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Continuous groups of transformations acting on the expanded space of variables, which in-
cludes the equation parameters in addition to independent and dependent variables, are
considered. It is shown that the use of the expanded transformations enables one to enrich
the concept of similarity reductions of PDEs. The expanded similarity reductions of diffe-
rential equations may be used as a tool for finding changes of variables, which convert the
original PDE into another (presumably simpler) PDE. A new view on the common simi-
larity reductions as the singular expanded group transformations may be used for defining
reductions of a PDE to a specific target ODE.

1 Introduction

By an expanded Lie group transformation of a partial differential equation (PDE) we mean
a continuous group of transformations acting on the expanded space of variables which includes
the equation parameters in addition to independent and dependent variables. We consider
the transformations that can be found using the Lie infinitesimal criterion with the properly
expanded infinitesimal group generators. In this paper, we are only concerned with groups of
point transformations, leaving aside problems involving generalized (Lie–Bäcklund) symmetry
groups.

An expanded group of transformations represents a particular case of the equivalence group
that preserves the class of PDEs under study – roughly speaking, having the same differential
structure but with arbitrary functions having different forms. The approach to finding these
equivalence transformation groups with the use of the Lie infinitesimal technique was introduced
by Ovsiannikov (see, e.g., [1]) who suggested using the Lie infinitesimal criterion in the properly
extended space of variables including dependent and independent variables, arbitrary functions
and their derivatives. The original Ovsiannikov method was further developed by Akhatov
et al. [2]. Their ideas have also been generalized in several papers (see, e.g., [3] and references
therein). The transformations in the extended space of variables obtained by adding param-
eters to the list of independent variables were also used in the context of the renormalization
group (RG) symmetries [4, 5].

The main purpose of this paper is to show that the use of the Lie groups of transformations
in the expanded space of variables including equation parameters enables one to enrich the
concept of similarity reductions as applied to PDEs. In addition, we wish to draw attention to
a possibility of using these groups for finding changes of variables that remove some terms from
the original equation. Although such a possibility is excluded neither in the framework of the
equivalence group approach nor in the context of the RG symmetries, this aspect is obscure in
those theories.

The rest of this paper is organized as follows. In Section 2 we consider some illustrative
examples of expanded group of transformations that can be used for removing terms from the
original differential equations. A comparison with the RG symmetry approach is made. In
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Sections 3 and 4 we show how the concept of similarity reductions of PDEs can be enriched
in the framework of the expanded transformation groups. Finally, in Section 5 we make some
remarks and suggest possible further work.

2 Examples of application of the expanded groups

2.1 Application to ODEs: a simple linear example

We will start with a simple example that applies the technique to the well known ODE of the
linear damped oscillator. Of course, this example is only of illustrative value but it is interesting
from the methodological point of view since this equation is frequently used to discuss some
aspects of asymptotic methods. The equation of linear oscillations with linear damping is

utt + aut + u = 0 (1)

or

utt + ut + bu = 0, (2)

where the subscripts on u denote derivatives. In the context of perturbation methods, when
the parameter a or b are assumed to be small, equations (1) and (2) acquire somewhat different
physical meanings – an oscillator with a weak resistance for (1) and an overdamped oscillator
for (2). An example of application of the expanded transformations to the ODE (1) of the linear
oscillator appeared first (to the author’s knowledge) in [7]. We will discuss equation (2), which
was used in [5] and [6] to illustrate the approaches to the asymptotic analysis of solutions of
differential equations based on the renormalization group concept.

We consider the one-parameter (ε) Lie group of transformations in (t, u, b):

t̃ = g(t, u, b, ε), ũ = h(t, u, b, ε), b̃ = φ(b, ε) (3)

with an infinitesimal generator of the form

X = τ(t, u, b)
∂

∂t
+ η(t, u, b)

∂

∂u
+ β(b)

∂

∂b

which leaves (2) invariant. The invariance requirement yields the following determining equa-
tions

τuu = 0, ηuu − 2τtu + 2τu = 0, 2ηtu − τtt + τt + 3buτu = 0,

ηtt − buηu + ηt + 2buτt + bη + uβ = 0. (4)

If one is aimed at reducing a given equation to an equation with a known general solution,
there is no need in defining the most general form of the group from the determining equations.
It is sufficient to define a minimal subgroup arising solely due to the presence of the generator β
in the equations. Such a subgroup is found from (4) as

τ =
2βt

1 − 4b
, η = − βut

1 − 4b
.

