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A class of nonlinear diffusion-convection systems containing two Burgers-type equations is
considered. New results of finding Lie and Q-conditional symmetries are presented. More-
over, examples of Lie and non-Lie ansätze and exact solutions of a diffusion-convection
system are constructed.

1 Introduction

Nonlinear diffusion-convection (DC) equations of the form

Ut = (A(U)Ux)x + B(U)Ux, (1)

where U = U(t, x) is the unknown function, A(U) and B(U) are arbitrary smooth functions and
the indices t and x denote differentiation with respect to these variables, generalizes a number
of the well known nonlinear second-order evolution equations, describing various processes in
physics [1], chemistry [2], biology [3]. The most popular among them is the Burgers equation
(BEq)

Ut = Uxx + λUUx, λ ∈ R (2)

arising in several application [4]. Lie symmetry of BEq was found in [5], while the Q-conditional
symmetry (i.e., non-classical symmetry [6]) was described in [7] and [8].

In the general case a wide list of Lie symmetries for DC equations of the form (1) is presented
in [9]. A complete description of Lie symmetries, i.e., group classification of (1) has been done
in [10]. The Q-conditional symmetry was also investigated in that paper.

A natural generalization of (1) on several components is the following system of DC equations:

Ūt = (A(Ū)Ūx)x + B(Ū)Ūx, (3)

where Ū = (U1, . . . , Un) is the unknown vector function, A(Ū) and B(Ū) are matrixes n × n
with the elements aij(Ū) and bij(Ū), i, j = 1, 2, . . . , n being arbitrary smooth functions. Here
we deal with a particular case of (3) at n = 2, namely:

Ut = λ1Uxx + UUx + F1(U, V )Vx,

Vt = λ2Vxx + V Vx + F2(U, V )Ux, (4)

where U = U(t, x) and V = V (t, x) are unknown functions, while λ1 and λ2 are arbitrary
constants, F1 and F2 are arbitrary smooth functions assumed to be known. It is easily seen that
DC system (1) is a coupled system of two Burgers-type equations.

Having in mind a complete description of the Lie and Q-conditional symmetries of system (1),
which is a very difficult problem in the general case, we now summarize the main results obtained
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for some subclasses of (1). In Section 2, the complete description of the Lie symmetry of
system (1) at λ1 �= λ2 are presented. In the case λ1 = λ2 all possible pairs (F1, F2) are found
when DC system (1) is invariant under the Galilei algebra and its standard extentions. Note
that the relevant results for reaction-diffusion systems were obtained in [11, 12, 13].

In Section 3, the determining equations to find the Q-conditional symmetry of system (1) are
derived. Furthermore those equations are solved under some assumptions. We have established
that system (1) at F1 = U + m1, F2 = V + m2, where m1, m2 are some constants, admits
conditional symmetry operators.

Finally (Section 4), the found symmetries are applied to construct both Lie and non-Lie
ansätze of a particular DC system of the form (1). Examples of exact solutions are also presented.

2 Lie symmetry of DC system (1)

It is easily checked that the system (1) is invariant under the operators of time and space
translations Px = ∂x and Pt = ∂t for arbitrary functions F1 and F2. Following [10], this algebra
is called the trivial Lie algebra of the system (1). Thus, we aim to find all pairs of functions
(F1, F2) that lead to extensions of the trivial Lie algebra of this system. Note that we consider
only nonlinear systems, particularly because linear equations are amenable to numerous classical
methods (the Fourier method, method of Laplace transformation and so on).

Now let us formulate a theorem which gives complete information on the classical, i.e., Lie
symmetry of the system (1).

Theorem 1. All possible maximal algebras of invariance (MAI) of the system (1) for any fixed
pair (F1, F2) and λ1 �= λ2, λ1λ2 �= 0 are presented in Table 1. Any other system of the form (1)
with non-trivial Lie symmetry is reduced by the local substitution

x∗ = x − mt, t∗ = t, U∗ = U + m, V ∗ = V + m, λ ∈ R (5)

to one of those given in Table 1.

Table 1. MAI of the system (1) at λ1 �= λ2, λ1λ2 �= 0.

/ Nonlinearities Restrictions Basic operators of MAI

1. F1 = Uf(ω) ω = U/V Pt, Px

F2 = V g(ω) D = 2tPt + xPx − U∂U − V ∂V

2. F1 = f(ω) ω = U − V Pt, Px

F2 = g(ω) Gx = tPx − (∂U + ∂V )

3. F1 = α1(U − V ) α1 �= 0 Pt, Px, Gx, D
F2 = α2(V − U) or α2 �= 0

4. F1 = 0 Pt, Px, Gx, D
F2 = 0 Π = tD − t2Pt − x(∂U + ∂V )

The proof of Theorem 1 is based on the classical Lie scheme (see, e.g., [15, 14]) and is non-
trivial because the system (1) contains two arbitrary functions of two variables. The proof of
this and following theorems will be published in [16]).

