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Symmetric Sets of Solutions to Differential Problems
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Via Buonarroti 2, 56127 – Pisa, Italy
E-mail: cicogna@df.unipi.it

The presence of a (Lie-point) symmetry for a differential equation leads naturally to the
useful notions of symmetric sets of solutions, i.e. of sets which are mapped into themselves
by the symmetry, and of orbits of solutions. We introduce the definition of partial sym-
metry, and show that the above notions may be preserved, although the symmetry is not
exact. We consider the quite exceptional case of the Liouville equation, which admits an
extremely large algebra of symmetries (the conformal symmetry algebra), and we shall see
that any modification of this equation destroys this situation, but leaves the possibility of
the existence of partial symmetries. Other simple examples are also considered, including
a case of generalized (or Lie–Bäcklund) symmetry.

1 Introduction

It is certainly well known that symmetry principles may offer several useful tools and many
different implications in the analysis of differential equations (see, e.g., [1–10] and references
therein), but probably the most obvious and direct consequence is the fact that any symmetry
of a given equation transforms solutions into (generally, different) solutions of the same equation.
In other words, given a differential equation, say ∆ = 0, with a set of solutions S∆, a symmetry T
of this equation is an invertible transformation such that T (S∆) = S∆; in this sense, we can say
that S∆ is a symmetric set of solutions under T .

For the sake of concreteness and simplicity, we will be concerned here only with the case of
partial differential equations, written in the usual form [3]

∆:= ∆
(
x, u(m)

)
= 0, (1)

where ∆ is a smooth function (or possibly a system of � functions) of the p “independent”
variables x := (x1, . . . , xp) ∈ R

p and of the q “dependent” variables u := (u1, . . . , uq) ∈ R
q,

together with the derivatives of the uα with respect to the xi (α = 1, . . . , q; i = 1, . . . , p) up to
some order m. Also, we will consider here mainly continuous Lie-point symmetries, in the usual
sense and under the usual assumptions (see [3]), although our arguments (in Section 3) could
be easily extended e.g. to generalized or Lie–Bäcklund symmetries (as we will briefly show by
means of an example in Section 4), or also to discrete symmetries. Denoting by

X = ξi(x, u)
∂

∂xi
+ ϕα(x, u)

∂

∂uα
(2)

the infinitesimal Lie generator of a symmetry of the given problem (1), we can also say that S∆

is a symmetric set under X.
A strictly related fact to the presence of a symmetry, is that, given any solution u0 of ∆ = 0,

then there is an orbit u[λ] of solutions obtained under the application to u0 of the (finite)
transformations T = T [λ] = exp(λX) generated by X (here λ is the real Lie parameter, and –
as usual – we have generally only a local group of transformations T [λ], i.e. λ runs only in some
interval.) Clearly, orbits provide examples of symmetric sets of solutions under X. Apart from
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the trivial case of solutions u0 invariant under T , any orbit u[λ] can be naturally parametrized
by the Lie parameter λ, and satisfies the differential equation (in “evolutionary form” [3])

Qu[λ] =
du[λ]

dλ
, (3)

where

Q = −ξi(x, u)
∂

∂xi
+ ϕα(x, u)

∂

∂ua
. (4)

Many examples of this situation are well known. In Section 2, we shall consider a rather
exceptional case, which is provided by the Liouville equation (both in the “Galilean” or in
the “Minkowski” case, see below (5), (6)), which has an enormous relevance in mathematical
physics, and which exhibits the quite singular and peculiar (i.e., unique in its class) property of
admitting an extremely large algebra of symmetries, the conformal symmetry algebra.

However, the case of Liouville equation is certainly exceptional. In fact, the examples of
PDE’s admitting nontrivial symmetries (Lie-point or generalized) are relatively rare. Therefore,
one is urged to extend the concept of symmetry. Notions of conditional, nonclassical or similar
notions of symmetries are also well known (see e.g. [2, 6, 11, 12, 13, 14, 15]). In Section 3, we
shall introduce the notion of partial symmetry (see [16]), which is in some sense intermediate
between that of exact and of conditional symmetry; we shall show in particular the existence
also in this case, although the partial symmetry T is not exact, of proper subsets P ⊂ S∆ of
solutions of the given equation, which are symmetric sets, i.e. such that T (P) = P, meaning
that P is a subset of solutions which are transformed into one another by T . Similarly, the notion
of orbit of solutions under the partial symmetry T remains valid, together with its characteristic
property expressed by equations (3), (4).