The finite transformations (3) are defined by solving the problem

dg

dε
=

2βg

1 − 4φ
,

dh

dε
= − βgh

1 − 4φ
,

dφ

dε
= β,

g = t, h = u, φ = b at ε = 0. (5)
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Using the third equation of (5) one can go over to derivatives with respect to φ in the first two
equations and obtain solutions in the forms

t̃ = t

(
1 − 4b

1 − 4b̃

)1/2

, ũ = u exp
{

t − t̃

2

}
, b̃ = b + ε. (6)

We have set β = 1 in the last equation. It can be checked that applying these transformations
to the equation ũt̃t̃ + ũt̃ + b̃ũ = 0 yields equation (2).

To find the transformations that remove the last term from the equation (2) by converting
it into

ũt̃t̃ + ũt̃ = 0 (7)

we specify the formulae (6) by setting b̃ = 0, which corresponds to the specific choice of the
group parameter ε = −b. Thus, we arrive at the transformations

u = ũ exp
{

t̃ − t

2

}
, t̃ = t (1 − 4b)1/2 (8)

expressing the solution u of the original equation (2) through the solution ũ of equation (7).
Substituting the general solution of (7) ũ = C1 + C2 exp{−t̃} into (8) yields a general solution
of (2).

Next we will compare our approach, that is based merely on the expanded transformation
group, with the approaches of [5] and [6] using the RG concept. The methods of [5] and [6]
were designed to improve approximate solutions of the boundary value problems for equations
depending on a small parameter. Correspondingly, the initial-value problem for equation (2)
with a small parameter b is considered. In [6] the renormalization technique is developed to
construct the uniformly valid asymptotics using a straightforward naive perturbation expansion
as a starting point. The approach of [5] treats the RG as the Lie group of transformations for
a renormgroup manifold constructed in a special way (including parameters of the equations in
the list of independent variables is considered as one of the possibilities). The authors consider
the initial-value problem for a system of two first order ODEs replacing (2) and find that the
use of the modified RG technique permits to improve a perturbation expansion solution up to
the exact solution. Thus, as a matter of fact, the expanded transformations are applied in [5]
with the same result as that described above in this section. However, in the method of [5],
the issue of the exact transformations, that would reduce the equation to the simpler one by
removing some terms, is obscured by the underlying asymptotic concept, and this may conceal
the possibility of finding such transformations. In addition, use of an approximate solution as
a starting point and embedding the initial conditions in the framework of the method make the
procedure more complicated.

2.2 Application to PDEs: two-dimensional steady-state
nonlinear diffusion equation

This example applies the technique to the nonlinear equation

uxx + uyy + u2
x + u2

y + bux + a
(
1 + pe−u

)
= 0, (9)

where a, b and p are constants. This equation can be obtained from the steady-state nonlinear
diffusion (heat conduction) equation with the source and the gradient term in the case where
the coefficient of thermal conductivity and the source have exponential dependence on the con-
centration (temperature): K(u) = K0e

u and Q(u) = Q0 + Q1e
u. The equation including both
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the source and the gradient terms has been chosen to show how the technique works in the case
when two equation parameters a and b are involved into transformations.

We consider again the one-parameter (ε) Lie group of transformations in (x, y, u, a, b) space:

X = ξ(x, y, u, a, b)
∂

∂x
+ ζ(x, y, u, a, b)

∂

∂y
+ η(x, y, u, a, b)

∂

∂u
+ α(a, b)

∂

∂a
+ β(a, b)

∂

∂b

which leaves equation (9) invariant. Solving the determining equations yields

ξ = C1 +
2α − βb

b2 − 4a
x + ky, ζ = C2 − kx +

2α − βb

b2 − 4a
y,

η =
(
1 + pe−u

) (
C3 +

2βa − αb

b2 − 4a
x − k

2
by

)
,

where C1, C2, C3 and k are constants. Here considering groups more general than the minimal
subgroup can be useful for constructing different solutions of the initial equation from a special
solution of a simplified equation. We will show the finite transformations for the case of C1 =
C2 = 0, as follows

x̃ = S(ε)
(
x cos A(ε) − y sin A(ε)

)
, ỹ = S(ε)

(
x sinA(ε) + y cos A(ε)

)
,

ũ = ln
{
−p + (p + eu) exp

[
C3ε +

bx

2
− b + εβ

2
S(ε)

(
x cos A(ε) − y sinA(ε)

)]}
,

ã = a + εα, b̃ = b + εβ, (10)

where

S =
[

b2 − 4a

b2 − 4a + ε(2βb − 4α) + ε2β2

]1/2

,

A = −kε, α = 1, b = 1 for β = 0,

A =
k

β




[(
b − 2

α

β

)2

+ ε(2βb − 4α) + ε2β2

]1/2

−
(

b − 2
α

β

)
 for β �= 0.

