satisfied).

The long derivatives (5) in the considered case have the form:

D1 = ∂x + iλ, D2 = ∂y + iλ3, D3 = ∂t + 9iλ5. (50)

By the use of these derivatives one can construct two linear operators (7):

L1χ =
(
D2 + D3

1 + UD1 + V
)
χ = 0, (51)

L2χ =
(
D3 − 9D5

1 + w3D
3
1 + w2D

2
1 + w1D1 + w0

)
χ = 0 (52)

satisfying to the condition of absence of singularities on λ. After simple calculations the following
reconstruction formulas for the potentials U and V :

U = −3iχ−1x, V = −3iχ−1xx + 3χ−2x − 3χ−1χ−1x (53)

and some formulas for potentials w0, w1, w2 can be obtained [22].
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It was shown in the paper [17] that to the (2 + 1)-dimensional integrable generalizations of
nonlinear Kaup–Kuperschmidt (46) and Sawada–Kotera (47) equations correspond the reduc-
tions:

(2DKK) : V =
1
2
Ux, (2DSK) : V = 0. (54)

In terms of the wave function χ = χ0+χ−1/λ+χ−2/λ2+· · · the reductions (54) can be expressed
as the nonlinear constraint on the coefficients χ−1 and χ−2 (10):

(2DKK) : χ−2x − i

2
χ−1xx − χ−1χ−1x = 0, (55)

(2DSK) : χ−2x − iχ−1xx − χ−1χ−1x = 0. (56)

As usual the solution of the ∂-problem (1) with canonical normalization χ0 = 1 is equivalent to
the solution of the singular integral equation (8) with F (λ) (4) given due to (4), (5) and (50)
by the expression:

F (λ) := i
(
9λx + λ3y + 9λ5t

)
. (57)

The coefficients χ−1 and χ−2 of Taylor expansion of χ(λ) near the point λ = ∞ by the formu-
las (10) are given.

One can easily obtain the restrictions following from reality U = U of U on the kernel R0 of
∂-problem (1), one has in the limit of weak fields from (10) and (53):

R0(µ, µ; λ, λ) = R0(−µ,−µ;−λ,−λ), R0(µ, µ; λ, λ) = R0(λ, λ; µ, µ). (58)

It is evident that the conditions (58) are the same for both 2DKK and 2DSK equations (46)
and (47) but the nonlinear constraint (55) and (56) for these equations have different forms. So
in order to calculate the exact solutions of 2DKK (46) and 2DSK (47) equations via ∂-dressing
method one must satisfy the conditions of reality (58) and the nonlinear constraint (55) and (56).

Let us consider some new solutions of 2DKK (46) and 2DSK (47) equations obtained recently
in the work [22]

Exact solutions of 2DKK equation. 1. In the case of line soliton solutions to the
conditions of reality for U (58) the following delta-kernel R0 of ∂-problem (1) satisfies:

R0(µ, µ; λ, λ) =
π

2

N∑
k=1

Akδ(µ − iαk)δ(λ + iαk) (59)

with nonzero values at the sets (12) of pure imaginary points Λ := (iα1, . . . , iαN ), Σ :=
(−iα1, . . . ,−iαN ) of the complex plane; Ap (p = 1, . . . , N) are arbitrary real constants; αp are
chosen so that |α1| < |α2| < · · · < |αN | and consequently αp + αq �= 0 for all p, q.

As was shown recently [22] the nonlinear constraint (55) for such kernel (59) in the case of
2DKK (46) equation is satisfied and for the N -soliton solution of 2DKK equation one obtains
simple determinant formula:

U(x, y, t) = 3
∂2

∂x2
ln detA (60)

with matrix A given by (13). In the simplest case N = 1 of the kernel R0 (59) with one term in
the sum using (13) and (60) one obtains one-soliton solution of 2DKK equation (46):

U(x, y, t) =
3α2

1

cosh2[α1x − α3
1y + 9α5

1t − a1]
, (61)
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where on the constants A1 and α1 additional condition 0 < A1
2α1

:= e2a1 is imposed. The general
formula (60) represents the superposition of N line soliton solutions of the type (61) interacting
with each other elastically. The solutions corresponding to the kernel R0 of the type (59) have
been obtained recently [23] for N = 1, 2 via the direct Hirota method by adjusting parame-
ters of solutions using symbolic calculations with well known software package Mathematica.
The application of ∂-dressing method leads immediately to general (N -arbitrary) determinant
formula (60).

2. By ∂-dressing method one can also effectively calculate rational solutions of integrable
nonlinear equations. To the rational solutions of 2DKK equation leads for example the following
delta-kernel R0 of ∂-problem (1):

R0(µ, µ; λ, λ) =
π

2

N∑
k=1

[Akδ(µ − iαk)δ(λ − iαk) + Akδ(µ + iαk)δ(λ + iαk)] (62)

which has nonzero values at the following set (16) Λ of pure imaginary points of complex plane
Λ := (Λ1, . . . ,Λ2N ) = (iα1,−iα1, . . . , iαN ,−iαN ). Constants Ak in (62) are arbitrary real con-
stants. It is evident that such kernel satisfies the conditions of reality for U (58). One can
show [22] that for such kernel the constraint (55) is also satisfied. For the rational solutions of
2DKK equation (46) corresponding to the kernel (62) one obtains again the simple determinant
formula (60) with the matrix A given by (18). In the simplest N = 1 case of two terms in
the sum (62) one has from (60) using (18) the following nonsingular rational solution of 2DKK
equation:

U(x, y, t) = 6
1

4α2
1
−

(
X(iα1) − 1

A1

)2

[
1

4α2
1

+
(
X(iα1) − 1

A1

)2
]2 , X(iα1) = x − 3α2

1y + 45α4
1t. (63)

The expression (63) represents nonsingular line lump solution of 2DKK equation (46). The
general formula (60) with matrix A (18) gives the superposition of N line nonsingular lumps of
the type (63) interacting with each other elastically.