2 The symmetry properties of the Liouville equation

The equation

uxx + uyy = exp(u), u = u(x, y) (5)

has a long history. It was introduced by Liouville, studied by Poincaré, Picard, and many
others in the past, and reconsidered in recent years. Actually, it enters in many areas of applied
mathematics and physics, including fluid vortex theory, problems concerning electric charge
distribution round a glowing wire, surface singularities, instantons and solitons theory, whereas
the recent interest is concerned mainly with (2 + 1)-dimensional quantum gravity (see e.g. [17,
18, 19]). The modern applications in classical and quantum field theory deal not only with the
“Galilean” version of the Liouville equation (5), but also with its “Minkowski” form

uxx − uyy = exp(u) (6)

but, for simplicity, we will consider only the equation (5) (actually, all our conclusions can be
suitably extended to the case (6)).

We start considering, instead of (5), the following general equation

uxx + uyy = F (u), (7)

where F = F (u) is a (smooth) function, and perform the “group theoretical analysis” of this
equation, i.e. look for its Lie-point symmetries depending on the choice of F (u) (we can exclude
the completely elementary case of “linear” F = a + bu). According to standard and well known
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procedures [3], one can easily see that, in addition to the obvious translation and rotation
symmetries, and apart from the special case

F (u) = (u + k)1+r, r, k = const, r �= 0

admitting the symmetry

X =
r

2

(
x

∂

∂x
+ y

∂

∂y

)
− (u + k)

∂

∂u

the unique case admitting an “interesting” symmetry is just

uxx + uyy = ± exp(±u) (8)

which exhibits the following family of symmetries

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ ϕ(x, y)

∂

∂u
, (9)

where the coefficients ξ(x, y), η(x, y) must satisfy

ξx = ηy, ξy = −ηx (10)

which imply that

∆ξ = 0, ∆η = 0 (11)

(in other words, ξ and η must be harmonic conjugated functions), and where ϕ is given by

ϕ = −(ξx + ηy) = −2ξx. (12)

We shall then say that (8) admits “full conformal symmetry”. This result may be in some sense
reversed and strengthened in the following form (the proof can be obtained by means of direct
calculations)

Proposition 1. A PDE for the function u = u(x, y) of the form ∆:= ∆(u, uxx, uyy) = 0 admits
full conformal symmetry if and only if ∆ depends on u, uxx, uyy only through the combination
ũ := (uxx + uyy) exp(±u).

Starting from any solution of the Liouville equation, and using its symmetries, one can
write down many different orbits of solutions. Precisely, let u0 = u(x0, y0) be any solution,
expressed in terms of the “initial” variables denoted here for convenience by x0, y0; let us
perform a conformal (finite) transformation into the new variables x = x(λ), y = y(λ), with the
infinitesimal generators defined by the harmonic conjugated functions ξ, η, i.e. a transformation
satisfying

∂x

∂λ
= ξ(x, y),

∂y

∂λ
= η(x, y) (13)

with the “initial conditions”

x(0) = x0, y(0) = y0. (14)

Let us denote by

x0 → x ≡ x(λ) = p(x0, y0, λ), y0 → y ≡ y(λ) = q(x0, y0, λ) (15)
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this transformation, and by

x0 = P
(
x(λ), y(λ), λ

)
, y0 = Q

(
x(λ), y(λ), λ

)
(16)

its inverse, then the orbit of new solutions is given by

u[λ] := u0

(
P (x(λ), y(λ), λ), Q(x(λ), y(λ), λ)

)
+ w(x, y; λ), (17)

where

w(x, y; λ) = −
∫ λ

0

(
ξx

(
P (x(λ′), y(λ′), λ′), Q(x(λ′), y(λ′), λ′)

)
+ ηy

(
. . .

))
dλ′

= − ln(∇P · ∇P ) = ln(∇Q · ∇Q). (18)

For instance, an orbit of solutions to the Liouville equation is the following

u[λ]) = − ln

((
1 + 2λx + λ2

(
x2 + y2

))2

2
sin2

(
x + λ

(
x2 + y2

)
1 + 2λx + λ2 (x2 + y2)

))
.

It has been obtained from (18) choosing in (9) ξ = x2 − y2, η = 2xy and starting from a
known solution to the Liouville equation (which can be recognized putting λ = 0 in the above
expression).