These transformations map equation (9) into the equation with parameters ã and b̃ calculated
according to (10). In particular, it is possible to transform (9) into an equation without either
the last source term or the term bux by setting respectively either β = 0 and ε = −a/α or α = 0
and ε = −b/β in the formulae (10).

3 Expanded similarity reductions of PDEs

In this section we will show that the symmetry reduction procedure implemented in the expanded
space can lead to discovering transformations between equations that cannot be obtained by
applying the technique described in the previous section. We will take as an example the
Fokker–Planck equation

ut = uxx + xux + u (11)

which is used in statistical physics to describe the evolution of probability distribution functions
(see, for example, [8]). This equation does not include any parameters – two physical parameters
in the original equation corresponding to the problem of a free particle in Brownian motion can
be removed by the scaling of x and t. Nevertheless, to apply the technique, a parameter may
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be introduced into the equation “artificially”, for example, as the coefficient in front of the last
term of the equation

ut − uxx − xux − au = 0. (12)

This coefficient cannot change as a result of rescaling the time and space coordinates without
appearance of coefficients in front of other terms of the equation. It may seem that introducing
this coefficient spoils the physics of the problem (the last two terms in the equation must have
equal coefficients), but one may always set a = 1 in the final formulae.

We consider the one-parameter (ε) Lie group of infinitesimal transformations in (x, t, u, a)
defined by

X = ξ(x, t, u, a)
∂

∂x
+ τ(x, t, u, a)

∂

∂t
+ η(x, t, u, a)

∂

∂u
+ α(a)

∂

∂a
.

Applying the invariance criterion to equation (12) and solving the determining equations yields

ξ =
(
C1e

2t − C2e
−2t

)
x + C3e

t + C4e
−t, τ = C0 + C1e

2t + C2e
−2t,

η =
[−C1e

2tx2 − C3e
tx − C1e

2t + a
(
C0 + C1e

2t + C2e
−2t

)
+ αt + C5

]
u + Φ(x, t), (13)

where C0, C1, C2, C3, C4 and C5 are constants and Φ(x, t) satisfies the equation Φxx + xΦx −
Φt + aΦ = 0.

To illustrate the approach we will take the C1-subgroup of the full group (13): C0 = C2 =
C3 = C4 = C5 = Φ = 0. We will start with defining classical (not expanded) similarity
reductions corresponding to this subgroup – one should set α = 0 and a = 1 to obtain a classical
group from (13). With such group generators, from the invariant surface condition

ξux + τut − η = 0

we derive the functional form of the similarity reduction, which being substituted into equa-
tion (11) eventually produces the following

u(x, t) = e−x2/2w(z), z = xe−t, w′′ = 0. (14)

Now we will apply the same procedure, but for the expanded similarity reductions in (x, t, u, a)
(instead of (x, t, u)) space. The generators of the same subgroup are now given by

ξ = C1xe2t, τ = C1e
2t, η =

[−C1x
2e2t + (a − 1)C1e

2t + αt
]
u.

Integrating the characteristic system for the invariant surface condition of the form

ξux + τut + αua − η = 0

yields three similarity variables

z = xe−t, ϕ = −C1

α
a − 1

2
e−2t, w = ue(1−a)t+x2/2.

We choose w as a new dependent variable and take z and ϕ as new independent variables to
arrive at the following similarity reduction

u(x, t, a) = w(z, ϕ)e(a−1)t−x2/2, z = xe−t, ϕ = −C1

α
a − 1

2
e−2t. (15)

Although in terms of the expanded transformations such a similarity reduction reduces the
number of variables, it seems that we gain nothing for solving the original PDE since, upon
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substituting the reduction into the equation, it will be reduced again to a PDE for a function
w(z, ϕ). However, this new equation will have a different form, which may allow new possibilities
for solution. In particular, substituting (15) into (12) yields

wϕ − wzz = 0. (16)

Thus, the expanded similarity reduction (15) taken for a = 1 (we may also set α = 1 without loss
of generality) provides a transformation of the original equation (11) to the linear heat equation.