Remark 1. Cases 3 and 4 in Table 1 are natural prolongations of case 2, because the extended
Galilei algebra AG0

1(1, 1) = 〈Pt, Px, G0
x, D〉 and the generalized Galilei algebra AG0

2(1, 1) =
〈Pt, Px, G0

x, D, Π〉 are known to be standard extensions of the Galilei algebra AG0(1, 1) =
〈Pt, Px, G0

x〉 with zero mass (for details see [11, 12, 15]).
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It turns out that the case λ1 = λ2 �= 0 (without losing generality we can put λ1 = 1) is more
complicated than the case considered above and its complete description will be done in [16].
Here the most interesting cases are only presented.

Theorem 2. In the case λ1 = λ2 = 1, DC system (1) for F 1
V �= 0 or F 2

U �= 0 is invariant under
the Galilei algebra if and only if

F k = φ(ω) − (−1)k U − V

2
, k = 1, 2, ω = (U − V )γ exp(U + V ), 0 �= γ ∈ R,

where φ is an arbitrary function. The corresponding basic operators of the Galilei algebra are

Pt, Px, G0
x = t∂x +

U − V

γ
(∂U − ∂V ) − (∂U + ∂V ).

Theorem 3. In the case m1 �= m2 ∈ R, MAI of nonlinear DC system

Ut = Uxx + UUx + (m1 + U)Vx,

Vt = Vxx + V Vx + (m2 + V )Ux (6)

is the generalized Galilei algebra AG0
2(1, 1) with zero mass generated by the basic operators

Pt, Px, G0
x = tPx + Q0

1, D0 = 2t∂t + x∂x − U∂u − v∂v + Q0
2,

Π0 = tD0 − t2∂t + xQ0
1 +

2
m1 − m2

(∂U − ∂V ). (7)

In the case m1 = m2 = 0, MAI of (6) is infinite-dimensional algebra generated by the operators

Pt, Px, Q1 =
1
2
(U − V )(∂U − ∂V ), Gx = t∂x +

x

2
Q1 − Q2,

D = 2t∂t + x∂x +
1
2
Q1 − (U∂U + V ∂V ), Π = tD1 − t2∂t +

x2

4
Q1 − xQ2, (8)

which form the AG2(1, 1) with non-zero mass, and the operator

X∞ = (MU + MV − 2Mx)(∂U − ∂V ), (9)

where M = M(t, x) is an arbitrary solution of the linear diffusion equation Mt = Mxx.
In formulas (7) and (8) the operators

Q0
1 =

U + V + 2m1

m2 − m1
∂U +

U + V + 2m2

m1 − m2
∂V ,

Q0
2 =

m2U + m1V + 2m1m2

m2 − m1
(∂U − ∂V ) + U∂U + V ∂V , Q2 =

1
2
(∂U + ∂V ).

Remark 2. In the case m1 = m2 �= 0, system (6) is reduced to the same with m1 = m2 = 0 by
the local substitution (5).

3 Q-conditional symmetry of DC system (1)

In this section we study Q-conditional symmetry of nonlinear DC system (1). Nevertheless the
main idea of the notion of Q-conditional symmetry (non-classical symmetry) is very simple and
was introduced by Bluman and Cole more than 30 years ago [6], it is a very non-trivial problem
to find new operators of Q-conditional symmetry for nonlinear equations arising in applications.
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Moreover, to our knowledge there are even no examples of operators of Q-conditional symmetry
in the case of DC systems of the form (3).

We remind the reader that every operator of Lie symmetry is also a Q-conditional symmetry
operator therefore hereinafter we will find only purely conditional symmetry operators. It is
worth also reminding on the following property of such operators: if the operator

Q = ∂t + ξ(t, x, U, V )∂x + η1(t, x, U, V )∂U + η2(t, x, U, V )∂V , (10)

where the ξ, η1 and η2 being the known functions, is one of the Q-conditional symmetry for
DC system (1) then the operator N(t, x, U, V ) Q being N an arbitrary nonvanishing function is
also the Q-conditional symmetry operator. Thus we will seek only operators of the canonical
form (10). Of course, one can also find Q-conditional symmetry operators of the canonical form

Q = ∂x + η1(t, x, U, V )∂U + η2(t, x, U, V )∂V ,

however we aim to discuss such possibility elsewhere.
Using the known procedure (see, for example, [15], chapter 5) to construction of the opera-

tors Q of the form (10), where the coefficients ξ, η1 and η2 must be found, we have established
the following theorem.