3 Partial symmetries

Let us consider a general differential problem, given in the form of a system of � partial differential
equations, and shortly denoted, as usual, as in (1). Let

X = ξi(x, y)
∂

∂xi
+ ϕα(x, y)

∂

∂uα
(19)

be a given vector field, where ξi and ϕα are respectively p and q smooth functions. We will shortly
denote by X∗ the “suitable” prolongation of X, i.e. the prolongation which is needed when one
has to consider its application to the differential problem in consideration. Alternatively, we
may consider X∗ as the infinite prolongation of X, it is clear indeed that only a finite number
of terms are required and will appear in all the actual computations. The vector field X is (the
Lie generator of) an exact symmetry of the differential problem (1) if and only if

X∗∆
∣∣∣
∆=0

= 0, (20)

i.e. if and only if the prolongation X∗ (here obviously, X∗ = pr(m)(X), the m-th prolongation
of X), applied to the differential operator ∆ defined by (1) vanishes once restricted to the set
S(0) := S∆ of the solutions to the problem ∆ = 0.

We now assume that the vector field X is not a symmetry of (1), hence X∗∆
∣∣∣
S(0)

�= 0: let us
then put

∆(1) := X∗∆. (21)

This defines a differential operator ∆(1), of order m′ not greater than the order m of the initial
operator ∆. Assume now that the set of the simultaneous solutions of the two problems ∆ = 0
and ∆(1) = 0 is not empty, and let us denote by S(1) the set of these solutions. It can happen
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that this set is mapped into itself by the transformations generated by X: this situation is
characterized precisely by the property

X∗∆(1)
∣∣∣
S(1)

= 0.

Then, in this case, we can conclude that, although X is not a symmetry for the full problem (1),
it generates anyway a transformation which leaves globally invariant a family of solutions of (1):
this family is precisely S(1).

But it can also happen that X∗∆(1)|S(1) �= 0, we then put

∆(2) := X∗∆(1) (22)

and look for the solutions of the system

∆ = ∆(1) = ∆(2) = 0

and repeat the argument as before: if the set S(2) of the solutions of this system is not empty
and satisfies in addition the condition

X∗∆(2)
∣∣∣
S(2)

= 0

then X is a symmetry for the subset S(2) of solutions of the initial problem (1), exactly as before.
Clearly, the procedure can be iterated, and we can say:

Proposition 2. Given the general differential problem (1) and a vector field (19), define, with
∆(0) := ∆,

∆(r+1) := X∗∆(r). (23)

Denote by S(r) the set of the simultaneous solutions of the system

∆(0) = ∆(1) = · · · = ∆(r) = 0 (24)

and assume that there is an integer s such that S(r) is not empty for r ≤ s, and

X∗∆(r)
∣∣∣
S(r)

�= 0 for r = 0, 1, . . . , s − 1, (25)

X∗∆(s)
∣∣∣
S(s)

= 0. (26)

Then the set S(s) provides a family of solutions to the initial problem (1) which is mapped into
itself by the transformations generated by X.

It is clear that, given a differential problem and a vector field X, it can happen that the
above procedure gives no result, i.e. that at some k-th step the set S(k) turns out to be empty.
Assume instead that a nonempty subset S(s) of solutions has been found according to the above
procedure: we shall then say that X is a partial symmetry for the problem (1), and the subset of
solutions P := S(s) obtained in this way is globally invariant under X and therefore a symmetric
set.

Alternatively, one may also say that this vector field X is an exact symmetry for the system

∆ = 0,

∆(1) = 0, (27)
...

∆(s) = 0.
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It must be emphasized that the solutions in this set are, in general, not invariant under the
action of X: only the set S(s) is globally invariant, while the solutions are transformed into
one another under the X action. As in the case of exact symmetries, the set of solutions
in S(s) will be constituted by one or more orbits under the action of the one-parameter Lie
group T [λ] = exp(λX), and each family u[λ] satisfies the same differential equation (3), (4).
It may happen that the set S(s) contains also solutions u0 which are invariant under T [λ], i.e.
T [λ]u0 = u0, which can be considered as trivial orbits: if this is the case, then the partial
symmetry X is also a conditional symmetry (see [2, 12, 13]) for the problem at hand. In this
sense, we can say that partial symmetries extend the notion of conditional symmetries.

4 Partial symmetries and symmetric sets: examples

We will briefly propose here some quite simple examples of PDE’s admitting partial symmetries
and of symmetric sets of solutions under these symmetries. More elaborate examples, including
e.g. Boussinesq and Korteweg-de Vries equations, can be found in [16]. The idea can be suitably
extended also to ordinary differential equations and to dynamical systems, with an application
to Mel’nikov theory for the appearance of chaotic homoclinic (or heteroclinic) motion [20], or to
discrete symmetries as well [16].