3. Quite analogously to previous case one can show that to reality condition (58) and to the
constraint (55) also satisfies the following kernel R0 of ∂-problem (1):

R0(µ, µ; λ, λ) =
π

2

N∑
k=1

[Akδ(µ − λk)δ(λ − λk) + Akδ(µ + λk)δ(λ + λk)] (64)

which has nonzero values at the set Λ (16) with N pairs (λk,−λk), k = 1, . . . , N of real points
of complex plane; here Ak are arbitrary real constants. The calculations at the present case are
the same as at the previous one [22]. By the general formulas (15)–(18) and (53) one obtains
the solution of 2DKK equation in the simple determinant form (60) with some matrix A of the
form (18). In the simplest case N = 1 of two terms in the sum (64) due to (18) and (60) the
solution U(x, y, t)

U(x, y, t) = −6

(
X(λ1) − 1

A1

)2
+ 1

4λ2
1[(

X(λ1) − 1
λ1

)2 − 1
4λ2

1

]2 , X(λ1) = x − 3λ2
1y + 45λ4

1t (65)

of 2DKK equation (46) represents singular line lump. The general formula (60) gives the su-
perposition of N singular line lumps of the type (65) and also is the singular solution of 2DKK
equation (46).
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Exact solutions of 2DSK equation. (2 + 1)-dimensional integrable generalization of
Sawada–Kotera (2DSK) equation (47) differs from 2DKK equation (46) only by the constant
coefficient under the term UxUxx. These equations are different reductions (54) (V = 1/2Ux and
V = 0) of some integrable (2 + 1)-dimensional nonlinear system of equations for the fields U
and V . Due to this fact these equations have different linear auxiliary problems (48), (49) and
as consequence they have different constraints (55) and (56). The main problem in calculations
of exact solution of 2DSK equation (47) (as also for 2DKK equation (46)) is the choice of the
kernel R0 of ∂-problem (1) in the way that the reality conditions (58) and constraint (56) should
be satisfied.

1. In order to calculate line soliton solutions of 2DSK equation (47) let us start from the
delta-kernel R0 of the type (11):

R0(µ, µ; λ, λ) =
π

2

N∑
k=1

[Akδ(µ − iαk)δ(λ − iβk) + Bkδ(µ + iβk)δ(λ + iαk)] (66)

with nonzero values at the sets (12) Λ = (iα1,−iβ1, . . ., iαN ,−iβN ) and Σ = (iα1,−iβ1, . . ., iαN ,
−iβN ); here Ak, Bk, αk, βk (k = 1, . . . , N) are arbitrary real constants. Analogously to the
calculations in the case of 2DKK equation (46) one can show [22] that constraint (56) with
the kernel R0 (66) is satisfied if the following relation between constants Ak and Bk is fulfilled:
Akαk = Bkβk. The general formulas (11)–(14) and (60) are valid in the present case and the
N -soliton solution U(x, y, t) of 2DSK equation is given by the simple determinant formula (60)
with some matrix A of the type (13) [22]. In the simplest case N = 1 of two terms in the sum (66)
using (11)–(14) and (60) one obtains typical line-soliton solution of 2DSK equation (47):

U(x, y, t) =
3(α1 − β1)2

2 cosh2 1
2 [(α1 − β1)x − (α3

1 − β3
1)y + 9(α5

1 − β5
1)t − 2a1]

, (67)

where on constants A1, α1, β1 the condition 0 < A1(α1+β1)
2β1(α1−β1) := e2a1 is imposed. The general

formula (60) with matrix (13) represents the superposition of N line soliton solutions of the
type (67) which interact with each other elastically.

2. As the second example let us calculate rational solutions of 2DSK equation (47) which
correspond to the delta-kernel R0 of the type (15):

R0(µ, µ; λ, λ) =
π

2

N∑
k=1

[Akδ(µ − iαk)δ(λ − iαk) + Akδ(µ + iαk)δ(λ + iαk)] (68)

with nonzero values at the set (16) Λ = (iα1,−iα1, . . . , iαN ,−iαN ); here Ak, Bk, αk (k =
1, . . . , N) are arbitrary real constants. Analogously to the calculations in the case of 2DKK
equation one can show [22] that constraint (56) with the kernel R0 (68) is satisfied if the following
relation between constants Ak and Bk is fulfilled: 1

Bk
− 1

Ak
= 1

αk
; from the last relation follows

the parameterizations: 1
Bk

= ak + 1
2αk

, 1
Ak

= ak − 1
2αk

with ak (k = 1, . . . , N) – arbitrary real
constants. The general formulas (15)–(18) are valid in the present case and the rational solution
of 2DSK equation (47) corresponding to the kernel R0 (68) is given by the simple determinant
formula (60) with some matrix A of the type (18). In the simplest case N = 1 of two terms
in the sum (68) using (18), (60) and (68) one obtains [22] singular rational solution of 2DSK
equation (47):

U(x, y, t) =
6

(x − 3α2
1y + 45α4

1t − a1)2
. (69)

The general formula (60) represents the superposition of N line lump solutions of the type (69)
interacting with each other elastically, these solutions are also singular.
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