Theorem 4. DC system (1) is Q-conditional invariant under the operator (10), if and only if
the functions ξ, η1, η2 satisfy the following determining equations:

ξUU = ξV V = ξUV = 0, (11)

λ1ηV V + F 1ξV = 0, λ2η
2
UU + F 2ξU = 0, (12)

λ1η
1
UU − 2λ1ξxU + 2(ξ + U)ξU +

λ1

λ2
F 2ξV = 0,

λ2η
2
V V − 2λ2ξxV + 2(ξ + V )ξV +

λ2

λ1
F 1ξU = 0, (13)

2λ1η
1
UV − 2λ1ξxV +

1
λ2

(λ2U + λ1V + (λ1 + λ2)ξ)ξV + 2F 1ξU = 0,

2λ2η
2
UV − 2λ2ξxU +

1
λ1

(λ2U + λ1V + (λ1 + λ2)ξ)ξU + 2F 2ξV = 0, (14)

λ1η
1
xx − η1

t − 2ξxη1 +
(

λ1

λ2
− 1

)
η2η1

V + Uη1
x + F 1η2

x = 0,

λ2η
2
xx − η2

t − 2ξxη2 +
(

λ2

λ1
− 1

)
η1η2

U + V η2
x + F 2η1

x = 0, (15)

λ1(2η1
xU − ξxx) + (2ξ + U)ξx − 2η1ξU +

(
1 − λ1

λ2

)
η2ξV − λ1

λ2
F 2η1

V

+ F 1η2
U + ξt + η1 = 0,

λ2(2η2
xV − ξxx) + (2ξ + V )ξx − 2η2ξV +

(
1 − λ2

λ1

)
η1ξU − λ2

λ1
F 1η2

U

+ F 2η1
V + ξt + η2 = 0, (16)

2λ1η
1
xV + (ξx − η1

U + η2
V )F 1 − 2η1ξV

+
1
λ2

[(λ2 − λ1)ξ + λ2U − λ1V ]η1
V + η1F 1

U + η2F 1
V = 0,

2λ2η
2
xU + (ξx − η2

V + η1
U )F 2 − 2η2ξU

+
1
λ1

[(λ2 − λ1)ξ + λ2U − λ1V ]η2
U + η2F 2

V + η1F 2
U = 0. (17)
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The overdetermined system of nonlinear equations (11)–(17) is very complicated and we have
not constructed its general solutions. On the other hand, it is possible to construct the general
solution under the additional condition η1

t = η2
t = η1

x = η2
x = 0, i.e., assuming ηk = ηk(U, V ),

k = 1, 2. Under such assumption the subsystem (15) with λ1 = λ2 is reduced to the condition
ξx = 0 therefore other subsystems can be easily solved.

Theorem 5. DC system (1) is Q-conditional invariant under the operator

Q = ∂t + ξ1(t, x, U, V )∂x + η1(U, V )∂U + η2(U, V )∂V , (18)

if and only if

λ1 = λ2 = 1, F 1 = m1 + U, F 2 = m2 + V, m1, m2 ∈ R (19)

and then the coefficients of the operator (18) have the form

ξ1 =
1
2
(U + V ) + α0,

η1 = −1
4

[
U(U + V )2 + 2α0U(U + V )

]
+ β0U + γ1,

η2 = −1
4

[
V (U + V )2 + 2α0V (U + V )

]
+ β0V + γ2, (20)

if m1 = m2 = 0, and

ξ1 =
1
2
(U + V ),

η1 = −1
4

[
(U + m1)(U + V )2 + (m2 − m1)U2

]
+ β0U + γ1,

η2 = −1
4

[
(U + m2)(U + V )2 + (m1 − m2)V 2

]
+ β0V + γ2, (21)

if m1 �= m2. Here α0, β0, γ1, γ2 are arbitrary constants.

One can see that the above listed additional conditions on the form of the operator Q are
very strong because they lead only to the fixed nonlinearity F1 = U + m1, F2 = V + m2. The
next theorem illustrates that the requirement λ1 = λ2 is very important.