Such a transformation cannot arise as the result of application of the classical Lie group
method – it is seen that the similarity solution (14) provided by the classical method corresponds
to taking only a particular solution of (16), namely, w = w0+w1z where w0 and w1 are arbitrary
constants. The technique described in the previous section can produce it neither. It enables
one to define only the transformations eliminating the last term of (12).

4 Similarity reductions as the singular expanded
group transformations

In this section, we will show that including the equation parameters into the transformations
allows one to treat the classical similarity reductions of a PDE as the expanded group transfor-
mations which are singular in some variables. This can also enable one to define reductions of
the PDE to specific target ODEs.

We will take as an example the Generalized Boussinesq (GBQ) equation

uxxxx + putuxx + quxuxt + ru2
xuxx + utt = 0 (17)

which has a number of equations, arising in different physical applications, as special cases.
Similarity reductions for equation (17) obtained from the classical Lie group method and from
the Clarkson–Kruskal direct method have been considered in [9].

To apply the method we will introduce an artificial coefficient a in front of the last term, as
follows

uxxxx + putuxx + quxuxt + ru2
xuxx + autt = 0 (18)

and consider the one-parameter Lie group of infinitesimal transformations in the expanded
(x, t, u, a, p, q, r) space defined by

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ A

∂

∂a
+ P

∂

∂p
+ Q

∂

∂q
+ R

∂

∂r
.

Several different families of solutions of the determining equations obtained from the invari-
ance requirement may arise depending on the relations between the coefficients of (18). We will
restrict ourselves to the case

p = q, r =
q2

2a
=⇒ P = Q,

R

r
= 2

Q

q
− A

a
. (19)

Then solving the determining equations yields

ξ = C1xt + C2x + C3t + C4, τ = C1t
2 +

(
2C2 +

A

2a

)
t + C0,

η =
(

A

2a
− Q

q

)
u +

a

q
C1x

2 +
2a

q
C3x + C5. (20)
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Here not only the generators A and Q may depend on a and q but also the C0, C1, . . . , C5 are
allowed to be functions of a and q due to the fact that the determining equations do not include
the corresponding derivatives.

To show the idea it is sufficient to consider the subgroup of (20) defined by the conditions
C0 = C2 = C3 = C4 = C5 = 0 and the following

A

2a
=

Q

q
=⇒ R = 0 (r = const), q =

√
2ra1/2, (21)

where (19) has been used. In this special case, the finite group transformations are found by
solving the problem

dx̃

dε
= C1(ã)x̃t̃,

dt̃

dε
= C1(ã)t̃2 +

A(ã)
2ã

t̃,
dũ

dε
=

1√
2r

ã1/2C1(ã)x̃2,
dã

dε
= A(ã),

x̃ = x, t̃ = t, ũ = u, ã = a at ε = 0. (22)

The solutions of the problem (22) may be represented as

t̃ =
t
√

ã√
a[1 + tN(ã, a)]

, x̃ =
x

1 + tN(ã, a)
, ũ = u −

√
a√
2r

[
x2N(ã, a)

1 + tN(ã, a)

]
,

N(ã, a) = − 1√
a

∫ ã

a

C1(ϕ)
√

ϕ

A(ϕ)
dϕ. (23)

In the formulae (23), ã(a, ε) is a solution of the last equation of (22) with the corresponding
initial condition.

We will look for a transformation removing the terms with derivatives with respect to t
from (18) which requires ã = 0, p̃ = 0 and q̃ = 0 – in view of the assumptions (19) and (21), it
is sufficient to set ã = 0. It is immediately seen that the transformation obtained in such a way
is singular in the variable t: setting ã = 0 in (23) yields t̃ = 0. However, since the equation
resulting from this transformation does not include derivatives with respect to t, one can treat it
as an equation for the function ũ(x̃) of one variable, and then it does not matter what happens
with the discarded variable t. The transformation obtained by setting ã = 0 in (23) (having in
mind the original equation (17) we may also set a = 1 now) is

u = ũ(x̃, 0) +
λ√
2r

(
x2

1 + tλ

)
, x̃ =

x

1 + tλ
, λ = N(0, 1). (24)

This transformation reduces (17) to the following equation (it is readily checked by the direct
substitution):