Example 1. It has been shown in Section 2 that the 2-dimensional Laplace equation with
nonlinear additional terms F (u) admits quite exceptionally some symmetry; the same is true
in the presence of terms containing higher order derivatives. But partial symmetries may be
allowed. Consider e.g. equations of the form

uxx + uyy = G(u, uxm), (28)

where uxm stands for the m-th order derivative ∂mu/∂xm, m > 2, and with ∂G/∂uxm �= 0.
Now, the vector field

X = y
∂

∂x
− x

∂

∂y
(29)

generating rotations in the plane x, y is clearly not a symmetry for (28), but it is a partial
symmetry. Indeed, applying our procedure, one gets at the first step

X∗∆ = ∆(1) = m
∂G

∂uxm

∂mu

∂xm−1∂y
= 0. (30)

But applying the convenient prolongation X∗ to this equation, one obtains X∗(uxm−1y) �= 0
(indeed, (30) does not admit rotation symmetry), and therefore other steps are necessary in
order to reach the condition X∗∆(s) = 0, as requested by Proposition 2. One finds finally that
the symmetric set S(s) of solutions must satisfy, together with the initial equation (28), the
system of the m + 1 equations

∂mu

∂xn∂ym−n
= 0, n = 0, . . . , m

(i.e., all the m-th order derivatives must vanish). For instance, if G = G(uxxxx), the set S(s) has
the form

S(s) :=
{

u = A0 +
c

4
(
x2 + y2

)
+ A1x + B1y

+ A2

(
x2 − y2

)
+ B2xy + A3

(
x3 − 3xy2

)
+ B3

(
3x2y − y3

)}
,
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where c = G(0), and it is easy to recognize that this set contains a set of rotationally invariant
solutions, and different families of orbits of solutions which are transformed into themselves
under rotations. The presence in this set of rotationally invariant solutions shows that the
rotation symmetry is in this example also a conditional symmetry for the equation (28), but
the notion of partial symmetry provides clearly a larger set of solutions. Let us emphasize that
it should be not sufficient to impose only the vanishing of the “symmetry breaking term” in
the initial equation (28), or only the first condition obtained above (30), i.e. one or both of the
conditions

∂mu

∂xm
= 0,

∂mu

∂xm−1∂y
= 0

indeed, a generic solution of these equations and of the initial one would be transformed by
rotations into a v(x, y) which is not a solution!

Example 2. As another example, consider vector fields of the form

X = ϕα(x)
∂

∂uα
. (31)

If this is an exact symmetry of some equation ∆ = 0, one has that — given any solution u0 of
this equation — then u0 + λϕ is also a solution. But if X is only a partial symmetry, then this
is true only for some special u0: this gives rise to a “partial linear superposition principle”. For
instance, for the equation

∆:= u2
x − u2

y − ux − 2uy − u + x = 0 (32)

one can verify that the vector field

X = exp(−x − y)
∂

∂u
(33)

is a partial (not exact) symmetry, and in fact

u[λ](x, y) = x + λ exp(−x − y)

is a symmetric set of solutions to (32). Notice that this set contains just a single orbit, and that
there are no invariant solutions under the above (33) in this set: this means that in this example
the partial symmetry X is not a conditional symmetry.

Example 3. Our final example deals with generalized (or Lie–Bäcklund) symmetries, and il-
lustrates that our method is also applicable to these symmetries. We consider an equation for
u = u(t, x) of the form (Burgers, Fisher, Fitzhugh–Nagumo equations are of this form)

ut = uxx + R(u, ux) (34)

and the generalized vector field

X = (uxx − 2u)
∂

∂u
. (35)

It has been shown by Zhdanov [21] that (35) is a conditional Bäcklund symmetry for equations
of the form (34) if and only if the nonlinear term R satisfies a special equation (see [21]). We
now choose

R = u2
x − u2
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which does not satisfy Zhdanov equation. However, repeating word for word our above proce-
dure, it can be seen that (35) is a partial Bäcklund symmetry for this equation, and in fact

u
[λ]
± = exp(t ± x + λ)

are two families of solutions to the above equation. As expected, no invariant solution under (35)
is contained in this set, and therefore (35) is not a conditional Bäcklund symmetry.
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