Theorem 6. DC system (1) at

λ1 �= λ2, F 1 =
λ1

λ2
(U + m), F 2 =

λ2

λ1
(V − m), m ∈ R (22)

is invariant under the trivial Lie algebra generated by the basic operators Pt and Px while one
admits the operator of the Q-conditional symmetry

Q = ∂t − m
λ1 + λ2

λ1 − λ2
∂x +

U + V

(λ1 − λ2)t
(λ1∂U − λ2∂V ). (23)

4 Ansätze and exact solutions of a DC system

In this section we shall deal with the nonlinear DC system (6). It follows from Theorem 3 that
MAI of (6) for m1 �= m2 is the generalized Galilei algebra AG0

2(1, 1) with the basic operators (7).
It seems reasonable to construct Lie ansätze and to seek exact solutions of system (6) using
operators (7). A full set of non-equivalent (non-conjugate) one-dimensional subalgebras of the
AG2(1, 1) algebra is well-known [14]. Taking into account the similarity of structures of the
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AG2(1, 1) algebra and AG0
2(1, 1) algebra, a full set of non-equivalent one-dimensional subalgebras

of the AG0
2(1, 1) algebra was also constructed, namely:

k1∂t + k2∂x, ∂t + k3G, D, ∂t + Π, (24)

where k1, k2, k3 are arbitrary constants. Let us apply each of them for reduction of system (6)
to systems of ordinary differential equations (ODEs).

a) The operator k1∂t + k2∂x generates the ansatz

U = ϕ(ω), V = ψ(ω), ω = k2t − k1x, (25)

where ϕ, ψ are unknown functions. Substituting (25) into system (6), we arrive at the ODEs
system

k2ϕ̇ = k2
1ϕ̈ − k1ϕϕ̇ − k1(ϕ + m1)ψ̇,

k2ψ̇ = k2
1ψ̈ − k1(ψ + m2)ϕ̇ − k1ψψ̇, (26)

(hereinafter ϕ̇ = dϕ
dω , ϕ̈ = d2ϕ

dω2 ).

b) The operator ∂t + k3G generates the ansatz

U =
(k3t − m1)ϕ(ω) + ψ(ω) + (k3t − m1)2

m1 − m2
− m1,

V =
(k3t − m2)ϕ(ω) + ψ(ω) + (k3t − m2)2

m2 − m1
− m2, ω = x − k3

2
t2, (27)

which reduces system (6) the ODEs system

ϕ̈ − ϕϕ̇ + ψ̇ − 2k3 = 0,

ψ̈ − ψϕ̇ − k3ϕ = 0. (28)

c) The operator D generates the ansatz

U =
m1t

−1/2ϕ(ω) + t−1ψ(ω) + m1m2

m1 − m2
,

V =
m2t

−1/2ϕ(ω) + t−1ψ(ω) + m1m2

m2 − m1
, ω = t−1/2x. (29)

which reduces system (6) the ODEs system

ϕ̈ + ϕϕ̇ +
1
2
(ωϕ̇ + ϕ) − ψ̇ = 0,

ψ̈ + ψϕ̇ +
1
2
ωψ̇ + ψ = 0. (30)

d) Finally, the operator ∂0 + Π generates the ansatz

U =
1

m1 − m2

{(
t2 + 1

)−1/2
m1(ϕ(ω) − 2tω)

− (
t2 + 1

)−1 (ψ(ω) + tωϕ(ω) − 2t) + ω2 + m1m2

}
,

V =
1

m2 − m1

{(
t2 + 1

)−1/2
m2(ϕ(ω) − 2tω)

− (
t2 + 1

)−1 (ψ(ω) + tωϕ(ω) − 2t) + ω2 + m1m2

}
, ω =

(
t2 + 1

)−1/2
x, (31)
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which reduces system (6) the ODEs system

ϕ̈ + ϕϕ̇ + ψ̇ = 0,

ψ̈ + ψϕ̇ = ω(ωϕ̇ + ϕ). (32)

Having solutions of the ODEs systems (26), (28), (30), (32) and using the relevant ansätze
one easily constructs solutions of the original nonlinear DC system (6). For example, a particular
solution of system (28) leads to the following exact solution of system (6):

U =
1

m1 − m2

(
x2 − 2m1tx − 4t

t2 + 1
+

12
x2

+
6m1

x
+ m1m2

)
,

V =
1

m2 − m1

(
x2 − 2m2tx − 4t

t2 + 1
+

12
x2

+
6m2

x
+ m1m2

)
. (33)

By means of the known technique (see for details [11, 15]) for the continuous transformations
generated by the basic operators (7), solution (33) can be multiplied to a five-parameter family
of solutions. Such multiplication is possible for any given solution of system (6). In particular
case, using transformations generated by the Galilei operator G0

x, any time-independent (sta-
tionary) solution (U0(x), V0(x)) is converted to the following one-parameter family of solutions
of system (6)

U = U0(x + εt) − ε
U0(x + εt) + V0(x + εt) + 2m1

m2 − m1
,

V = V0(x + εt) + ε
U0(x + εt) + V0(x + εt) + 2m2

m2 − m1
, (34)

where ε is an arbitrary real parameter.