ũx̃x̃x̃x̃ + rũ2
x̃ũx̃x̃ = 0 (25)

in which a number of independent variables is reduced as compared with the original equation.
Thus, the expanded group transformations given by (23) with ã = 0, which are singular in t,
provide the following similarity reduction of the GBQ equation:

u = w(z) +
λ√
2r

(
x2

1 + tλ

)
, z =

x

1 + tλ
, (26)

where w(z) satisfies

w′′′′ + rw′2w′′ = 0. (27)
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The forms of the functions C1(a) and A(a) have not been specified in the process of derivation
of the above formulae. It is evident that any function C1(a), which being substituted into (23)
provides λ = N(0, 1) �= 0 (for example, C1 = const), and any function A(a), which permits
a transformation to ã = 0 (for example, A = 1, ã = a + ε), are suitable.

To obtain a similarity reduction, which is more general than (26) but reduces (17) to the
same ODE (27), one should consider a more general subgroup of the group (20).

The singular expanded transformations considered above, which remove terms with deriva-
tives with respect to t from the original equation (17), can produce only the reductions to the
ODE (27). To define a reduction of the original equation to another ODE (or, at least, to check
whether such a reduction is possible) we will look for the expanded transformations that remove
some terms from and simultaneously add other terms (desired in the target ODE) to the original
PDE. For example, if we wish to define a reduction from (18) (we consider again the particular
case defined by (19) and (21)) to the equation

w′′′′ + rw′2w′′ + kw′′ = 0, (28)

we have to consider the expanded transformations of the equation

uxxxx + qutuxx + quxuxt + (q2/2a)u2
xuxx + autt + buxx = 0 (29)

in the (x, t, u, a, q, b) space with a requirement for ã = φ(a, q, b), and q̃ = κ(a, q, b) to transform
respectively from a and q to zero values, and for b̃ = µ(a, q, b) to transform from zero to k. We
will take the subgroup which for b = b̃ = 0 would coincide with that defined by (22) and (23).
Omitting the details of calculations we will show only the resulting finite transformations

t̃ =
t
√

ã√
a(1 + tN)

, x̃ =
x

1 + tN
,

ũ = u −
√

a√
2r

(
x2N

1 + tN

)
+

b√
2ra

t − b̃√
2ra

(
t

1 + tN

)
,

ã = a + ε, q̃ = ã2 q

a2
, b̃ = µ(a, r, b, ã). (30)

The reduction from (17) to (28) is obtained from (30) by setting a = 1, ã = 0, b = 0, b̃ = k, as
follows

u = ũ(x̃, 0) +
λ√
2r

(
x2

1 + tλ

)
+

k√
2ra

(
t

1 + tλ

)
, x̃ =

x

1 + tλ
, λ = N(0, 1)

with a subsequent change of notation x̃ → z, ũ(x̃, 0) → w(z).
Other similarity reductions of equation (17) can be derived in a similar way. It is worth noting

that, within this framework, the reduction to equation (27) (or (25)), which includes only the
terms from the original equation, is singled out from the variety of possible reductions. The fact
that it possesses some special properties was marked in [9] without addressing its special nature.

5 Concluding remarks

In this paper we have demonstrated that some new applications of the Lie group method to
differential equations may arise due to the use of expanded transformation groups.

Simplifying the original equation by means of eliminating some terms from the equation via
expanded symmetry groups, discussed in Section 2, cannot be considered as a quite new method –
as a matter of fact, it represents a particular case of the equivalence group approach. Here our
purpose was to stimulate an interest in the fact that, in this pure form, the approach offers
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considerable promise for applications, so that it would be helpful to introduce the corresponding
options into existing computer algebra packages (it does not require significant modifications).
Even if this approach does not guarantee simplifying the equation it provides a way of checking
whether the simplifications are possible.

The expanded similarity reductions of differential equations considered as a tool for finding
changes of variables, which convert the original PDE into another (presumably simpler) PDE,
represent a new method that may be applied in a promising way. Also a new view on the
common similarity reductions as the singular expanded group transformations may be used for
developing a technique for defining reductions to specific target ODEs.

We will also mention a possible use of the expanded transformations (not discussed here) in
the context of perturbation methods. It may enable one to introduce a small parameter into a
problem in the case when this cannot be done by a rescaling procedure.

The extensions of the formalism to contact and Lie–Bäclund groups are straightforward.
Other generalizations of the described approaches – for example, in the spirit of the non-classical
method – are also possible.
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