Let us apply the Q-conditional symmetry operators for the construction of ansätze and exact
solutions of system (6). It follows from Theorem 5 that system (6) for m1 �= m2 is Q-conditional
invariant with respect to the operator

Q = ∂t +
U + V

2
∂x − 1

4

{
(U + V )2(U + m1)∂U

+ (U + V )2(V + m2)∂V − (m1 − m2)
(
U2∂U − V 2∂V

) }
. (35)

To construct the relevant solutions of system (6), it is necessary to integrate the Lagrange system

dt

−4
=

dx

−2(U + V )
=

dU

(U + m1)(U + V )2 + (m2 − m1)U2

=
dV

(V + m2)(U + V )2 + (m1 − m2)V 2
. (36)

In contrast to the analogous systems for Lie operators (24), system (36) is nonlinear with respect
to the unknown functions U and V , therefore there is a problem to construct its general solution.
It turns out that this system can be essentially simplified by the substitution

t = t, x = x, w = U + V, z =
m1 − m2

2

(
U + V

U − V
− m1 + m2

m1 − m2

)
. (37)

Indeed, the relevant calculations show that system (36) takes the form

dt

−4
=

dx

−2w
=

dw

w2(w − 2z)
=

dz

w (z2 − m1m2)
. (38)
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The first integrals J1, J2, J3 of system (38) depend on the sign of the term m1m2, i.e., there
are three different cases: m1m2 = 0, m1m2 > 0 and m1m2 < 0. Considering the first of them
(other two cases see in [16]), we obtain

J1 = t +
4

wz
− 2

z2
, J2 = x − 2

z
, J3 =

3
wz2

− 1
z3

. (39)

Thus, we construct the non-Lie ansatz (6)

J1 = ϕ(J2), J3 = ψ(J2), (40)

being ϕ and ψ new unknown functions, for finding solutions of the original nonlinear DC sys-
tem (6). Substituting ansatz (40) into (6) in the case m2 = 0, m1 = 1 (this system for m1 �= 1
is reduced to the same with m1 = 1 by the substitution t → m−2

1 t, x → m−1
1 x, U → m1U ,

V → m1V ), we arrive at the ODEs system

ϕ̈ + 1 = 0,

4ψ̈ + ϕ̇ = 0. (41)

Since (41) is the linear system, its general solution can be easily found. Thus, substituting
one into ansatz (39), (40), we obtain the two-parameter family of solutions of system (6) with
m2 = 0, m1 = 1:

U =
2
3x3 + 2x2 + 4C1(x + 2) + 4(C2 − t)

W
, V =

4(t − C2) − 2x2

W
, (42)

where W = 1
12x4 + t2 + C1(x2 − 2t) + 2C2x and C1, C2 are arbitrary parameters.

Some other non-Lie ansätze and exact solutions are presented in [16].

5 Conclusions

In this paper, Theorem 1 is presented that gives a complete description of Lie symmetries of
the nonlinear diffusion-convection system (1) for λ1 �= λ2, λ1λ2 �= 0. In contrast to reaction-
diffusion systems (a complete description of Lie symmetries of those systems was done in [13]),
we have established only four non-equivalent cases when system (1) is invariant with respect to
the non-trivial Lie algebras. Obviously, the nonlinear fixed terms UUx and V Vx (see (1)) play a
role of the strong restrictions of Lie symmetry for system (1).

The nonlinear DC system (6) with unique symmetry properties has been also found. This
system is invariant under the generalized Galilei algebras AG0

2(1, 1) in the case m1 �= m2 and
AG2(1, 1) in the case m1 = m2 (see Theorem 3). On the other hand, system (6) admits the
operators of Q-conditional symmetry with the cubic nonlinearities on the dependent variables U
and V (see Theorem 5). To our knowledge, such operators for system of nonlinear evolution
equations are found for the first time. Analogous operators were found before for single reaction-
diffusion equations [17, 15, 18] and single reaction-diffusion-convection equations [10]. Finally,
it should be stressed that the process of reduction of (6) is very non-trivial if one uses the
Q-conditional symmetry operators (18), (20)–(21). However, the relevant reduction leads to very
simple ODEs systems (see, for example, (41) that were easily solved therefore exact solutions of
the nonlinear DC system (6) were obtained.
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